blk-mq.c 57.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

46
	for (i = 0; i < hctx->ctx_map.size; i++)
47
		if (hctx->ctx_map.map[i].word)
48 49 50 51 52
			return true;

	return false;
}

53 54 55 56 57 58 59 60 61
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

62 63 64 65 66 67
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
68 69 70 71 72 73 74 75 76 77 78 79
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 81
}

82
void blk_mq_freeze_queue_start(struct request_queue *q)
83
{
84
	int freeze_depth;
85

86 87
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
88
		percpu_ref_kill(&q->q_usage_counter);
89
		blk_mq_run_hw_queues(q, false);
90
	}
91
}
92
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
93 94 95

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
96
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
97 98
}

99 100 101 102
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
103
void blk_freeze_queue(struct request_queue *q)
104
{
105 106 107 108 109 110 111
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
112 113 114
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
115 116 117 118 119 120 121 122 123

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
124
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
125

126
void blk_mq_unfreeze_queue(struct request_queue *q)
127
{
128
	int freeze_depth;
129

130 131 132
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
133
		percpu_ref_reinit(&q->q_usage_counter);
134
		wake_up_all(&q->mq_freeze_wq);
135
	}
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
138

139 140 141 142 143 144 145 146
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
147 148 149 150 151 152 153

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
154 155
}

156 157 158 159 160 161
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
163 164
			       struct request *rq, int op,
			       unsigned int op_flags)
165
{
166
	if (blk_queue_io_stat(q))
167
		op_flags |= REQ_IO_STAT;
168

169 170 171
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
172
	rq->mq_ctx = ctx;
173
	req_set_op_attrs(rq, op, op_flags);
174 175 176 177 178 179
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
180
	rq->start_time = jiffies;
181 182
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
183
	set_start_time_ns(rq);
184 185 186 187 188 189 190 191 192 193
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

194 195
	rq->cmd = rq->__cmd;

196 197 198 199 200 201
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
202 203
	rq->timeout = 0;

204 205 206 207
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

208
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
209 210
}

211
static struct request *
212
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
213 214 215 216
{
	struct request *rq;
	unsigned int tag;

217
	tag = blk_mq_get_tag(data);
218
	if (tag != BLK_MQ_TAG_FAIL) {
219
		rq = data->hctx->tags->rqs[tag];
220

221
		if (blk_mq_tag_busy(data->hctx)) {
222
			rq->cmd_flags = REQ_MQ_INFLIGHT;
223
			atomic_inc(&data->hctx->nr_active);
224 225 226
		}

		rq->tag = tag;
227
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
228 229 230 231 232 233
		return rq;
	}

	return NULL;
}

234 235
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
236
{
237 238
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
239
	struct request *rq;
240
	struct blk_mq_alloc_data alloc_data;
241
	int ret;
242

243
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
244 245
	if (ret)
		return ERR_PTR(ret);
246

247
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
248
	hctx = blk_mq_map_queue(q, ctx->cpu);
249
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
250

251
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
252
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
253 254 255 256
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
257
		hctx = blk_mq_map_queue(q, ctx->cpu);
258
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
259
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
260
		ctx = alloc_data.ctx;
261 262
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
263
	if (!rq) {
264
		blk_queue_exit(q);
265
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
266
	}
267 268 269 270

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
271 272
	return rq;
}
273
EXPORT_SYMBOL(blk_mq_alloc_request);
274

M
Ming Lin 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

314 315 316 317 318 319
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

320 321
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
322
	rq->cmd_flags = 0;
323

324
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
325
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
326
	blk_queue_exit(q);
327 328
}

329
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
330 331 332 333 334
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
335 336 337 338 339 340

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
341
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
342
}
J
Jens Axboe 已提交
343
EXPORT_SYMBOL_GPL(blk_mq_free_request);
344

345
inline void __blk_mq_end_request(struct request *rq, int error)
346
{
M
Ming Lei 已提交
347 348
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
349
	if (rq->end_io) {
350
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
351 352 353
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
354
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
355
	}
356
}
357
EXPORT_SYMBOL(__blk_mq_end_request);
358

359
void blk_mq_end_request(struct request *rq, int error)
360 361 362
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
363
	__blk_mq_end_request(rq, error);
364
}
365
EXPORT_SYMBOL(blk_mq_end_request);
366

367
static void __blk_mq_complete_request_remote(void *data)
368
{
369
	struct request *rq = data;
370

371
	rq->q->softirq_done_fn(rq);
372 373
}

374
static void blk_mq_ipi_complete_request(struct request *rq)
375 376
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
377
	bool shared = false;
378 379
	int cpu;

C
Christoph Hellwig 已提交
380
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
381 382 383
		rq->q->softirq_done_fn(rq);
		return;
	}
384 385

	cpu = get_cpu();
C
Christoph Hellwig 已提交
386 387 388 389
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
390
		rq->csd.func = __blk_mq_complete_request_remote;
391 392
		rq->csd.info = rq;
		rq->csd.flags = 0;
393
		smp_call_function_single_async(ctx->cpu, &rq->csd);
394
	} else {
395
		rq->q->softirq_done_fn(rq);
396
	}
397 398
	put_cpu();
}
399

400
static void __blk_mq_complete_request(struct request *rq)
401 402 403 404
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
405
		blk_mq_end_request(rq, rq->errors);
406 407 408 409
	else
		blk_mq_ipi_complete_request(rq);
}

410 411 412 413 414 415 416 417
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
418
void blk_mq_complete_request(struct request *rq, int error)
419
{
420 421 422
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
423
		return;
424 425
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
426
		__blk_mq_complete_request(rq);
427
	}
428 429
}
EXPORT_SYMBOL(blk_mq_complete_request);
430

431 432 433 434 435 436
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

437
void blk_mq_start_request(struct request *rq)
438 439 440 441 442
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
443
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
444 445
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
446

447
	blk_add_timer(rq);
448

449 450 451 452 453 454
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

455 456 457 458 459 460
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
461 462 463 464
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
465 466 467 468 469 470 471 472 473

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
474
}
475
EXPORT_SYMBOL(blk_mq_start_request);
476

477
static void __blk_mq_requeue_request(struct request *rq)
478 479 480 481
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
482

483 484 485 486
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
487 488
}

489 490 491 492 493
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
494
	blk_mq_add_to_requeue_list(rq, true);
495 496 497
}
EXPORT_SYMBOL(blk_mq_requeue_request);

498 499 500
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
501
		container_of(work, struct request_queue, requeue_work.work);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

525 526 527 528 529
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

554 555
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
556
	cancel_delayed_work_sync(&q->requeue_work);
557 558 559
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

560 561
void blk_mq_kick_requeue_list(struct request_queue *q)
{
562
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
563 564 565
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

566 567 568 569 570 571 572 573
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

594 595
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
596 597
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
598
		return tags->rqs[tag];
599
	}
600 601

	return NULL;
602 603 604
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

605
struct blk_mq_timeout_data {
606 607
	unsigned long next;
	unsigned int next_set;
608 609
};

610
void blk_mq_rq_timed_out(struct request *req, bool reserved)
611
{
612 613
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
614 615 616 617 618 619 620 621 622 623

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
624 625
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
626

627
	if (ops->timeout)
628
		ret = ops->timeout(req, reserved);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
644
}
645

646 647 648 649
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
650

651 652 653 654 655
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
656 657 658 659
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
660
		return;
661
	}
662

663 664
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
665
			blk_mq_rq_timed_out(rq, reserved);
666 667 668 669
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
670 671
}

672
static void blk_mq_timeout_work(struct work_struct *work)
673
{
674 675
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
676 677 678 679 680
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
696 697
		return;

698
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
699

700 701 702
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
703
	} else {
704 705
		struct blk_mq_hw_ctx *hctx;

706 707 708 709 710
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
711
	}
712
	blk_queue_exit(q);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

754 755 756 757 758 759 760 761 762
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

763
	for (i = 0; i < hctx->ctx_map.size; i++) {
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

788 789 790 791 792 793 794 795 796 797 798
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
799 800
	LIST_HEAD(driver_list);
	struct list_head *dptr;
801
	int queued;
802

803
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
804 805
		return;

806 807 808
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

809 810 811 812 813
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
814
	flush_busy_ctxs(hctx, &rq_list);
815 816 817 818 819 820 821 822 823 824 825 826

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

827 828 829 830 831 832
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

833 834 835
	/*
	 * Now process all the entries, sending them to the driver.
	 */
836
	queued = 0;
837
	while (!list_empty(&rq_list)) {
838
		struct blk_mq_queue_data bd;
839 840 841 842 843
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

844 845 846 847 848
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
849 850 851
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
852
			break;
853 854
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
855
			__blk_mq_requeue_request(rq);
856 857 858 859
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
860
			rq->errors = -EIO;
861
			blk_mq_end_request(rq, rq->errors);
862 863 864 865 866
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
867 868 869 870 871 872 873

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
889 890 891 892 893 894 895 896 897 898
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
899 900 901
	}
}

902 903 904 905 906 907 908 909
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
910 911
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
912 913

	if (--hctx->next_cpu_batch <= 0) {
914
		int cpu = hctx->next_cpu, next_cpu;
915 916 917 918 919 920 921

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
922 923

		return cpu;
924 925
	}

926
	return hctx->next_cpu;
927 928
}

929 930
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
931 932
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
933 934
		return;

935
	if (!async) {
936 937
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
938
			__blk_mq_run_hw_queue(hctx);
939
			put_cpu();
940 941
			return;
		}
942

943
		put_cpu();
944
	}
945

946
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
947 948
}

949
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
950 951 952 953 954 955 956
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
957
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
958 959
			continue;

960
		blk_mq_run_hw_queue(hctx, async);
961 962
	}
}
963
EXPORT_SYMBOL(blk_mq_run_hw_queues);
964 965 966

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
967
	cancel_work(&hctx->run_work);
968
	cancel_delayed_work(&hctx->delay_work);
969 970 971 972
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

973 974 975 976 977 978 979 980 981 982
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

983 984 985
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
986

987
	blk_mq_run_hw_queue(hctx, false);
988 989 990
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

991 992 993 994 995 996 997 998 999 1000
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1001
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1002 1003 1004 1005 1006 1007 1008 1009 1010
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1011
		blk_mq_run_hw_queue(hctx, async);
1012 1013 1014 1015
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1016
static void blk_mq_run_work_fn(struct work_struct *work)
1017 1018 1019
{
	struct blk_mq_hw_ctx *hctx;

1020
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1021

1022 1023 1024
	__blk_mq_run_hw_queue(hctx);
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1037 1038
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1039

1040 1041
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1042 1043 1044
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1045 1046 1047
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1048
{
J
Jens Axboe 已提交
1049 1050
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1051 1052
	trace_block_rq_insert(hctx->queue, rq);

1053 1054 1055 1056
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1057
}
1058

1059 1060 1061 1062 1063
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1064
	__blk_mq_insert_req_list(hctx, rq, at_head);
1065 1066 1067
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1068
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1069
			   bool async)
1070
{
J
Jens Axboe 已提交
1071
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1072
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1073
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1074

1075 1076 1077
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1090
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1103
		BUG_ON(rq->mq_ctx != ctx);
1104
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1105
		__blk_mq_insert_req_list(hctx, rq, false);
1106
	}
1107
	blk_mq_hctx_mark_pending(hctx, ctx);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1173

1174
	blk_account_io_start(rq, 1);
1175 1176
}

1177 1178 1179 1180 1181 1182
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1183 1184 1185
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1186
{
1187
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1188 1189 1190 1191 1192 1193 1194
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1195 1196
		struct request_queue *q = hctx->queue;

1197 1198 1199 1200 1201
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1202

1203 1204 1205
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1206
	}
1207
}
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1221 1222
	int op = bio_data_dir(bio);
	int op_flags = 0;
1223
	struct blk_mq_alloc_data alloc_data;
1224

1225
	blk_queue_enter_live(q);
1226
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1227
	hctx = blk_mq_map_queue(q, ctx->cpu);
1228

J
Jens Axboe 已提交
1229
	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1230
		op_flags |= REQ_SYNC;
1231

1232
	trace_block_getrq(q, bio, op);
1233
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1234
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1235
	if (unlikely(!rq)) {
1236
		__blk_mq_run_hw_queue(hctx);
1237
		blk_mq_put_ctx(ctx);
1238
		trace_block_sleeprq(q, bio, op);
1239 1240

		ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1241
		hctx = blk_mq_map_queue(q, ctx->cpu);
1242
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1243
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1244 1245
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1246 1247 1248
	}

	hctx->queued++;
1249 1250 1251 1252 1253
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1254
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1255 1256 1257
{
	int ret;
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1258
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1259 1260 1261 1262 1263
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1264
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1265 1266 1267 1268 1269 1270 1271

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1272 1273
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1274
		return 0;
1275
	}
1276

1277 1278 1279 1280 1281 1282 1283
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1284
	}
1285 1286

	return -1;
1287 1288
}

1289 1290 1291 1292 1293
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1294
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1295
{
J
Jens Axboe 已提交
1296 1297
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1298 1299
	struct blk_map_ctx data;
	struct request *rq;
1300 1301
	unsigned int request_count = 0;
	struct blk_plug *plug;
1302
	struct request *same_queue_rq = NULL;
1303
	blk_qc_t cookie;
1304 1305 1306 1307

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1308
		bio_io_error(bio);
1309
		return BLK_QC_T_NONE;
1310 1311
	}

1312 1313
	blk_queue_split(q, &bio, q->bio_split);

1314 1315 1316
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1317

1318 1319
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1320
		return BLK_QC_T_NONE;
1321

1322
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1323 1324 1325 1326 1327 1328 1329

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1330
	plug = current->plug;
1331 1332 1333 1334 1335
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1336 1337 1338
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1339 1340 1341 1342

		blk_mq_bio_to_request(rq, bio);

		/*
1343
		 * We do limited pluging. If the bio can be merged, do that.
1344 1345
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1346
		 */
1347
		if (plug) {
1348 1349
			/*
			 * The plug list might get flushed before this. If that
1350 1351 1352
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1353 1354
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1355
				list_del_init(&old_rq->queuelist);
1356
			}
1357 1358 1359 1360 1361
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1362 1363 1364
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1365
		blk_mq_insert_request(old_rq, false, true, true);
1366
		goto done;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1380 1381
done:
	return cookie;
1382 1383 1384 1385 1386 1387
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1388
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1389
{
J
Jens Axboe 已提交
1390 1391
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1392 1393
	struct blk_plug *plug;
	unsigned int request_count = 0;
1394 1395
	struct blk_map_ctx data;
	struct request *rq;
1396
	blk_qc_t cookie;
1397 1398 1399 1400

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1401
		bio_io_error(bio);
1402
		return BLK_QC_T_NONE;
1403 1404
	}

1405 1406
	blk_queue_split(q, &bio, q->bio_split);

1407 1408 1409 1410 1411
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1412 1413

	rq = blk_mq_map_request(q, bio, &data);
1414
	if (unlikely(!rq))
1415
		return BLK_QC_T_NONE;
1416

1417
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1430 1431 1432
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1433
		if (!request_count)
1434
			trace_block_plug(q);
1435 1436 1437 1438

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1439 1440
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1441
		}
1442

1443
		list_add_tail(&rq->queuelist, &plug->mq_list);
1444
		return cookie;
1445 1446
	}

1447 1448 1449 1450 1451 1452 1453 1454 1455
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1456 1457
	}

1458
	blk_mq_put_ctx(data.ctx);
1459
	return cookie;
1460 1461
}

1462 1463
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1464
{
1465
	struct page *page;
1466

1467
	if (tags->rqs && set->ops->exit_request) {
1468
		int i;
1469

1470 1471
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1472
				continue;
1473 1474
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1475
			tags->rqs[i] = NULL;
1476
		}
1477 1478
	}

1479 1480
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1481
		list_del_init(&page->lru);
1482 1483 1484 1485 1486
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1487 1488 1489
		__free_pages(page, page->private);
	}

1490
	kfree(tags->rqs);
1491

1492
	blk_mq_free_tags(tags);
1493 1494 1495 1496
}

static size_t order_to_size(unsigned int order)
{
1497
	return (size_t)PAGE_SIZE << order;
1498 1499
}

1500 1501
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1502
{
1503
	struct blk_mq_tags *tags;
1504 1505 1506
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1507
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1508 1509
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1510 1511
	if (!tags)
		return NULL;
1512

1513 1514
	INIT_LIST_HEAD(&tags->page_list);

1515 1516 1517
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1518 1519 1520 1521
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1522 1523 1524 1525 1526

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1527
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1528
				cache_line_size());
1529
	left = rq_size * set->queue_depth;
1530

1531
	for (i = 0; i < set->queue_depth; ) {
1532 1533 1534 1535 1536
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1537
		while (this_order && left < order_to_size(this_order - 1))
1538 1539 1540
			this_order--;

		do {
1541
			page = alloc_pages_node(set->numa_node,
1542
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1543
				this_order);
1544 1545 1546 1547 1548 1549 1550 1551 1552
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1553
			goto fail;
1554 1555

		page->private = this_order;
1556
		list_add_tail(&page->lru, &tags->page_list);
1557 1558

		p = page_address(page);
1559 1560 1561 1562 1563
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1564
		entries_per_page = order_to_size(this_order) / rq_size;
1565
		to_do = min(entries_per_page, set->queue_depth - i);
1566 1567
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1568 1569 1570 1571
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1572 1573
						set->numa_node)) {
					tags->rqs[i] = NULL;
1574
					goto fail;
1575
				}
1576 1577
			}

1578 1579 1580 1581
			p += rq_size;
			i++;
		}
	}
1582
	return tags;
1583

1584 1585 1586
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

J
Jens Axboe 已提交
1615 1616 1617 1618 1619
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1620 1621 1622 1623 1624
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

J
Jens Axboe 已提交
1625
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

J
Jens Axboe 已提交
1637 1638 1639
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

	blk_mq_run_hw_queue(hctx, true);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1652 1653 1654 1655 1656

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1657 1658 1659 1660

	return NOTIFY_OK;
}

1661
/* hctx->ctxs will be freed in queue's release handler */
1662 1663 1664 1665
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1666 1667
	unsigned flush_start_tag = set->queue_depth;

1668 1669
	blk_mq_tag_idle(hctx);

1670 1671 1672 1673 1674
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1675 1676 1677 1678
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1679
	blk_free_flush_queue(hctx->fq);
1680 1681 1682
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1692
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1702
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1703 1704 1705
		free_cpumask_var(hctx->cpumask);
}

1706 1707 1708
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1709
{
1710
	int node;
1711
	unsigned flush_start_tag = set->queue_depth;
1712 1713 1714 1715 1716

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1717
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1718 1719 1720 1721 1722
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1723
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1724 1725 1726 1727 1728 1729

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1730 1731

	/*
1732 1733
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1734
	 */
1735 1736 1737 1738
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1739

1740 1741
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1742

1743
	hctx->nr_ctx = 0;
1744

1745 1746 1747
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1748

1749 1750 1751
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1752

1753 1754 1755 1756 1757
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1758

1759
	return 0;
1760

1761 1762 1763 1764 1765
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1766 1767 1768 1769 1770 1771
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1772

1773 1774
	return -1;
}
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1795
		hctx = blk_mq_map_queue(q, i);
1796

1797 1798 1799 1800 1801
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1802
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1803 1804 1805
	}
}

1806 1807
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1808 1809 1810 1811
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1812
	struct blk_mq_tag_set *set = q->tag_set;
1813

1814 1815 1816 1817 1818
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1819
	queue_for_each_hw_ctx(q, hctx, i) {
1820
		cpumask_clear(hctx->cpumask);
1821 1822 1823 1824 1825 1826
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1827
	for_each_possible_cpu(i) {
1828
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1829
		if (!cpumask_test_cpu(i, online_mask))
1830 1831
			continue;

1832
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1833
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1834

1835
		cpumask_set_cpu(i, hctx->cpumask);
1836 1837 1838
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1839

1840 1841
	mutex_unlock(&q->sysfs_lock);

1842
	queue_for_each_hw_ctx(q, hctx, i) {
1843 1844
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1845
		/*
1846 1847
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1848 1849 1850 1851 1852 1853
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1854
			hctx->tags = NULL;
1855 1856 1857
			continue;
		}

M
Ming Lei 已提交
1858 1859 1860 1861 1862 1863
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1864 1865 1866 1867 1868
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1869
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1870

1871 1872 1873
		/*
		 * Initialize batch roundrobin counts
		 */
1874 1875 1876
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1877 1878
}

1879
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1880 1881 1882 1883
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1895 1896 1897

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1898
		queue_set_hctx_shared(q, shared);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1909 1910 1911 1912 1913 1914
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1915 1916 1917 1918 1919 1920 1921 1922 1923
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1924 1925 1926 1927 1928 1929 1930 1931 1932

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1933
	list_add_tail(&q->tag_set_list, &set->tag_list);
1934

1935 1936 1937
	mutex_unlock(&set->tag_list_lock);
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1950 1951 1952 1953
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1954
		kfree(hctx);
1955
	}
1956

1957 1958
	q->mq_map = NULL;

1959 1960 1961 1962 1963 1964
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1965
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1981 1982
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1983
{
K
Keith Busch 已提交
1984 1985
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1986

K
Keith Busch 已提交
1987
	blk_mq_sysfs_unregister(q);
1988
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1989
		int node;
1990

K
Keith Busch 已提交
1991 1992 1993 1994
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1995 1996
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1997
		if (!hctxs[i])
K
Keith Busch 已提交
1998
			break;
1999

2000
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2001 2002 2003 2004 2005
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2006

2007
		atomic_set(&hctxs[i]->nr_active, 0);
2008
		hctxs[i]->numa_node = node;
2009
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2010 2011 2012 2013 2014 2015 2016 2017

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2018
	}
K
Keith Busch 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2043 2044 2045
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2046 2047
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2048
		goto err_exit;
K
Keith Busch 已提交
2049 2050 2051 2052 2053 2054

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2055
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2056 2057 2058 2059

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2060

2061
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2062
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2063 2064 2065

	q->nr_queues = nr_cpu_ids;

2066
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2067

2068 2069 2070
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2071 2072
	q->sg_reserved_size = INT_MAX;

2073
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2074 2075 2076
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2077 2078 2079 2080 2081
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2082 2083 2084 2085 2086
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2087 2088
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2089

2090
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2091

2092
	get_online_cpus();
2093 2094
	mutex_lock(&all_q_mutex);

2095
	list_add_tail(&q->all_q_node, &all_q_list);
2096
	blk_mq_add_queue_tag_set(set, q);
2097
	blk_mq_map_swqueue(q, cpu_online_mask);
2098

2099
	mutex_unlock(&all_q_mutex);
2100
	put_online_cpus();
2101

2102
	return q;
2103

2104
err_hctxs:
K
Keith Busch 已提交
2105
	kfree(q->queue_hw_ctx);
2106
err_percpu:
K
Keith Busch 已提交
2107
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2108 2109
err_exit:
	q->mq_ops = NULL;
2110 2111
	return ERR_PTR(-ENOMEM);
}
2112
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2113 2114 2115

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2116
	struct blk_mq_tag_set	*set = q->tag_set;
2117

2118 2119 2120 2121
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2122 2123
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2124 2125
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2126 2127 2128
}

/* Basically redo blk_mq_init_queue with queue frozen */
2129 2130
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2131
{
2132
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2133

2134 2135
	blk_mq_sysfs_unregister(q);

2136 2137 2138 2139 2140 2141
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2142
	blk_mq_map_swqueue(q, online_mask);
2143

2144
	blk_mq_sysfs_register(q);
2145 2146
}

2147 2148
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2149 2150
{
	struct request_queue *q;
2151 2152 2153 2154 2155 2156 2157
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2158 2159

	/*
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2175
	 */
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2186
		return NOTIFY_OK;
2187
	}
2188 2189

	mutex_lock(&all_q_mutex);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2200
	list_for_each_entry(q, &all_q_list, all_q_node) {
2201 2202
		blk_mq_freeze_queue_wait(q);

2203 2204 2205 2206 2207 2208 2209
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2210
	list_for_each_entry(q, &all_q_list, all_q_node)
2211
		blk_mq_queue_reinit(q, &online_new);
2212 2213 2214 2215

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2216 2217 2218 2219
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2274 2275 2276 2277 2278 2279
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2280 2281
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2282 2283
	int ret;

B
Bart Van Assche 已提交
2284 2285
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2286 2287
	if (!set->nr_hw_queues)
		return -EINVAL;
2288
	if (!set->queue_depth)
2289 2290 2291 2292
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2293
	if (!set->ops->queue_rq)
2294 2295
		return -EINVAL;

2296 2297 2298 2299 2300
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2311 2312 2313 2314 2315
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2316

K
Keith Busch 已提交
2317
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2318 2319
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2320
		return -ENOMEM;
2321

2322 2323 2324
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2325 2326 2327
	if (!set->mq_map)
		goto out_free_tags;

2328 2329 2330 2331 2332 2333 2334 2335 2336
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2337
		goto out_free_mq_map;
2338

2339 2340 2341
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2342
	return 0;
2343 2344 2345 2346 2347

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2348 2349
	kfree(set->tags);
	set->tags = NULL;
2350
	return ret;
2351 2352 2353 2354 2355 2356 2357
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2358
	for (i = 0; i < nr_cpu_ids; i++) {
2359
		if (set->tags[i])
2360 2361 2362
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2363 2364 2365
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2366
	kfree(set->tags);
2367
	set->tags = NULL;
2368 2369 2370
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2382 2383
		if (!hctx->tags)
			continue;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2434 2435 2436 2437
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2438
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2439 2440 2441 2442

	return 0;
}
subsys_initcall(blk_mq_init);