i915_gem_execbuffer.c 70.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

229
struct i915_execbuffer {
230 231 232 233
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
234 235
	struct i915_vma **vma;
	unsigned int *flags;
236 237 238 239 240

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

241
	struct i915_request *request; /** our request to build */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
258
	struct reloc_cache {
259 260 261
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
262
		unsigned int gen; /** Cached value of INTEL_GEN */
263
		bool use_64bit_reloc : 1;
264 265 266
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
267

268
		struct i915_request *rq;
269 270
		u32 *rq_cmd;
		unsigned int rq_size;
271
	} reloc_cache;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
287 288
};

289
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

310 311
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
312 313
	return intel_engine_requires_cmd_parser(eb->engine) ||
		(intel_engine_using_cmd_parser(eb->engine) && eb->batch_len);
314 315
}

316
static int eb_create(struct i915_execbuffer *eb)
317
{
318 319
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
320

321 322 323 324 325 326 327 328 329 330 331
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
332
		do {
333
			gfp_t flags;
334 335 336 337 338 339 340

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
341
			flags = GFP_KERNEL;
342 343 344
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

345
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
346
					      flags);
347 348 349 350
			if (eb->buckets)
				break;
		} while (--size);

351 352
		if (unlikely(!size))
			return -ENOMEM;
353

354
		eb->lut_size = size;
355
	} else {
356
		eb->lut_size = -eb->buffer_count;
357
	}
358

359
	return 0;
360 361
}

362 363
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
364 365
		 const struct i915_vma *vma,
		 unsigned int flags)
366 367 368 369 370 371 372
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

373
	if (flags & EXEC_OBJECT_PINNED &&
374 375 376
	    vma->node.start != entry->offset)
		return true;

377
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
378 379 380
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

381
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
382 383 384
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

385 386 387 388
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

389 390 391
	return false;
}

392
static inline bool
393
eb_pin_vma(struct i915_execbuffer *eb,
394
	   const struct drm_i915_gem_exec_object2 *entry,
395 396
	   struct i915_vma *vma)
{
397 398
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
399

400
	if (vma->node.size)
401
		pin_flags = vma->node.start;
402
	else
403
		pin_flags = entry->offset & PIN_OFFSET_MASK;
404

405 406 407
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
408

409 410
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
411

412
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
413
		if (unlikely(i915_vma_pin_fence(vma))) {
414
			i915_vma_unpin(vma);
415
			return false;
416 417
		}

418
		if (vma->fence)
419
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
420 421
	}

422 423
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
424 425
}

426
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
427
{
428
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
429

430
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
431
		__i915_vma_unpin_fence(vma);
432

433
	__i915_vma_unpin(vma);
434 435
}

436
static inline void
437
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
438
{
439
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
440
		return;
441

442 443
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
444 445
}

446 447 448 449
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
450
{
451 452
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
453

454 455 456 457 458 459 460 461
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
462
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
463 464 465 466 467 468 469 470
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
471 472
	}

473
	if (unlikely(vma->exec_flags)) {
474 475 476 477 478 479 480 481 482 483 484 485
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

486 487 488 489 490 491 492 493 494 495 496 497
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

498
	return 0;
499 500
}

501
static int
502 503 504
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
505
{
506
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
507 508 509 510 511 512 513 514
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
515 516
	}

517
	if (eb->lut_size > 0) {
518
		vma->exec_handle = entry->handle;
519
		hlist_add_head(&vma->exec_node,
520 521
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
522
	}
523

524 525 526 527 528 529 530 531 532
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
533
	eb->vma[i] = vma;
534
	eb->flags[i] = entry->flags;
535
	vma->exec_flags = &eb->flags[i];
536

537 538 539 540 541 542 543 544 545 546
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
547 548
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
549 550 551 552 553 554 555
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

556
	err = 0;
557
	if (eb_pin_vma(eb, entry, vma)) {
558 559 560 561
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
562 563 564 565 566 567
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
568 569
		if (unlikely(err))
			vma->exec_flags = NULL;
570 571 572 573 574 575 576 577 578 579
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

580 581 582 583 584
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
585 586 587 588 589 590 591 592 593

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
594 595 596
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
597 598
	int err;

599 600 601
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
602 603 604 605 606

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
607 608
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
609

610 611
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
612

613 614 615 616 617
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
618 619
	}

620 621 622
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
623 624 625 626 627 628 629 630
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

631
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
632
		err = i915_vma_pin_fence(vma);
633 634 635 636 637
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

638
		if (vma->fence)
639
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
640 641
	}

642 643
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
685 686
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
687

688 689
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
690 691
				continue;

692
			eb_unreserve_vma(vma, &eb->flags[i]);
693

694
			if (flags & EXEC_OBJECT_PINNED)
695
				list_add(&vma->exec_link, &eb->unbound);
696
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
718
}
719

720 721
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
722 723 724 725
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
726 727 728 729 730 731 732
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
733 734
	if (unlikely(!ctx))
		return -ENOENT;
735

736
	eb->ctx = ctx;
737
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
738 739 740 741 742 743 744 745 746

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
747
{
748
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
749
	struct drm_i915_gem_object *obj;
750
	unsigned int i, batch;
751
	int err;
752

753 754 755 756 757 758
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

759 760
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
761

762 763
	batch = eb_batch_index(eb);

764 765
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
766
		struct i915_lut_handle *lut;
767
		struct i915_vma *vma;
768

769 770
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
771
			goto add_vma;
772

773
		obj = i915_gem_object_lookup(eb->file, handle);
774
		if (unlikely(!obj)) {
775
			err = -ENOENT;
776
			goto err_vma;
777 778
		}

779
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
780
		if (unlikely(IS_ERR(vma))) {
781
			err = PTR_ERR(vma);
782
			goto err_obj;
783 784
		}

785 786 787 788 789 790 791 792
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
793
			kmem_cache_free(eb->i915->luts, lut);
794
			goto err_obj;
795
		}
796

797
		/* transfer ref to ctx */
798 799
		if (!vma->open_count++)
			i915_vma_reopen(vma);
800 801 802 803 804
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

805
add_vma:
806
		err = eb_add_vma(eb, i, batch, vma);
807
		if (unlikely(err))
808
			goto err_vma;
809

810 811
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
812 813
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
814 815
	}

816 817 818
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

819
err_obj:
820
	i915_gem_object_put(obj);
821 822
err_vma:
	eb->vma[i] = NULL;
823
	return err;
824 825
}

826
static struct i915_vma *
827
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
828
{
829 830
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
831
			return NULL;
832
		return eb->vma[handle];
833 834
	} else {
		struct hlist_head *head;
835
		struct i915_vma *vma;
836

837
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
838
		hlist_for_each_entry(vma, head, exec_node) {
839 840
			if (vma->exec_handle == handle)
				return vma;
841 842 843
		}
		return NULL;
	}
844 845
}

846
static void eb_release_vmas(const struct i915_execbuffer *eb)
847
{
848 849 850 851
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
852 853
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
854

855
		if (!vma)
856
			break;
857

858 859 860
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
861

862 863
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
864

865
		if (flags & __EXEC_OBJECT_HAS_REF)
866
			i915_vma_put(vma);
867
	}
868 869
}

870
static void eb_reset_vmas(const struct i915_execbuffer *eb)
871
{
872
	eb_release_vmas(eb);
873
	if (eb->lut_size > 0)
874 875
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
876 877
}

878
static void eb_destroy(const struct i915_execbuffer *eb)
879
{
880 881
	GEM_BUG_ON(eb->reloc_cache.rq);

882
	if (eb->lut_size > 0)
883
		kfree(eb->buckets);
884 885
}

886
static inline u64
887
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
888
		  const struct i915_vma *target)
889
{
890
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
891 892
}

893 894
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
895
{
896
	cache->page = -1;
897
	cache->vaddr = 0;
898
	/* Must be a variable in the struct to allow GCC to unroll. */
899
	cache->gen = INTEL_GEN(i915);
900
	cache->has_llc = HAS_LLC(i915);
901
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
902 903
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
904
	cache->node.allocated = false;
905 906
	cache->rq = NULL;
	cache->rq_size = 0;
907
}
908

909 910 911 912 913 914 915 916
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
917 918
}

919 920
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

921 922 923 924 925 926 927
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

928 929 930 931 932 933 934
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

935
	i915_request_add(cache->rq);
936 937 938
	cache->rq = NULL;
}

939
static void reloc_cache_reset(struct reloc_cache *cache)
940
{
941
	void *vaddr;
942

943 944 945
	if (cache->rq)
		reloc_gpu_flush(cache);

946 947
	if (!cache->vaddr)
		return;
948

949 950 951 952
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
953

954 955 956
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
957
		wmb();
958
		io_mapping_unmap_atomic((void __iomem *)vaddr);
959
		if (cache->node.allocated) {
960
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
961

962 963 964
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
965 966 967
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
968
		}
969
	}
970 971 972

	cache->vaddr = 0;
	cache->page = -1;
973 974 975 976
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
977
			unsigned long page)
978
{
979 980 981 982 983 984
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
985
		int err;
986

987 988 989
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
990 991 992

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
993

994 995 996 997
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
998 999
	}

1000 1001
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1002
	cache->page = page;
1003

1004
	return vaddr;
1005 1006
}

1007 1008
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1009
			 unsigned long page)
1010
{
1011
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1012
	unsigned long offset;
1013
	void *vaddr;
1014

1015
	if (cache->vaddr) {
1016
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1017 1018
	} else {
		struct i915_vma *vma;
1019
		int err;
1020

1021
		if (use_cpu_reloc(cache, obj))
1022
			return NULL;
1023

1024 1025 1026
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1027

1028
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1029 1030 1031
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1032 1033
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1034
			err = drm_mm_insert_node_in_range
1035
				(&ggtt->vm.mm, &cache->node,
1036
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1037
				 0, ggtt->mappable_end,
1038
				 DRM_MM_INSERT_LOW);
1039
			if (err) /* no inactive aperture space, use cpu reloc */
1040
				return NULL;
1041
		} else {
1042 1043
			err = i915_vma_put_fence(vma);
			if (err) {
1044
				i915_vma_unpin(vma);
1045
				return ERR_PTR(err);
1046
			}
1047

1048 1049
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1050
		}
1051
	}
1052

1053 1054
	offset = cache->node.start;
	if (cache->node.allocated) {
1055
		wmb();
1056 1057 1058
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1059 1060
	} else {
		offset += page << PAGE_SHIFT;
1061 1062
	}

1063
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1064
							 offset);
1065 1066
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1067

1068
	return vaddr;
1069 1070
}

1071 1072
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1073
			 unsigned long page)
1074
{
1075
	void *vaddr;
1076

1077 1078 1079 1080 1081 1082 1083 1084
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1085 1086
	}

1087
	return vaddr;
1088 1089
}

1090
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1091
{
1092 1093 1094 1095 1096
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1097

1098
		*addr = value;
1099

1100 1101
		/*
		 * Writes to the same cacheline are serialised by the CPU
1102 1103 1104 1105 1106 1107 1108 1109 1110
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1111 1112
}

1113 1114 1115 1116 1117 1118
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1119
	struct i915_request *rq;
1120 1121 1122 1123
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1124
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1125 1126 1127 1128 1129 1130

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1131 1132 1133
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1152
	rq = i915_request_alloc(eb->engine, eb->ctx);
1153 1154 1155 1156 1157
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1158
	err = i915_request_await_object(rq, vma->obj, true);
1159 1160 1161 1162 1163 1164 1165 1166 1167
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1168
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1169 1170 1171
	err = i915_vma_move_to_active(batch, rq, 0);
	if (err)
		goto skip_request;
1172

1173 1174 1175
	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
	if (err)
		goto skip_request;
1176 1177

	rq->batch = batch;
1178
	i915_vma_unpin(batch);
1179 1180 1181 1182 1183 1184 1185 1186

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1187 1188
skip_request:
	i915_request_skip(rq, err);
1189
err_request:
1190
	i915_request_add(rq);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1211 1212 1213 1214
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1215 1216 1217
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1229 1230
static u64
relocate_entry(struct i915_vma *vma,
1231
	       const struct drm_i915_gem_relocation_entry *reloc,
1232 1233
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1234
{
1235
	u64 offset = reloc->offset;
1236 1237
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1238
	void *vaddr;
1239

1240 1241
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1242
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1243 1244 1245 1246 1247 1248 1249 1250 1251
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1252
		else
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1299
repeat:
1300
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1301 1302 1303 1304 1305
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1306
			eb->reloc_cache.vaddr);
1307 1308 1309 1310 1311 1312

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1313 1314
	}

1315
out:
1316
	return target->node.start | UPDATE;
1317 1318
}

1319 1320 1321 1322
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1323
{
1324
	struct i915_vma *target;
1325
	int err;
1326

1327
	/* we've already hold a reference to all valid objects */
1328 1329
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1330
		return -ENOENT;
1331

1332
	/* Validate that the target is in a valid r/w GPU domain */
1333
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1334
		DRM_DEBUG("reloc with multiple write domains: "
1335
			  "target %d offset %d "
1336
			  "read %08x write %08x",
1337
			  reloc->target_handle,
1338 1339 1340
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1341
		return -EINVAL;
1342
	}
1343 1344
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1345
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1346
			  "target %d offset %d "
1347
			  "read %08x write %08x",
1348
			  reloc->target_handle,
1349 1350 1351
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1352
		return -EINVAL;
1353 1354
	}

1355
	if (reloc->write_domain) {
1356
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1372
	}
1373

1374 1375
	/*
	 * If the relocation already has the right value in it, no
1376 1377
	 * more work needs to be done.
	 */
1378 1379
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1380
		return 0;
1381 1382

	/* Check that the relocation address is valid... */
1383
	if (unlikely(reloc->offset >
1384
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1385
		DRM_DEBUG("Relocation beyond object bounds: "
1386 1387 1388 1389
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1390
		return -EINVAL;
1391
	}
1392
	if (unlikely(reloc->offset & 3)) {
1393
		DRM_DEBUG("Relocation not 4-byte aligned: "
1394 1395 1396
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1397
		return -EINVAL;
1398 1399
	}

1400 1401 1402 1403 1404 1405
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1406
	 * out of our synchronisation.
1407
	 */
1408
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1409

1410
	/* and update the user's relocation entry */
1411
	return relocate_entry(vma, reloc, eb, target);
1412 1413
}

1414
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1415
{
1416
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1417 1418
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1419
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1420
	unsigned int remain;
1421

1422
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1423
	remain = entry->relocation_count;
1424 1425
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1426

1427 1428 1429 1430 1431
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1432
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1433 1434 1435 1436 1437 1438 1439
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1440

1441 1442
		/*
		 * This is the fast path and we cannot handle a pagefault
1443 1444 1445 1446 1447 1448 1449
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1450
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1451
		pagefault_enable();
1452 1453
		if (unlikely(copied)) {
			remain = -EFAULT;
1454 1455
			goto out;
		}
1456

1457
		remain -= count;
1458
		do {
1459
			u64 offset = eb_relocate_entry(eb, vma, r);
1460

1461 1462 1463
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1464
				goto out;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1490
			}
1491 1492 1493
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1494
out:
1495
	reloc_cache_reset(&eb->reloc_cache);
1496
	return remain;
1497 1498 1499
}

static int
1500
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1501
{
1502
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1503 1504 1505 1506
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1507 1508

	for (i = 0; i < entry->relocation_count; i++) {
1509
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1510

1511 1512 1513 1514
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1515
	}
1516 1517 1518 1519
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1520 1521
}

1522
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1523
{
1524 1525 1526
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1527

1528 1529 1530
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1531

1532 1533
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1534

1535 1536 1537 1538
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1539

1540 1541 1542 1543 1544
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1545
	}
1546
	return __get_user(c, end - 1);
1547
}
1548

1549
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1550
{
1551 1552 1553
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1554

1555 1556 1557 1558 1559 1560
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1561

1562 1563
		if (nreloc == 0)
			continue;
1564

1565 1566 1567
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1568

1569 1570
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1571

1572
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1573 1574 1575 1576 1577
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1578

1579 1580 1581 1582 1583 1584 1585
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1586
					     (char __user *)urelocs + copied,
1587 1588 1589 1590 1591
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1592

1593 1594
			copied += len;
		} while (copied < size);
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1613

1614 1615
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1616

1617
	return 0;
1618

1619 1620 1621 1622 1623 1624 1625 1626
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1627 1628
}

1629
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1630
{
1631 1632
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1633

1634
	if (unlikely(i915_modparams.prefault_disable))
1635
		return 0;
1636

1637 1638
	for (i = 0; i < count; i++) {
		int err;
1639

1640 1641 1642 1643
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1644

1645
	return 0;
1646 1647
}

1648
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1649
{
1650
	struct drm_device *dev = &eb->i915->drm;
1651
	bool have_copy = false;
1652
	struct i915_vma *vma;
1653 1654 1655 1656 1657 1658 1659
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1660

1661
	/* We may process another execbuffer during the unlock... */
1662
	eb_reset_vmas(eb);
1663 1664
	mutex_unlock(&dev->struct_mutex);

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1686
	}
1687 1688 1689
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1690 1691
	}

1692 1693 1694
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1695 1696
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1697
		mutex_lock(&dev->struct_mutex);
1698
		goto out;
1699 1700
	}

1701
	/* reacquire the objects */
1702 1703
	err = eb_lookup_vmas(eb);
	if (err)
1704
		goto err;
1705

1706 1707
	GEM_BUG_ON(!eb->batch);

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1720 1721
	}

1722 1723
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1724 1725 1726 1727 1728 1729
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1751
	return err;
1752 1753
}

1754
static int eb_relocate(struct i915_execbuffer *eb)
1755
{
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1780

1781
	for (i = 0; i < count; i++) {
1782 1783
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1784
		struct drm_i915_gem_object *obj = vma->obj;
1785

1786
		if (flags & EXEC_OBJECT_CAPTURE) {
1787
			struct i915_capture_list *capture;
1788 1789 1790 1791 1792

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1793
			capture->next = eb->request->capture_list;
1794
			capture->vma = eb->vma[i];
1795
			eb->request->capture_list = capture;
1796 1797
		}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1811
			if (i915_gem_clflush_object(obj, 0))
1812
				flags &= ~EXEC_OBJECT_ASYNC;
1813 1814
		}

1815 1816
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1817

1818
		err = i915_request_await_object
1819
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1820 1821 1822 1823 1824
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1825 1826 1827
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

1828 1829 1830 1831 1832
		err = i915_vma_move_to_active(vma, eb->request, flags);
		if (unlikely(err)) {
			i915_request_skip(eb->request, err);
			return err;
		}
1833

1834 1835 1836 1837
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1838
			i915_vma_put(vma);
1839
	}
1840
	eb->exec = NULL;
1841

1842
	/* Unconditionally flush any chipset caches (for streaming writes). */
1843
	i915_gem_chipset_flush(eb->i915);
1844

1845
	return 0;
1846 1847
}

1848
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1849
{
1850
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1851 1852
		return false;

C
Chris Wilson 已提交
1853
	/* Kernel clipping was a DRI1 misfeature */
1854 1855 1856 1857
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1870 1871
}

1872
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1873
{
1874 1875
	u32 *cs;
	int i;
1876

1877
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1878 1879 1880
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1881

1882
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1883 1884
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1885

1886
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1887
	for (i = 0; i < 4; i++) {
1888 1889
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1890
	}
1891
	*cs++ = MI_NOOP;
1892
	intel_ring_advance(rq, cs);
1893 1894 1895 1896

	return 0;
}

1897
static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
1898 1899
{
	struct drm_i915_gem_object *shadow_batch_obj;
1900
	struct i915_vma *vma;
1901
	int err;
1902

1903 1904
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1905
	if (IS_ERR(shadow_batch_obj))
1906
		return ERR_CAST(shadow_batch_obj);
1907

1908
	err = intel_engine_cmd_parser(eb->engine,
1909
				      eb->batch->obj,
1910
				      shadow_batch_obj,
1911
				      eb->batch_start_offset,
1912
				      eb->batch_len);
1913 1914
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1915 1916
			vma = NULL;
		else
1917
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1918 1919
		goto out;
	}
1920

C
Chris Wilson 已提交
1921 1922 1923
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1924

1925 1926 1927 1928 1929
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1930

C
Chris Wilson 已提交
1931
out:
C
Chris Wilson 已提交
1932
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1933
	return vma;
1934
}
1935

1936
static void
1937
add_to_client(struct i915_request *rq, struct drm_file *file)
1938
{
1939 1940
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1941 1942
}

1943
static int eb_submit(struct i915_execbuffer *eb)
1944
{
1945
	int err;
1946

1947 1948 1949
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1950

1951
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1952 1953 1954
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1955 1956
	}

1957
	err = eb->engine->emit_bb_start(eb->request,
1958 1959 1960
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1961 1962 1963
					eb->batch_flags);
	if (err)
		return err;
1964

C
Chris Wilson 已提交
1965
	return 0;
1966 1967
}

1968
/*
1969
 * Find one BSD ring to dispatch the corresponding BSD command.
1970
 * The engine index is returned.
1971
 */
1972
static unsigned int
1973 1974
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1975 1976 1977
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1978
	/* Check whether the file_priv has already selected one ring. */
1979 1980 1981
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1982

1983
	return file_priv->bsd_engine;
1984 1985
}

1986 1987
#define I915_USER_RINGS (4)

1988
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1989 1990 1991 1992 1993 1994 1995
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

1996 1997 1998 1999
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2000 2001
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2002
	struct intel_engine_cs *engine;
2003 2004 2005

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2006
		return NULL;
2007 2008 2009 2010 2011 2012
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2013
		return NULL;
2014 2015 2016 2017 2018 2019
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2020
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2021 2022
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2023
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2024 2025 2026 2027
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2028
			return NULL;
2029 2030
		}

2031
		engine = dev_priv->engine[_VCS(bsd_idx)];
2032
	} else {
2033
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2034 2035
	}

2036
	if (!engine) {
2037
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2038
		return NULL;
2039 2040
	}

2041
	return engine;
2042 2043
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2056
	const unsigned long nfences = args->num_cliprects;
2057 2058
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2059
	unsigned long n;
2060 2061 2062 2063 2064
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2065 2066 2067 2068 2069
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2070 2071 2072
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2073
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2074 2075
		return ERR_PTR(-EFAULT);

2076
	fences = kvmalloc_array(nfences, sizeof(*fences),
2077
				__GFP_NOWARN | GFP_KERNEL);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2090 2091 2092 2093 2094
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2095 2096 2097 2098 2099 2100 2101
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2102 2103 2104
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2140
		fence = drm_syncobj_fence_get(syncobj);
2141 2142 2143
		if (!fence)
			return -EINVAL;

2144
		err = i915_request_await_dma_fence(eb->request, fence);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2173
static int
2174
i915_gem_do_execbuffer(struct drm_device *dev,
2175 2176
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2177 2178
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2179
{
2180
	struct drm_i915_private *i915 = to_i915(dev);
2181
	struct i915_execbuffer eb;
2182 2183 2184
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2185
	int err;
2186

2187
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2188 2189
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2190

2191
	eb.i915 = i915;
2192 2193
	eb.file = file;
	eb.args = args;
2194
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2195
		args->flags |= __EXEC_HAS_RELOC;
2196

2197
	eb.exec = exec;
2198 2199
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2200 2201
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2202 2203 2204
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2205 2206
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2207
	eb.buffer_count = args->buffer_count;
2208 2209 2210
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2211
	eb.batch_flags = 0;
2212
	if (args->flags & I915_EXEC_SECURE) {
2213 2214 2215 2216 2217 2218 2219
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2220
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2221
			return -EPERM;
2222

2223
		eb.batch_flags |= I915_DISPATCH_SECURE;
2224
	}
2225
	if (args->flags & I915_EXEC_IS_PINNED)
2226
		eb.batch_flags |= I915_DISPATCH_PINNED;
2227

2228 2229
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2230 2231
		return -EINVAL;

2232
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2233
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2234 2235 2236
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2237
		if (eb.engine->id != RCS) {
2238
			DRM_DEBUG("RS is not available on %s\n",
2239
				 eb.engine->name);
2240 2241 2242
			return -EINVAL;
		}

2243
		eb.batch_flags |= I915_DISPATCH_RS;
2244 2245
	}

2246 2247
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2248 2249
		if (!in_fence)
			return -EINVAL;
2250 2251 2252 2253 2254
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2255
			err = out_fence_fd;
2256
			goto err_in_fence;
2257 2258 2259
		}
	}

2260 2261 2262 2263 2264
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2265

2266 2267 2268 2269
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2270 2271
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2272 2273 2274 2275 2276
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2277
	intel_runtime_pm_get(eb.i915);
2278

2279 2280 2281
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2282

2283
	err = eb_relocate(&eb);
2284
	if (err) {
2285 2286 2287 2288 2289 2290 2291 2292 2293
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2294
	}
2295

2296
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2297
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2298 2299
		err = -EINVAL;
		goto err_vma;
2300
	}
2301 2302
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2303
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2304 2305
		err = -EINVAL;
		goto err_vma;
2306
	}
2307

2308
	if (eb_use_cmdparser(&eb)) {
2309 2310
		struct i915_vma *vma;

2311
		vma = eb_parse(&eb);
2312
		if (IS_ERR(vma)) {
2313 2314
			err = PTR_ERR(vma);
			goto err_vma;
2315
		}
2316

2317
		if (vma) {
2318 2319 2320 2321 2322 2323 2324 2325 2326
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2327
			eb.batch_flags |= I915_DISPATCH_SECURE;
2328 2329
			eb.batch_start_offset = 0;
			eb.batch = vma;
2330
		}
2331 2332
	}

2333 2334
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2335

2336 2337
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2338
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2339
	 * hsw should have this fixed, but bdw mucks it up again. */
2340
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2341
		struct i915_vma *vma;
2342

2343 2344 2345 2346 2347 2348
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2349
		 *   so we don't really have issues with multiple objects not
2350 2351 2352
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2353
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2354
		if (IS_ERR(vma)) {
2355 2356
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2357
		}
2358

2359
		eb.batch = vma;
2360
	}
2361

2362 2363 2364
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2365
	/* Allocate a request for this batch buffer nice and early. */
2366
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2367
	if (IS_ERR(eb.request)) {
2368
		err = PTR_ERR(eb.request);
2369
		goto err_batch_unpin;
2370
	}
2371

2372
	if (in_fence) {
2373
		err = i915_request_await_dma_fence(eb.request, in_fence);
2374
		if (err < 0)
2375 2376 2377
			goto err_request;
	}

2378 2379 2380 2381 2382 2383
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2384
	if (out_fence_fd != -1) {
2385
		out_fence = sync_file_create(&eb.request->fence);
2386
		if (!out_fence) {
2387
			err = -ENOMEM;
2388 2389 2390 2391
			goto err_request;
		}
	}

2392 2393
	/*
	 * Whilst this request exists, batch_obj will be on the
2394 2395 2396 2397 2398
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2399
	eb.request->batch = eb.batch;
2400

2401
	trace_i915_request_queue(eb.request, eb.batch_flags);
2402
	err = eb_submit(&eb);
2403
err_request:
2404
	i915_request_add(eb.request);
2405
	add_to_client(eb.request, file);
2406

2407 2408 2409
	if (fences)
		signal_fence_array(&eb, fences);

2410
	if (out_fence) {
2411
		if (err == 0) {
2412
			fd_install(out_fence_fd, out_fence->file);
2413
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2414 2415 2416 2417 2418 2419
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2420

2421
err_batch_unpin:
2422
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2423
		i915_vma_unpin(eb.batch);
2424 2425 2426
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2427
	mutex_unlock(&dev->struct_mutex);
2428
err_rpm:
2429
	intel_runtime_pm_put(eb.i915);
2430 2431
	i915_gem_context_put(eb.ctx);
err_destroy:
2432
	eb_destroy(&eb);
2433
err_out_fence:
2434 2435
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2436
err_in_fence:
2437
	dma_fence_put(in_fence);
2438
	return err;
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2461 2462 2463 2464 2465
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2466 2467
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2468 2469 2470 2471 2472
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2473
	const size_t count = args->buffer_count;
2474 2475
	unsigned int i;
	int err;
2476

2477 2478
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2479 2480 2481
		return -EINVAL;
	}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2496
	/* Copy in the exec list from userland */
2497
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2498
				   __GFP_NOWARN | GFP_KERNEL);
2499
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2500
				    __GFP_NOWARN | GFP_KERNEL);
2501
	if (exec_list == NULL || exec2_list == NULL) {
2502
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2503
			  args->buffer_count);
M
Michal Hocko 已提交
2504 2505
		kvfree(exec_list);
		kvfree(exec2_list);
2506 2507
		return -ENOMEM;
	}
2508
	err = copy_from_user(exec_list,
2509
			     u64_to_user_ptr(args->buffers_ptr),
2510
			     sizeof(*exec_list) * count);
2511
	if (err) {
2512
		DRM_DEBUG("copy %d exec entries failed %d\n",
2513
			  args->buffer_count, err);
M
Michal Hocko 已提交
2514 2515
		kvfree(exec_list);
		kvfree(exec2_list);
2516 2517 2518 2519 2520 2521 2522 2523 2524
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2525
		if (INTEL_GEN(to_i915(dev)) < 4)
2526 2527 2528 2529 2530
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2531
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2532
	if (exec2.flags & __EXEC_HAS_RELOC) {
2533
		struct drm_i915_gem_exec_object __user *user_exec_list =
2534
			u64_to_user_ptr(args->buffers_ptr);
2535

2536
		/* Copy the new buffer offsets back to the user's exec list. */
2537
		for (i = 0; i < args->buffer_count; i++) {
2538 2539 2540
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2541
			exec2_list[i].offset =
2542 2543 2544 2545 2546
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2547
				break;
2548 2549 2550
		}
	}

M
Michal Hocko 已提交
2551 2552
	kvfree(exec_list);
	kvfree(exec2_list);
2553
	return err;
2554 2555 2556
}

int
2557 2558
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2559 2560
{
	struct drm_i915_gem_execbuffer2 *args = data;
2561
	struct drm_i915_gem_exec_object2 *exec2_list;
2562
	struct drm_syncobj **fences = NULL;
2563
	const size_t count = args->buffer_count;
2564
	int err;
2565

2566 2567
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2568 2569 2570
		return -EINVAL;
	}

2571 2572 2573 2574
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2575
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2576
				    __GFP_NOWARN | GFP_KERNEL);
2577
	if (exec2_list == NULL) {
2578 2579
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2580 2581
		return -ENOMEM;
	}
2582 2583
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2584 2585
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2586
		kvfree(exec2_list);
2587 2588 2589
		return -EFAULT;
	}

2590 2591 2592 2593 2594 2595 2596 2597 2598
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2599 2600 2601 2602 2603 2604 2605 2606

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2607
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2608 2609
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2610

2611 2612
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2613
		for (i = 0; i < args->buffer_count; i++) {
2614 2615 2616
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2617
			exec2_list[i].offset =
2618 2619 2620 2621
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2622
		}
2623 2624
end_user:
		user_access_end();
2625 2626
	}

2627
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2628
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2629
	kvfree(exec2_list);
2630
	return err;
2631
}