i915_gem_execbuffer.c 70.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

191
struct i915_execbuffer {
192 193 194 195
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
196 197
	struct i915_vma **vma;
	unsigned int *flags;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
220
	struct reloc_cache {
221 222 223
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
224
		unsigned int gen; /** Cached value of INTEL_GEN */
225
		bool use_64bit_reloc : 1;
226 227 228
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
229 230 231 232

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
233
	} reloc_cache;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
249 250
};

251
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

272 273
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
274
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
275 276
}

277
static int eb_create(struct i915_execbuffer *eb)
278
{
279 280
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
281

282 283 284 285 286 287 288 289 290 291 292
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
293
		do {
294
			gfp_t flags;
295 296 297 298 299 300 301

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
302
			flags = GFP_KERNEL;
303 304 305
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

306
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
307
					      flags);
308 309 310 311
			if (eb->buckets)
				break;
		} while (--size);

312 313
		if (unlikely(!size))
			return -ENOMEM;
314

315
		eb->lut_size = size;
316
	} else {
317
		eb->lut_size = -eb->buffer_count;
318
	}
319

320
	return 0;
321 322
}

323 324
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
325 326
		 const struct i915_vma *vma,
		 unsigned int flags)
327 328 329 330 331 332 333
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

334
	if (flags & EXEC_OBJECT_PINNED &&
335 336 337
	    vma->node.start != entry->offset)
		return true;

338
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
339 340 341
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

342
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
343 344 345
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

346 347 348 349
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

350 351 352
	return false;
}

353
static inline bool
354
eb_pin_vma(struct i915_execbuffer *eb,
355
	   const struct drm_i915_gem_exec_object2 *entry,
356 357
	   struct i915_vma *vma)
{
358 359
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
360

361
	if (vma->node.size)
362
		pin_flags = vma->node.start;
363
	else
364
		pin_flags = entry->offset & PIN_OFFSET_MASK;
365

366 367 368
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
369

370 371
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
372

373
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
374
		if (unlikely(i915_vma_pin_fence(vma))) {
375
			i915_vma_unpin(vma);
376
			return false;
377 378
		}

379
		if (vma->fence)
380
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
381 382
	}

383 384
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
385 386
}

387
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
388
{
389
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
390

391
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
392
		__i915_vma_unpin_fence(vma);
393

394
	__i915_vma_unpin(vma);
395 396
}

397
static inline void
398
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
399
{
400
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
401
		return;
402

403 404
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
405 406
}

407 408 409 410
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
411
{
412 413
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
414

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
432 433
	}

434
	if (unlikely(vma->exec_flags)) {
435 436 437 438 439 440 441 442 443 444 445 446
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

447 448 449 450 451 452 453 454 455 456 457 458
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

459
	return 0;
460 461
}

462
static int
463
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
464
{
465
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
466 467 468 469 470 471 472 473
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
474 475
	}

476
	if (eb->lut_size > 0) {
477
		vma->exec_handle = entry->handle;
478
		hlist_add_head(&vma->exec_node,
479 480
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
481
	}
482

483 484 485 486 487 488 489 490 491
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
492
	eb->vma[i] = vma;
493
	eb->flags[i] = entry->flags;
494
	vma->exec_flags = &eb->flags[i];
495 496

	err = 0;
497
	if (eb_pin_vma(eb, entry, vma)) {
498 499 500 501
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
502 503 504 505 506 507
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
508 509
		if (unlikely(err))
			vma->exec_flags = NULL;
510 511 512 513 514 515 516 517 518 519
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

520 521 522 523 524
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
525 526 527 528 529 530 531 532 533

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
534 535 536
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
537 538
	int err;

539 540 541
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
542 543 544 545 546

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
547 548
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
549

550 551
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
552

553 554 555 556 557
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
558 559
	}

560 561 562
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
563 564 565 566 567 568 569 570
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

571
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
572
		err = i915_vma_pin_fence(vma);
573 574 575 576 577
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

578
		if (vma->fence)
579
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
580 581
	}

582 583
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
625 626
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
627

628 629
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
630 631
				continue;

632
			eb_unreserve_vma(vma, &eb->flags[i]);
633

634
			if (flags & EXEC_OBJECT_PINNED)
635
				list_add(&vma->exec_link, &eb->unbound);
636
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
658
}
659

660 661
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
662 663 664 665
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
666 667 668 669 670 671 672
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
673 674
	if (unlikely(!ctx))
		return -ENOENT;
675

676
	eb->ctx = ctx;
677 678 679 680 681 682 683 684 685 686
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
687
{
688
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
689
	struct drm_i915_gem_object *obj;
690 691
	unsigned int i;
	int err;
692

693 694 695 696 697 698
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

699 700
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
701

702 703
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
704
		struct i915_lut_handle *lut;
705
		struct i915_vma *vma;
706

707 708
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
709
			goto add_vma;
710

711
		obj = i915_gem_object_lookup(eb->file, handle);
712
		if (unlikely(!obj)) {
713
			err = -ENOENT;
714
			goto err_vma;
715 716
		}

717
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
718
		if (unlikely(IS_ERR(vma))) {
719
			err = PTR_ERR(vma);
720
			goto err_obj;
721 722
		}

723 724 725 726 727 728 729 730 731 732
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
			kfree(lut);
			goto err_obj;
733
		}
734

735
		/* transfer ref to ctx */
736
		vma->open_count++;
737 738 739 740 741
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

742
add_vma:
743
		err = eb_add_vma(eb, i, vma);
744
		if (unlikely(err))
745
			goto err_vma;
746

747 748
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
749 750
	}

751 752
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
753 754
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
755

756
	/*
757 758 759 760 761 762 763
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
764
	 */
765 766
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
767
	if (eb->reloc_cache.has_fence)
768
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
769

770 771 772
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

773
err_obj:
774
	i915_gem_object_put(obj);
775 776
err_vma:
	eb->vma[i] = NULL;
777
	return err;
778 779
}

780
static struct i915_vma *
781
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
782
{
783 784
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
785
			return NULL;
786
		return eb->vma[handle];
787 788
	} else {
		struct hlist_head *head;
789
		struct i915_vma *vma;
790

791
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
792
		hlist_for_each_entry(vma, head, exec_node) {
793 794
			if (vma->exec_handle == handle)
				return vma;
795 796 797
		}
		return NULL;
	}
798 799
}

800
static void eb_release_vmas(const struct i915_execbuffer *eb)
801
{
802 803 804 805
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
806 807
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
808

809
		if (!vma)
810
			break;
811

812 813 814
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
815

816 817
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
818

819
		if (flags & __EXEC_OBJECT_HAS_REF)
820
			i915_vma_put(vma);
821
	}
822 823
}

824
static void eb_reset_vmas(const struct i915_execbuffer *eb)
825
{
826
	eb_release_vmas(eb);
827
	if (eb->lut_size > 0)
828 829
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
830 831
}

832
static void eb_destroy(const struct i915_execbuffer *eb)
833
{
834 835
	GEM_BUG_ON(eb->reloc_cache.rq);

836
	if (eb->lut_size > 0)
837
		kfree(eb->buckets);
838 839
}

840
static inline u64
841
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
842
		  const struct i915_vma *target)
843
{
844
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
845 846
}

847 848
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
849
{
850
	cache->page = -1;
851
	cache->vaddr = 0;
852
	/* Must be a variable in the struct to allow GCC to unroll. */
853
	cache->gen = INTEL_GEN(i915);
854
	cache->has_llc = HAS_LLC(i915);
855
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
856 857
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
858
	cache->node.allocated = false;
859 860
	cache->rq = NULL;
	cache->rq_size = 0;
861
}
862

863 864 865 866 867 868 869 870
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
871 872
}

873 874
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

875 876 877 878 879 880 881
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

882 883 884 885 886 887 888 889 890 891 892
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

893
static void reloc_cache_reset(struct reloc_cache *cache)
894
{
895
	void *vaddr;
896

897 898 899
	if (cache->rq)
		reloc_gpu_flush(cache);

900 901
	if (!cache->vaddr)
		return;
902

903 904 905 906
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
907

908 909 910
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
911
		wmb();
912
		io_mapping_unmap_atomic((void __iomem *)vaddr);
913
		if (cache->node.allocated) {
914
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
915 916 917

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
918
					       cache->node.size);
919 920 921
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
922
		}
923
	}
924 925 926

	cache->vaddr = 0;
	cache->page = -1;
927 928 929 930
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
931
			unsigned long page)
932
{
933 934 935 936 937 938
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
939
		int err;
940

941 942 943
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
944 945 946

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
947

948 949 950 951
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
952 953
	}

954 955
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
956
	cache->page = page;
957

958
	return vaddr;
959 960
}

961 962
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
963
			 unsigned long page)
964
{
965
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
966
	unsigned long offset;
967
	void *vaddr;
968

969
	if (cache->vaddr) {
970
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
971 972
	} else {
		struct i915_vma *vma;
973
		int err;
974

975
		if (use_cpu_reloc(cache, obj))
976
			return NULL;
977

978 979 980
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
981

982
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
983 984 985
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
986 987
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
988
			err = drm_mm_insert_node_in_range
989
				(&ggtt->base.mm, &cache->node,
990
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
991
				 0, ggtt->mappable_end,
992
				 DRM_MM_INSERT_LOW);
993
			if (err) /* no inactive aperture space, use cpu reloc */
994
				return NULL;
995
		} else {
996 997
			err = i915_vma_put_fence(vma);
			if (err) {
998
				i915_vma_unpin(vma);
999
				return ERR_PTR(err);
1000
			}
1001

1002 1003
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1004
		}
1005
	}
1006

1007 1008
	offset = cache->node.start;
	if (cache->node.allocated) {
1009
		wmb();
1010 1011 1012 1013 1014
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1015 1016
	}

1017
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1018
							 offset);
1019 1020
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1021

1022
	return vaddr;
1023 1024
}

1025 1026
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1027
			 unsigned long page)
1028
{
1029
	void *vaddr;
1030

1031 1032 1033 1034 1035 1036 1037 1038
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1039 1040
	}

1041
	return vaddr;
1042 1043
}

1044
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1045
{
1046 1047 1048 1049 1050
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1051

1052
		*addr = value;
1053

1054 1055
		/*
		 * Writes to the same cacheline are serialised by the CPU
1056 1057 1058 1059 1060 1061 1062 1063 1064
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1065 1066
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1078
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1079 1080 1081 1082 1083 1084

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1085 1086 1087
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1122
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1123
	i915_vma_move_to_active(batch, rq, 0);
1124 1125 1126
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1127 1128
	i915_vma_unpin(batch);

1129
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1130 1131 1132
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1165 1166 1167 1168
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1169 1170 1171
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1183 1184
static u64
relocate_entry(struct i915_vma *vma,
1185
	       const struct drm_i915_gem_relocation_entry *reloc,
1186 1187
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1188
{
1189
	u64 offset = reloc->offset;
1190 1191
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1192
	void *vaddr;
1193

1194 1195
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1196
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1197 1198 1199 1200 1201 1202 1203 1204 1205
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1206
		else
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1253
repeat:
1254
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1255 1256 1257 1258 1259
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1260
			eb->reloc_cache.vaddr);
1261 1262 1263 1264 1265 1266

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1267 1268
	}

1269
out:
1270
	return target->node.start | UPDATE;
1271 1272
}

1273 1274 1275 1276
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1277
{
1278
	struct i915_vma *target;
1279
	int err;
1280

1281
	/* we've already hold a reference to all valid objects */
1282 1283
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1284
		return -ENOENT;
1285

1286
	/* Validate that the target is in a valid r/w GPU domain */
1287
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1288
		DRM_DEBUG("reloc with multiple write domains: "
1289
			  "target %d offset %d "
1290
			  "read %08x write %08x",
1291
			  reloc->target_handle,
1292 1293 1294
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1295
		return -EINVAL;
1296
	}
1297 1298
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1299
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1300
			  "target %d offset %d "
1301
			  "read %08x write %08x",
1302
			  reloc->target_handle,
1303 1304 1305
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1306
		return -EINVAL;
1307 1308
	}

1309
	if (reloc->write_domain) {
1310
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1326
	}
1327

1328 1329
	/*
	 * If the relocation already has the right value in it, no
1330 1331
	 * more work needs to be done.
	 */
1332 1333
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1334
		return 0;
1335 1336

	/* Check that the relocation address is valid... */
1337
	if (unlikely(reloc->offset >
1338
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1339
		DRM_DEBUG("Relocation beyond object bounds: "
1340 1341 1342 1343
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1344
		return -EINVAL;
1345
	}
1346
	if (unlikely(reloc->offset & 3)) {
1347
		DRM_DEBUG("Relocation not 4-byte aligned: "
1348 1349 1350
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1351
		return -EINVAL;
1352 1353
	}

1354 1355 1356 1357 1358 1359
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1360
	 * out of our synchronisation.
1361
	 */
1362
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1363

1364
	/* and update the user's relocation entry */
1365
	return relocate_entry(vma, reloc, eb, target);
1366 1367
}

1368
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1369
{
1370
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1371 1372
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1373
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1374
	unsigned int remain;
1375

1376
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1377
	remain = entry->relocation_count;
1378 1379
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1380

1381 1382 1383 1384 1385
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1386
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1387 1388 1389 1390 1391 1392 1393
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1394

1395 1396
		/*
		 * This is the fast path and we cannot handle a pagefault
1397 1398 1399 1400 1401 1402 1403
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1404
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1405
		pagefault_enable();
1406 1407
		if (unlikely(copied)) {
			remain = -EFAULT;
1408 1409
			goto out;
		}
1410

1411
		remain -= count;
1412
		do {
1413
			u64 offset = eb_relocate_entry(eb, vma, r);
1414

1415 1416 1417
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1418
				goto out;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1444
			}
1445 1446 1447
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1448
out:
1449
	reloc_cache_reset(&eb->reloc_cache);
1450
	return remain;
1451 1452 1453
}

static int
1454
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1455
{
1456
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1457 1458 1459 1460
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1461 1462

	for (i = 0; i < entry->relocation_count; i++) {
1463
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1464

1465 1466 1467 1468
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1469
	}
1470 1471 1472 1473
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1474 1475
}

1476
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1477
{
1478 1479 1480
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1481

1482 1483 1484
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1485

1486 1487
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1488

1489 1490 1491 1492
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1493

1494 1495 1496 1497 1498
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1499
	}
1500
	return __get_user(c, end - 1);
1501
}
1502

1503
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1504
{
1505 1506 1507
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1508

1509 1510 1511 1512 1513 1514
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1515

1516 1517
		if (nreloc == 0)
			continue;
1518

1519 1520 1521
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1522

1523 1524
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1525

1526
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1527 1528 1529 1530 1531
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1532

1533 1534 1535 1536 1537 1538 1539
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1540
					     (char __user *)urelocs + copied,
1541 1542 1543 1544 1545
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1546

1547 1548
			copied += len;
		} while (copied < size);
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1567

1568 1569
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1570

1571
	return 0;
1572

1573 1574 1575 1576 1577 1578 1579 1580
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1581 1582
}

1583
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1584
{
1585 1586
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1587

1588
	if (unlikely(i915_modparams.prefault_disable))
1589
		return 0;
1590

1591 1592
	for (i = 0; i < count; i++) {
		int err;
1593

1594 1595 1596 1597
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1598

1599
	return 0;
1600 1601
}

1602
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1603
{
1604
	struct drm_device *dev = &eb->i915->drm;
1605
	bool have_copy = false;
1606
	struct i915_vma *vma;
1607 1608 1609 1610 1611 1612 1613
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1614

1615
	/* We may process another execbuffer during the unlock... */
1616
	eb_reset_vmas(eb);
1617 1618
	mutex_unlock(&dev->struct_mutex);

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1640
	}
1641 1642 1643
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1644 1645
	}

1646 1647 1648
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1649 1650
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1651
		mutex_lock(&dev->struct_mutex);
1652
		goto out;
1653 1654
	}

1655
	/* reacquire the objects */
1656 1657
	err = eb_lookup_vmas(eb);
	if (err)
1658
		goto err;
1659

1660 1661
	GEM_BUG_ON(!eb->batch);

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1674 1675
	}

1676 1677
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1678 1679 1680 1681 1682 1683
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1705
	return err;
1706 1707
}

1708
static int eb_relocate(struct i915_execbuffer *eb)
1709
{
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1729
static void eb_export_fence(struct i915_vma *vma,
1730 1731 1732
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1733
	struct reservation_object *resv = vma->resv;
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1753

1754
	for (i = 0; i < count; i++) {
1755 1756
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1757
		struct drm_i915_gem_object *obj = vma->obj;
1758

1759
		if (flags & EXEC_OBJECT_CAPTURE) {
1760 1761 1762 1763 1764 1765
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1766
			capture->next = eb->request->capture_list;
1767
			capture->vma = eb->vma[i];
1768
			eb->request->capture_list = capture;
1769 1770
		}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1784
			if (i915_gem_clflush_object(obj, 0))
1785
				flags &= ~EXEC_OBJECT_ASYNC;
1786 1787
		}

1788 1789
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1790

1791
		err = i915_gem_request_await_object
1792
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1793 1794 1795 1796 1797
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1798 1799 1800 1801 1802
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1803

1804 1805 1806 1807
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1808
			i915_vma_put(vma);
1809
	}
1810
	eb->exec = NULL;
1811

1812
	/* Unconditionally flush any chipset caches (for streaming writes). */
1813
	i915_gem_chipset_flush(eb->i915);
1814

1815
	return 0;
1816 1817
}

1818
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1819
{
1820
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1821 1822
		return false;

C
Chris Wilson 已提交
1823
	/* Kernel clipping was a DRI1 misfeature */
1824 1825 1826 1827
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1840 1841
}

1842 1843 1844 1845 1846 1847 1848
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1849
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1850 1851
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1852 1853
	/*
	 * Add a reference if we're newly entering the active list.
1854 1855 1856 1857 1858 1859
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1860 1861 1862 1863 1864
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1865

1866
	obj->write_domain = 0;
1867
	if (flags & EXEC_OBJECT_WRITE) {
1868
		obj->write_domain = I915_GEM_DOMAIN_RENDER;
1869

1870 1871
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1872

1873
		obj->read_domains = 0;
1874
	}
1875
	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1876

1877 1878
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1879 1880
}

1881
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1882
{
1883 1884
	u32 *cs;
	int i;
1885

1886
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1887 1888 1889
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1890

1891
	cs = intel_ring_begin(req, 4 * 2 + 2);
1892 1893
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1894

1895
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1896
	for (i = 0; i < 4; i++) {
1897 1898
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1899
	}
1900
	*cs++ = MI_NOOP;
1901
	intel_ring_advance(req, cs);
1902 1903 1904 1905

	return 0;
}

1906
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1907 1908
{
	struct drm_i915_gem_object *shadow_batch_obj;
1909
	struct i915_vma *vma;
1910
	int err;
1911

1912 1913
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1914
	if (IS_ERR(shadow_batch_obj))
1915
		return ERR_CAST(shadow_batch_obj);
1916

1917
	err = intel_engine_cmd_parser(eb->engine,
1918
				      eb->batch->obj,
1919
				      shadow_batch_obj,
1920 1921
				      eb->batch_start_offset,
				      eb->batch_len,
1922
				      is_master);
1923 1924
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1925 1926
			vma = NULL;
		else
1927
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1928 1929
		goto out;
	}
1930

C
Chris Wilson 已提交
1931 1932 1933
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1934

1935 1936 1937 1938 1939
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1940

C
Chris Wilson 已提交
1941
out:
C
Chris Wilson 已提交
1942
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1943
	return vma;
1944
}
1945

1946
static void
1947
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1948 1949 1950 1951 1952
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1953
static int eb_submit(struct i915_execbuffer *eb)
1954
{
1955
	int err;
1956

1957 1958 1959
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1960

1961
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1962 1963 1964
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1965 1966
	}

1967
	err = eb->engine->emit_bb_start(eb->request,
1968 1969 1970
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1971 1972 1973
					eb->batch_flags);
	if (err)
		return err;
1974

C
Chris Wilson 已提交
1975
	return 0;
1976 1977
}

1978
/*
1979
 * Find one BSD ring to dispatch the corresponding BSD command.
1980
 * The engine index is returned.
1981
 */
1982
static unsigned int
1983 1984
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1985 1986 1987
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1988
	/* Check whether the file_priv has already selected one ring. */
1989 1990 1991
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1992

1993
	return file_priv->bsd_engine;
1994 1995
}

1996 1997
#define I915_USER_RINGS (4)

1998
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1999 2000 2001 2002 2003 2004 2005
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2006 2007 2008 2009
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2010 2011
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2012
	struct intel_engine_cs *engine;
2013 2014 2015

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2016
		return NULL;
2017 2018 2019 2020 2021 2022
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2023
		return NULL;
2024 2025 2026 2027 2028 2029
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2030
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2031 2032
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2033
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2034 2035 2036 2037
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2038
			return NULL;
2039 2040
		}

2041
		engine = dev_priv->engine[_VCS(bsd_idx)];
2042
	} else {
2043
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2044 2045
	}

2046
	if (!engine) {
2047
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2048
		return NULL;
2049 2050
	}

2051
	return engine;
2052 2053
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2066
	const unsigned long nfences = args->num_cliprects;
2067 2068
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2069
	unsigned long n;
2070 2071 2072 2073 2074
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2075 2076 2077 2078 2079
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2080 2081 2082
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2083
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2084 2085
		return ERR_PTR(-EFAULT);

2086
	fences = kvmalloc_array(nfences, sizeof(*fences),
2087
				__GFP_NOWARN | GFP_KERNEL);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2100 2101 2102 2103 2104
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2105 2106 2107 2108 2109 2110 2111
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2112 2113 2114
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2150
		fence = drm_syncobj_fence_get(syncobj);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2183
static int
2184
i915_gem_do_execbuffer(struct drm_device *dev,
2185 2186
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2187 2188
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2189
{
2190
	struct i915_execbuffer eb;
2191 2192 2193
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2194
	int err;
2195

2196
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2197 2198
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2199

2200 2201 2202
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2203
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2204
		args->flags |= __EXEC_HAS_RELOC;
2205

2206
	eb.exec = exec;
2207 2208
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2209 2210
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2211 2212 2213
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2214 2215
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2216
	eb.buffer_count = args->buffer_count;
2217 2218 2219
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2220
	eb.batch_flags = 0;
2221
	if (args->flags & I915_EXEC_SECURE) {
2222
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2223 2224
		    return -EPERM;

2225
		eb.batch_flags |= I915_DISPATCH_SECURE;
2226
	}
2227
	if (args->flags & I915_EXEC_IS_PINNED)
2228
		eb.batch_flags |= I915_DISPATCH_PINNED;
2229

2230 2231
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2232 2233
		return -EINVAL;

2234
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2235
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2236 2237 2238
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2239
		if (eb.engine->id != RCS) {
2240
			DRM_DEBUG("RS is not available on %s\n",
2241
				 eb.engine->name);
2242 2243 2244
			return -EINVAL;
		}

2245
		eb.batch_flags |= I915_DISPATCH_RS;
2246 2247
	}

2248 2249
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2250 2251
		if (!in_fence)
			return -EINVAL;
2252 2253 2254 2255 2256
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2257
			err = out_fence_fd;
2258
			goto err_in_fence;
2259 2260 2261
		}
	}

2262 2263 2264 2265 2266
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2267

2268 2269 2270 2271
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2272 2273
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2274 2275 2276 2277 2278
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2279
	intel_runtime_pm_get(eb.i915);
2280

2281 2282 2283
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2284

2285
	err = eb_relocate(&eb);
2286
	if (err) {
2287 2288 2289 2290 2291 2292 2293 2294 2295
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2296
	}
2297

2298
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2299
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2300 2301
		err = -EINVAL;
		goto err_vma;
2302
	}
2303 2304
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2305
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2306 2307
		err = -EINVAL;
		goto err_vma;
2308
	}
2309

2310
	if (eb_use_cmdparser(&eb)) {
2311 2312
		struct i915_vma *vma;

2313
		vma = eb_parse(&eb, drm_is_current_master(file));
2314
		if (IS_ERR(vma)) {
2315 2316
			err = PTR_ERR(vma);
			goto err_vma;
2317
		}
2318

2319
		if (vma) {
2320 2321 2322 2323 2324 2325 2326 2327 2328
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2329
			eb.batch_flags |= I915_DISPATCH_SECURE;
2330 2331
			eb.batch_start_offset = 0;
			eb.batch = vma;
2332
		}
2333 2334
	}

2335 2336
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2337

2338 2339
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2340
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2341
	 * hsw should have this fixed, but bdw mucks it up again. */
2342
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2343
		struct i915_vma *vma;
2344

2345 2346 2347 2348 2349 2350
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2351
		 *   so we don't really have issues with multiple objects not
2352 2353 2354
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2355
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2356
		if (IS_ERR(vma)) {
2357 2358
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2359
		}
2360

2361
		eb.batch = vma;
2362
	}
2363

2364 2365 2366
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2367
	/* Allocate a request for this batch buffer nice and early. */
2368 2369
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2370
		err = PTR_ERR(eb.request);
2371
		goto err_batch_unpin;
2372
	}
2373

2374
	if (in_fence) {
2375 2376
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2377 2378 2379
			goto err_request;
	}

2380 2381 2382 2383 2384 2385
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2386
	if (out_fence_fd != -1) {
2387
		out_fence = sync_file_create(&eb.request->fence);
2388
		if (!out_fence) {
2389
			err = -ENOMEM;
2390 2391 2392 2393
			goto err_request;
		}
	}

2394 2395
	/*
	 * Whilst this request exists, batch_obj will be on the
2396 2397 2398 2399 2400
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2401
	eb.request->batch = eb.batch;
2402

2403 2404
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2405
err_request:
2406
	__i915_add_request(eb.request, err == 0);
2407
	add_to_client(eb.request, file);
2408

2409 2410 2411
	if (fences)
		signal_fence_array(&eb, fences);

2412
	if (out_fence) {
2413
		if (err == 0) {
2414
			fd_install(out_fence_fd, out_fence->file);
2415
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2416 2417 2418 2419 2420 2421
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2422

2423
err_batch_unpin:
2424
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2425
		i915_vma_unpin(eb.batch);
2426 2427 2428
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2429
	mutex_unlock(&dev->struct_mutex);
2430
err_rpm:
2431
	intel_runtime_pm_put(eb.i915);
2432 2433
	i915_gem_context_put(eb.ctx);
err_destroy:
2434
	eb_destroy(&eb);
2435
err_out_fence:
2436 2437
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2438
err_in_fence:
2439
	dma_fence_put(in_fence);
2440
	return err;
2441 2442
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2463 2464 2465 2466 2467
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2468 2469
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2470 2471 2472 2473 2474
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2475
	const size_t count = args->buffer_count;
2476 2477
	unsigned int i;
	int err;
2478

2479 2480
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2481 2482 2483
		return -EINVAL;
	}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2498
	/* Copy in the exec list from userland */
2499
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2500
				   __GFP_NOWARN | GFP_KERNEL);
2501
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2502
				    __GFP_NOWARN | GFP_KERNEL);
2503
	if (exec_list == NULL || exec2_list == NULL) {
2504
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2505
			  args->buffer_count);
M
Michal Hocko 已提交
2506 2507
		kvfree(exec_list);
		kvfree(exec2_list);
2508 2509
		return -ENOMEM;
	}
2510
	err = copy_from_user(exec_list,
2511
			     u64_to_user_ptr(args->buffers_ptr),
2512
			     sizeof(*exec_list) * count);
2513
	if (err) {
2514
		DRM_DEBUG("copy %d exec entries failed %d\n",
2515
			  args->buffer_count, err);
M
Michal Hocko 已提交
2516 2517
		kvfree(exec_list);
		kvfree(exec2_list);
2518 2519 2520 2521 2522 2523 2524 2525 2526
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2527
		if (INTEL_GEN(to_i915(dev)) < 4)
2528 2529 2530 2531 2532
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2533
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2534
	if (exec2.flags & __EXEC_HAS_RELOC) {
2535
		struct drm_i915_gem_exec_object __user *user_exec_list =
2536
			u64_to_user_ptr(args->buffers_ptr);
2537

2538
		/* Copy the new buffer offsets back to the user's exec list. */
2539
		for (i = 0; i < args->buffer_count; i++) {
2540 2541 2542
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2543
			exec2_list[i].offset =
2544 2545 2546 2547 2548
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2549
				break;
2550 2551 2552
		}
	}

M
Michal Hocko 已提交
2553 2554
	kvfree(exec_list);
	kvfree(exec2_list);
2555
	return err;
2556 2557 2558
}

int
2559 2560
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2561 2562
{
	struct drm_i915_gem_execbuffer2 *args = data;
2563
	struct drm_i915_gem_exec_object2 *exec2_list;
2564
	struct drm_syncobj **fences = NULL;
2565
	const size_t count = args->buffer_count;
2566
	int err;
2567

2568 2569
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2570 2571 2572
		return -EINVAL;
	}

2573 2574 2575 2576
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2577
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2578
				    __GFP_NOWARN | GFP_KERNEL);
2579
	if (exec2_list == NULL) {
2580 2581
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2582 2583
		return -ENOMEM;
	}
2584 2585
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2586 2587
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2588
		kvfree(exec2_list);
2589 2590 2591
		return -EFAULT;
	}

2592 2593 2594 2595 2596 2597 2598 2599 2600
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2601 2602 2603 2604 2605 2606 2607 2608

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2609
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2610 2611
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2612

2613 2614
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2615
		for (i = 0; i < args->buffer_count; i++) {
2616 2617 2618
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2619
			exec2_list[i].offset =
2620 2621 2622 2623
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2624
		}
2625 2626
end_user:
		user_access_end();
2627 2628
	}

2629
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2630
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2631
	kvfree(exec2_list);
2632
	return err;
2633
}