i915_gem_execbuffer.c 63.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34 35
#include <drm/drmP.h>
#include <drm/i915_drm.h>
36

37
#include "i915_drv.h"
38
#include "i915_gem_clflush.h"
39 40
#include "i915_trace.h"
#include "intel_drv.h"
41
#include "intel_frontbuffer.h"
42

43 44
#define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */

45 46 47 48 49 50
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
51 52 53 54 55
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
56 57

#define BATCH_OFFSET_BIAS (256*1024)
58

59 60
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

184
struct i915_execbuffer {
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
211
	struct reloc_cache {
212 213 214
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
215
		bool use_64bit_reloc : 1;
216 217 218
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
219
	} reloc_cache;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
235 236
};

237 238 239 240 241 242 243 244
/*
 * As an alternative to creating a hashtable of handle-to-vma for a batch,
 * we used the last available reserved field in the execobject[] and stash
 * a link from the execobj to its vma.
 */
#define __exec_to_vma(ee) (ee)->rsvd2
#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

264
static int eb_create(struct i915_execbuffer *eb)
265
{
266 267
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
268

269 270 271 272 273 274 275 276 277 278 279
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
		do {
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
					      GFP_TEMPORARY |
					      __GFP_NORETRY |
					      __GFP_NOWARN);
			if (eb->buckets)
				break;
		} while (--size);

		if (unlikely(!eb->buckets)) {
			eb->buckets = kzalloc(sizeof(struct hlist_head),
					      GFP_TEMPORARY);
			if (unlikely(!eb->buckets))
				return -ENOMEM;
		}
295

296
		eb->lut_size = size;
297
	} else {
298
		eb->lut_size = -eb->buffer_count;
299
	}
300

301
	return 0;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
		 const struct i915_vma *vma)
{
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return true;

	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

	if (entry->flags & EXEC_OBJECT_PINNED &&
	    vma->node.start != entry->offset)
		return true;

	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

static inline void
eb_pin_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
{
	u64 flags;

	flags = vma->node.start;
	flags |= PIN_USER | PIN_NONBLOCK | PIN_OFFSET_FIXED;
	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
		flags |= PIN_GLOBAL;
	if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
		return;

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
			return;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
}

359 360 361 362
static inline void
__eb_unreserve_vma(struct i915_vma *vma,
		   const struct drm_i915_gem_exec_object2 *entry)
{
363 364
	GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));

365 366 367
	if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
		i915_vma_unpin_fence(vma);

368
	__i915_vma_unpin(vma);
369 370
}

371 372 373
static inline void
eb_unreserve_vma(struct i915_vma *vma,
		 struct drm_i915_gem_exec_object2 *entry)
374
{
375 376
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return;
377 378

	__eb_unreserve_vma(vma, entry);
379
	entry->flags &= ~__EXEC_OBJECT_RESERVED;
380 381
}

382 383 384 385
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
386
{
387 388
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
407 408
	}

409 410 411 412 413 414 415 416 417 418 419 420 421 422
	if (unlikely(vma->exec_entry)) {
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

	return 0;
423 424
}

425 426 427 428
static int
eb_add_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
429
{
430 431 432 433 434 435 436 437
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
438 439
	}

440 441
	if (eb->lut_size >= 0) {
		vma->exec_handle = entry->handle;
442
		hlist_add_head(&vma->exec_node,
443 444
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
445
	}
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
	vma->exec_entry = entry;
469
	__exec_to_vma(entry) = (uintptr_t)vma;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

	err = 0;
	if (vma->node.size)
		eb_pin_vma(eb, entry, vma);
	if (eb_vma_misplaced(entry, vma)) {
		eb_unreserve_vma(vma, entry);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
	} else {
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_USE_CPU_RELOC)
		return DBG_USE_CPU_RELOC > 0;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	u64 flags;
	int err;

	flags = PIN_USER | PIN_NONBLOCK;
	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
		flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		flags |= PIN_ZONE_4G;

	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
		flags |= PIN_MAPPABLE;

	if (entry->flags & EXEC_OBJECT_PINNED) {
		flags |= entry->offset | PIN_OFFSET_FIXED;
		flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
	} else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
		flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
	}

	err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma));

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];

			if (entry->flags & EXEC_OBJECT_PINNED &&
			    entry->flags & __EXEC_OBJECT_HAS_PIN)
				continue;

			vma = exec_to_vma(entry);
			eb_unreserve_vma(vma, entry);

			if (entry->flags & EXEC_OBJECT_PINNED)
				list_add(&vma->exec_link, &eb->unbound);
			else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
627
}
628

629
static inline struct hlist_head *
630
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
631
{
632
	return &lut->ht[hash_32(handle, lut->ht_bits)];
633 634 635
}

static inline bool
636
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
637
{
638 639
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
640 641
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
	return eb->buffer_count - 1;
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
	if (unlikely(IS_ERR(ctx)))
		return PTR_ERR(ctx);

	if (unlikely(i915_gem_context_is_banned(ctx))) {
		DRM_DEBUG("Context %u tried to submit while banned\n",
			  ctx->user_handle);
		return -EIO;
	}

	eb->ctx = i915_gem_context_get(ctx);
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
672
{
673
#define INTERMEDIATE BIT(0)
674 675
	const unsigned int count = eb->buffer_count;
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
676
	struct i915_vma *vma;
677 678
	struct idr *idr;
	unsigned int i;
679
	int slow_pass = -1;
680
	int err;
681

682 683
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
684

685 686 687
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
688 689 690 691 692

	for (i = 0; i < count; i++) {
		__exec_to_vma(&eb->exec[i]) = 0;

		hlist_for_each_entry(vma,
693
				     ht_head(lut, eb->exec[i].handle),
694 695 696 697
				     ctx_node) {
			if (vma->ctx_handle != eb->exec[i].handle)
				continue;

698 699 700
			err = eb_add_vma(eb, &eb->exec[i], vma);
			if (unlikely(err))
				return err;
701 702 703 704 705 706 707 708 709 710

			goto next_vma;
		}

		if (slow_pass < 0)
			slow_pass = i;
next_vma: ;
	}

	if (slow_pass < 0)
711
		goto out;
712

713
	spin_lock(&eb->file->table_lock);
714 715 716 717 718
	/*
	 * Grab a reference to the object and release the lock so we can lookup
	 * or create the VMA without using GFP_ATOMIC
	 */
	idr = &eb->file->object_idr;
719 720
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
721

722 723 724
		if (__exec_to_vma(&eb->exec[i]))
			continue;

725
		obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
726
		if (unlikely(!obj)) {
727
			spin_unlock(&eb->file->table_lock);
728 729
			DRM_DEBUG("Invalid object handle %d at index %d\n",
				  eb->exec[i].handle, i);
730 731
			err = -ENOENT;
			goto err;
732 733
		}

734
		__exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
735
	}
736
	spin_unlock(&eb->file->table_lock);
737

738 739
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
740

741
		if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
742
			continue;
743

744 745 746 747 748 749 750 751
		/*
		 * NOTE: We can leak any vmas created here when something fails
		 * later on. But that's no issue since vma_unbind can deal with
		 * vmas which are not actually bound. And since only
		 * lookup_or_create exists as an interface to get at the vma
		 * from the (obj, vm) we don't run the risk of creating
		 * duplicated vmas for the same vm.
		 */
752
		obj = u64_to_ptr(typeof(*obj),
753
				 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
754
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
755
		if (unlikely(IS_ERR(vma))) {
756
			DRM_DEBUG("Failed to lookup VMA\n");
757 758
			err = PTR_ERR(vma);
			goto err;
759 760
		}

761 762 763 764 765
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
			vma->ctx_handle = eb->exec[i].handle;
			hlist_add_head(&vma->ctx_node,
766 767 768
				       ht_head(lut, eb->exec[i].handle));
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
769 770 771 772
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
773 774

			i915_vma_get(vma);
775
		}
776

777 778 779
		err = eb_add_vma(eb, &eb->exec[i], vma);
		if (unlikely(err))
			goto err;
780 781 782 783 784 785

		/* Only after we validated the user didn't use our bits */
		if (vma->ctx != eb->ctx) {
			i915_vma_get(vma);
			eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
		}
786 787
	}

788 789 790 791 792
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
793 794
	}

795 796 797 798
out:
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
	eb->batch = exec_to_vma(&eb->exec[i]);
799

800
	/*
801 802 803 804 805 806 807
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
808
	 */
809 810 811 812
	if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
		eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
	if (eb->reloc_cache.has_fence)
		eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
813

814 815 816 817 818 819 820 821 822 823 824
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

err:
	for (i = slow_pass; i < count; i++) {
		if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
			__exec_to_vma(&eb->exec[i]) = 0;
	}
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
#undef INTERMEDIATE
825 826
}

827
static struct i915_vma *
828
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
829
{
830 831
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
832
			return NULL;
833
		return exec_to_vma(&eb->exec[handle]);
834 835
	} else {
		struct hlist_head *head;
836
		struct i915_vma *vma;
837

838
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
839
		hlist_for_each_entry(vma, head, exec_node) {
840 841
			if (vma->exec_handle == handle)
				return vma;
842 843 844
		}
		return NULL;
	}
845 846
}

847
static void eb_release_vmas(const struct i915_execbuffer *eb)
848
{
849 850 851 852 853 854
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
855

856
		if (!vma)
857
			continue;
858

859
		GEM_BUG_ON(vma->exec_entry != entry);
860
		vma->exec_entry = NULL;
861

862 863 864 865 866
		if (entry->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, entry);

		if (entry->flags & __EXEC_OBJECT_HAS_REF)
			i915_vma_put(vma);
867

868 869
		entry->flags &=
			~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
870
	}
871 872
}

873
static void eb_reset_vmas(const struct i915_execbuffer *eb)
874
{
875 876 877 878
	eb_release_vmas(eb);
	if (eb->lut_size >= 0)
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
879 880
}

881
static void eb_destroy(const struct i915_execbuffer *eb)
882
{
883 884
	if (eb->lut_size >= 0)
		kfree(eb->buckets);
885 886
}

887
static inline u64
888
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
889
		  const struct i915_vma *target)
890
{
891
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
892 893
}

894 895
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
896
{
897
	cache->page = -1;
898
	cache->vaddr = 0;
899
	/* Must be a variable in the struct to allow GCC to unroll. */
900 901 902
	cache->has_llc = HAS_LLC(i915);
	cache->has_fence = INTEL_GEN(i915) < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
903
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
904
	cache->node.allocated = false;
905
}
906

907 908 909 910 911 912 913 914
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
915 916
}

917 918
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

919 920 921 922 923 924 925 926
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

static void reloc_cache_reset(struct reloc_cache *cache)
927
{
928
	void *vaddr;
929

930 931
	if (!cache->vaddr)
		return;
932

933 934 935 936
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
937

938 939 940
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
941
		wmb();
942
		io_mapping_unmap_atomic((void __iomem *)vaddr);
943
		if (cache->node.allocated) {
944
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
945 946 947

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
948
					       cache->node.size);
949 950 951
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
952
		}
953
	}
954 955 956

	cache->vaddr = 0;
	cache->page = -1;
957 958 959 960
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
961
			unsigned long page)
962
{
963 964 965 966 967 968
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
969
		int err;
970

971 972 973
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
974 975 976

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
977

978 979 980 981
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
982 983
	}

984 985
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
986
	cache->page = page;
987

988
	return vaddr;
989 990
}

991 992
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
993
			 unsigned long page)
994
{
995
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
996
	unsigned long offset;
997
	void *vaddr;
998

999
	if (cache->vaddr) {
1000
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1001 1002
	} else {
		struct i915_vma *vma;
1003
		int err;
1004

1005
		if (use_cpu_reloc(cache, obj))
1006
			return NULL;
1007

1008 1009 1010
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1011

1012 1013
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1014 1015
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1016
			err = drm_mm_insert_node_in_range
1017
				(&ggtt->base.mm, &cache->node,
1018
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1019
				 0, ggtt->mappable_end,
1020
				 DRM_MM_INSERT_LOW);
1021
			if (err) /* no inactive aperture space, use cpu reloc */
1022
				return NULL;
1023
		} else {
1024 1025
			err = i915_vma_put_fence(vma);
			if (err) {
1026
				i915_vma_unpin(vma);
1027
				return ERR_PTR(err);
1028
			}
1029

1030 1031
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1032
		}
1033
	}
1034

1035 1036
	offset = cache->node.start;
	if (cache->node.allocated) {
1037
		wmb();
1038 1039 1040 1041 1042
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1043 1044
	}

1045 1046
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1047 1048
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1049

1050
	return vaddr;
1051 1052
}

1053 1054
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1055
			 unsigned long page)
1056
{
1057
	void *vaddr;
1058

1059 1060 1061 1062 1063 1064 1065 1066
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1067 1068
	}

1069
	return vaddr;
1070 1071
}

1072
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1073
{
1074 1075 1076 1077 1078
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1079

1080
		*addr = value;
1081

1082 1083
		/*
		 * Writes to the same cacheline are serialised by the CPU
1084 1085 1086 1087 1088 1089 1090 1091 1092
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1093 1094
}

1095 1096
static u64
relocate_entry(struct i915_vma *vma,
1097
	       const struct drm_i915_gem_relocation_entry *reloc,
1098 1099
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1100
{
1101
	struct drm_i915_gem_object *obj = vma->obj;
1102
	u64 offset = reloc->offset;
1103 1104
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1105
	void *vaddr;
1106

1107
repeat:
1108
	vaddr = reloc_vaddr(obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1109 1110 1111 1112 1113
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1114
			eb->reloc_cache.vaddr);
1115 1116 1117 1118 1119 1120

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1121 1122
	}

1123
	return target->node.start | UPDATE;
1124 1125
}

1126 1127 1128 1129
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1130
{
1131
	struct i915_vma *target;
1132
	int err;
1133

1134
	/* we've already hold a reference to all valid objects */
1135 1136
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1137
		return -ENOENT;
1138

1139
	/* Validate that the target is in a valid r/w GPU domain */
1140
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1141
		DRM_DEBUG("reloc with multiple write domains: "
1142
			  "target %d offset %d "
1143
			  "read %08x write %08x",
1144
			  reloc->target_handle,
1145 1146 1147
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1148
		return -EINVAL;
1149
	}
1150 1151
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1152
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1153
			  "target %d offset %d "
1154
			  "read %08x write %08x",
1155
			  reloc->target_handle,
1156 1157 1158
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1159
		return -EINVAL;
1160 1161
	}

1162
	if (reloc->write_domain) {
1163 1164
		target->exec_entry->flags |= EXEC_OBJECT_WRITE;

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1179
	}
1180

1181 1182
	/*
	 * If the relocation already has the right value in it, no
1183 1184
	 * more work needs to be done.
	 */
1185
	if (gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1186
		return 0;
1187 1188

	/* Check that the relocation address is valid... */
1189
	if (unlikely(reloc->offset >
1190
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1191
		DRM_DEBUG("Relocation beyond object bounds: "
1192 1193 1194 1195
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1196
		return -EINVAL;
1197
	}
1198
	if (unlikely(reloc->offset & 3)) {
1199
		DRM_DEBUG("Relocation not 4-byte aligned: "
1200 1201 1202
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1203
		return -EINVAL;
1204 1205
	}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
	vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;

1216
	/* and update the user's relocation entry */
1217
	return relocate_entry(vma, reloc, eb, target);
1218 1219
}

1220
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1221
{
1222
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1223 1224 1225 1226
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	unsigned int remain;
1227

1228
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1229
	remain = entry->relocation_count;
1230 1231
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(urelocs))))
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1246

1247 1248
		/*
		 * This is the fast path and we cannot handle a pagefault
1249 1250 1251 1252 1253 1254 1255
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1256
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1257
		pagefault_enable();
1258 1259
		if (unlikely(copied)) {
			remain = -EFAULT;
1260 1261
			goto out;
		}
1262

1263
		remain -= count;
1264
		do {
1265
			u64 offset = eb_relocate_entry(eb, vma, r);
1266

1267 1268 1269
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1270
				goto out;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1296
			}
1297 1298 1299
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1300
out:
1301
	reloc_cache_reset(&eb->reloc_cache);
1302
	return remain;
1303 1304 1305
}

static int
1306
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1307
{
1308
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1309 1310 1311 1312
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1313 1314

	for (i = 0; i < entry->relocation_count; i++) {
1315
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1316

1317 1318 1319 1320
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1321
	}
1322 1323 1324 1325
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1326 1327
}

1328
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1329
{
1330 1331 1332
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1333

1334 1335 1336
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1337

1338 1339
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1340

1341 1342 1343 1344
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1345

1346 1347 1348 1349 1350
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1351
	}
1352
	return __get_user(c, end - 1);
1353
}
1354

1355
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1356
{
1357 1358 1359
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1360

1361 1362 1363 1364 1365 1366
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1367

1368 1369
		if (nreloc == 0)
			continue;
1370

1371 1372 1373
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1374

1375 1376
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1377

1378 1379 1380 1381 1382 1383
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1398

1399 1400
			copied += len;
		} while (copied < size);
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1419

1420 1421
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1422

1423
	return 0;
1424

1425 1426 1427 1428 1429 1430 1431 1432
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1433 1434
}

1435
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1436
{
1437 1438
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1439

1440 1441
	if (unlikely(i915.prefault_disable))
		return 0;
1442

1443 1444
	for (i = 0; i < count; i++) {
		int err;
1445

1446 1447 1448 1449
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1450

1451
	return 0;
1452 1453
}

1454
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1455
{
1456
	struct drm_device *dev = &eb->i915->drm;
1457
	bool have_copy = false;
1458
	struct i915_vma *vma;
1459 1460 1461 1462 1463 1464 1465
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1466

1467
	/* We may process another execbuffer during the unlock... */
1468
	eb_reset_vmas(eb);
1469 1470
	mutex_unlock(&dev->struct_mutex);

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1492
	}
1493 1494 1495
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1496 1497
	}

1498 1499
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1500
		mutex_lock(&dev->struct_mutex);
1501
		goto out;
1502 1503
	}

1504
	/* reacquire the objects */
1505 1506
	err = eb_lookup_vmas(eb);
	if (err)
1507
		goto err;
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1521 1522
	}

1523 1524
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1525 1526 1527 1528 1529 1530
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err ?: have_copy;
1553 1554
}

1555
static int eb_relocate(struct i915_execbuffer *eb)
1556
{
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static void eb_export_fence(struct drm_i915_gem_object *obj,
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
	struct reservation_object *resv = obj->resv;

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1600

1601 1602 1603
	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
1604
		struct drm_i915_gem_object *obj = vma->obj;
1605

1606
		if (entry->flags & EXEC_OBJECT_CAPTURE) {
1607 1608 1609 1610 1611 1612
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1613
			capture->next = eb->request->capture_list;
1614
			capture->vma = vma;
1615
			eb->request->capture_list = capture;
1616 1617
		}

1618 1619
		if (entry->flags & EXEC_OBJECT_ASYNC)
			goto skip_flushes;
1620

1621
		if (unlikely(obj->cache_dirty && !obj->cache_coherent))
1622 1623
			i915_gem_clflush_object(obj, 0);

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		err = i915_gem_request_await_object
			(eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
		if (err)
			return err;

skip_flushes:
		i915_vma_move_to_active(vma, eb->request, entry->flags);
		__eb_unreserve_vma(vma, entry);
		vma->exec_entry = NULL;
	}

	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);

		eb_export_fence(vma->obj, eb->request, entry->flags);
1640 1641
		if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
			i915_vma_put(vma);
1642
	}
1643
	eb->exec = NULL;
1644

1645
	/* Unconditionally flush any chipset caches (for streaming writes). */
1646
	i915_gem_chipset_flush(eb->i915);
1647

1648
	/* Unconditionally invalidate GPU caches and TLBs. */
1649
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1650 1651
}

1652
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1653
{
1654
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1655 1656
		return false;

C
Chris Wilson 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	/* Kernel clipping was a DRI1 misfeature */
	if (exec->num_cliprects || exec->cliprects_ptr)
		return false;

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1672 1673
}

1674 1675 1676 1677 1678 1679 1680
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1681
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1682 1683
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1684 1685
	/*
	 * Add a reference if we're newly entering the active list.
1686 1687 1688 1689 1690 1691
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1692 1693 1694 1695 1696
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1697

1698
	obj->base.write_domain = 0;
1699
	if (flags & EXEC_OBJECT_WRITE) {
1700 1701
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1702 1703
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1704

1705
		obj->base.read_domains = 0;
1706
	}
1707
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1708

1709 1710
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1711 1712
}

1713
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1714
{
1715 1716
	u32 *cs;
	int i;
1717

1718
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1719 1720 1721
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1722

1723
	cs = intel_ring_begin(req, 4 * 2 + 2);
1724 1725
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1726

1727
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1728
	for (i = 0; i < 4; i++) {
1729 1730
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1731
	}
1732
	*cs++ = MI_NOOP;
1733
	intel_ring_advance(req, cs);
1734 1735 1736 1737

	return 0;
}

1738
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1739 1740
{
	struct drm_i915_gem_object *shadow_batch_obj;
1741
	struct i915_vma *vma;
1742
	int err;
1743

1744 1745
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1746
	if (IS_ERR(shadow_batch_obj))
1747
		return ERR_CAST(shadow_batch_obj);
1748

1749
	err = intel_engine_cmd_parser(eb->engine,
1750
				      eb->batch->obj,
1751
				      shadow_batch_obj,
1752 1753
				      eb->batch_start_offset,
				      eb->batch_len,
1754
				      is_master);
1755 1756
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1757 1758
			vma = NULL;
		else
1759
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1760 1761
		goto out;
	}
1762

C
Chris Wilson 已提交
1763 1764 1765
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1766

1767
	vma->exec_entry =
1768 1769
		memset(&eb->exec[eb->buffer_count++],
		       0, sizeof(*vma->exec_entry));
1770
	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1771
	__exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
1772

C
Chris Wilson 已提交
1773
out:
C
Chris Wilson 已提交
1774
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1775
	return vma;
1776
}
1777

1778
static void
1779
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1780 1781 1782 1783 1784
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1785
static int eb_submit(struct i915_execbuffer *eb)
1786
{
1787
	int err;
1788

1789 1790 1791
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1792

1793 1794 1795
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1796

1797
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1798 1799 1800
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1801 1802
	}

1803
	err = eb->engine->emit_bb_start(eb->request,
1804 1805 1806
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1807 1808 1809
					eb->batch_flags);
	if (err)
		return err;
1810

C
Chris Wilson 已提交
1811
	return 0;
1812 1813
}

1814 1815
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
1816
 * The engine index is returned.
1817
 */
1818
static unsigned int
1819 1820
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1821 1822 1823
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1824
	/* Check whether the file_priv has already selected one ring. */
1825 1826 1827
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1828

1829
	return file_priv->bsd_engine;
1830 1831
}

1832 1833
#define I915_USER_RINGS (4)

1834
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1835 1836 1837 1838 1839 1840 1841
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

1842 1843 1844 1845
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
1846 1847
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1848
	struct intel_engine_cs *engine;
1849 1850 1851

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1852
		return NULL;
1853 1854 1855 1856 1857 1858
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
1859
		return NULL;
1860 1861 1862 1863 1864 1865
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1866
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1867 1868
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
1869
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
1870 1871 1872 1873
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
1874
			return NULL;
1875 1876
		}

1877
		engine = dev_priv->engine[_VCS(bsd_idx)];
1878
	} else {
1879
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
1880 1881
	}

1882
	if (!engine) {
1883
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1884
		return NULL;
1885 1886
	}

1887
	return engine;
1888 1889
}

1890
static int
1891
i915_gem_do_execbuffer(struct drm_device *dev,
1892 1893
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1894
		       struct drm_i915_gem_exec_object2 *exec)
1895
{
1896
	struct i915_execbuffer eb;
1897 1898 1899
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
1900
	int err;
1901

1902 1903
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1904

1905 1906 1907
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
1908 1909
	if (!(args->flags & I915_EXEC_NO_RELOC))
		args->flags |= __EXEC_HAS_RELOC;
1910
	eb.exec = exec;
1911 1912 1913 1914
	eb.ctx = NULL;
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1915 1916
	reloc_cache_init(&eb.reloc_cache, eb.i915);

1917
	eb.buffer_count = args->buffer_count;
1918 1919 1920
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

1921
	eb.batch_flags = 0;
1922
	if (args->flags & I915_EXEC_SECURE) {
1923
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1924 1925
		    return -EPERM;

1926
		eb.batch_flags |= I915_DISPATCH_SECURE;
1927
	}
1928
	if (args->flags & I915_EXEC_IS_PINNED)
1929
		eb.batch_flags |= I915_DISPATCH_PINNED;
1930

1931 1932
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
1933 1934
		return -EINVAL;

1935
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1936
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
1937 1938 1939
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
1940
		if (eb.engine->id != RCS) {
1941
			DRM_DEBUG("RS is not available on %s\n",
1942
				 eb.engine->name);
1943 1944 1945
			return -EINVAL;
		}

1946
		eb.batch_flags |= I915_DISPATCH_RS;
1947 1948
	}

1949 1950
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
1951 1952
		if (!in_fence)
			return -EINVAL;
1953 1954 1955 1956 1957
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
1958
			err = out_fence_fd;
1959
			goto err_in_fence;
1960 1961 1962
		}
	}

1963 1964 1965 1966 1967
	if (eb_create(&eb))
		return -ENOMEM;

	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
1968 1969 1970 1971 1972
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
1973
	intel_runtime_pm_get(eb.i915);
1974 1975 1976
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
1977

1978 1979 1980
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_unlock;
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	err = eb_relocate(&eb);
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
	if (err < 0)
		goto err_vma;
1994

1995
	if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
1996
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1997 1998
		err = -EINVAL;
		goto err_vma;
1999
	}
2000 2001
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2002
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2003 2004
		err = -EINVAL;
		goto err_vma;
2005
	}
2006

2007
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2008 2009
		struct i915_vma *vma;

2010
		vma = eb_parse(&eb, drm_is_current_master(file));
2011
		if (IS_ERR(vma)) {
2012 2013
			err = PTR_ERR(vma);
			goto err_vma;
2014
		}
2015

2016
		if (vma) {
2017 2018 2019 2020 2021 2022 2023 2024 2025
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2026
			eb.batch_flags |= I915_DISPATCH_SECURE;
2027 2028
			eb.batch_start_offset = 0;
			eb.batch = vma;
2029
		}
2030 2031
	}

2032 2033
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2034

2035 2036
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2037
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2038
	 * hsw should have this fixed, but bdw mucks it up again. */
2039
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2040
		struct i915_vma *vma;
2041

2042 2043 2044 2045 2046 2047
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2048
		 *   so we don't really have issues with multiple objects not
2049 2050 2051
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2052
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2053
		if (IS_ERR(vma)) {
2054 2055
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2056
		}
2057

2058
		eb.batch = vma;
2059
	}
2060

2061
	/* Allocate a request for this batch buffer nice and early. */
2062 2063
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2064
		err = PTR_ERR(eb.request);
2065
		goto err_batch_unpin;
2066
	}
2067

2068
	if (in_fence) {
2069 2070
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2071 2072 2073 2074
			goto err_request;
	}

	if (out_fence_fd != -1) {
2075
		out_fence = sync_file_create(&eb.request->fence);
2076
		if (!out_fence) {
2077
			err = -ENOMEM;
2078 2079 2080 2081
			goto err_request;
		}
	}

2082 2083
	/*
	 * Whilst this request exists, batch_obj will be on the
2084 2085 2086 2087 2088
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2089
	eb.request->batch = eb.batch;
2090

2091 2092
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2093
err_request:
2094
	__i915_add_request(eb.request, err == 0);
2095
	add_to_client(eb.request, file);
2096

2097
	if (out_fence) {
2098
		if (err == 0) {
2099 2100 2101 2102 2103 2104 2105 2106
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2107

2108
err_batch_unpin:
2109
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2110
		i915_vma_unpin(eb.batch);
2111 2112 2113 2114 2115
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
	i915_gem_context_put(eb.ctx);
err_unlock:
2116
	mutex_unlock(&dev->struct_mutex);
2117
err_rpm:
2118
	intel_runtime_pm_put(eb.i915);
2119
	eb_destroy(&eb);
2120 2121
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2122
err_in_fence:
2123
	dma_fence_put(in_fence);
2124
	return err;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2135
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2136 2137 2138 2139
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2140 2141
	unsigned int i;
	int err;
2142

2143 2144
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2145 2146 2147
		return -EINVAL;
	}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2162
	/* Copy in the exec list from userland */
2163 2164 2165 2166
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2167
	if (exec_list == NULL || exec2_list == NULL) {
2168
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2169
			  args->buffer_count);
M
Michal Hocko 已提交
2170 2171
		kvfree(exec_list);
		kvfree(exec2_list);
2172 2173
		return -ENOMEM;
	}
2174
	err = copy_from_user(exec_list,
2175
			     u64_to_user_ptr(args->buffers_ptr),
2176
			     sizeof(*exec_list) * args->buffer_count);
2177
	if (err) {
2178
		DRM_DEBUG("copy %d exec entries failed %d\n",
2179
			  args->buffer_count, err);
M
Michal Hocko 已提交
2180 2181
		kvfree(exec_list);
		kvfree(exec2_list);
2182 2183 2184 2185 2186 2187 2188 2189 2190
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2191
		if (INTEL_GEN(to_i915(dev)) < 4)
2192 2193 2194 2195 2196
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2197 2198
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
	if (exec2.flags & __EXEC_HAS_RELOC) {
2199
		struct drm_i915_gem_exec_object __user *user_exec_list =
2200
			u64_to_user_ptr(args->buffers_ptr);
2201

2202
		/* Copy the new buffer offsets back to the user's exec list. */
2203
		for (i = 0; i < args->buffer_count; i++) {
2204 2205 2206
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2207
			exec2_list[i].offset =
2208 2209 2210 2211 2212
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2213
				break;
2214 2215 2216
		}
	}

M
Michal Hocko 已提交
2217 2218
	kvfree(exec_list);
	kvfree(exec2_list);
2219
	return err;
2220 2221 2222 2223 2224 2225
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2226
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2227
	struct drm_i915_gem_execbuffer2 *args = data;
2228 2229
	struct drm_i915_gem_exec_object2 *exec2_list;
	int err;
2230

2231
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2232
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2233 2234 2235
		return -EINVAL;
	}

2236 2237 2238 2239 2240 2241
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2242
	if (exec2_list == NULL) {
2243
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2244 2245 2246
			  args->buffer_count);
		return -ENOMEM;
	}
2247 2248 2249 2250
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2251
		kvfree(exec2_list);
2252 2253 2254
		return -EFAULT;
	}

2255 2256 2257 2258 2259 2260 2261 2262 2263
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2264
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2265 2266
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2267

2268 2269
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2270
		for (i = 0; i < args->buffer_count; i++) {
2271 2272 2273
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2274
			exec2_list[i].offset =
2275 2276 2277 2278
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2279
		}
2280 2281
end_user:
		user_access_end();
2282 2283
	}

2284
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
2285
	kvfree(exec2_list);
2286
	return err;
2287
}