i915_gem_execbuffer.c 70.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

191
struct i915_execbuffer {
192 193 194 195
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
196 197
	struct i915_vma **vma;
	unsigned int *flags;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
220
	struct reloc_cache {
221 222 223
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
224
		unsigned int gen; /** Cached value of INTEL_GEN */
225
		bool use_64bit_reloc : 1;
226 227 228
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
229 230 231 232

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
233
	} reloc_cache;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
249 250
};

251
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

272 273 274 275 276
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
	return eb->engine->needs_cmd_parser && eb->batch_len;
}

277
static int eb_create(struct i915_execbuffer *eb)
278
{
279 280
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
281

282 283 284 285 286 287 288 289 290 291 292
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
293
		do {
294
			gfp_t flags;
295 296 297 298 299 300 301

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
302
			flags = GFP_KERNEL;
303 304 305
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

306
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
307
					      flags);
308 309 310 311
			if (eb->buckets)
				break;
		} while (--size);

312 313
		if (unlikely(!size))
			return -ENOMEM;
314

315
		eb->lut_size = size;
316
	} else {
317
		eb->lut_size = -eb->buffer_count;
318
	}
319

320
	return 0;
321 322
}

323 324
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
325 326
		 const struct i915_vma *vma,
		 unsigned int flags)
327 328 329 330 331 332 333
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

334
	if (flags & EXEC_OBJECT_PINNED &&
335 336 337
	    vma->node.start != entry->offset)
		return true;

338
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
339 340 341
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

342
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
343 344 345 346 347 348
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

349
static inline bool
350
eb_pin_vma(struct i915_execbuffer *eb,
351
	   const struct drm_i915_gem_exec_object2 *entry,
352 353
	   struct i915_vma *vma)
{
354 355
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
356

357
	if (vma->node.size)
358
		pin_flags = vma->node.start;
359
	else
360
		pin_flags = entry->offset & PIN_OFFSET_MASK;
361

362 363 364
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
365

366 367
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
368

369
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
370
		if (unlikely(i915_vma_pin_fence(vma))) {
371
			i915_vma_unpin(vma);
372
			return false;
373 374
		}

375
		if (vma->fence)
376
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
377 378
	}

379 380
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
381 382
}

383
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
384
{
385
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
386

387
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
388
		__i915_vma_unpin_fence(vma);
389

390
	__i915_vma_unpin(vma);
391 392
}

393
static inline void
394
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
395
{
396
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
397
		return;
398

399 400
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
401 402
}

403 404 405 406
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
407
{
408 409
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
428 429
	}

430
	if (unlikely(vma->exec_flags)) {
431 432 433 434 435 436 437 438 439 440 441 442
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

443 444 445 446 447 448 449 450 451 452 453 454
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

455
	return 0;
456 457
}

458
static int
459
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
460
{
461
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
462 463 464 465 466 467 468 469
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
470 471
	}

472
	if (eb->lut_size > 0) {
473
		vma->exec_handle = entry->handle;
474
		hlist_add_head(&vma->exec_node,
475 476
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
477
	}
478

479 480 481 482 483 484 485 486 487
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
488
	eb->vma[i] = vma;
489
	eb->flags[i] = entry->flags;
490
	vma->exec_flags = &eb->flags[i];
491 492

	err = 0;
493
	if (eb_pin_vma(eb, entry, vma)) {
494 495 496 497
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
498 499 500 501 502 503
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
504 505 506 507 508 509 510 511 512 513
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

514 515 516 517 518
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
519 520 521 522 523 524 525 526 527

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
528 529 530
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
531 532
	int err;

533 534 535
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
536 537 538 539 540

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
541 542
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
543

544 545
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
546

547 548 549 550 551
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
552 553
	}

554 555 556
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
557 558 559 560 561 562 563 564
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

565
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
566
		err = i915_vma_pin_fence(vma);
567 568 569 570 571
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

572
		if (vma->fence)
573
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
574 575
	}

576 577
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
619 620
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
621

622 623
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
624 625
				continue;

626
			eb_unreserve_vma(vma, &eb->flags[i]);
627

628
			if (flags & EXEC_OBJECT_PINNED)
629
				list_add(&vma->exec_link, &eb->unbound);
630
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
652
}
653

654 655
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
656 657 658 659
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
660 661 662 663 664 665 666
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
667 668
	if (unlikely(!ctx))
		return -ENOENT;
669

670
	eb->ctx = ctx;
671 672 673 674 675 676 677 678 679 680
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
681
{
682
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
683
	struct drm_i915_gem_object *obj;
684 685
	unsigned int i;
	int err;
686

687 688 689 690 691 692
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

693 694
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
695

696 697
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
698
		struct i915_lut_handle *lut;
699
		struct i915_vma *vma;
700

701 702
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
703
			goto add_vma;
704

705
		obj = i915_gem_object_lookup(eb->file, handle);
706
		if (unlikely(!obj)) {
707
			err = -ENOENT;
708
			goto err_vma;
709 710
		}

711
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
712
		if (unlikely(IS_ERR(vma))) {
713
			err = PTR_ERR(vma);
714
			goto err_obj;
715 716
		}

717 718 719 720 721 722 723 724 725 726
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
			kfree(lut);
			goto err_obj;
727
		}
728

729
		/* transfer ref to ctx */
730
		vma->open_count++;
731 732 733 734 735
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

736
add_vma:
737
		err = eb_add_vma(eb, i, vma);
738
		if (unlikely(err))
739
			goto err_vma;
740

741 742
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
743 744
	}

745 746
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
747 748
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
749

750
	/*
751 752 753 754 755 756 757
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
758
	 */
759 760
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
761
	if (eb->reloc_cache.has_fence)
762
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
763

764 765 766
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

767
err_obj:
768
	i915_gem_object_put(obj);
769 770
err_vma:
	eb->vma[i] = NULL;
771
	return err;
772 773
}

774
static struct i915_vma *
775
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
776
{
777 778
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
779
			return NULL;
780
		return eb->vma[handle];
781 782
	} else {
		struct hlist_head *head;
783
		struct i915_vma *vma;
784

785
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
786
		hlist_for_each_entry(vma, head, exec_node) {
787 788
			if (vma->exec_handle == handle)
				return vma;
789 790 791
		}
		return NULL;
	}
792 793
}

794
static void eb_release_vmas(const struct i915_execbuffer *eb)
795
{
796 797 798 799
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
800 801
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
802

803
		if (!vma)
804
			break;
805

806 807 808
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
809

810 811
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
812

813
		if (flags & __EXEC_OBJECT_HAS_REF)
814
			i915_vma_put(vma);
815
	}
816 817
}

818
static void eb_reset_vmas(const struct i915_execbuffer *eb)
819
{
820
	eb_release_vmas(eb);
821
	if (eb->lut_size > 0)
822 823
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
824 825
}

826
static void eb_destroy(const struct i915_execbuffer *eb)
827
{
828 829
	GEM_BUG_ON(eb->reloc_cache.rq);

830
	if (eb->lut_size > 0)
831
		kfree(eb->buckets);
832 833
}

834
static inline u64
835
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
836
		  const struct i915_vma *target)
837
{
838
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
839 840
}

841 842
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
843
{
844
	cache->page = -1;
845
	cache->vaddr = 0;
846
	/* Must be a variable in the struct to allow GCC to unroll. */
847
	cache->gen = INTEL_GEN(i915);
848
	cache->has_llc = HAS_LLC(i915);
849
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
850 851
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
852
	cache->node.allocated = false;
853 854
	cache->rq = NULL;
	cache->rq_size = 0;
855
}
856

857 858 859 860 861 862 863 864
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
865 866
}

867 868
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

869 870 871 872 873 874 875
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

876 877 878 879 880 881 882 883 884 885 886
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

887
static void reloc_cache_reset(struct reloc_cache *cache)
888
{
889
	void *vaddr;
890

891 892 893
	if (cache->rq)
		reloc_gpu_flush(cache);

894 895
	if (!cache->vaddr)
		return;
896

897 898 899 900
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
901

902 903 904
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
905
		wmb();
906
		io_mapping_unmap_atomic((void __iomem *)vaddr);
907
		if (cache->node.allocated) {
908
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
909 910 911

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
912
					       cache->node.size);
913 914 915
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
916
		}
917
	}
918 919 920

	cache->vaddr = 0;
	cache->page = -1;
921 922 923 924
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
925
			unsigned long page)
926
{
927 928 929 930 931 932
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
933
		int err;
934

935 936 937
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
938 939 940

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
941

942 943 944 945
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
946 947
	}

948 949
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
950
	cache->page = page;
951

952
	return vaddr;
953 954
}

955 956
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
957
			 unsigned long page)
958
{
959
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
960
	unsigned long offset;
961
	void *vaddr;
962

963
	if (cache->vaddr) {
964
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
965 966
	} else {
		struct i915_vma *vma;
967
		int err;
968

969
		if (use_cpu_reloc(cache, obj))
970
			return NULL;
971

972 973 974
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
975

976 977
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
978 979
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
980
			err = drm_mm_insert_node_in_range
981
				(&ggtt->base.mm, &cache->node,
982
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
983
				 0, ggtt->mappable_end,
984
				 DRM_MM_INSERT_LOW);
985
			if (err) /* no inactive aperture space, use cpu reloc */
986
				return NULL;
987
		} else {
988 989
			err = i915_vma_put_fence(vma);
			if (err) {
990
				i915_vma_unpin(vma);
991
				return ERR_PTR(err);
992
			}
993

994 995
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
996
		}
997
	}
998

999 1000
	offset = cache->node.start;
	if (cache->node.allocated) {
1001
		wmb();
1002 1003 1004 1005 1006
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1007 1008
	}

1009 1010
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1011 1012
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1013

1014
	return vaddr;
1015 1016
}

1017 1018
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1019
			 unsigned long page)
1020
{
1021
	void *vaddr;
1022

1023 1024 1025 1026 1027 1028 1029 1030
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1031 1032
	}

1033
	return vaddr;
1034 1035
}

1036
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1037
{
1038 1039 1040 1041 1042
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1043

1044
		*addr = value;
1045

1046 1047
		/*
		 * Writes to the same cacheline are serialised by the CPU
1048 1049 1050 1051 1052 1053 1054 1055 1056
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1077 1078 1079
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1122
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1123
	i915_vma_move_to_active(batch, rq, 0);
1124 1125 1126
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1127 1128
	i915_vma_unpin(batch);

1129
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1130 1131 1132
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1165 1166 1167 1168
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1169 1170 1171
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1183 1184
static u64
relocate_entry(struct i915_vma *vma,
1185
	       const struct drm_i915_gem_relocation_entry *reloc,
1186 1187
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1188
{
1189
	u64 offset = reloc->offset;
1190 1191
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1192
	void *vaddr;
1193

1194 1195
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1196
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1197 1198 1199 1200 1201 1202 1203 1204 1205
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1206
		else
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1253
repeat:
1254
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1255 1256 1257 1258 1259
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1260
			eb->reloc_cache.vaddr);
1261 1262 1263 1264 1265 1266

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1267 1268
	}

1269
out:
1270
	return target->node.start | UPDATE;
1271 1272
}

1273 1274 1275 1276
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1277
{
1278
	struct i915_vma *target;
1279
	int err;
1280

1281
	/* we've already hold a reference to all valid objects */
1282 1283
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1284
		return -ENOENT;
1285

1286
	/* Validate that the target is in a valid r/w GPU domain */
1287
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1288
		DRM_DEBUG("reloc with multiple write domains: "
1289
			  "target %d offset %d "
1290
			  "read %08x write %08x",
1291
			  reloc->target_handle,
1292 1293 1294
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1295
		return -EINVAL;
1296
	}
1297 1298
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1299
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1300
			  "target %d offset %d "
1301
			  "read %08x write %08x",
1302
			  reloc->target_handle,
1303 1304 1305
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1306
		return -EINVAL;
1307 1308
	}

1309
	if (reloc->write_domain) {
1310
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1326
	}
1327

1328 1329
	/*
	 * If the relocation already has the right value in it, no
1330 1331
	 * more work needs to be done.
	 */
1332 1333
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1334
		return 0;
1335 1336

	/* Check that the relocation address is valid... */
1337
	if (unlikely(reloc->offset >
1338
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1339
		DRM_DEBUG("Relocation beyond object bounds: "
1340 1341 1342 1343
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1344
		return -EINVAL;
1345
	}
1346
	if (unlikely(reloc->offset & 3)) {
1347
		DRM_DEBUG("Relocation not 4-byte aligned: "
1348 1349 1350
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1351
		return -EINVAL;
1352 1353
	}

1354 1355 1356 1357 1358 1359
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1360
	 * out of our synchronisation.
1361
	 */
1362
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1363

1364
	/* and update the user's relocation entry */
1365
	return relocate_entry(vma, reloc, eb, target);
1366 1367
}

1368
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1369
{
1370
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1371 1372
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1373
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1374
	unsigned int remain;
1375

1376
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1377
	remain = entry->relocation_count;
1378 1379
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1380

1381 1382 1383 1384 1385
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1386
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1387 1388 1389 1390 1391 1392 1393
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1394

1395 1396
		/*
		 * This is the fast path and we cannot handle a pagefault
1397 1398 1399 1400 1401 1402 1403
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1404
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1405
		pagefault_enable();
1406 1407
		if (unlikely(copied)) {
			remain = -EFAULT;
1408 1409
			goto out;
		}
1410

1411
		remain -= count;
1412
		do {
1413
			u64 offset = eb_relocate_entry(eb, vma, r);
1414

1415 1416 1417
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1418
				goto out;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1444
			}
1445 1446 1447
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1448
out:
1449
	reloc_cache_reset(&eb->reloc_cache);
1450
	return remain;
1451 1452 1453
}

static int
1454
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1455
{
1456
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1457 1458 1459 1460
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1461 1462

	for (i = 0; i < entry->relocation_count; i++) {
1463
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1464

1465 1466 1467 1468
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1469
	}
1470 1471 1472 1473
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1474 1475
}

1476
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1477
{
1478 1479 1480
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1481

1482 1483 1484
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1485

1486 1487
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1488

1489 1490 1491 1492
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1493

1494 1495 1496 1497 1498
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1499
	}
1500
	return __get_user(c, end - 1);
1501
}
1502

1503
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1504
{
1505 1506 1507
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1508

1509 1510 1511 1512 1513 1514
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1515

1516 1517
		if (nreloc == 0)
			continue;
1518

1519 1520 1521
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1522

1523 1524
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1525

1526
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1527 1528 1529 1530 1531
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1532

1533 1534 1535 1536 1537 1538 1539
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1540
					     (char __user *)urelocs + copied,
1541 1542 1543 1544 1545
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1546

1547 1548
			copied += len;
		} while (copied < size);
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1567

1568 1569
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1570

1571
	return 0;
1572

1573 1574 1575 1576 1577 1578 1579 1580
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1581 1582
}

1583
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1584
{
1585 1586
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1587

1588
	if (unlikely(i915_modparams.prefault_disable))
1589
		return 0;
1590

1591 1592
	for (i = 0; i < count; i++) {
		int err;
1593

1594 1595 1596 1597
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1598

1599
	return 0;
1600 1601
}

1602
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1603
{
1604
	struct drm_device *dev = &eb->i915->drm;
1605
	bool have_copy = false;
1606
	struct i915_vma *vma;
1607 1608 1609 1610 1611 1612 1613
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1614

1615
	/* We may process another execbuffer during the unlock... */
1616
	eb_reset_vmas(eb);
1617 1618
	mutex_unlock(&dev->struct_mutex);

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1640
	}
1641 1642 1643
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1644 1645
	}

1646 1647 1648
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1649 1650
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1651
		mutex_lock(&dev->struct_mutex);
1652
		goto out;
1653 1654
	}

1655
	/* reacquire the objects */
1656 1657
	err = eb_lookup_vmas(eb);
	if (err)
1658
		goto err;
1659

1660 1661
	GEM_BUG_ON(!eb->batch);

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1674 1675
	}

1676 1677
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1678 1679 1680 1681 1682 1683
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1705
	return err;
1706 1707
}

1708
static int eb_relocate(struct i915_execbuffer *eb)
1709
{
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1729
static void eb_export_fence(struct i915_vma *vma,
1730 1731 1732
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1733
	struct reservation_object *resv = vma->resv;
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1753

1754
	for (i = 0; i < count; i++) {
1755 1756
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1757
		struct drm_i915_gem_object *obj = vma->obj;
1758

1759
		if (flags & EXEC_OBJECT_CAPTURE) {
1760 1761 1762 1763 1764 1765
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1766
			capture->next = eb->request->capture_list;
1767
			capture->vma = eb->vma[i];
1768
			eb->request->capture_list = capture;
1769 1770
		}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1784
			if (i915_gem_clflush_object(obj, 0))
1785
				flags &= ~EXEC_OBJECT_ASYNC;
1786 1787
		}

1788 1789
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1790

1791
		err = i915_gem_request_await_object
1792
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1793 1794 1795 1796 1797
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1798 1799 1800 1801 1802
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1803

1804 1805 1806 1807
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1808
			i915_vma_put(vma);
1809
	}
1810
	eb->exec = NULL;
1811

1812
	/* Unconditionally flush any chipset caches (for streaming writes). */
1813
	i915_gem_chipset_flush(eb->i915);
1814

1815
	/* Unconditionally invalidate GPU caches and TLBs. */
1816
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1817 1818
}

1819
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1820
{
1821
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1822 1823
		return false;

C
Chris Wilson 已提交
1824
	/* Kernel clipping was a DRI1 misfeature */
1825 1826 1827 1828
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1841 1842
}

1843 1844 1845 1846 1847 1848 1849
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1850
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1851 1852
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1853 1854
	/*
	 * Add a reference if we're newly entering the active list.
1855 1856 1857 1858 1859 1860
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1861 1862 1863 1864 1865
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1866

1867
	obj->base.write_domain = 0;
1868
	if (flags & EXEC_OBJECT_WRITE) {
1869 1870
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1871 1872
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1873

1874
		obj->base.read_domains = 0;
1875
	}
1876
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1877

1878 1879
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1880 1881
}

1882
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1883
{
1884 1885
	u32 *cs;
	int i;
1886

1887
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1888 1889 1890
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1891

1892
	cs = intel_ring_begin(req, 4 * 2 + 2);
1893 1894
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1895

1896
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1897
	for (i = 0; i < 4; i++) {
1898 1899
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1900
	}
1901
	*cs++ = MI_NOOP;
1902
	intel_ring_advance(req, cs);
1903 1904 1905 1906

	return 0;
}

1907
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1908 1909
{
	struct drm_i915_gem_object *shadow_batch_obj;
1910
	struct i915_vma *vma;
1911
	int err;
1912

1913 1914
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1915
	if (IS_ERR(shadow_batch_obj))
1916
		return ERR_CAST(shadow_batch_obj);
1917

1918
	err = intel_engine_cmd_parser(eb->engine,
1919
				      eb->batch->obj,
1920
				      shadow_batch_obj,
1921 1922
				      eb->batch_start_offset,
				      eb->batch_len,
1923
				      is_master);
1924 1925
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1926 1927
			vma = NULL;
		else
1928
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1929 1930
		goto out;
	}
1931

C
Chris Wilson 已提交
1932 1933 1934
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1935

1936 1937 1938 1939 1940
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1941

C
Chris Wilson 已提交
1942
out:
C
Chris Wilson 已提交
1943
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1944
	return vma;
1945
}
1946

1947
static void
1948
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1949 1950 1951 1952 1953
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1954
static int eb_submit(struct i915_execbuffer *eb)
1955
{
1956
	int err;
1957

1958 1959 1960
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1961

1962 1963 1964
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1965

1966
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1967 1968 1969
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1970 1971
	}

1972
	err = eb->engine->emit_bb_start(eb->request,
1973 1974 1975
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1976 1977 1978
					eb->batch_flags);
	if (err)
		return err;
1979

C
Chris Wilson 已提交
1980
	return 0;
1981 1982
}

1983 1984
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
1985
 * The engine index is returned.
1986
 */
1987
static unsigned int
1988 1989
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1990 1991 1992
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1993
	/* Check whether the file_priv has already selected one ring. */
1994 1995 1996
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1997

1998
	return file_priv->bsd_engine;
1999 2000
}

2001 2002
#define I915_USER_RINGS (4)

2003
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2004 2005 2006 2007 2008 2009 2010
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2011 2012 2013 2014
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2015 2016
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2017
	struct intel_engine_cs *engine;
2018 2019 2020

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2021
		return NULL;
2022 2023 2024 2025 2026 2027
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2028
		return NULL;
2029 2030 2031 2032 2033 2034
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2035
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2036 2037
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2038
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2039 2040 2041 2042
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2043
			return NULL;
2044 2045
		}

2046
		engine = dev_priv->engine[_VCS(bsd_idx)];
2047
	} else {
2048
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2049 2050
	}

2051
	if (!engine) {
2052
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2053
		return NULL;
2054 2055
	}

2056
	return engine;
2057 2058
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
	const unsigned int nfences = args->num_cliprects;
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
	unsigned int n;
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

	if (nfences > SIZE_MAX / sizeof(*fences))
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
		return ERR_PTR(-EFAULT);

	fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
2088
				__GFP_NOWARN | GFP_KERNEL);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2143
		fence = drm_syncobj_fence_get(syncobj);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2176
static int
2177
i915_gem_do_execbuffer(struct drm_device *dev,
2178 2179
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2180 2181
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2182
{
2183
	struct i915_execbuffer eb;
2184 2185 2186
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2187
	int err;
2188

2189
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2190 2191
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2192

2193 2194 2195
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2196
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2197
		args->flags |= __EXEC_HAS_RELOC;
2198

2199
	eb.exec = exec;
2200 2201
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2202 2203
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2204 2205 2206
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2207 2208
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2209
	eb.buffer_count = args->buffer_count;
2210 2211 2212
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2213
	eb.batch_flags = 0;
2214
	if (args->flags & I915_EXEC_SECURE) {
2215
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2216 2217
		    return -EPERM;

2218
		eb.batch_flags |= I915_DISPATCH_SECURE;
2219
	}
2220
	if (args->flags & I915_EXEC_IS_PINNED)
2221
		eb.batch_flags |= I915_DISPATCH_PINNED;
2222

2223 2224
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2225 2226
		return -EINVAL;

2227
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2228
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2229 2230 2231
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2232
		if (eb.engine->id != RCS) {
2233
			DRM_DEBUG("RS is not available on %s\n",
2234
				 eb.engine->name);
2235 2236 2237
			return -EINVAL;
		}

2238
		eb.batch_flags |= I915_DISPATCH_RS;
2239 2240
	}

2241 2242
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2243 2244
		if (!in_fence)
			return -EINVAL;
2245 2246 2247 2248 2249
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2250
			err = out_fence_fd;
2251
			goto err_in_fence;
2252 2253 2254
		}
	}

2255 2256 2257 2258 2259
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2260

2261 2262 2263 2264
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2265 2266
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2267 2268 2269 2270 2271
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2272
	intel_runtime_pm_get(eb.i915);
2273

2274 2275 2276
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2277

2278
	err = eb_relocate(&eb);
2279
	if (err) {
2280 2281 2282 2283 2284 2285 2286 2287 2288
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2289
	}
2290

2291
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2292
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2293 2294
		err = -EINVAL;
		goto err_vma;
2295
	}
2296 2297
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2298
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2299 2300
		err = -EINVAL;
		goto err_vma;
2301
	}
2302

2303
	if (eb_use_cmdparser(&eb)) {
2304 2305
		struct i915_vma *vma;

2306
		vma = eb_parse(&eb, drm_is_current_master(file));
2307
		if (IS_ERR(vma)) {
2308 2309
			err = PTR_ERR(vma);
			goto err_vma;
2310
		}
2311

2312
		if (vma) {
2313 2314 2315 2316 2317 2318 2319 2320 2321
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2322
			eb.batch_flags |= I915_DISPATCH_SECURE;
2323 2324
			eb.batch_start_offset = 0;
			eb.batch = vma;
2325
		}
2326 2327
	}

2328 2329
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2330

2331 2332
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2333
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2334
	 * hsw should have this fixed, but bdw mucks it up again. */
2335
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2336
		struct i915_vma *vma;
2337

2338 2339 2340 2341 2342 2343
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2344
		 *   so we don't really have issues with multiple objects not
2345 2346 2347
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2348
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2349
		if (IS_ERR(vma)) {
2350 2351
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2352
		}
2353

2354
		eb.batch = vma;
2355
	}
2356

2357 2358 2359
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2360
	/* Allocate a request for this batch buffer nice and early. */
2361 2362
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2363
		err = PTR_ERR(eb.request);
2364
		goto err_batch_unpin;
2365
	}
2366

2367
	if (in_fence) {
2368 2369
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2370 2371 2372
			goto err_request;
	}

2373 2374 2375 2376 2377 2378
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2379
	if (out_fence_fd != -1) {
2380
		out_fence = sync_file_create(&eb.request->fence);
2381
		if (!out_fence) {
2382
			err = -ENOMEM;
2383 2384 2385 2386
			goto err_request;
		}
	}

2387 2388
	/*
	 * Whilst this request exists, batch_obj will be on the
2389 2390 2391 2392 2393
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2394
	eb.request->batch = eb.batch;
2395

2396 2397
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2398
err_request:
2399
	__i915_add_request(eb.request, err == 0);
2400
	add_to_client(eb.request, file);
2401

2402 2403 2404
	if (fences)
		signal_fence_array(&eb, fences);

2405
	if (out_fence) {
2406
		if (err == 0) {
2407 2408 2409 2410 2411 2412 2413 2414
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2415

2416
err_batch_unpin:
2417
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2418
		i915_vma_unpin(eb.batch);
2419 2420 2421
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2422
	mutex_unlock(&dev->struct_mutex);
2423
err_rpm:
2424
	intel_runtime_pm_put(eb.i915);
2425 2426
	i915_gem_context_put(eb.ctx);
err_destroy:
2427
	eb_destroy(&eb);
2428
err_out_fence:
2429 2430
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2431
err_in_fence:
2432
	dma_fence_put(in_fence);
2433
	return err;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2444 2445 2446
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2447 2448 2449 2450
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2451 2452
	unsigned int i;
	int err;
2453

2454 2455
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2456 2457 2458
		return -EINVAL;
	}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2473
	/* Copy in the exec list from userland */
2474
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
2475
				   __GFP_NOWARN | GFP_KERNEL);
2476
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2477
				    __GFP_NOWARN | GFP_KERNEL);
2478
	if (exec_list == NULL || exec2_list == NULL) {
2479
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2480
			  args->buffer_count);
M
Michal Hocko 已提交
2481 2482
		kvfree(exec_list);
		kvfree(exec2_list);
2483 2484
		return -ENOMEM;
	}
2485
	err = copy_from_user(exec_list,
2486
			     u64_to_user_ptr(args->buffers_ptr),
2487
			     sizeof(*exec_list) * args->buffer_count);
2488
	if (err) {
2489
		DRM_DEBUG("copy %d exec entries failed %d\n",
2490
			  args->buffer_count, err);
M
Michal Hocko 已提交
2491 2492
		kvfree(exec_list);
		kvfree(exec2_list);
2493 2494 2495 2496 2497 2498 2499 2500 2501
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2502
		if (INTEL_GEN(to_i915(dev)) < 4)
2503 2504 2505 2506 2507
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2508
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2509
	if (exec2.flags & __EXEC_HAS_RELOC) {
2510
		struct drm_i915_gem_exec_object __user *user_exec_list =
2511
			u64_to_user_ptr(args->buffers_ptr);
2512

2513
		/* Copy the new buffer offsets back to the user's exec list. */
2514
		for (i = 0; i < args->buffer_count; i++) {
2515 2516 2517
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2518
			exec2_list[i].offset =
2519 2520 2521 2522 2523
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2524
				break;
2525 2526 2527
		}
	}

M
Michal Hocko 已提交
2528 2529
	kvfree(exec_list);
	kvfree(exec2_list);
2530
	return err;
2531 2532 2533 2534 2535 2536
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2537 2538 2539
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2540
	struct drm_i915_gem_execbuffer2 *args = data;
2541
	struct drm_i915_gem_exec_object2 *exec2_list;
2542
	struct drm_syncobj **fences = NULL;
2543
	int err;
2544

2545
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2546
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2547 2548 2549
		return -EINVAL;
	}

2550 2551 2552 2553 2554
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2555
				    __GFP_NOWARN | GFP_KERNEL);
2556
	if (exec2_list == NULL) {
2557
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2558 2559 2560
			  args->buffer_count);
		return -ENOMEM;
	}
2561 2562 2563 2564
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2565
		kvfree(exec2_list);
2566 2567 2568
		return -EFAULT;
	}

2569 2570 2571 2572 2573 2574 2575 2576 2577
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2578 2579 2580 2581 2582 2583 2584 2585

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2586
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2587 2588
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2589

2590 2591
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2592
		for (i = 0; i < args->buffer_count; i++) {
2593 2594 2595
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2596
			exec2_list[i].offset =
2597 2598 2599 2600
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2601
		}
2602 2603
end_user:
		user_access_end();
2604 2605
	}

2606
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2607
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2608
	kvfree(exec2_list);
2609
	return err;
2610
}