i915_gem_execbuffer.c 71.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

229
struct i915_execbuffer {
230 231 232 233
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
234 235
	struct i915_vma **vma;
	unsigned int *flags;
236 237 238 239 240

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

241
	struct i915_request *request; /** our request to build */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
258
	struct reloc_cache {
259 260 261
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
262
		unsigned int gen; /** Cached value of INTEL_GEN */
263
		bool use_64bit_reloc : 1;
264 265 266
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
267

268
		struct i915_request *rq;
269 270
		u32 *rq_cmd;
		unsigned int rq_size;
271
	} reloc_cache;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
287 288
};

289
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

310 311
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
312
	return intel_engine_requires_cmd_parser(eb->engine) ||
313 314
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
315 316
}

317
static int eb_create(struct i915_execbuffer *eb)
318
{
319 320
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
321

322 323 324 325 326 327 328 329 330 331 332
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
333
		do {
334
			gfp_t flags;
335 336 337 338 339 340 341

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
342
			flags = GFP_KERNEL;
343 344 345
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

346
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
347
					      flags);
348 349 350 351
			if (eb->buckets)
				break;
		} while (--size);

352 353
		if (unlikely(!size))
			return -ENOMEM;
354

355
		eb->lut_size = size;
356
	} else {
357
		eb->lut_size = -eb->buffer_count;
358
	}
359

360
	return 0;
361 362
}

363 364
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
365 366
		 const struct i915_vma *vma,
		 unsigned int flags)
367 368 369 370 371 372 373
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

374
	if (flags & EXEC_OBJECT_PINNED &&
375 376 377
	    vma->node.start != entry->offset)
		return true;

378
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
379 380 381
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

382
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
383 384 385
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

386 387 388 389
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

390 391 392
	return false;
}

393
static inline bool
394
eb_pin_vma(struct i915_execbuffer *eb,
395
	   const struct drm_i915_gem_exec_object2 *entry,
396 397
	   struct i915_vma *vma)
{
398 399
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
400

401
	if (vma->node.size)
402
		pin_flags = vma->node.start;
403
	else
404
		pin_flags = entry->offset & PIN_OFFSET_MASK;
405

406 407 408
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
409

410 411
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
412

413
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
414
		if (unlikely(i915_vma_pin_fence(vma))) {
415
			i915_vma_unpin(vma);
416
			return false;
417 418
		}

419
		if (vma->fence)
420
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
421 422
	}

423 424
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
425 426
}

427
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
428
{
429
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
430

431
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
432
		__i915_vma_unpin_fence(vma);
433

434
	__i915_vma_unpin(vma);
435 436
}

437
static inline void
438
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
439
{
440
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
441
		return;
442

443 444
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
445 446
}

447 448 449 450
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
451
{
452 453
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
454

455 456 457 458 459 460 461 462
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
463
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
464 465 466 467 468 469 470 471
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
472 473
	}

474
	if (unlikely(vma->exec_flags)) {
475 476 477 478 479 480 481 482 483 484 485 486
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

487 488 489 490 491 492 493 494 495 496 497 498
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

499
	return 0;
500 501
}

502
static int
503 504 505
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
506
{
507
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
508 509 510 511 512 513 514 515
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
516 517
	}

518
	if (eb->lut_size > 0) {
519
		vma->exec_handle = entry->handle;
520
		hlist_add_head(&vma->exec_node,
521 522
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
523
	}
524

525 526 527 528 529 530 531 532 533
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
534
	eb->vma[i] = vma;
535
	eb->flags[i] = entry->flags;
536
	vma->exec_flags = &eb->flags[i];
537

538 539 540 541 542 543 544 545 546 547
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
548 549
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
550 551 552 553 554 555 556
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

557
	err = 0;
558
	if (eb_pin_vma(eb, entry, vma)) {
559 560 561 562
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
563 564 565 566 567 568
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
569 570
		if (unlikely(err))
			vma->exec_flags = NULL;
571 572 573 574 575 576 577 578 579 580
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

581 582 583 584 585
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
586 587 588 589 590 591 592 593 594

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
595 596 597
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
598 599
	int err;

600 601 602
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
603 604 605 606 607

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
608 609
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
610

611 612
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
613

614 615 616 617 618
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
619 620
	}

621 622 623
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
624 625 626 627 628 629 630 631
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

632
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
633
		err = i915_vma_pin_fence(vma);
634 635 636 637 638
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

639
		if (vma->fence)
640
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
641 642
	}

643 644
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
686 687
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
688

689 690
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
691 692
				continue;

693
			eb_unreserve_vma(vma, &eb->flags[i]);
694

695
			if (flags & EXEC_OBJECT_PINNED)
696
				list_add(&vma->exec_link, &eb->unbound);
697
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
719
}
720

721 722
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
723 724 725 726
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
727 728 729 730 731 732 733
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
734 735
	if (unlikely(!ctx))
		return -ENOENT;
736

737
	eb->ctx = ctx;
738
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
739 740 741 742 743 744 745 746 747

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
748
{
749
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
750
	struct drm_i915_gem_object *obj;
751
	unsigned int i, batch;
752
	int err;
753

754 755 756 757 758 759
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

760 761
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
762

763 764
	batch = eb_batch_index(eb);

765 766
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
767
		struct i915_lut_handle *lut;
768
		struct i915_vma *vma;
769

770 771
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
772
			goto add_vma;
773

774
		obj = i915_gem_object_lookup(eb->file, handle);
775
		if (unlikely(!obj)) {
776
			err = -ENOENT;
777
			goto err_vma;
778 779
		}

780
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
781
		if (unlikely(IS_ERR(vma))) {
782
			err = PTR_ERR(vma);
783
			goto err_obj;
784 785
		}

786 787 788 789 790 791 792 793
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
794
			kmem_cache_free(eb->i915->luts, lut);
795
			goto err_obj;
796
		}
797

798
		/* transfer ref to ctx */
799 800
		if (!vma->open_count++)
			i915_vma_reopen(vma);
801 802 803 804 805
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

806
add_vma:
807
		err = eb_add_vma(eb, i, batch, vma);
808
		if (unlikely(err))
809
			goto err_vma;
810

811 812
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
813 814
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
815 816
	}

817 818 819
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

820
err_obj:
821
	i915_gem_object_put(obj);
822 823
err_vma:
	eb->vma[i] = NULL;
824
	return err;
825 826
}

827
static struct i915_vma *
828
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
829
{
830 831
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
832
			return NULL;
833
		return eb->vma[handle];
834 835
	} else {
		struct hlist_head *head;
836
		struct i915_vma *vma;
837

838
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
839
		hlist_for_each_entry(vma, head, exec_node) {
840 841
			if (vma->exec_handle == handle)
				return vma;
842 843 844
		}
		return NULL;
	}
845 846
}

847
static void eb_release_vmas(const struct i915_execbuffer *eb)
848
{
849 850 851 852
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
853 854
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
855

856
		if (!vma)
857
			break;
858

859 860 861
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
862

863 864
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
865

866
		if (flags & __EXEC_OBJECT_HAS_REF)
867
			i915_vma_put(vma);
868
	}
869 870
}

871
static void eb_reset_vmas(const struct i915_execbuffer *eb)
872
{
873
	eb_release_vmas(eb);
874
	if (eb->lut_size > 0)
875 876
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
877 878
}

879
static void eb_destroy(const struct i915_execbuffer *eb)
880
{
881 882
	GEM_BUG_ON(eb->reloc_cache.rq);

883
	if (eb->lut_size > 0)
884
		kfree(eb->buckets);
885 886
}

887
static inline u64
888
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
889
		  const struct i915_vma *target)
890
{
891
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
892 893
}

894 895
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
896
{
897
	cache->page = -1;
898
	cache->vaddr = 0;
899
	/* Must be a variable in the struct to allow GCC to unroll. */
900
	cache->gen = INTEL_GEN(i915);
901
	cache->has_llc = HAS_LLC(i915);
902
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
903 904
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
905
	cache->node.allocated = false;
906 907
	cache->rq = NULL;
	cache->rq_size = 0;
908
}
909

910 911 912 913 914 915 916 917
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
918 919
}

920 921
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

922 923 924 925 926 927 928
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

929 930 931 932 933 934 935
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

936
	i915_request_add(cache->rq);
937 938 939
	cache->rq = NULL;
}

940
static void reloc_cache_reset(struct reloc_cache *cache)
941
{
942
	void *vaddr;
943

944 945 946
	if (cache->rq)
		reloc_gpu_flush(cache);

947 948
	if (!cache->vaddr)
		return;
949

950 951 952 953
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
954

955 956 957
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
958
		wmb();
959
		io_mapping_unmap_atomic((void __iomem *)vaddr);
960
		if (cache->node.allocated) {
961
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
962

963 964 965
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
966 967 968
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
969
		}
970
	}
971 972 973

	cache->vaddr = 0;
	cache->page = -1;
974 975 976 977
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
978
			unsigned long page)
979
{
980 981 982 983 984 985
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
986
		int err;
987

988 989 990
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
991 992 993

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
994

995 996 997 998
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
999 1000
	}

1001 1002
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1003
	cache->page = page;
1004

1005
	return vaddr;
1006 1007
}

1008 1009
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1010
			 unsigned long page)
1011
{
1012
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1013
	unsigned long offset;
1014
	void *vaddr;
1015

1016
	if (cache->vaddr) {
1017
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1018 1019
	} else {
		struct i915_vma *vma;
1020
		int err;
1021

1022
		if (use_cpu_reloc(cache, obj))
1023
			return NULL;
1024

1025 1026 1027
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1028

1029
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1030 1031 1032
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1033 1034
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1035
			err = drm_mm_insert_node_in_range
1036
				(&ggtt->vm.mm, &cache->node,
1037
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1038
				 0, ggtt->mappable_end,
1039
				 DRM_MM_INSERT_LOW);
1040
			if (err) /* no inactive aperture space, use cpu reloc */
1041
				return NULL;
1042
		} else {
1043 1044
			err = i915_vma_put_fence(vma);
			if (err) {
1045
				i915_vma_unpin(vma);
1046
				return ERR_PTR(err);
1047
			}
1048

1049 1050
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1051
		}
1052
	}
1053

1054 1055
	offset = cache->node.start;
	if (cache->node.allocated) {
1056
		wmb();
1057 1058 1059
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1060 1061
	} else {
		offset += page << PAGE_SHIFT;
1062 1063
	}

1064
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1065
							 offset);
1066 1067
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1068

1069
	return vaddr;
1070 1071
}

1072 1073
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1074
			 unsigned long page)
1075
{
1076
	void *vaddr;
1077

1078 1079 1080 1081 1082 1083 1084 1085
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1086 1087
	}

1088
	return vaddr;
1089 1090
}

1091
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1092
{
1093 1094 1095 1096 1097
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1098

1099
		*addr = value;
1100

1101 1102
		/*
		 * Writes to the same cacheline are serialised by the CPU
1103 1104 1105 1106 1107 1108 1109 1110 1111
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1112 1113
}

1114 1115 1116 1117 1118 1119
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1120
	struct i915_request *rq;
1121 1122 1123 1124
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1125
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1126 1127 1128 1129 1130 1131

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1132 1133 1134
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1153
	rq = i915_request_alloc(eb->engine, eb->ctx);
1154 1155 1156 1157 1158
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1159
	err = i915_request_await_object(rq, vma->obj, true);
1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1169
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1170 1171 1172
	err = i915_vma_move_to_active(batch, rq, 0);
	if (err)
		goto skip_request;
1173

1174 1175 1176
	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
	if (err)
		goto skip_request;
1177 1178

	rq->batch = batch;
1179
	i915_vma_unpin(batch);
1180 1181 1182 1183 1184 1185 1186 1187

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1188 1189
skip_request:
	i915_request_skip(rq, err);
1190
err_request:
1191
	i915_request_add(rq);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1212 1213 1214 1215
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1216 1217 1218
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1230 1231
static u64
relocate_entry(struct i915_vma *vma,
1232
	       const struct drm_i915_gem_relocation_entry *reloc,
1233 1234
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1235
{
1236
	u64 offset = reloc->offset;
1237 1238
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1239
	void *vaddr;
1240

1241 1242
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1243
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1244 1245 1246 1247 1248 1249 1250 1251 1252
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1253
		else
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1300
repeat:
1301
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1302 1303 1304 1305 1306
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1307
			eb->reloc_cache.vaddr);
1308 1309 1310 1311 1312 1313

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1314 1315
	}

1316
out:
1317
	return target->node.start | UPDATE;
1318 1319
}

1320 1321 1322 1323
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1324
{
1325
	struct i915_vma *target;
1326
	int err;
1327

1328
	/* we've already hold a reference to all valid objects */
1329 1330
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1331
		return -ENOENT;
1332

1333
	/* Validate that the target is in a valid r/w GPU domain */
1334
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1335
		DRM_DEBUG("reloc with multiple write domains: "
1336
			  "target %d offset %d "
1337
			  "read %08x write %08x",
1338
			  reloc->target_handle,
1339 1340 1341
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1342
		return -EINVAL;
1343
	}
1344 1345
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1346
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1347
			  "target %d offset %d "
1348
			  "read %08x write %08x",
1349
			  reloc->target_handle,
1350 1351 1352
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1353
		return -EINVAL;
1354 1355
	}

1356
	if (reloc->write_domain) {
1357
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1373
	}
1374

1375 1376
	/*
	 * If the relocation already has the right value in it, no
1377 1378
	 * more work needs to be done.
	 */
1379 1380
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1381
		return 0;
1382 1383

	/* Check that the relocation address is valid... */
1384
	if (unlikely(reloc->offset >
1385
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1386
		DRM_DEBUG("Relocation beyond object bounds: "
1387 1388 1389 1390
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1391
		return -EINVAL;
1392
	}
1393
	if (unlikely(reloc->offset & 3)) {
1394
		DRM_DEBUG("Relocation not 4-byte aligned: "
1395 1396 1397
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1398
		return -EINVAL;
1399 1400
	}

1401 1402 1403 1404 1405 1406
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1407
	 * out of our synchronisation.
1408
	 */
1409
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1410

1411
	/* and update the user's relocation entry */
1412
	return relocate_entry(vma, reloc, eb, target);
1413 1414
}

1415
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1416
{
1417
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1418 1419
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1420
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1421
	unsigned int remain;
1422

1423
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1424
	remain = entry->relocation_count;
1425 1426
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1427

1428 1429 1430 1431 1432
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1433
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1434 1435 1436 1437 1438 1439 1440
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1441

1442 1443
		/*
		 * This is the fast path and we cannot handle a pagefault
1444 1445 1446 1447 1448 1449 1450
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1451
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1452
		pagefault_enable();
1453 1454
		if (unlikely(copied)) {
			remain = -EFAULT;
1455 1456
			goto out;
		}
1457

1458
		remain -= count;
1459
		do {
1460
			u64 offset = eb_relocate_entry(eb, vma, r);
1461

1462 1463 1464
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1465
				goto out;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1491
			}
1492 1493 1494
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1495
out:
1496
	reloc_cache_reset(&eb->reloc_cache);
1497
	return remain;
1498 1499 1500
}

static int
1501
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1502
{
1503
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1504 1505 1506 1507
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1508 1509

	for (i = 0; i < entry->relocation_count; i++) {
1510
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1511

1512 1513 1514 1515
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1516
	}
1517 1518 1519 1520
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1521 1522
}

1523
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1524
{
1525 1526 1527
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1528

1529 1530 1531
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1532

1533 1534
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1535

1536 1537 1538 1539
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1540

1541 1542 1543 1544 1545
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1546
	}
1547
	return __get_user(c, end - 1);
1548
}
1549

1550
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1551
{
1552 1553 1554
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1555

1556 1557 1558 1559 1560 1561
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1562

1563 1564
		if (nreloc == 0)
			continue;
1565

1566 1567 1568
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1569

1570 1571
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1572

1573
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1574 1575 1576 1577 1578
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1579

1580 1581 1582 1583 1584 1585 1586
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1587
					     (char __user *)urelocs + copied,
1588 1589 1590 1591 1592
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1593

1594 1595
			copied += len;
		} while (copied < size);
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1614

1615 1616
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1617

1618
	return 0;
1619

1620 1621 1622 1623 1624 1625 1626 1627
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1628 1629
}

1630
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1631
{
1632 1633
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1634

1635
	if (unlikely(i915_modparams.prefault_disable))
1636
		return 0;
1637

1638 1639
	for (i = 0; i < count; i++) {
		int err;
1640

1641 1642 1643 1644
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1645

1646
	return 0;
1647 1648
}

1649
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1650
{
1651
	struct drm_device *dev = &eb->i915->drm;
1652
	bool have_copy = false;
1653
	struct i915_vma *vma;
1654 1655 1656 1657 1658 1659 1660
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1661

1662
	/* We may process another execbuffer during the unlock... */
1663
	eb_reset_vmas(eb);
1664 1665
	mutex_unlock(&dev->struct_mutex);

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1687
	}
1688 1689 1690
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1691 1692
	}

1693 1694 1695
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1696 1697
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1698
		mutex_lock(&dev->struct_mutex);
1699
		goto out;
1700 1701
	}

1702
	/* reacquire the objects */
1703 1704
	err = eb_lookup_vmas(eb);
	if (err)
1705
		goto err;
1706

1707 1708
	GEM_BUG_ON(!eb->batch);

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1721 1722
	}

1723 1724
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1725 1726 1727 1728 1729 1730
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1752
	return err;
1753 1754
}

1755
static int eb_relocate(struct i915_execbuffer *eb)
1756
{
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1781

1782
	for (i = 0; i < count; i++) {
1783 1784
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1785
		struct drm_i915_gem_object *obj = vma->obj;
1786

1787
		if (flags & EXEC_OBJECT_CAPTURE) {
1788
			struct i915_capture_list *capture;
1789 1790 1791 1792 1793

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1794
			capture->next = eb->request->capture_list;
1795
			capture->vma = eb->vma[i];
1796
			eb->request->capture_list = capture;
1797 1798
		}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1812
			if (i915_gem_clflush_object(obj, 0))
1813
				flags &= ~EXEC_OBJECT_ASYNC;
1814 1815
		}

1816 1817
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1818

1819
		err = i915_request_await_object
1820
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1821 1822 1823 1824 1825
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1826 1827 1828
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

1829 1830 1831 1832 1833
		err = i915_vma_move_to_active(vma, eb->request, flags);
		if (unlikely(err)) {
			i915_request_skip(eb->request, err);
			return err;
		}
1834

1835 1836 1837 1838
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1839
			i915_vma_put(vma);
1840
	}
1841
	eb->exec = NULL;
1842

1843
	/* Unconditionally flush any chipset caches (for streaming writes). */
1844
	i915_gem_chipset_flush(eb->i915);
1845

1846
	return 0;
1847 1848
}

1849
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1850
{
1851
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1852 1853
		return false;

C
Chris Wilson 已提交
1854
	/* Kernel clipping was a DRI1 misfeature */
1855 1856 1857 1858
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1871 1872
}

1873
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1874
{
1875 1876
	u32 *cs;
	int i;
1877

1878
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1879 1880 1881
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1882

1883
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1884 1885
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1886

1887
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1888
	for (i = 0; i < 4; i++) {
1889 1890
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1891
	}
1892
	*cs++ = MI_NOOP;
1893
	intel_ring_advance(rq, cs);
1894 1895 1896 1897

	return 0;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = eb->i915;
	struct i915_address_space *vm;
	u64 flags;

	/*
	 * PPGTT backed shadow buffers must be mapped RO, to prevent
	 * post-scan tampering
	 */
	if (CMDPARSER_USES_GGTT(dev_priv)) {
		flags = PIN_GLOBAL;
		vm = &dev_priv->ggtt.vm;
	} else if (eb->vm->has_read_only) {
		flags = PIN_USER;
		vm = eb->vm;
		i915_gem_object_set_readonly(obj);
	} else {
		DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
		return ERR_PTR(-EINVAL);
	}

	return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
}

1924
static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
1925 1926
{
	struct drm_i915_gem_object *shadow_batch_obj;
1927
	struct i915_vma *vma;
1928 1929
	u64 batch_start;
	u64 shadow_batch_start;
1930
	int err;
1931

1932 1933
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1934
	if (IS_ERR(shadow_batch_obj))
1935
		return ERR_CAST(shadow_batch_obj);
1936

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	vma = shadow_batch_pin(eb, shadow_batch_obj);
	if (IS_ERR(vma))
		goto out;

	batch_start = gen8_canonical_addr(eb->batch->node.start) +
		      eb->batch_start_offset;

	shadow_batch_start = gen8_canonical_addr(vma->node.start);

	err = intel_engine_cmd_parser(eb->ctx,
				      eb->engine,
1948
				      eb->batch->obj,
1949
				      batch_start,
1950
				      eb->batch_start_offset,
1951 1952 1953 1954
				      eb->batch_len,
				      shadow_batch_obj,
				      shadow_batch_start);

1955
	if (err) {
1956 1957
		i915_vma_unpin(vma);

1958 1959 1960 1961 1962 1963 1964 1965
		/*
		 * Unsafe GGTT-backed buffers can still be submitted safely
		 * as non-secure.
		 * For PPGTT backing however, we have no choice but to forcibly
		 * reject unsafe buffers
		 */
		if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
			/* Execute original buffer non-secure */
C
Chris Wilson 已提交
1966 1967
			vma = NULL;
		else
1968
			vma = ERR_PTR(err);
1969

C
Chris Wilson 已提交
1970
		goto out;
1971
	}
C
Chris Wilson 已提交
1972

1973 1974 1975 1976 1977
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1978 1979
	eb->batch_start_offset = 0;
	eb->batch = vma;
1980

1981
	/* eb->batch_len unchanged */
1982 1983 1984 1985

	if (CMDPARSER_USES_GGTT(eb->i915))
		eb->batch_flags |= I915_DISPATCH_SECURE;

C
Chris Wilson 已提交
1986
out:
C
Chris Wilson 已提交
1987
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1988
	return vma;
1989
}
1990

1991
static void
1992
add_to_client(struct i915_request *rq, struct drm_file *file)
1993
{
1994 1995
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1996 1997
}

1998
static int eb_submit(struct i915_execbuffer *eb)
1999
{
2000
	int err;
2001

2002 2003 2004
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2005

2006
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2007 2008 2009
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2010 2011
	}

2012
	err = eb->engine->emit_bb_start(eb->request,
2013 2014 2015
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2016 2017 2018
					eb->batch_flags);
	if (err)
		return err;
2019

C
Chris Wilson 已提交
2020
	return 0;
2021 2022
}

2023
/*
2024
 * Find one BSD ring to dispatch the corresponding BSD command.
2025
 * The engine index is returned.
2026
 */
2027
static unsigned int
2028 2029
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2030 2031 2032
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2033
	/* Check whether the file_priv has already selected one ring. */
2034 2035 2036
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2037

2038
	return file_priv->bsd_engine;
2039 2040
}

2041 2042
#define I915_USER_RINGS (4)

2043
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2044 2045 2046 2047 2048 2049 2050
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2051 2052 2053 2054
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2055 2056
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2057
	struct intel_engine_cs *engine;
2058 2059 2060

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2061
		return NULL;
2062 2063 2064 2065 2066 2067
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2068
		return NULL;
2069 2070 2071 2072 2073 2074
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2075
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2076 2077
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2078
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2079 2080 2081 2082
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2083
			return NULL;
2084 2085
		}

2086
		engine = dev_priv->engine[_VCS(bsd_idx)];
2087
	} else {
2088
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2089 2090
	}

2091
	if (!engine) {
2092
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2093
		return NULL;
2094 2095
	}

2096
	return engine;
2097 2098
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2111
	const unsigned long nfences = args->num_cliprects;
2112 2113
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2114
	unsigned long n;
2115 2116 2117 2118 2119
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2120 2121 2122 2123 2124
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2125 2126 2127
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2128
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2129 2130
		return ERR_PTR(-EFAULT);

2131
	fences = kvmalloc_array(nfences, sizeof(*fences),
2132
				__GFP_NOWARN | GFP_KERNEL);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2145 2146 2147 2148 2149
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2150 2151 2152 2153 2154 2155 2156
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2157 2158 2159
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2195
		fence = drm_syncobj_fence_get(syncobj);
2196 2197 2198
		if (!fence)
			return -EINVAL;

2199
		err = i915_request_await_dma_fence(eb->request, fence);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2228
static int
2229
i915_gem_do_execbuffer(struct drm_device *dev,
2230 2231
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2232 2233
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2234
{
2235
	struct drm_i915_private *i915 = to_i915(dev);
2236
	struct i915_execbuffer eb;
2237 2238 2239
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2240
	int err;
2241

2242
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2243 2244
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2245

2246
	eb.i915 = i915;
2247 2248
	eb.file = file;
	eb.args = args;
2249
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2250
		args->flags |= __EXEC_HAS_RELOC;
2251

2252
	eb.exec = exec;
2253 2254
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2255 2256
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2257 2258 2259
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2260 2261
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2262
	eb.buffer_count = args->buffer_count;
2263 2264 2265
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2266
	eb.batch_flags = 0;
2267
	if (args->flags & I915_EXEC_SECURE) {
2268 2269 2270 2271 2272 2273 2274
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2275
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2276
			return -EPERM;
2277

2278
		eb.batch_flags |= I915_DISPATCH_SECURE;
2279
	}
2280
	if (args->flags & I915_EXEC_IS_PINNED)
2281
		eb.batch_flags |= I915_DISPATCH_PINNED;
2282

2283 2284
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2285 2286
		return -EINVAL;

2287
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2288
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2289 2290 2291
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2292
		if (eb.engine->id != RCS) {
2293
			DRM_DEBUG("RS is not available on %s\n",
2294
				 eb.engine->name);
2295 2296 2297
			return -EINVAL;
		}

2298
		eb.batch_flags |= I915_DISPATCH_RS;
2299 2300
	}

2301 2302
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2303 2304
		if (!in_fence)
			return -EINVAL;
2305 2306 2307 2308 2309
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2310
			err = out_fence_fd;
2311
			goto err_in_fence;
2312 2313 2314
		}
	}

2315 2316 2317 2318 2319
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2320

2321 2322 2323 2324
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2325 2326
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2327 2328 2329 2330 2331
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2332
	intel_runtime_pm_get(eb.i915);
2333

2334 2335 2336
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2337

2338
	err = eb_relocate(&eb);
2339
	if (err) {
2340 2341 2342 2343 2344 2345 2346 2347 2348
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2349
	}
2350

2351
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2352
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2353 2354
		err = -EINVAL;
		goto err_vma;
2355
	}
2356 2357
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2358
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2359 2360
		err = -EINVAL;
		goto err_vma;
2361
	}
2362

2363 2364 2365
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;

2366
	if (eb_use_cmdparser(&eb)) {
2367 2368
		struct i915_vma *vma;

2369
		vma = eb_parse(&eb);
2370
		if (IS_ERR(vma)) {
2371 2372
			err = PTR_ERR(vma);
			goto err_vma;
2373
		}
2374 2375
	}

2376 2377
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2378
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2379
	 * hsw should have this fixed, but bdw mucks it up again. */
2380
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2381
		struct i915_vma *vma;
2382

2383 2384 2385 2386 2387 2388
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2389
		 *   so we don't really have issues with multiple objects not
2390 2391 2392
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2393
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2394
		if (IS_ERR(vma)) {
2395 2396
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2397
		}
2398

2399
		eb.batch = vma;
2400
	}
2401

2402 2403 2404
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2405
	/* Allocate a request for this batch buffer nice and early. */
2406
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2407
	if (IS_ERR(eb.request)) {
2408
		err = PTR_ERR(eb.request);
2409
		goto err_batch_unpin;
2410
	}
2411

2412
	if (in_fence) {
2413
		err = i915_request_await_dma_fence(eb.request, in_fence);
2414
		if (err < 0)
2415 2416 2417
			goto err_request;
	}

2418 2419 2420 2421 2422 2423
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2424
	if (out_fence_fd != -1) {
2425
		out_fence = sync_file_create(&eb.request->fence);
2426
		if (!out_fence) {
2427
			err = -ENOMEM;
2428 2429 2430 2431
			goto err_request;
		}
	}

2432 2433
	/*
	 * Whilst this request exists, batch_obj will be on the
2434 2435 2436 2437 2438
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2439
	eb.request->batch = eb.batch;
2440

2441
	trace_i915_request_queue(eb.request, eb.batch_flags);
2442
	err = eb_submit(&eb);
2443
err_request:
2444
	i915_request_add(eb.request);
2445
	add_to_client(eb.request, file);
2446

2447 2448 2449
	if (fences)
		signal_fence_array(&eb, fences);

2450
	if (out_fence) {
2451
		if (err == 0) {
2452
			fd_install(out_fence_fd, out_fence->file);
2453
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2454 2455 2456 2457 2458 2459
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2460

2461
err_batch_unpin:
2462
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2463
		i915_vma_unpin(eb.batch);
2464 2465 2466
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2467
	mutex_unlock(&dev->struct_mutex);
2468
err_rpm:
2469
	intel_runtime_pm_put(eb.i915);
2470 2471
	i915_gem_context_put(eb.ctx);
err_destroy:
2472
	eb_destroy(&eb);
2473
err_out_fence:
2474 2475
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2476
err_in_fence:
2477
	dma_fence_put(in_fence);
2478
	return err;
2479 2480
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2501 2502 2503 2504 2505
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2506 2507
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2508 2509 2510 2511 2512
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2513
	const size_t count = args->buffer_count;
2514 2515
	unsigned int i;
	int err;
2516

2517 2518
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2519 2520 2521
		return -EINVAL;
	}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2536
	/* Copy in the exec list from userland */
2537
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2538
				   __GFP_NOWARN | GFP_KERNEL);
2539
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2540
				    __GFP_NOWARN | GFP_KERNEL);
2541
	if (exec_list == NULL || exec2_list == NULL) {
2542
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2543
			  args->buffer_count);
M
Michal Hocko 已提交
2544 2545
		kvfree(exec_list);
		kvfree(exec2_list);
2546 2547
		return -ENOMEM;
	}
2548
	err = copy_from_user(exec_list,
2549
			     u64_to_user_ptr(args->buffers_ptr),
2550
			     sizeof(*exec_list) * count);
2551
	if (err) {
2552
		DRM_DEBUG("copy %d exec entries failed %d\n",
2553
			  args->buffer_count, err);
M
Michal Hocko 已提交
2554 2555
		kvfree(exec_list);
		kvfree(exec2_list);
2556 2557 2558 2559 2560 2561 2562 2563 2564
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2565
		if (INTEL_GEN(to_i915(dev)) < 4)
2566 2567 2568 2569 2570
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2571
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2572
	if (exec2.flags & __EXEC_HAS_RELOC) {
2573
		struct drm_i915_gem_exec_object __user *user_exec_list =
2574
			u64_to_user_ptr(args->buffers_ptr);
2575

2576
		/* Copy the new buffer offsets back to the user's exec list. */
2577
		for (i = 0; i < args->buffer_count; i++) {
2578 2579 2580
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2581
			exec2_list[i].offset =
2582 2583 2584 2585 2586
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2587
				break;
2588 2589 2590
		}
	}

M
Michal Hocko 已提交
2591 2592
	kvfree(exec_list);
	kvfree(exec2_list);
2593
	return err;
2594 2595 2596
}

int
2597 2598
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2599 2600
{
	struct drm_i915_gem_execbuffer2 *args = data;
2601
	struct drm_i915_gem_exec_object2 *exec2_list;
2602
	struct drm_syncobj **fences = NULL;
2603
	const size_t count = args->buffer_count;
2604
	int err;
2605

2606 2607
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2608 2609 2610
		return -EINVAL;
	}

2611 2612 2613 2614
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2615
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2616
				    __GFP_NOWARN | GFP_KERNEL);
2617
	if (exec2_list == NULL) {
2618 2619
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2620 2621
		return -ENOMEM;
	}
2622 2623
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2624 2625
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2626
		kvfree(exec2_list);
2627 2628 2629
		return -EFAULT;
	}

2630 2631 2632 2633 2634 2635 2636 2637 2638
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2639 2640 2641 2642 2643 2644 2645 2646

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2647
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2648 2649
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2650

2651 2652
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2653
		for (i = 0; i < args->buffer_count; i++) {
2654 2655 2656
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2657
			exec2_list[i].offset =
2658 2659 2660 2661
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2662
		}
2663 2664
end_user:
		user_access_end();
2665 2666
	}

2667
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2668
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2669
	kvfree(exec2_list);
2670
	return err;
2671
}