i915_gem_execbuffer.c 63.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34 35
#include <drm/drmP.h>
#include <drm/i915_drm.h>
36

37
#include "i915_drv.h"
38
#include "i915_gem_clflush.h"
39 40
#include "i915_trace.h"
#include "intel_drv.h"
41
#include "intel_frontbuffer.h"
42

43 44
#define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */

45 46 47 48 49 50
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
51 52 53 54 55
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
56 57

#define BATCH_OFFSET_BIAS (256*1024)
58

59 60
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

184
struct i915_execbuffer {
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
211
	struct reloc_cache {
212 213 214
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
215
		bool use_64bit_reloc : 1;
216 217 218
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
219
	} reloc_cache;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
235 236
};

237 238 239 240 241 242 243 244
/*
 * As an alternative to creating a hashtable of handle-to-vma for a batch,
 * we used the last available reserved field in the execobject[] and stash
 * a link from the execobj to its vma.
 */
#define __exec_to_vma(ee) (ee)->rsvd2
#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

264
static int eb_create(struct i915_execbuffer *eb)
265
{
266 267
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
268

269 270 271 272 273 274 275 276 277 278 279
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
		do {
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
					      GFP_TEMPORARY |
					      __GFP_NORETRY |
					      __GFP_NOWARN);
			if (eb->buckets)
				break;
		} while (--size);

		if (unlikely(!eb->buckets)) {
			eb->buckets = kzalloc(sizeof(struct hlist_head),
					      GFP_TEMPORARY);
			if (unlikely(!eb->buckets))
				return -ENOMEM;
		}
295

296
		eb->lut_size = size;
297
	} else {
298
		eb->lut_size = -eb->buffer_count;
299
	}
300

301
	return 0;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
		 const struct i915_vma *vma)
{
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return true;

	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

	if (entry->flags & EXEC_OBJECT_PINNED &&
	    vma->node.start != entry->offset)
		return true;

	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

static inline void
eb_pin_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
{
	u64 flags;

339 340 341 342 343 344
	if (vma->node.size)
		flags = vma->node.start;
	else
		flags = entry->offset & PIN_OFFSET_MASK;

	flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
345 346
	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
		flags |= PIN_GLOBAL;
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
		return;

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
			return;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
}

364 365 366 367
static inline void
__eb_unreserve_vma(struct i915_vma *vma,
		   const struct drm_i915_gem_exec_object2 *entry)
{
368 369
	GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));

370 371 372
	if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
		i915_vma_unpin_fence(vma);

373
	__i915_vma_unpin(vma);
374 375
}

376 377 378
static inline void
eb_unreserve_vma(struct i915_vma *vma,
		 struct drm_i915_gem_exec_object2 *entry)
379
{
380 381
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return;
382 383

	__eb_unreserve_vma(vma, entry);
384
	entry->flags &= ~__EXEC_OBJECT_RESERVED;
385 386
}

387 388 389 390
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
391
{
392 393
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
412 413
	}

414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (unlikely(vma->exec_entry)) {
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

	return 0;
428 429
}

430 431 432 433
static int
eb_add_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
434
{
435 436 437 438 439 440 441 442
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
443 444
	}

445 446
	if (eb->lut_size >= 0) {
		vma->exec_handle = entry->handle;
447
		hlist_add_head(&vma->exec_node,
448 449
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
450
	}
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
	vma->exec_entry = entry;
474
	__exec_to_vma(entry) = (uintptr_t)vma;
475 476

	err = 0;
477
	eb_pin_vma(eb, entry, vma);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	if (eb_vma_misplaced(entry, vma)) {
		eb_unreserve_vma(vma, entry);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
	} else {
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_USE_CPU_RELOC)
		return DBG_USE_CPU_RELOC > 0;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	u64 flags;
	int err;

	flags = PIN_USER | PIN_NONBLOCK;
	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
		flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		flags |= PIN_ZONE_4G;

	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
		flags |= PIN_MAPPABLE;

	if (entry->flags & EXEC_OBJECT_PINNED) {
		flags |= entry->offset | PIN_OFFSET_FIXED;
		flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
	} else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
		flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
	}

	err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma));

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];

			if (entry->flags & EXEC_OBJECT_PINNED &&
			    entry->flags & __EXEC_OBJECT_HAS_PIN)
				continue;

			vma = exec_to_vma(entry);
			eb_unreserve_vma(vma, entry);

			if (entry->flags & EXEC_OBJECT_PINNED)
				list_add(&vma->exec_link, &eb->unbound);
			else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
631
}
632

633
static inline struct hlist_head *
634
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
635
{
636
	return &lut->ht[hash_32(handle, lut->ht_bits)];
637 638 639
}

static inline bool
640
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
641
{
642 643
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
644 645
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
	return eb->buffer_count - 1;
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
	if (unlikely(IS_ERR(ctx)))
		return PTR_ERR(ctx);

	if (unlikely(i915_gem_context_is_banned(ctx))) {
		DRM_DEBUG("Context %u tried to submit while banned\n",
			  ctx->user_handle);
		return -EIO;
	}

	eb->ctx = i915_gem_context_get(ctx);
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
676
{
677
#define INTERMEDIATE BIT(0)
678 679
	const unsigned int count = eb->buffer_count;
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
680
	struct i915_vma *vma;
681 682
	struct idr *idr;
	unsigned int i;
683
	int slow_pass = -1;
684
	int err;
685

686 687
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
688

689 690 691
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
692 693 694 695 696

	for (i = 0; i < count; i++) {
		__exec_to_vma(&eb->exec[i]) = 0;

		hlist_for_each_entry(vma,
697
				     ht_head(lut, eb->exec[i].handle),
698 699 700 701
				     ctx_node) {
			if (vma->ctx_handle != eb->exec[i].handle)
				continue;

702 703 704
			err = eb_add_vma(eb, &eb->exec[i], vma);
			if (unlikely(err))
				return err;
705 706 707 708 709 710 711 712 713 714

			goto next_vma;
		}

		if (slow_pass < 0)
			slow_pass = i;
next_vma: ;
	}

	if (slow_pass < 0)
715
		goto out;
716

717
	spin_lock(&eb->file->table_lock);
718 719 720 721 722
	/*
	 * Grab a reference to the object and release the lock so we can lookup
	 * or create the VMA without using GFP_ATOMIC
	 */
	idr = &eb->file->object_idr;
723 724
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
725

726 727 728
		if (__exec_to_vma(&eb->exec[i]))
			continue;

729
		obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
730
		if (unlikely(!obj)) {
731
			spin_unlock(&eb->file->table_lock);
732 733
			DRM_DEBUG("Invalid object handle %d at index %d\n",
				  eb->exec[i].handle, i);
734 735
			err = -ENOENT;
			goto err;
736 737
		}

738
		__exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
739
	}
740
	spin_unlock(&eb->file->table_lock);
741

742 743
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
744

745
		if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
746
			continue;
747

748 749 750 751 752 753 754 755
		/*
		 * NOTE: We can leak any vmas created here when something fails
		 * later on. But that's no issue since vma_unbind can deal with
		 * vmas which are not actually bound. And since only
		 * lookup_or_create exists as an interface to get at the vma
		 * from the (obj, vm) we don't run the risk of creating
		 * duplicated vmas for the same vm.
		 */
756
		obj = u64_to_ptr(typeof(*obj),
757
				 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
758
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
759
		if (unlikely(IS_ERR(vma))) {
760
			DRM_DEBUG("Failed to lookup VMA\n");
761 762
			err = PTR_ERR(vma);
			goto err;
763 764
		}

765 766 767 768 769
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
			vma->ctx_handle = eb->exec[i].handle;
			hlist_add_head(&vma->ctx_node,
770 771 772
				       ht_head(lut, eb->exec[i].handle));
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
773 774 775 776
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
777 778

			i915_vma_get(vma);
779
		}
780

781 782 783
		err = eb_add_vma(eb, &eb->exec[i], vma);
		if (unlikely(err))
			goto err;
784 785 786 787 788 789

		/* Only after we validated the user didn't use our bits */
		if (vma->ctx != eb->ctx) {
			i915_vma_get(vma);
			eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
		}
790 791
	}

792 793 794 795 796
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
797 798
	}

799 800 801 802
out:
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
	eb->batch = exec_to_vma(&eb->exec[i]);
803

804
	/*
805 806 807 808 809 810 811
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
812
	 */
813 814 815 816
	if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
		eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
	if (eb->reloc_cache.has_fence)
		eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
817

818 819 820 821 822 823 824 825 826 827 828
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

err:
	for (i = slow_pass; i < count; i++) {
		if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
			__exec_to_vma(&eb->exec[i]) = 0;
	}
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
#undef INTERMEDIATE
829 830
}

831
static struct i915_vma *
832
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
833
{
834 835
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
836
			return NULL;
837
		return exec_to_vma(&eb->exec[handle]);
838 839
	} else {
		struct hlist_head *head;
840
		struct i915_vma *vma;
841

842
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
843
		hlist_for_each_entry(vma, head, exec_node) {
844 845
			if (vma->exec_handle == handle)
				return vma;
846 847 848
		}
		return NULL;
	}
849 850
}

851
static void eb_release_vmas(const struct i915_execbuffer *eb)
852
{
853 854 855 856 857 858
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
859

860
		if (!vma)
861
			continue;
862

863
		GEM_BUG_ON(vma->exec_entry != entry);
864
		vma->exec_entry = NULL;
865

866 867 868 869 870
		if (entry->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, entry);

		if (entry->flags & __EXEC_OBJECT_HAS_REF)
			i915_vma_put(vma);
871

872 873
		entry->flags &=
			~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
874
	}
875 876
}

877
static void eb_reset_vmas(const struct i915_execbuffer *eb)
878
{
879 880 881 882
	eb_release_vmas(eb);
	if (eb->lut_size >= 0)
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
883 884
}

885
static void eb_destroy(const struct i915_execbuffer *eb)
886
{
887 888
	if (eb->lut_size >= 0)
		kfree(eb->buckets);
889 890
}

891
static inline u64
892
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
893
		  const struct i915_vma *target)
894
{
895
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
896 897
}

898 899
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
900
{
901
	cache->page = -1;
902
	cache->vaddr = 0;
903
	/* Must be a variable in the struct to allow GCC to unroll. */
904 905 906
	cache->has_llc = HAS_LLC(i915);
	cache->has_fence = INTEL_GEN(i915) < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
907
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
908
	cache->node.allocated = false;
909
}
910

911 912 913 914 915 916 917 918
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
919 920
}

921 922
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

923 924 925 926 927 928 929 930
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

static void reloc_cache_reset(struct reloc_cache *cache)
931
{
932
	void *vaddr;
933

934 935
	if (!cache->vaddr)
		return;
936

937 938 939 940
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
941

942 943 944
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
945
		wmb();
946
		io_mapping_unmap_atomic((void __iomem *)vaddr);
947
		if (cache->node.allocated) {
948
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
949 950 951

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
952
					       cache->node.size);
953 954 955
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
956
		}
957
	}
958 959 960

	cache->vaddr = 0;
	cache->page = -1;
961 962 963 964
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
965
			unsigned long page)
966
{
967 968 969 970 971 972
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
973
		int err;
974

975 976 977
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
978 979 980

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
981

982 983 984 985
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
986 987
	}

988 989
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
990
	cache->page = page;
991

992
	return vaddr;
993 994
}

995 996
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
997
			 unsigned long page)
998
{
999
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1000
	unsigned long offset;
1001
	void *vaddr;
1002

1003
	if (cache->vaddr) {
1004
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1005 1006
	} else {
		struct i915_vma *vma;
1007
		int err;
1008

1009
		if (use_cpu_reloc(cache, obj))
1010
			return NULL;
1011

1012 1013 1014
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1015

1016 1017
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1018 1019
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1020
			err = drm_mm_insert_node_in_range
1021
				(&ggtt->base.mm, &cache->node,
1022
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1023
				 0, ggtt->mappable_end,
1024
				 DRM_MM_INSERT_LOW);
1025
			if (err) /* no inactive aperture space, use cpu reloc */
1026
				return NULL;
1027
		} else {
1028 1029
			err = i915_vma_put_fence(vma);
			if (err) {
1030
				i915_vma_unpin(vma);
1031
				return ERR_PTR(err);
1032
			}
1033

1034 1035
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1036
		}
1037
	}
1038

1039 1040
	offset = cache->node.start;
	if (cache->node.allocated) {
1041
		wmb();
1042 1043 1044 1045 1046
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1047 1048
	}

1049 1050
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1051 1052
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1053

1054
	return vaddr;
1055 1056
}

1057 1058
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1059
			 unsigned long page)
1060
{
1061
	void *vaddr;
1062

1063 1064 1065 1066 1067 1068 1069 1070
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1071 1072
	}

1073
	return vaddr;
1074 1075
}

1076
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1077
{
1078 1079 1080 1081 1082
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1083

1084
		*addr = value;
1085

1086 1087
		/*
		 * Writes to the same cacheline are serialised by the CPU
1088 1089 1090 1091 1092 1093 1094 1095 1096
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1097 1098
}

1099 1100
static u64
relocate_entry(struct i915_vma *vma,
1101
	       const struct drm_i915_gem_relocation_entry *reloc,
1102 1103
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1104
{
1105
	struct drm_i915_gem_object *obj = vma->obj;
1106
	u64 offset = reloc->offset;
1107 1108
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1109
	void *vaddr;
1110

1111
repeat:
1112
	vaddr = reloc_vaddr(obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1113 1114 1115 1116 1117
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1118
			eb->reloc_cache.vaddr);
1119 1120 1121 1122 1123 1124

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1125 1126
	}

1127
	return target->node.start | UPDATE;
1128 1129
}

1130 1131 1132 1133
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1134
{
1135
	struct i915_vma *target;
1136
	int err;
1137

1138
	/* we've already hold a reference to all valid objects */
1139 1140
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1141
		return -ENOENT;
1142

1143
	/* Validate that the target is in a valid r/w GPU domain */
1144
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1145
		DRM_DEBUG("reloc with multiple write domains: "
1146
			  "target %d offset %d "
1147
			  "read %08x write %08x",
1148
			  reloc->target_handle,
1149 1150 1151
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1152
		return -EINVAL;
1153
	}
1154 1155
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1156
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1157
			  "target %d offset %d "
1158
			  "read %08x write %08x",
1159
			  reloc->target_handle,
1160 1161 1162
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1163
		return -EINVAL;
1164 1165
	}

1166
	if (reloc->write_domain) {
1167 1168
		target->exec_entry->flags |= EXEC_OBJECT_WRITE;

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1183
	}
1184

1185 1186
	/*
	 * If the relocation already has the right value in it, no
1187 1188
	 * more work needs to be done.
	 */
1189
	if (gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1190
		return 0;
1191 1192

	/* Check that the relocation address is valid... */
1193
	if (unlikely(reloc->offset >
1194
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1195
		DRM_DEBUG("Relocation beyond object bounds: "
1196 1197 1198 1199
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1200
		return -EINVAL;
1201
	}
1202
	if (unlikely(reloc->offset & 3)) {
1203
		DRM_DEBUG("Relocation not 4-byte aligned: "
1204 1205 1206
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1207
		return -EINVAL;
1208 1209
	}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
	vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;

1220
	/* and update the user's relocation entry */
1221
	return relocate_entry(vma, reloc, eb, target);
1222 1223
}

1224
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1225
{
1226
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1227 1228 1229 1230
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	unsigned int remain;
1231

1232
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1233
	remain = entry->relocation_count;
1234 1235
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(urelocs))))
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1250

1251 1252
		/*
		 * This is the fast path and we cannot handle a pagefault
1253 1254 1255 1256 1257 1258 1259
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1260
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1261
		pagefault_enable();
1262 1263
		if (unlikely(copied)) {
			remain = -EFAULT;
1264 1265
			goto out;
		}
1266

1267
		remain -= count;
1268
		do {
1269
			u64 offset = eb_relocate_entry(eb, vma, r);
1270

1271 1272 1273
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1274
				goto out;
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1300
			}
1301 1302 1303
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1304
out:
1305
	reloc_cache_reset(&eb->reloc_cache);
1306
	return remain;
1307 1308 1309
}

static int
1310
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1311
{
1312
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1313 1314 1315 1316
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1317 1318

	for (i = 0; i < entry->relocation_count; i++) {
1319
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1320

1321 1322 1323 1324
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1325
	}
1326 1327 1328 1329
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1330 1331
}

1332
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1333
{
1334 1335 1336
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1337

1338 1339 1340
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1341

1342 1343
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1344

1345 1346 1347 1348
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1349

1350 1351 1352 1353 1354
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1355
	}
1356
	return __get_user(c, end - 1);
1357
}
1358

1359
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1360
{
1361 1362 1363
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1364

1365 1366 1367 1368 1369 1370
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1371

1372 1373
		if (nreloc == 0)
			continue;
1374

1375 1376 1377
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1378

1379 1380
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1381

1382 1383 1384 1385 1386 1387
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1402

1403 1404
			copied += len;
		} while (copied < size);
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1423

1424 1425
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1426

1427
	return 0;
1428

1429 1430 1431 1432 1433 1434 1435 1436
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1437 1438
}

1439
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1440
{
1441 1442
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1443

1444 1445
	if (unlikely(i915.prefault_disable))
		return 0;
1446

1447 1448
	for (i = 0; i < count; i++) {
		int err;
1449

1450 1451 1452 1453
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1454

1455
	return 0;
1456 1457
}

1458
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1459
{
1460
	struct drm_device *dev = &eb->i915->drm;
1461
	bool have_copy = false;
1462
	struct i915_vma *vma;
1463 1464 1465 1466 1467 1468 1469
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1470

1471
	/* We may process another execbuffer during the unlock... */
1472
	eb_reset_vmas(eb);
1473 1474
	mutex_unlock(&dev->struct_mutex);

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1496
	}
1497 1498 1499
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1500 1501
	}

1502 1503
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1504
		mutex_lock(&dev->struct_mutex);
1505
		goto out;
1506 1507
	}

1508
	/* reacquire the objects */
1509 1510
	err = eb_lookup_vmas(eb);
	if (err)
1511
		goto err;
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1525 1526
	}

1527 1528
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1529 1530 1531 1532 1533 1534
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err ?: have_copy;
1557 1558
}

1559
static int eb_relocate(struct i915_execbuffer *eb)
1560
{
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static void eb_export_fence(struct drm_i915_gem_object *obj,
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
	struct reservation_object *resv = obj->resv;

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1604

1605 1606 1607
	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
1608
		struct drm_i915_gem_object *obj = vma->obj;
1609

1610
		if (entry->flags & EXEC_OBJECT_CAPTURE) {
1611 1612 1613 1614 1615 1616
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1617
			capture->next = eb->request->capture_list;
1618
			capture->vma = vma;
1619
			eb->request->capture_list = capture;
1620 1621
		}

1622 1623
		if (entry->flags & EXEC_OBJECT_ASYNC)
			goto skip_flushes;
1624

1625
		if (unlikely(obj->cache_dirty && !obj->cache_coherent))
1626 1627
			i915_gem_clflush_object(obj, 0);

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		err = i915_gem_request_await_object
			(eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
		if (err)
			return err;

skip_flushes:
		i915_vma_move_to_active(vma, eb->request, entry->flags);
		__eb_unreserve_vma(vma, entry);
		vma->exec_entry = NULL;
	}

	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);

		eb_export_fence(vma->obj, eb->request, entry->flags);
1644 1645
		if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
			i915_vma_put(vma);
1646
	}
1647
	eb->exec = NULL;
1648

1649
	/* Unconditionally flush any chipset caches (for streaming writes). */
1650
	i915_gem_chipset_flush(eb->i915);
1651

1652
	/* Unconditionally invalidate GPU caches and TLBs. */
1653
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1654 1655
}

1656
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1657
{
1658
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1659 1660
		return false;

C
Chris Wilson 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	/* Kernel clipping was a DRI1 misfeature */
	if (exec->num_cliprects || exec->cliprects_ptr)
		return false;

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1676 1677
}

1678 1679 1680 1681 1682 1683 1684
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1685
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1686 1687
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1688 1689
	/*
	 * Add a reference if we're newly entering the active list.
1690 1691 1692 1693 1694 1695
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1696 1697 1698 1699 1700
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1701

1702
	obj->base.write_domain = 0;
1703
	if (flags & EXEC_OBJECT_WRITE) {
1704 1705
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1706 1707
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1708

1709
		obj->base.read_domains = 0;
1710
	}
1711
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1712

1713 1714
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1715 1716
}

1717
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1718
{
1719 1720
	u32 *cs;
	int i;
1721

1722
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1723 1724 1725
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1726

1727
	cs = intel_ring_begin(req, 4 * 2 + 2);
1728 1729
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1730

1731
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1732
	for (i = 0; i < 4; i++) {
1733 1734
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1735
	}
1736
	*cs++ = MI_NOOP;
1737
	intel_ring_advance(req, cs);
1738 1739 1740 1741

	return 0;
}

1742
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1743 1744
{
	struct drm_i915_gem_object *shadow_batch_obj;
1745
	struct i915_vma *vma;
1746
	int err;
1747

1748 1749
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1750
	if (IS_ERR(shadow_batch_obj))
1751
		return ERR_CAST(shadow_batch_obj);
1752

1753
	err = intel_engine_cmd_parser(eb->engine,
1754
				      eb->batch->obj,
1755
				      shadow_batch_obj,
1756 1757
				      eb->batch_start_offset,
				      eb->batch_len,
1758
				      is_master);
1759 1760
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1761 1762
			vma = NULL;
		else
1763
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1764 1765
		goto out;
	}
1766

C
Chris Wilson 已提交
1767 1768 1769
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1770

1771
	vma->exec_entry =
1772 1773
		memset(&eb->exec[eb->buffer_count++],
		       0, sizeof(*vma->exec_entry));
1774
	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1775
	__exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
1776

C
Chris Wilson 已提交
1777
out:
C
Chris Wilson 已提交
1778
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1779
	return vma;
1780
}
1781

1782
static void
1783
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1784 1785 1786 1787 1788
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1789
static int eb_submit(struct i915_execbuffer *eb)
1790
{
1791
	int err;
1792

1793 1794 1795
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1796

1797 1798 1799
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1800

1801
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1802 1803 1804
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1805 1806
	}

1807
	err = eb->engine->emit_bb_start(eb->request,
1808 1809 1810
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1811 1812 1813
					eb->batch_flags);
	if (err)
		return err;
1814

C
Chris Wilson 已提交
1815
	return 0;
1816 1817
}

1818 1819
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
1820
 * The engine index is returned.
1821
 */
1822
static unsigned int
1823 1824
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1825 1826 1827
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1828
	/* Check whether the file_priv has already selected one ring. */
1829 1830 1831
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1832

1833
	return file_priv->bsd_engine;
1834 1835
}

1836 1837
#define I915_USER_RINGS (4)

1838
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1839 1840 1841 1842 1843 1844 1845
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

1846 1847 1848 1849
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
1850 1851
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1852
	struct intel_engine_cs *engine;
1853 1854 1855

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1856
		return NULL;
1857 1858 1859 1860 1861 1862
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
1863
		return NULL;
1864 1865 1866 1867 1868 1869
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1870
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1871 1872
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
1873
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
1874 1875 1876 1877
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
1878
			return NULL;
1879 1880
		}

1881
		engine = dev_priv->engine[_VCS(bsd_idx)];
1882
	} else {
1883
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
1884 1885
	}

1886
	if (!engine) {
1887
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1888
		return NULL;
1889 1890
	}

1891
	return engine;
1892 1893
}

1894
static int
1895
i915_gem_do_execbuffer(struct drm_device *dev,
1896 1897
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1898
		       struct drm_i915_gem_exec_object2 *exec)
1899
{
1900
	struct i915_execbuffer eb;
1901 1902 1903
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
1904
	int err;
1905

1906 1907
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1908

1909 1910 1911
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
1912 1913
	if (!(args->flags & I915_EXEC_NO_RELOC))
		args->flags |= __EXEC_HAS_RELOC;
1914
	eb.exec = exec;
1915 1916 1917 1918
	eb.ctx = NULL;
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1919 1920
	reloc_cache_init(&eb.reloc_cache, eb.i915);

1921
	eb.buffer_count = args->buffer_count;
1922 1923 1924
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

1925
	eb.batch_flags = 0;
1926
	if (args->flags & I915_EXEC_SECURE) {
1927
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1928 1929
		    return -EPERM;

1930
		eb.batch_flags |= I915_DISPATCH_SECURE;
1931
	}
1932
	if (args->flags & I915_EXEC_IS_PINNED)
1933
		eb.batch_flags |= I915_DISPATCH_PINNED;
1934

1935 1936
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
1937 1938
		return -EINVAL;

1939
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1940
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
1941 1942 1943
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
1944
		if (eb.engine->id != RCS) {
1945
			DRM_DEBUG("RS is not available on %s\n",
1946
				 eb.engine->name);
1947 1948 1949
			return -EINVAL;
		}

1950
		eb.batch_flags |= I915_DISPATCH_RS;
1951 1952
	}

1953 1954
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
1955 1956
		if (!in_fence)
			return -EINVAL;
1957 1958 1959 1960 1961
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
1962
			err = out_fence_fd;
1963
			goto err_in_fence;
1964 1965 1966
		}
	}

1967 1968 1969 1970 1971
	if (eb_create(&eb))
		return -ENOMEM;

	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
1972 1973 1974 1975 1976
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
1977
	intel_runtime_pm_get(eb.i915);
1978 1979 1980
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
1981

1982 1983 1984
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_unlock;
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	err = eb_relocate(&eb);
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
	if (err < 0)
		goto err_vma;
1998

1999
	if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
2000
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2001 2002
		err = -EINVAL;
		goto err_vma;
2003
	}
2004 2005
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2006
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2007 2008
		err = -EINVAL;
		goto err_vma;
2009
	}
2010

2011
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2012 2013
		struct i915_vma *vma;

2014
		vma = eb_parse(&eb, drm_is_current_master(file));
2015
		if (IS_ERR(vma)) {
2016 2017
			err = PTR_ERR(vma);
			goto err_vma;
2018
		}
2019

2020
		if (vma) {
2021 2022 2023 2024 2025 2026 2027 2028 2029
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2030
			eb.batch_flags |= I915_DISPATCH_SECURE;
2031 2032
			eb.batch_start_offset = 0;
			eb.batch = vma;
2033
		}
2034 2035
	}

2036 2037
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2038

2039 2040
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2041
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2042
	 * hsw should have this fixed, but bdw mucks it up again. */
2043
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2044
		struct i915_vma *vma;
2045

2046 2047 2048 2049 2050 2051
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2052
		 *   so we don't really have issues with multiple objects not
2053 2054 2055
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2056
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2057
		if (IS_ERR(vma)) {
2058 2059
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2060
		}
2061

2062
		eb.batch = vma;
2063
	}
2064

2065
	/* Allocate a request for this batch buffer nice and early. */
2066 2067
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2068
		err = PTR_ERR(eb.request);
2069
		goto err_batch_unpin;
2070
	}
2071

2072
	if (in_fence) {
2073 2074
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2075 2076 2077 2078
			goto err_request;
	}

	if (out_fence_fd != -1) {
2079
		out_fence = sync_file_create(&eb.request->fence);
2080
		if (!out_fence) {
2081
			err = -ENOMEM;
2082 2083 2084 2085
			goto err_request;
		}
	}

2086 2087
	/*
	 * Whilst this request exists, batch_obj will be on the
2088 2089 2090 2091 2092
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2093
	eb.request->batch = eb.batch;
2094

2095 2096
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2097
err_request:
2098
	__i915_add_request(eb.request, err == 0);
2099
	add_to_client(eb.request, file);
2100

2101
	if (out_fence) {
2102
		if (err == 0) {
2103 2104 2105 2106 2107 2108 2109 2110
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2111

2112
err_batch_unpin:
2113
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2114
		i915_vma_unpin(eb.batch);
2115 2116 2117 2118 2119
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
	i915_gem_context_put(eb.ctx);
err_unlock:
2120
	mutex_unlock(&dev->struct_mutex);
2121
err_rpm:
2122
	intel_runtime_pm_put(eb.i915);
2123
	eb_destroy(&eb);
2124 2125
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2126
err_in_fence:
2127
	dma_fence_put(in_fence);
2128
	return err;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2139
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2140 2141 2142 2143
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2144 2145
	unsigned int i;
	int err;
2146

2147 2148
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2149 2150 2151
		return -EINVAL;
	}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2166
	/* Copy in the exec list from userland */
2167 2168 2169 2170
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2171
	if (exec_list == NULL || exec2_list == NULL) {
2172
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2173
			  args->buffer_count);
M
Michal Hocko 已提交
2174 2175
		kvfree(exec_list);
		kvfree(exec2_list);
2176 2177
		return -ENOMEM;
	}
2178
	err = copy_from_user(exec_list,
2179
			     u64_to_user_ptr(args->buffers_ptr),
2180
			     sizeof(*exec_list) * args->buffer_count);
2181
	if (err) {
2182
		DRM_DEBUG("copy %d exec entries failed %d\n",
2183
			  args->buffer_count, err);
M
Michal Hocko 已提交
2184 2185
		kvfree(exec_list);
		kvfree(exec2_list);
2186 2187 2188 2189 2190 2191 2192 2193 2194
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2195
		if (INTEL_GEN(to_i915(dev)) < 4)
2196 2197 2198 2199 2200
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2201 2202
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
	if (exec2.flags & __EXEC_HAS_RELOC) {
2203
		struct drm_i915_gem_exec_object __user *user_exec_list =
2204
			u64_to_user_ptr(args->buffers_ptr);
2205

2206
		/* Copy the new buffer offsets back to the user's exec list. */
2207
		for (i = 0; i < args->buffer_count; i++) {
2208 2209 2210
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2211
			exec2_list[i].offset =
2212 2213 2214 2215 2216
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2217
				break;
2218 2219 2220
		}
	}

M
Michal Hocko 已提交
2221 2222
	kvfree(exec_list);
	kvfree(exec2_list);
2223
	return err;
2224 2225 2226 2227 2228 2229
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2230
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2231
	struct drm_i915_gem_execbuffer2 *args = data;
2232 2233
	struct drm_i915_gem_exec_object2 *exec2_list;
	int err;
2234

2235
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2236
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2237 2238 2239
		return -EINVAL;
	}

2240 2241 2242 2243 2244 2245
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2246
	if (exec2_list == NULL) {
2247
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2248 2249 2250
			  args->buffer_count);
		return -ENOMEM;
	}
2251 2252 2253 2254
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2255
		kvfree(exec2_list);
2256 2257 2258
		return -EFAULT;
	}

2259 2260 2261 2262 2263 2264 2265 2266 2267
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2268
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2269 2270
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2271

2272 2273
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2274
		for (i = 0; i < args->buffer_count; i++) {
2275 2276 2277
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2278
			exec2_list[i].offset =
2279 2280 2281 2282
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2283
		}
2284 2285
end_user:
		user_access_end();
2286 2287
	}

2288
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
2289
	kvfree(exec2_list);
2290
	return err;
2291
}