i915_gem_execbuffer.c 70.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

191
struct i915_execbuffer {
192 193 194 195
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
196 197
	struct i915_vma **vma;
	unsigned int *flags;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
220
	struct reloc_cache {
221 222 223
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
224
		unsigned int gen; /** Cached value of INTEL_GEN */
225
		bool use_64bit_reloc : 1;
226 227 228
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
229 230 231 232

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
233
	} reloc_cache;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
249 250
};

251
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

272 273
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
274
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
275 276
}

277
static int eb_create(struct i915_execbuffer *eb)
278
{
279 280
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
281

282 283 284 285 286 287 288 289 290 291 292
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
293
		do {
294
			gfp_t flags;
295 296 297 298 299 300 301

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
302
			flags = GFP_KERNEL;
303 304 305
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

306
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
307
					      flags);
308 309 310 311
			if (eb->buckets)
				break;
		} while (--size);

312 313
		if (unlikely(!size))
			return -ENOMEM;
314

315
		eb->lut_size = size;
316
	} else {
317
		eb->lut_size = -eb->buffer_count;
318
	}
319

320
	return 0;
321 322
}

323 324
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
325 326
		 const struct i915_vma *vma,
		 unsigned int flags)
327 328 329 330 331 332 333
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

334
	if (flags & EXEC_OBJECT_PINNED &&
335 336 337
	    vma->node.start != entry->offset)
		return true;

338
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
339 340 341
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

342
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
343 344 345
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

346 347 348 349
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

350 351 352
	return false;
}

353
static inline bool
354
eb_pin_vma(struct i915_execbuffer *eb,
355
	   const struct drm_i915_gem_exec_object2 *entry,
356 357
	   struct i915_vma *vma)
{
358 359
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
360

361
	if (vma->node.size)
362
		pin_flags = vma->node.start;
363
	else
364
		pin_flags = entry->offset & PIN_OFFSET_MASK;
365

366 367 368
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
369

370 371
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
372

373
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
374
		if (unlikely(i915_vma_pin_fence(vma))) {
375
			i915_vma_unpin(vma);
376
			return false;
377 378
		}

379
		if (vma->fence)
380
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
381 382
	}

383 384
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
385 386
}

387
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
388
{
389
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
390

391
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
392
		__i915_vma_unpin_fence(vma);
393

394
	__i915_vma_unpin(vma);
395 396
}

397
static inline void
398
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
399
{
400
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
401
		return;
402

403 404
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
405 406
}

407 408 409 410
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
411
{
412 413
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
432 433
	}

434
	if (unlikely(vma->exec_flags)) {
435 436 437 438 439 440 441 442 443 444 445 446
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

447 448 449 450 451 452 453 454 455 456 457 458
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

459
	return 0;
460 461
}

462
static int
463
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
464
{
465
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
466 467 468 469 470 471 472 473
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
474 475
	}

476
	if (eb->lut_size > 0) {
477
		vma->exec_handle = entry->handle;
478
		hlist_add_head(&vma->exec_node,
479 480
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
481
	}
482

483 484 485 486 487 488 489 490 491
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
492
	eb->vma[i] = vma;
493
	eb->flags[i] = entry->flags;
494
	vma->exec_flags = &eb->flags[i];
495 496

	err = 0;
497
	if (eb_pin_vma(eb, entry, vma)) {
498 499 500 501
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
502 503 504 505 506 507
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
508 509 510 511 512 513 514 515 516 517
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

518 519 520 521 522
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
523 524 525 526 527 528 529 530 531

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
532 533 534
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
535 536
	int err;

537 538 539
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
540 541 542 543 544

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
545 546
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
547

548 549
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
550

551 552 553 554 555
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
556 557
	}

558 559 560
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
561 562 563 564 565 566 567 568
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

569
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
570
		err = i915_vma_pin_fence(vma);
571 572 573 574 575
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

576
		if (vma->fence)
577
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
578 579
	}

580 581
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
623 624
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
625

626 627
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
628 629
				continue;

630
			eb_unreserve_vma(vma, &eb->flags[i]);
631

632
			if (flags & EXEC_OBJECT_PINNED)
633
				list_add(&vma->exec_link, &eb->unbound);
634
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
656
}
657

658 659
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
660 661 662 663
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
664 665 666 667 668 669 670
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
671 672
	if (unlikely(!ctx))
		return -ENOENT;
673

674
	eb->ctx = ctx;
675 676 677 678 679 680 681 682 683 684
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
685
{
686
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
687
	struct drm_i915_gem_object *obj;
688 689
	unsigned int i;
	int err;
690

691 692 693 694 695 696
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

697 698
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
699

700 701
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
702
		struct i915_lut_handle *lut;
703
		struct i915_vma *vma;
704

705 706
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
707
			goto add_vma;
708

709
		obj = i915_gem_object_lookup(eb->file, handle);
710
		if (unlikely(!obj)) {
711
			err = -ENOENT;
712
			goto err_vma;
713 714
		}

715
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
716
		if (unlikely(IS_ERR(vma))) {
717
			err = PTR_ERR(vma);
718
			goto err_obj;
719 720
		}

721 722 723 724 725 726 727 728 729 730
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
			kfree(lut);
			goto err_obj;
731
		}
732

733
		/* transfer ref to ctx */
734
		vma->open_count++;
735 736 737 738 739
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

740
add_vma:
741
		err = eb_add_vma(eb, i, vma);
742
		if (unlikely(err))
743
			goto err_vma;
744

745 746
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
747 748
	}

749 750
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
751 752
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
753

754
	/*
755 756 757 758 759 760 761
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
762
	 */
763 764
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
765
	if (eb->reloc_cache.has_fence)
766
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
767

768 769 770
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

771
err_obj:
772
	i915_gem_object_put(obj);
773 774
err_vma:
	eb->vma[i] = NULL;
775
	return err;
776 777
}

778
static struct i915_vma *
779
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
780
{
781 782
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
783
			return NULL;
784
		return eb->vma[handle];
785 786
	} else {
		struct hlist_head *head;
787
		struct i915_vma *vma;
788

789
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
790
		hlist_for_each_entry(vma, head, exec_node) {
791 792
			if (vma->exec_handle == handle)
				return vma;
793 794 795
		}
		return NULL;
	}
796 797
}

798
static void eb_release_vmas(const struct i915_execbuffer *eb)
799
{
800 801 802 803
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
804 805
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
806

807
		if (!vma)
808
			break;
809

810 811 812
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
813

814 815
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
816

817
		if (flags & __EXEC_OBJECT_HAS_REF)
818
			i915_vma_put(vma);
819
	}
820 821
}

822
static void eb_reset_vmas(const struct i915_execbuffer *eb)
823
{
824
	eb_release_vmas(eb);
825
	if (eb->lut_size > 0)
826 827
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
828 829
}

830
static void eb_destroy(const struct i915_execbuffer *eb)
831
{
832 833
	GEM_BUG_ON(eb->reloc_cache.rq);

834
	if (eb->lut_size > 0)
835
		kfree(eb->buckets);
836 837
}

838
static inline u64
839
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
840
		  const struct i915_vma *target)
841
{
842
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
843 844
}

845 846
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
847
{
848
	cache->page = -1;
849
	cache->vaddr = 0;
850
	/* Must be a variable in the struct to allow GCC to unroll. */
851
	cache->gen = INTEL_GEN(i915);
852
	cache->has_llc = HAS_LLC(i915);
853
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
854 855
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
856
	cache->node.allocated = false;
857 858
	cache->rq = NULL;
	cache->rq_size = 0;
859
}
860

861 862 863 864 865 866 867 868
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
869 870
}

871 872
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

873 874 875 876 877 878 879
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

880 881 882 883 884 885 886 887 888 889 890
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

891
static void reloc_cache_reset(struct reloc_cache *cache)
892
{
893
	void *vaddr;
894

895 896 897
	if (cache->rq)
		reloc_gpu_flush(cache);

898 899
	if (!cache->vaddr)
		return;
900

901 902 903 904
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
905

906 907 908
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
909
		wmb();
910
		io_mapping_unmap_atomic((void __iomem *)vaddr);
911
		if (cache->node.allocated) {
912
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
913 914 915

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
916
					       cache->node.size);
917 918 919
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
920
		}
921
	}
922 923 924

	cache->vaddr = 0;
	cache->page = -1;
925 926 927 928
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
929
			unsigned long page)
930
{
931 932 933 934 935 936
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
937
		int err;
938

939 940 941
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
942 943 944

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
945

946 947 948 949
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
950 951
	}

952 953
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
954
	cache->page = page;
955

956
	return vaddr;
957 958
}

959 960
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
961
			 unsigned long page)
962
{
963
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
964
	unsigned long offset;
965
	void *vaddr;
966

967
	if (cache->vaddr) {
968
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
969 970
	} else {
		struct i915_vma *vma;
971
		int err;
972

973
		if (use_cpu_reloc(cache, obj))
974
			return NULL;
975

976 977 978
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
979

980
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
981 982 983
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
984 985
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
986
			err = drm_mm_insert_node_in_range
987
				(&ggtt->base.mm, &cache->node,
988
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
989
				 0, ggtt->mappable_end,
990
				 DRM_MM_INSERT_LOW);
991
			if (err) /* no inactive aperture space, use cpu reloc */
992
				return NULL;
993
		} else {
994 995
			err = i915_vma_put_fence(vma);
			if (err) {
996
				i915_vma_unpin(vma);
997
				return ERR_PTR(err);
998
			}
999

1000 1001
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1002
		}
1003
	}
1004

1005 1006
	offset = cache->node.start;
	if (cache->node.allocated) {
1007
		wmb();
1008 1009 1010 1011 1012
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1013 1014
	}

1015
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1016
							 offset);
1017 1018
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1019

1020
	return vaddr;
1021 1022
}

1023 1024
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1025
			 unsigned long page)
1026
{
1027
	void *vaddr;
1028

1029 1030 1031 1032 1033 1034 1035 1036
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1037 1038
	}

1039
	return vaddr;
1040 1041
}

1042
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1043
{
1044 1045 1046 1047 1048
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1049

1050
		*addr = value;
1051

1052 1053
		/*
		 * Writes to the same cacheline are serialised by the CPU
1054 1055 1056 1057 1058 1059 1060 1061 1062
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1063 1064
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1076
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1077 1078 1079 1080 1081 1082

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1083 1084 1085
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1120
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1121
	i915_vma_move_to_active(batch, rq, 0);
1122 1123 1124
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1125 1126
	i915_vma_unpin(batch);

1127
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1128 1129 1130
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1163 1164 1165 1166
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1167 1168 1169
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1181 1182
static u64
relocate_entry(struct i915_vma *vma,
1183
	       const struct drm_i915_gem_relocation_entry *reloc,
1184 1185
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1186
{
1187
	u64 offset = reloc->offset;
1188 1189
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1190
	void *vaddr;
1191

1192 1193
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1194
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1195 1196 1197 1198 1199 1200 1201 1202 1203
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1204
		else
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1251
repeat:
1252
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1253 1254 1255 1256 1257
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1258
			eb->reloc_cache.vaddr);
1259 1260 1261 1262 1263 1264

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1265 1266
	}

1267
out:
1268
	return target->node.start | UPDATE;
1269 1270
}

1271 1272 1273 1274
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1275
{
1276
	struct i915_vma *target;
1277
	int err;
1278

1279
	/* we've already hold a reference to all valid objects */
1280 1281
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1282
		return -ENOENT;
1283

1284
	/* Validate that the target is in a valid r/w GPU domain */
1285
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1286
		DRM_DEBUG("reloc with multiple write domains: "
1287
			  "target %d offset %d "
1288
			  "read %08x write %08x",
1289
			  reloc->target_handle,
1290 1291 1292
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1293
		return -EINVAL;
1294
	}
1295 1296
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1297
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1298
			  "target %d offset %d "
1299
			  "read %08x write %08x",
1300
			  reloc->target_handle,
1301 1302 1303
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1304
		return -EINVAL;
1305 1306
	}

1307
	if (reloc->write_domain) {
1308
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1324
	}
1325

1326 1327
	/*
	 * If the relocation already has the right value in it, no
1328 1329
	 * more work needs to be done.
	 */
1330 1331
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1332
		return 0;
1333 1334

	/* Check that the relocation address is valid... */
1335
	if (unlikely(reloc->offset >
1336
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1337
		DRM_DEBUG("Relocation beyond object bounds: "
1338 1339 1340 1341
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1342
		return -EINVAL;
1343
	}
1344
	if (unlikely(reloc->offset & 3)) {
1345
		DRM_DEBUG("Relocation not 4-byte aligned: "
1346 1347 1348
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1349
		return -EINVAL;
1350 1351
	}

1352 1353 1354 1355 1356 1357
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1358
	 * out of our synchronisation.
1359
	 */
1360
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1361

1362
	/* and update the user's relocation entry */
1363
	return relocate_entry(vma, reloc, eb, target);
1364 1365
}

1366
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1367
{
1368
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1369 1370
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1371
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1372
	unsigned int remain;
1373

1374
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1375
	remain = entry->relocation_count;
1376 1377
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1378

1379 1380 1381 1382 1383
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1384
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1385 1386 1387 1388 1389 1390 1391
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1392

1393 1394
		/*
		 * This is the fast path and we cannot handle a pagefault
1395 1396 1397 1398 1399 1400 1401
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1402
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1403
		pagefault_enable();
1404 1405
		if (unlikely(copied)) {
			remain = -EFAULT;
1406 1407
			goto out;
		}
1408

1409
		remain -= count;
1410
		do {
1411
			u64 offset = eb_relocate_entry(eb, vma, r);
1412

1413 1414 1415
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1416
				goto out;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1442
			}
1443 1444 1445
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1446
out:
1447
	reloc_cache_reset(&eb->reloc_cache);
1448
	return remain;
1449 1450 1451
}

static int
1452
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1453
{
1454
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1455 1456 1457 1458
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1459 1460

	for (i = 0; i < entry->relocation_count; i++) {
1461
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1462

1463 1464 1465 1466
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1467
	}
1468 1469 1470 1471
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1472 1473
}

1474
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1475
{
1476 1477 1478
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1479

1480 1481 1482
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1483

1484 1485
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1486

1487 1488 1489 1490
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1491

1492 1493 1494 1495 1496
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1497
	}
1498
	return __get_user(c, end - 1);
1499
}
1500

1501
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1502
{
1503 1504 1505
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1506

1507 1508 1509 1510 1511 1512
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1513

1514 1515
		if (nreloc == 0)
			continue;
1516

1517 1518 1519
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1520

1521 1522
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1523

1524
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1525 1526 1527 1528 1529
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1530

1531 1532 1533 1534 1535 1536 1537
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1538
					     (char __user *)urelocs + copied,
1539 1540 1541 1542 1543
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1544

1545 1546
			copied += len;
		} while (copied < size);
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1565

1566 1567
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1568

1569
	return 0;
1570

1571 1572 1573 1574 1575 1576 1577 1578
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1579 1580
}

1581
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1582
{
1583 1584
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1585

1586
	if (unlikely(i915_modparams.prefault_disable))
1587
		return 0;
1588

1589 1590
	for (i = 0; i < count; i++) {
		int err;
1591

1592 1593 1594 1595
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1596

1597
	return 0;
1598 1599
}

1600
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1601
{
1602
	struct drm_device *dev = &eb->i915->drm;
1603
	bool have_copy = false;
1604
	struct i915_vma *vma;
1605 1606 1607 1608 1609 1610 1611
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1612

1613
	/* We may process another execbuffer during the unlock... */
1614
	eb_reset_vmas(eb);
1615 1616
	mutex_unlock(&dev->struct_mutex);

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1638
	}
1639 1640 1641
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1642 1643
	}

1644 1645 1646
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1647 1648
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1649
		mutex_lock(&dev->struct_mutex);
1650
		goto out;
1651 1652
	}

1653
	/* reacquire the objects */
1654 1655
	err = eb_lookup_vmas(eb);
	if (err)
1656
		goto err;
1657

1658 1659
	GEM_BUG_ON(!eb->batch);

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1672 1673
	}

1674 1675
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1676 1677 1678 1679 1680 1681
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1703
	return err;
1704 1705
}

1706
static int eb_relocate(struct i915_execbuffer *eb)
1707
{
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1727
static void eb_export_fence(struct i915_vma *vma,
1728 1729 1730
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1731
	struct reservation_object *resv = vma->resv;
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1751

1752
	for (i = 0; i < count; i++) {
1753 1754
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1755
		struct drm_i915_gem_object *obj = vma->obj;
1756

1757
		if (flags & EXEC_OBJECT_CAPTURE) {
1758 1759 1760 1761 1762 1763
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1764
			capture->next = eb->request->capture_list;
1765
			capture->vma = eb->vma[i];
1766
			eb->request->capture_list = capture;
1767 1768
		}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1782
			if (i915_gem_clflush_object(obj, 0))
1783
				flags &= ~EXEC_OBJECT_ASYNC;
1784 1785
		}

1786 1787
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1788

1789
		err = i915_gem_request_await_object
1790
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1791 1792 1793 1794 1795
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1796 1797 1798 1799 1800
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1801

1802 1803 1804 1805
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1806
			i915_vma_put(vma);
1807
	}
1808
	eb->exec = NULL;
1809

1810
	/* Unconditionally flush any chipset caches (for streaming writes). */
1811
	i915_gem_chipset_flush(eb->i915);
1812

1813
	return 0;
1814 1815
}

1816
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1817
{
1818
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1819 1820
		return false;

C
Chris Wilson 已提交
1821
	/* Kernel clipping was a DRI1 misfeature */
1822 1823 1824 1825
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1838 1839
}

1840 1841 1842 1843 1844 1845 1846
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1847
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1848 1849
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1850 1851
	/*
	 * Add a reference if we're newly entering the active list.
1852 1853 1854 1855 1856 1857
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1858 1859 1860 1861 1862
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1863

1864
	obj->write_domain = 0;
1865
	if (flags & EXEC_OBJECT_WRITE) {
1866
		obj->write_domain = I915_GEM_DOMAIN_RENDER;
1867

1868 1869
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1870

1871
		obj->read_domains = 0;
1872
	}
1873
	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1874

1875 1876
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1877 1878
}

1879
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1880
{
1881 1882
	u32 *cs;
	int i;
1883

1884
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1885 1886 1887
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1888

1889
	cs = intel_ring_begin(req, 4 * 2 + 2);
1890 1891
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1892

1893
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1894
	for (i = 0; i < 4; i++) {
1895 1896
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1897
	}
1898
	*cs++ = MI_NOOP;
1899
	intel_ring_advance(req, cs);
1900 1901 1902 1903

	return 0;
}

1904
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1905 1906
{
	struct drm_i915_gem_object *shadow_batch_obj;
1907
	struct i915_vma *vma;
1908
	int err;
1909

1910 1911
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1912
	if (IS_ERR(shadow_batch_obj))
1913
		return ERR_CAST(shadow_batch_obj);
1914

1915
	err = intel_engine_cmd_parser(eb->engine,
1916
				      eb->batch->obj,
1917
				      shadow_batch_obj,
1918 1919
				      eb->batch_start_offset,
				      eb->batch_len,
1920
				      is_master);
1921 1922
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1923 1924
			vma = NULL;
		else
1925
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1926 1927
		goto out;
	}
1928

C
Chris Wilson 已提交
1929 1930 1931
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1932

1933 1934 1935 1936 1937
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1938

C
Chris Wilson 已提交
1939
out:
C
Chris Wilson 已提交
1940
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1941
	return vma;
1942
}
1943

1944
static void
1945
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1946 1947 1948 1949 1950
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1951
static int eb_submit(struct i915_execbuffer *eb)
1952
{
1953
	int err;
1954

1955 1956 1957
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1958

1959
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1960 1961 1962
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1963 1964
	}

1965
	err = eb->engine->emit_bb_start(eb->request,
1966 1967 1968
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1969 1970 1971
					eb->batch_flags);
	if (err)
		return err;
1972

C
Chris Wilson 已提交
1973
	return 0;
1974 1975
}

1976
/*
1977
 * Find one BSD ring to dispatch the corresponding BSD command.
1978
 * The engine index is returned.
1979
 */
1980
static unsigned int
1981 1982
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1983 1984 1985
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1986
	/* Check whether the file_priv has already selected one ring. */
1987 1988 1989
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1990

1991
	return file_priv->bsd_engine;
1992 1993
}

1994 1995
#define I915_USER_RINGS (4)

1996
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1997 1998 1999 2000 2001 2002 2003
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2004 2005 2006 2007
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2008 2009
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2010
	struct intel_engine_cs *engine;
2011 2012 2013

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2014
		return NULL;
2015 2016 2017 2018 2019 2020
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2021
		return NULL;
2022 2023 2024 2025 2026 2027
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2028
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2029 2030
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2031
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2032 2033 2034 2035
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2036
			return NULL;
2037 2038
		}

2039
		engine = dev_priv->engine[_VCS(bsd_idx)];
2040
	} else {
2041
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2042 2043
	}

2044
	if (!engine) {
2045
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2046
		return NULL;
2047 2048
	}

2049
	return engine;
2050 2051
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2064
	const unsigned long nfences = args->num_cliprects;
2065 2066
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2067
	unsigned long n;
2068 2069 2070 2071 2072
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2073 2074 2075 2076 2077
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2078 2079 2080
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2081
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2082 2083
		return ERR_PTR(-EFAULT);

2084
	fences = kvmalloc_array(nfences, sizeof(*fences),
2085
				__GFP_NOWARN | GFP_KERNEL);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2098 2099 2100 2101 2102
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2103 2104 2105 2106 2107 2108 2109
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2110 2111 2112
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2148
		fence = drm_syncobj_fence_get(syncobj);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2181
static int
2182
i915_gem_do_execbuffer(struct drm_device *dev,
2183 2184
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2185 2186
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2187
{
2188
	struct i915_execbuffer eb;
2189 2190 2191
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2192
	int err;
2193

2194
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2195 2196
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2197

2198 2199 2200
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2201
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2202
		args->flags |= __EXEC_HAS_RELOC;
2203

2204
	eb.exec = exec;
2205 2206
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2207 2208
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2209 2210 2211
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2212 2213
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2214
	eb.buffer_count = args->buffer_count;
2215 2216 2217
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2218
	eb.batch_flags = 0;
2219
	if (args->flags & I915_EXEC_SECURE) {
2220
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2221 2222
		    return -EPERM;

2223
		eb.batch_flags |= I915_DISPATCH_SECURE;
2224
	}
2225
	if (args->flags & I915_EXEC_IS_PINNED)
2226
		eb.batch_flags |= I915_DISPATCH_PINNED;
2227

2228 2229
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2230 2231
		return -EINVAL;

2232
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2233
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2234 2235 2236
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2237
		if (eb.engine->id != RCS) {
2238
			DRM_DEBUG("RS is not available on %s\n",
2239
				 eb.engine->name);
2240 2241 2242
			return -EINVAL;
		}

2243
		eb.batch_flags |= I915_DISPATCH_RS;
2244 2245
	}

2246 2247
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2248 2249
		if (!in_fence)
			return -EINVAL;
2250 2251 2252 2253 2254
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2255
			err = out_fence_fd;
2256
			goto err_in_fence;
2257 2258 2259
		}
	}

2260 2261 2262 2263 2264
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2265

2266 2267 2268 2269
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2270 2271
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2272 2273 2274 2275 2276
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2277
	intel_runtime_pm_get(eb.i915);
2278

2279 2280 2281
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2282

2283
	err = eb_relocate(&eb);
2284
	if (err) {
2285 2286 2287 2288 2289 2290 2291 2292 2293
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2294
	}
2295

2296
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2297
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2298 2299
		err = -EINVAL;
		goto err_vma;
2300
	}
2301 2302
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2303
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2304 2305
		err = -EINVAL;
		goto err_vma;
2306
	}
2307

2308
	if (eb_use_cmdparser(&eb)) {
2309 2310
		struct i915_vma *vma;

2311
		vma = eb_parse(&eb, drm_is_current_master(file));
2312
		if (IS_ERR(vma)) {
2313 2314
			err = PTR_ERR(vma);
			goto err_vma;
2315
		}
2316

2317
		if (vma) {
2318 2319 2320 2321 2322 2323 2324 2325 2326
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2327
			eb.batch_flags |= I915_DISPATCH_SECURE;
2328 2329
			eb.batch_start_offset = 0;
			eb.batch = vma;
2330
		}
2331 2332
	}

2333 2334
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2335

2336 2337
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2338
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2339
	 * hsw should have this fixed, but bdw mucks it up again. */
2340
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2341
		struct i915_vma *vma;
2342

2343 2344 2345 2346 2347 2348
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2349
		 *   so we don't really have issues with multiple objects not
2350 2351 2352
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2353
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2354
		if (IS_ERR(vma)) {
2355 2356
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2357
		}
2358

2359
		eb.batch = vma;
2360
	}
2361

2362 2363 2364
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2365
	/* Allocate a request for this batch buffer nice and early. */
2366 2367
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2368
		err = PTR_ERR(eb.request);
2369
		goto err_batch_unpin;
2370
	}
2371

2372
	if (in_fence) {
2373 2374
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2375 2376 2377
			goto err_request;
	}

2378 2379 2380 2381 2382 2383
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2384
	if (out_fence_fd != -1) {
2385
		out_fence = sync_file_create(&eb.request->fence);
2386
		if (!out_fence) {
2387
			err = -ENOMEM;
2388 2389 2390 2391
			goto err_request;
		}
	}

2392 2393
	/*
	 * Whilst this request exists, batch_obj will be on the
2394 2395 2396 2397 2398
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2399
	eb.request->batch = eb.batch;
2400

2401 2402
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2403
err_request:
2404
	__i915_add_request(eb.request, err == 0);
2405
	add_to_client(eb.request, file);
2406

2407 2408 2409
	if (fences)
		signal_fence_array(&eb, fences);

2410
	if (out_fence) {
2411
		if (err == 0) {
2412
			fd_install(out_fence_fd, out_fence->file);
2413
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2414 2415 2416 2417 2418 2419
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2420

2421
err_batch_unpin:
2422
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2423
		i915_vma_unpin(eb.batch);
2424 2425 2426
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2427
	mutex_unlock(&dev->struct_mutex);
2428
err_rpm:
2429
	intel_runtime_pm_put(eb.i915);
2430 2431
	i915_gem_context_put(eb.ctx);
err_destroy:
2432
	eb_destroy(&eb);
2433
err_out_fence:
2434 2435
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2436
err_in_fence:
2437
	dma_fence_put(in_fence);
2438
	return err;
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2461 2462 2463 2464 2465
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2466 2467
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2468 2469 2470 2471 2472
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2473
	const size_t count = args->buffer_count;
2474 2475
	unsigned int i;
	int err;
2476

2477 2478
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2479 2480 2481
		return -EINVAL;
	}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2496
	/* Copy in the exec list from userland */
2497
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2498
				   __GFP_NOWARN | GFP_KERNEL);
2499
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2500
				    __GFP_NOWARN | GFP_KERNEL);
2501
	if (exec_list == NULL || exec2_list == NULL) {
2502
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2503
			  args->buffer_count);
M
Michal Hocko 已提交
2504 2505
		kvfree(exec_list);
		kvfree(exec2_list);
2506 2507
		return -ENOMEM;
	}
2508
	err = copy_from_user(exec_list,
2509
			     u64_to_user_ptr(args->buffers_ptr),
2510
			     sizeof(*exec_list) * count);
2511
	if (err) {
2512
		DRM_DEBUG("copy %d exec entries failed %d\n",
2513
			  args->buffer_count, err);
M
Michal Hocko 已提交
2514 2515
		kvfree(exec_list);
		kvfree(exec2_list);
2516 2517 2518 2519 2520 2521 2522 2523 2524
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2525
		if (INTEL_GEN(to_i915(dev)) < 4)
2526 2527 2528 2529 2530
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2531
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2532
	if (exec2.flags & __EXEC_HAS_RELOC) {
2533
		struct drm_i915_gem_exec_object __user *user_exec_list =
2534
			u64_to_user_ptr(args->buffers_ptr);
2535

2536
		/* Copy the new buffer offsets back to the user's exec list. */
2537
		for (i = 0; i < args->buffer_count; i++) {
2538 2539 2540
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2541
			exec2_list[i].offset =
2542 2543 2544 2545 2546
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2547
				break;
2548 2549 2550
		}
	}

M
Michal Hocko 已提交
2551 2552
	kvfree(exec_list);
	kvfree(exec2_list);
2553
	return err;
2554 2555 2556
}

int
2557 2558
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2559 2560
{
	struct drm_i915_gem_execbuffer2 *args = data;
2561
	struct drm_i915_gem_exec_object2 *exec2_list;
2562
	struct drm_syncobj **fences = NULL;
2563
	const size_t count = args->buffer_count;
2564
	int err;
2565

2566 2567
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2568 2569 2570
		return -EINVAL;
	}

2571 2572 2573 2574
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2575
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2576
				    __GFP_NOWARN | GFP_KERNEL);
2577
	if (exec2_list == NULL) {
2578 2579
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2580 2581
		return -ENOMEM;
	}
2582 2583
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2584 2585
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2586
		kvfree(exec2_list);
2587 2588 2589
		return -EFAULT;
	}

2590 2591 2592 2593 2594 2595 2596 2597 2598
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2599 2600 2601 2602 2603 2604 2605 2606

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2607
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2608 2609
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2610

2611 2612
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2613
		for (i = 0; i < args->buffer_count; i++) {
2614 2615 2616
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2617
			exec2_list[i].offset =
2618 2619 2620 2621
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2622
		}
2623 2624
end_user:
		user_access_end();
2625 2626
	}

2627
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2628
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2629
	kvfree(exec2_list);
2630
	return err;
2631
}