i915_gem_execbuffer.c 72.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60 61
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65 66
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

190
struct i915_execbuffer {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
217
	struct reloc_cache {
218 219 220
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
221
		unsigned int gen; /** Cached value of INTEL_GEN */
222
		bool use_64bit_reloc : 1;
223 224 225
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
226 227 228 229

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
230
	} reloc_cache;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
246 247
};

248 249 250 251 252 253 254 255
/*
 * As an alternative to creating a hashtable of handle-to-vma for a batch,
 * we used the last available reserved field in the execobject[] and stash
 * a link from the execobj to its vma.
 */
#define __exec_to_vma(ee) (ee)->rsvd2
#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

275
static int eb_create(struct i915_execbuffer *eb)
276
{
277 278
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
279

280 281 282 283 284 285 286 287 288 289 290
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
291
		do {
292 293 294 295 296 297 298 299 300 301 302 303
			unsigned int flags;

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
			flags = GFP_TEMPORARY;
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

304
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
305
					      flags);
306 307 308 309
			if (eb->buckets)
				break;
		} while (--size);

310 311
		if (unlikely(!size))
			return -ENOMEM;
312

313
		eb->lut_size = size;
314
	} else {
315
		eb->lut_size = -eb->buffer_count;
316
	}
317

318
	return 0;
319 320
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
		 const struct i915_vma *vma)
{
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return true;

	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

	if (entry->flags & EXEC_OBJECT_PINNED &&
	    vma->node.start != entry->offset)
		return true;

	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

static inline void
eb_pin_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
{
	u64 flags;

356 357 358 359 360 361
	if (vma->node.size)
		flags = vma->node.start;
	else
		flags = entry->offset & PIN_OFFSET_MASK;

	flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
362 363
	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
		flags |= PIN_GLOBAL;
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
		return;

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
			return;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
}

381 382 383 384
static inline void
__eb_unreserve_vma(struct i915_vma *vma,
		   const struct drm_i915_gem_exec_object2 *entry)
{
385 386
	GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));

387 388 389
	if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
		i915_vma_unpin_fence(vma);

390
	__i915_vma_unpin(vma);
391 392
}

393 394 395
static inline void
eb_unreserve_vma(struct i915_vma *vma,
		 struct drm_i915_gem_exec_object2 *entry)
396
{
397 398
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return;
399 400

	__eb_unreserve_vma(vma, entry);
401
	entry->flags &= ~__EXEC_OBJECT_RESERVED;
402 403
}

404 405 406 407
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
408
{
409 410
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
429 430
	}

431 432 433 434 435 436 437 438 439 440 441 442 443 444
	if (unlikely(vma->exec_entry)) {
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

	return 0;
445 446
}

447 448 449 450
static int
eb_add_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
451
{
452 453 454 455 456 457 458 459
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
460 461
	}

462
	if (eb->lut_size > 0) {
463
		vma->exec_handle = entry->handle;
464
		hlist_add_head(&vma->exec_node,
465 466
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
467
	}
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
	vma->exec_entry = entry;
491
	__exec_to_vma(entry) = (uintptr_t)vma;
492 493

	err = 0;
494
	eb_pin_vma(eb, entry, vma);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	if (eb_vma_misplaced(entry, vma)) {
		eb_unreserve_vma(vma, entry);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
	} else {
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

516 517 518 519 520
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	u64 flags;
	int err;

	flags = PIN_USER | PIN_NONBLOCK;
	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
		flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		flags |= PIN_ZONE_4G;

	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
		flags |= PIN_MAPPABLE;

	if (entry->flags & EXEC_OBJECT_PINNED) {
		flags |= entry->offset | PIN_OFFSET_FIXED;
		flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
	} else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
		flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
	}

	err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

575 576 577
	entry->flags |= __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma));

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];

			if (entry->flags & EXEC_OBJECT_PINNED &&
			    entry->flags & __EXEC_OBJECT_HAS_PIN)
				continue;

			vma = exec_to_vma(entry);
			eb_unreserve_vma(vma, entry);

			if (entry->flags & EXEC_OBJECT_PINNED)
				list_add(&vma->exec_link, &eb->unbound);
			else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
651
}
652

653
static inline struct hlist_head *
654
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
655
{
656
	return &lut->ht[hash_32(handle, lut->ht_bits)];
657 658 659
}

static inline bool
660
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
661
{
662 663
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
664 665
}

666 667
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
668 669 670 671
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
672 673 674 675 676 677 678
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
679 680
	if (unlikely(!ctx))
		return -ENOENT;
681 682 683 684

	if (unlikely(i915_gem_context_is_banned(ctx))) {
		DRM_DEBUG("Context %u tried to submit while banned\n",
			  ctx->user_handle);
685
		i915_gem_context_put(ctx);
686 687 688
		return -EIO;
	}

689
	eb->ctx = ctx;
690 691 692 693 694 695 696 697 698 699
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
700
{
701
#define INTERMEDIATE BIT(0)
702 703
	const unsigned int count = eb->buffer_count;
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
704
	struct i915_vma *vma;
705 706
	struct idr *idr;
	unsigned int i;
707
	int slow_pass = -1;
708
	int err;
709

710 711
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
712

713 714 715
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
716 717 718 719 720

	for (i = 0; i < count; i++) {
		__exec_to_vma(&eb->exec[i]) = 0;

		hlist_for_each_entry(vma,
721
				     ht_head(lut, eb->exec[i].handle),
722 723 724 725
				     ctx_node) {
			if (vma->ctx_handle != eb->exec[i].handle)
				continue;

726 727 728
			err = eb_add_vma(eb, &eb->exec[i], vma);
			if (unlikely(err))
				return err;
729 730 731 732 733 734 735 736 737 738

			goto next_vma;
		}

		if (slow_pass < 0)
			slow_pass = i;
next_vma: ;
	}

	if (slow_pass < 0)
739
		goto out;
740

741
	spin_lock(&eb->file->table_lock);
742 743 744 745 746
	/*
	 * Grab a reference to the object and release the lock so we can lookup
	 * or create the VMA without using GFP_ATOMIC
	 */
	idr = &eb->file->object_idr;
747 748
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
749

750 751 752
		if (__exec_to_vma(&eb->exec[i]))
			continue;

753
		obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
754
		if (unlikely(!obj)) {
755
			spin_unlock(&eb->file->table_lock);
756 757
			DRM_DEBUG("Invalid object handle %d at index %d\n",
				  eb->exec[i].handle, i);
758 759
			err = -ENOENT;
			goto err;
760 761
		}

762
		__exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
763
	}
764
	spin_unlock(&eb->file->table_lock);
765

766 767
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
768

769
		if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
770
			continue;
771

772 773 774 775 776 777 778 779
		/*
		 * NOTE: We can leak any vmas created here when something fails
		 * later on. But that's no issue since vma_unbind can deal with
		 * vmas which are not actually bound. And since only
		 * lookup_or_create exists as an interface to get at the vma
		 * from the (obj, vm) we don't run the risk of creating
		 * duplicated vmas for the same vm.
		 */
780
		obj = u64_to_ptr(typeof(*obj),
781
				 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
782
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
783
		if (unlikely(IS_ERR(vma))) {
784
			DRM_DEBUG("Failed to lookup VMA\n");
785 786
			err = PTR_ERR(vma);
			goto err;
787 788
		}

789 790 791 792 793
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
			vma->ctx_handle = eb->exec[i].handle;
			hlist_add_head(&vma->ctx_node,
794 795 796
				       ht_head(lut, eb->exec[i].handle));
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
797 798 799 800
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
801 802

			i915_vma_get(vma);
803
		}
804

805 806 807
		err = eb_add_vma(eb, &eb->exec[i], vma);
		if (unlikely(err))
			goto err;
808 809 810 811 812 813

		/* Only after we validated the user didn't use our bits */
		if (vma->ctx != eb->ctx) {
			i915_vma_get(vma);
			eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
		}
814 815
	}

816 817 818 819 820
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
821 822
	}

823 824 825 826
out:
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
	eb->batch = exec_to_vma(&eb->exec[i]);
827

828
	/*
829 830 831 832 833 834 835
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
836
	 */
837 838 839 840
	if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
		eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
	if (eb->reloc_cache.has_fence)
		eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
841

842 843 844 845 846 847 848 849 850 851 852
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

err:
	for (i = slow_pass; i < count; i++) {
		if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
			__exec_to_vma(&eb->exec[i]) = 0;
	}
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
#undef INTERMEDIATE
853 854
}

855
static struct i915_vma *
856
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
857
{
858 859
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
860
			return NULL;
861
		return exec_to_vma(&eb->exec[handle]);
862 863
	} else {
		struct hlist_head *head;
864
		struct i915_vma *vma;
865

866
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
867
		hlist_for_each_entry(vma, head, exec_node) {
868 869
			if (vma->exec_handle == handle)
				return vma;
870 871 872
		}
		return NULL;
	}
873 874
}

875
static void eb_release_vmas(const struct i915_execbuffer *eb)
876
{
877 878 879 880 881 882
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
883

884
		if (!vma)
885
			continue;
886

887
		GEM_BUG_ON(vma->exec_entry != entry);
888
		vma->exec_entry = NULL;
889
		__exec_to_vma(entry) = 0;
890

891 892 893 894 895
		if (entry->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, entry);

		if (entry->flags & __EXEC_OBJECT_HAS_REF)
			i915_vma_put(vma);
896

897 898
		entry->flags &=
			~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
899
	}
900 901
}

902
static void eb_reset_vmas(const struct i915_execbuffer *eb)
903
{
904
	eb_release_vmas(eb);
905
	if (eb->lut_size > 0)
906 907
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
908 909
}

910
static void eb_destroy(const struct i915_execbuffer *eb)
911
{
912 913
	GEM_BUG_ON(eb->reloc_cache.rq);

914
	if (eb->lut_size > 0)
915
		kfree(eb->buckets);
916 917
}

918
static inline u64
919
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
920
		  const struct i915_vma *target)
921
{
922
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
923 924
}

925 926
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
927
{
928
	cache->page = -1;
929
	cache->vaddr = 0;
930
	/* Must be a variable in the struct to allow GCC to unroll. */
931
	cache->gen = INTEL_GEN(i915);
932
	cache->has_llc = HAS_LLC(i915);
933
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
934 935
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
936
	cache->node.allocated = false;
937 938
	cache->rq = NULL;
	cache->rq_size = 0;
939
}
940

941 942 943 944 945 946 947 948
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
949 950
}

951 952
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

953 954 955 956 957 958 959
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

960 961 962 963 964 965 966 967 968 969 970
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

971
static void reloc_cache_reset(struct reloc_cache *cache)
972
{
973
	void *vaddr;
974

975 976 977
	if (cache->rq)
		reloc_gpu_flush(cache);

978 979
	if (!cache->vaddr)
		return;
980

981 982 983 984
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
985

986 987 988
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
989
		wmb();
990
		io_mapping_unmap_atomic((void __iomem *)vaddr);
991
		if (cache->node.allocated) {
992
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
993 994 995

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
996
					       cache->node.size);
997 998 999
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1000
		}
1001
	}
1002 1003 1004

	cache->vaddr = 0;
	cache->page = -1;
1005 1006 1007 1008
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1009
			unsigned long page)
1010
{
1011 1012 1013 1014 1015 1016
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1017
		int err;
1018

1019 1020 1021
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
1022 1023 1024

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1025

1026 1027 1028 1029
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1030 1031
	}

1032 1033
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1034
	cache->page = page;
1035

1036
	return vaddr;
1037 1038
}

1039 1040
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1041
			 unsigned long page)
1042
{
1043
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1044
	unsigned long offset;
1045
	void *vaddr;
1046

1047
	if (cache->vaddr) {
1048
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1049 1050
	} else {
		struct i915_vma *vma;
1051
		int err;
1052

1053
		if (use_cpu_reloc(cache, obj))
1054
			return NULL;
1055

1056 1057 1058
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1059

1060 1061
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1062 1063
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1064
			err = drm_mm_insert_node_in_range
1065
				(&ggtt->base.mm, &cache->node,
1066
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1067
				 0, ggtt->mappable_end,
1068
				 DRM_MM_INSERT_LOW);
1069
			if (err) /* no inactive aperture space, use cpu reloc */
1070
				return NULL;
1071
		} else {
1072 1073
			err = i915_vma_put_fence(vma);
			if (err) {
1074
				i915_vma_unpin(vma);
1075
				return ERR_PTR(err);
1076
			}
1077

1078 1079
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1080
		}
1081
	}
1082

1083 1084
	offset = cache->node.start;
	if (cache->node.allocated) {
1085
		wmb();
1086 1087 1088 1089 1090
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1091 1092
	}

1093 1094
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1095 1096
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1097

1098
	return vaddr;
1099 1100
}

1101 1102
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1103
			 unsigned long page)
1104
{
1105
	void *vaddr;
1106

1107 1108 1109 1110 1111 1112 1113 1114
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1115 1116
	}

1117
	return vaddr;
1118 1119
}

1120
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1121
{
1122 1123 1124 1125 1126
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1127

1128
		*addr = value;
1129

1130 1131
		/*
		 * Writes to the same cacheline are serialised by the CPU
1132 1133 1134 1135 1136 1137 1138 1139 1140
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1141 1142
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
				      cache->has_llc ? I915_MAP_WB : I915_MAP_WC);
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1204
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1205
	i915_vma_move_to_active(batch, rq, 0);
1206 1207 1208
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1209 1210
	i915_vma_unpin(batch);

1211
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1212 1213 1214
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1258 1259
static u64
relocate_entry(struct i915_vma *vma,
1260
	       const struct drm_i915_gem_relocation_entry *reloc,
1261 1262
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1263
{
1264
	u64 offset = reloc->offset;
1265 1266
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1267
	void *vaddr;
1268

1269 1270
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1271
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
		else if (gen >= 3)
			len = 3;
		else /* On gen2 MI_STORE_DWORD_IMM uses a physical address */
			goto repeat;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1330
repeat:
1331
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1332 1333 1334 1335 1336
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1337
			eb->reloc_cache.vaddr);
1338 1339 1340 1341 1342 1343

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1344 1345
	}

1346
out:
1347
	return target->node.start | UPDATE;
1348 1349
}

1350 1351 1352 1353
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1354
{
1355
	struct i915_vma *target;
1356
	int err;
1357

1358
	/* we've already hold a reference to all valid objects */
1359 1360
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1361
		return -ENOENT;
1362

1363
	/* Validate that the target is in a valid r/w GPU domain */
1364
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1365
		DRM_DEBUG("reloc with multiple write domains: "
1366
			  "target %d offset %d "
1367
			  "read %08x write %08x",
1368
			  reloc->target_handle,
1369 1370 1371
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1372
		return -EINVAL;
1373
	}
1374 1375
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1376
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1377
			  "target %d offset %d "
1378
			  "read %08x write %08x",
1379
			  reloc->target_handle,
1380 1381 1382
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1383
		return -EINVAL;
1384 1385
	}

1386
	if (reloc->write_domain) {
1387 1388
		target->exec_entry->flags |= EXEC_OBJECT_WRITE;

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1403
	}
1404

1405 1406
	/*
	 * If the relocation already has the right value in it, no
1407 1408
	 * more work needs to be done.
	 */
1409 1410
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1411
		return 0;
1412 1413

	/* Check that the relocation address is valid... */
1414
	if (unlikely(reloc->offset >
1415
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1416
		DRM_DEBUG("Relocation beyond object bounds: "
1417 1418 1419 1420
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1421
		return -EINVAL;
1422
	}
1423
	if (unlikely(reloc->offset & 3)) {
1424
		DRM_DEBUG("Relocation not 4-byte aligned: "
1425 1426 1427
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1428
		return -EINVAL;
1429 1430
	}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
	vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;

1441
	/* and update the user's relocation entry */
1442
	return relocate_entry(vma, reloc, eb, target);
1443 1444
}

1445
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1446
{
1447
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1448 1449 1450 1451
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	unsigned int remain;
1452

1453
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1454
	remain = entry->relocation_count;
1455 1456
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1457

1458 1459 1460 1461 1462
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1463
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1464 1465 1466 1467 1468 1469 1470
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1471

1472 1473
		/*
		 * This is the fast path and we cannot handle a pagefault
1474 1475 1476 1477 1478 1479 1480
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1481
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1482
		pagefault_enable();
1483 1484
		if (unlikely(copied)) {
			remain = -EFAULT;
1485 1486
			goto out;
		}
1487

1488
		remain -= count;
1489
		do {
1490
			u64 offset = eb_relocate_entry(eb, vma, r);
1491

1492 1493 1494
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1495
				goto out;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1521
			}
1522 1523 1524
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1525
out:
1526
	reloc_cache_reset(&eb->reloc_cache);
1527
	return remain;
1528 1529 1530
}

static int
1531
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1532
{
1533
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1534 1535 1536 1537
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1538 1539

	for (i = 0; i < entry->relocation_count; i++) {
1540
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1541

1542 1543 1544 1545
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1546
	}
1547 1548 1549 1550
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1551 1552
}

1553
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1554
{
1555 1556 1557
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1558

1559 1560 1561
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1562

1563 1564
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1565

1566 1567 1568 1569
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1570

1571 1572 1573 1574 1575
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1576
	}
1577
	return __get_user(c, end - 1);
1578
}
1579

1580
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1581
{
1582 1583 1584
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1585

1586 1587 1588 1589 1590 1591
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1592

1593 1594
		if (nreloc == 0)
			continue;
1595

1596 1597 1598
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1599

1600 1601
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1602

1603 1604 1605 1606 1607 1608
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1623

1624 1625
			copied += len;
		} while (copied < size);
1626

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1644

1645 1646
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1647

1648
	return 0;
1649

1650 1651 1652 1653 1654 1655 1656 1657
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1658 1659
}

1660
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1661
{
1662 1663
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1664

1665 1666
	if (unlikely(i915.prefault_disable))
		return 0;
1667

1668 1669
	for (i = 0; i < count; i++) {
		int err;
1670

1671 1672 1673 1674
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1675

1676
	return 0;
1677 1678
}

1679
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1680
{
1681
	struct drm_device *dev = &eb->i915->drm;
1682
	bool have_copy = false;
1683
	struct i915_vma *vma;
1684 1685 1686 1687 1688 1689 1690
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1691

1692
	/* We may process another execbuffer during the unlock... */
1693
	eb_reset_vmas(eb);
1694 1695
	mutex_unlock(&dev->struct_mutex);

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1717
	}
1718 1719 1720
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1721 1722
	}

1723 1724 1725
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1726 1727
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1728
		mutex_lock(&dev->struct_mutex);
1729
		goto out;
1730 1731
	}

1732
	/* reacquire the objects */
1733 1734
	err = eb_lookup_vmas(eb);
	if (err)
1735
		goto err;
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1749 1750
	}

1751 1752
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1753 1754 1755 1756 1757 1758
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1780
	return err;
1781 1782
}

1783
static int eb_relocate(struct i915_execbuffer *eb)
1784
{
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1804
static void eb_export_fence(struct i915_vma *vma,
1805 1806 1807
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1808
	struct reservation_object *resv = vma->resv;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1828

1829
	for (i = 0; i < count; i++) {
1830
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1831
		struct i915_vma *vma = exec_to_vma(entry);
1832
		struct drm_i915_gem_object *obj = vma->obj;
1833

1834
		if (entry->flags & EXEC_OBJECT_CAPTURE) {
1835 1836 1837 1838 1839 1840
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1841
			capture->next = eb->request->capture_list;
1842
			capture->vma = vma;
1843
			eb->request->capture_list = capture;
1844 1845
		}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1859 1860 1861 1862
			if (i915_gem_clflush_object(obj, 0))
				entry->flags &= ~EXEC_OBJECT_ASYNC;
		}

1863 1864
		if (entry->flags & EXEC_OBJECT_ASYNC)
			goto skip_flushes;
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		err = i915_gem_request_await_object
			(eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
		if (err)
			return err;

skip_flushes:
		i915_vma_move_to_active(vma, eb->request, entry->flags);
		__eb_unreserve_vma(vma, entry);
		vma->exec_entry = NULL;
	}

	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);

1881
		eb_export_fence(vma, eb->request, entry->flags);
1882 1883
		if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
			i915_vma_put(vma);
1884
	}
1885
	eb->exec = NULL;
1886

1887
	/* Unconditionally flush any chipset caches (for streaming writes). */
1888
	i915_gem_chipset_flush(eb->i915);
1889

1890
	/* Unconditionally invalidate GPU caches and TLBs. */
1891
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1892 1893
}

1894
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1895
{
1896
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1897 1898
		return false;

C
Chris Wilson 已提交
1899
	/* Kernel clipping was a DRI1 misfeature */
1900 1901 1902 1903
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1916 1917
}

1918 1919 1920 1921 1922 1923 1924
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1925
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1926 1927
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1928 1929
	/*
	 * Add a reference if we're newly entering the active list.
1930 1931 1932 1933 1934 1935
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1936 1937 1938 1939 1940
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1941

1942
	obj->base.write_domain = 0;
1943
	if (flags & EXEC_OBJECT_WRITE) {
1944 1945
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1946 1947
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1948

1949
		obj->base.read_domains = 0;
1950
	}
1951
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1952

1953 1954
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1955 1956
}

1957
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1958
{
1959 1960
	u32 *cs;
	int i;
1961

1962
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1963 1964 1965
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1966

1967
	cs = intel_ring_begin(req, 4 * 2 + 2);
1968 1969
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1970

1971
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1972
	for (i = 0; i < 4; i++) {
1973 1974
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1975
	}
1976
	*cs++ = MI_NOOP;
1977
	intel_ring_advance(req, cs);
1978 1979 1980 1981

	return 0;
}

1982
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1983 1984
{
	struct drm_i915_gem_object *shadow_batch_obj;
1985
	struct i915_vma *vma;
1986
	int err;
1987

1988 1989
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1990
	if (IS_ERR(shadow_batch_obj))
1991
		return ERR_CAST(shadow_batch_obj);
1992

1993
	err = intel_engine_cmd_parser(eb->engine,
1994
				      eb->batch->obj,
1995
				      shadow_batch_obj,
1996 1997
				      eb->batch_start_offset,
				      eb->batch_len,
1998
				      is_master);
1999 2000
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
2001 2002
			vma = NULL;
		else
2003
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
2004 2005
		goto out;
	}
2006

C
Chris Wilson 已提交
2007 2008 2009
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
2010

2011
	vma->exec_entry =
2012 2013
		memset(&eb->exec[eb->buffer_count++],
		       0, sizeof(*vma->exec_entry));
2014
	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2015
	__exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
2016

C
Chris Wilson 已提交
2017
out:
C
Chris Wilson 已提交
2018
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2019
	return vma;
2020
}
2021

2022
static void
2023
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
2024 2025 2026 2027 2028
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

2029
static int eb_submit(struct i915_execbuffer *eb)
2030
{
2031
	int err;
2032

2033 2034 2035
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2036

2037 2038 2039
	err = i915_switch_context(eb->request);
	if (err)
		return err;
2040

2041
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2042 2043 2044
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2045 2046
	}

2047
	err = eb->engine->emit_bb_start(eb->request,
2048 2049 2050
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2051 2052 2053
					eb->batch_flags);
	if (err)
		return err;
2054

C
Chris Wilson 已提交
2055
	return 0;
2056 2057
}

2058 2059
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
2060
 * The engine index is returned.
2061
 */
2062
static unsigned int
2063 2064
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2065 2066 2067
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2068
	/* Check whether the file_priv has already selected one ring. */
2069 2070 2071
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2072

2073
	return file_priv->bsd_engine;
2074 2075
}

2076 2077
#define I915_USER_RINGS (4)

2078
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2079 2080 2081 2082 2083 2084 2085
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2086 2087 2088 2089
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2090 2091
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2092
	struct intel_engine_cs *engine;
2093 2094 2095

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2096
		return NULL;
2097 2098 2099 2100 2101 2102
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2103
		return NULL;
2104 2105 2106 2107 2108 2109
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2110
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2111 2112
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2113
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2114 2115 2116 2117
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2118
			return NULL;
2119 2120
		}

2121
		engine = dev_priv->engine[_VCS(bsd_idx)];
2122
	} else {
2123
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2124 2125
	}

2126
	if (!engine) {
2127
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2128
		return NULL;
2129 2130
	}

2131
	return engine;
2132 2133
}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
	const unsigned int nfences = args->num_cliprects;
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
	unsigned int n;
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

	if (nfences > SIZE_MAX / sizeof(*fences))
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
		return ERR_PTR(-EFAULT);

	fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
				__GFP_NOWARN | GFP_TEMPORARY);
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

		rcu_read_lock();
		fence = dma_fence_get_rcu_safe(&syncobj->fence);
		rcu_read_unlock();
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2253
static int
2254
i915_gem_do_execbuffer(struct drm_device *dev,
2255 2256
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2257 2258
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2259
{
2260
	struct i915_execbuffer eb;
2261 2262 2263
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2264
	int err;
2265

2266 2267
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2268

2269 2270 2271
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2272
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2273
		args->flags |= __EXEC_HAS_RELOC;
2274
	eb.exec = exec;
2275 2276 2277
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2278 2279
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2280
	eb.buffer_count = args->buffer_count;
2281 2282 2283
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2284
	eb.batch_flags = 0;
2285
	if (args->flags & I915_EXEC_SECURE) {
2286
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2287 2288
		    return -EPERM;

2289
		eb.batch_flags |= I915_DISPATCH_SECURE;
2290
	}
2291
	if (args->flags & I915_EXEC_IS_PINNED)
2292
		eb.batch_flags |= I915_DISPATCH_PINNED;
2293

2294 2295
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2296 2297
		return -EINVAL;

2298
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2299
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2300 2301 2302
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2303
		if (eb.engine->id != RCS) {
2304
			DRM_DEBUG("RS is not available on %s\n",
2305
				 eb.engine->name);
2306 2307 2308
			return -EINVAL;
		}

2309
		eb.batch_flags |= I915_DISPATCH_RS;
2310 2311
	}

2312 2313
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2314 2315
		if (!in_fence)
			return -EINVAL;
2316 2317 2318 2319 2320
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2321
			err = out_fence_fd;
2322
			goto err_in_fence;
2323 2324 2325
		}
	}

2326 2327 2328 2329 2330
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2331

2332 2333 2334 2335
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2336 2337
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2338 2339 2340 2341 2342
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2343
	intel_runtime_pm_get(eb.i915);
2344

2345 2346 2347
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2348

2349
	err = eb_relocate(&eb);
2350
	if (err) {
2351 2352 2353 2354 2355 2356 2357 2358 2359
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2360
	}
2361

2362
	if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
2363
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2364 2365
		err = -EINVAL;
		goto err_vma;
2366
	}
2367 2368
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2369
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2370 2371
		err = -EINVAL;
		goto err_vma;
2372
	}
2373

2374
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2375 2376
		struct i915_vma *vma;

2377
		vma = eb_parse(&eb, drm_is_current_master(file));
2378
		if (IS_ERR(vma)) {
2379 2380
			err = PTR_ERR(vma);
			goto err_vma;
2381
		}
2382

2383
		if (vma) {
2384 2385 2386 2387 2388 2389 2390 2391 2392
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2393
			eb.batch_flags |= I915_DISPATCH_SECURE;
2394 2395
			eb.batch_start_offset = 0;
			eb.batch = vma;
2396
		}
2397 2398
	}

2399 2400
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2401

2402 2403
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2404
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2405
	 * hsw should have this fixed, but bdw mucks it up again. */
2406
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2407
		struct i915_vma *vma;
2408

2409 2410 2411 2412 2413 2414
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2415
		 *   so we don't really have issues with multiple objects not
2416 2417 2418
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2419
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2420
		if (IS_ERR(vma)) {
2421 2422
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2423
		}
2424

2425
		eb.batch = vma;
2426
	}
2427

2428 2429 2430
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2431
	/* Allocate a request for this batch buffer nice and early. */
2432 2433
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2434
		err = PTR_ERR(eb.request);
2435
		goto err_batch_unpin;
2436
	}
2437

2438
	if (in_fence) {
2439 2440
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2441 2442 2443
			goto err_request;
	}

2444 2445 2446 2447 2448 2449
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2450
	if (out_fence_fd != -1) {
2451
		out_fence = sync_file_create(&eb.request->fence);
2452
		if (!out_fence) {
2453
			err = -ENOMEM;
2454 2455 2456 2457
			goto err_request;
		}
	}

2458 2459
	/*
	 * Whilst this request exists, batch_obj will be on the
2460 2461 2462 2463 2464
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2465
	eb.request->batch = eb.batch;
2466

2467 2468
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2469
err_request:
2470
	__i915_add_request(eb.request, err == 0);
2471
	add_to_client(eb.request, file);
2472

2473 2474 2475
	if (fences)
		signal_fence_array(&eb, fences);

2476
	if (out_fence) {
2477
		if (err == 0) {
2478 2479 2480 2481 2482 2483 2484 2485
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2486

2487
err_batch_unpin:
2488
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2489
		i915_vma_unpin(eb.batch);
2490 2491 2492
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2493
	mutex_unlock(&dev->struct_mutex);
2494
err_rpm:
2495
	intel_runtime_pm_put(eb.i915);
2496 2497
	i915_gem_context_put(eb.ctx);
err_destroy:
2498
	eb_destroy(&eb);
2499
err_out_fence:
2500 2501
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2502
err_in_fence:
2503
	dma_fence_put(in_fence);
2504
	return err;
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2515
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2516 2517 2518 2519
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2520 2521
	unsigned int i;
	int err;
2522

2523 2524
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2525 2526 2527
		return -EINVAL;
	}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2542
	/* Copy in the exec list from userland */
2543 2544 2545 2546
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2547
	if (exec_list == NULL || exec2_list == NULL) {
2548
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2549
			  args->buffer_count);
M
Michal Hocko 已提交
2550 2551
		kvfree(exec_list);
		kvfree(exec2_list);
2552 2553
		return -ENOMEM;
	}
2554
	err = copy_from_user(exec_list,
2555
			     u64_to_user_ptr(args->buffers_ptr),
2556
			     sizeof(*exec_list) * args->buffer_count);
2557
	if (err) {
2558
		DRM_DEBUG("copy %d exec entries failed %d\n",
2559
			  args->buffer_count, err);
M
Michal Hocko 已提交
2560 2561
		kvfree(exec_list);
		kvfree(exec2_list);
2562 2563 2564 2565 2566 2567 2568 2569 2570
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2571
		if (INTEL_GEN(to_i915(dev)) < 4)
2572 2573 2574 2575 2576
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2577
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2578
	if (exec2.flags & __EXEC_HAS_RELOC) {
2579
		struct drm_i915_gem_exec_object __user *user_exec_list =
2580
			u64_to_user_ptr(args->buffers_ptr);
2581

2582
		/* Copy the new buffer offsets back to the user's exec list. */
2583
		for (i = 0; i < args->buffer_count; i++) {
2584 2585 2586
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2587
			exec2_list[i].offset =
2588 2589 2590 2591 2592
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2593
				break;
2594 2595 2596
		}
	}

M
Michal Hocko 已提交
2597 2598
	kvfree(exec_list);
	kvfree(exec2_list);
2599
	return err;
2600 2601 2602 2603 2604 2605
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2606
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2607
	struct drm_i915_gem_execbuffer2 *args = data;
2608
	struct drm_i915_gem_exec_object2 *exec2_list;
2609
	struct drm_syncobj **fences = NULL;
2610
	int err;
2611

2612
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2613
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2614 2615 2616
		return -EINVAL;
	}

2617 2618 2619 2620 2621 2622
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2623
	if (exec2_list == NULL) {
2624
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2625 2626 2627
			  args->buffer_count);
		return -ENOMEM;
	}
2628 2629 2630 2631
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2632
		kvfree(exec2_list);
2633 2634 2635
		return -EFAULT;
	}

2636 2637 2638 2639 2640 2641 2642 2643 2644
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2645 2646 2647 2648 2649 2650 2651 2652

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2653
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2654 2655
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2656

2657 2658
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2659
		for (i = 0; i < args->buffer_count; i++) {
2660 2661 2662
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2663
			exec2_list[i].offset =
2664 2665 2666 2667
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2668
		}
2669 2670
end_user:
		user_access_end();
2671 2672
	}

2673
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2674
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2675
	kvfree(exec2_list);
2676
	return err;
2677
}