i915_gem_execbuffer.c 71.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

220
struct i915_execbuffer {
221 222 223 224
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
225 226
	struct i915_vma **vma;
	unsigned int *flags;
227 228 229 230 231

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

232
	struct i915_request *request; /** our request to build */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
249
	struct reloc_cache {
250 251 252
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
253
		unsigned int gen; /** Cached value of INTEL_GEN */
254
		bool use_64bit_reloc : 1;
255 256 257
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
258

259
		struct i915_request *rq;
260 261
		u32 *rq_cmd;
		unsigned int rq_size;
262
	} reloc_cache;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
278 279
};

280
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

301 302
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
303
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
304 305
}

306
static int eb_create(struct i915_execbuffer *eb)
307
{
308 309
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
310

311 312 313 314 315 316 317 318 319 320 321
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
322
		do {
323
			gfp_t flags;
324 325 326 327 328 329 330

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
331
			flags = GFP_KERNEL;
332 333 334
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

335
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
336
					      flags);
337 338 339 340
			if (eb->buckets)
				break;
		} while (--size);

341 342
		if (unlikely(!size))
			return -ENOMEM;
343

344
		eb->lut_size = size;
345
	} else {
346
		eb->lut_size = -eb->buffer_count;
347
	}
348

349
	return 0;
350 351
}

352 353
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
354 355
		 const struct i915_vma *vma,
		 unsigned int flags)
356 357 358 359 360 361 362
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

363
	if (flags & EXEC_OBJECT_PINNED &&
364 365 366
	    vma->node.start != entry->offset)
		return true;

367
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
368 369 370
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

371
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
372 373 374
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

375 376 377 378
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

379 380 381
	return false;
}

382
static inline bool
383
eb_pin_vma(struct i915_execbuffer *eb,
384
	   const struct drm_i915_gem_exec_object2 *entry,
385 386
	   struct i915_vma *vma)
{
387 388
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
389

390
	if (vma->node.size)
391
		pin_flags = vma->node.start;
392
	else
393
		pin_flags = entry->offset & PIN_OFFSET_MASK;
394

395 396 397
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
398

399 400
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
401

402
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
403
		if (unlikely(i915_vma_pin_fence(vma))) {
404
			i915_vma_unpin(vma);
405
			return false;
406 407
		}

408
		if (vma->fence)
409
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
410 411
	}

412 413
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
414 415
}

416
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
417
{
418
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
419

420
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
421
		__i915_vma_unpin_fence(vma);
422

423
	__i915_vma_unpin(vma);
424 425
}

426
static inline void
427
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
428
{
429
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
430
		return;
431

432 433
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
434 435
}

436 437 438 439
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
440
{
441 442
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
461 462
	}

463
	if (unlikely(vma->exec_flags)) {
464 465 466 467 468 469 470 471 472 473 474 475
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

476 477 478 479 480 481 482 483 484 485 486 487
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

488
	return 0;
489 490
}

491
static int
492
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
493
{
494
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
495 496 497 498 499 500 501 502
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
503 504
	}

505
	if (eb->lut_size > 0) {
506
		vma->exec_handle = entry->handle;
507
		hlist_add_head(&vma->exec_node,
508 509
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
510
	}
511

512 513 514 515 516 517 518 519 520
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
521
	eb->vma[i] = vma;
522
	eb->flags[i] = entry->flags;
523
	vma->exec_flags = &eb->flags[i];
524 525

	err = 0;
526
	if (eb_pin_vma(eb, entry, vma)) {
527 528 529 530
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
531 532 533 534 535 536
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
537 538
		if (unlikely(err))
			vma->exec_flags = NULL;
539 540 541 542 543 544 545 546 547 548
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

549 550 551 552 553
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
554 555 556 557 558 559 560 561 562

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
563 564 565
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
566 567
	int err;

568 569 570
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
571 572 573 574 575

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
576 577
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
578

579 580
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
581

582 583 584 585 586
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
587 588
	}

589 590 591
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
592 593 594 595 596 597 598 599
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

600
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
601
		err = i915_vma_pin_fence(vma);
602 603 604 605 606
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

607
		if (vma->fence)
608
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
609 610
	}

611 612
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
654 655
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
656

657 658
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
659 660
				continue;

661
			eb_unreserve_vma(vma, &eb->flags[i]);
662

663
			if (flags & EXEC_OBJECT_PINNED)
664
				list_add(&vma->exec_link, &eb->unbound);
665
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
687
}
688

689 690
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
691 692 693 694
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
695 696 697 698 699 700 701
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
702 703
	if (unlikely(!ctx))
		return -ENOENT;
704

705
	eb->ctx = ctx;
706 707 708 709 710 711 712 713 714 715
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
716
{
717
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
718
	struct drm_i915_gem_object *obj;
719 720
	unsigned int i;
	int err;
721

722 723 724 725 726 727
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

728 729
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
730

731 732
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
733
		struct i915_lut_handle *lut;
734
		struct i915_vma *vma;
735

736 737
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
738
			goto add_vma;
739

740
		obj = i915_gem_object_lookup(eb->file, handle);
741
		if (unlikely(!obj)) {
742
			err = -ENOENT;
743
			goto err_vma;
744 745
		}

746
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
747
		if (unlikely(IS_ERR(vma))) {
748
			err = PTR_ERR(vma);
749
			goto err_obj;
750 751
		}

752 753 754 755 756 757 758 759
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
760
			kmem_cache_free(eb->i915->luts, lut);
761
			goto err_obj;
762
		}
763

764
		/* transfer ref to ctx */
765
		vma->open_count++;
766 767 768 769 770
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

771
add_vma:
772
		err = eb_add_vma(eb, i, vma);
773
		if (unlikely(err))
774
			goto err_vma;
775

776 777
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
778 779
	}

780 781
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
782 783
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
784

785
	/*
786 787 788 789 790 791 792
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
793
	 */
794 795
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
796
	if (eb->reloc_cache.has_fence)
797
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
798

799 800 801
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

802
err_obj:
803
	i915_gem_object_put(obj);
804 805
err_vma:
	eb->vma[i] = NULL;
806
	return err;
807 808
}

809
static struct i915_vma *
810
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
811
{
812 813
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
814
			return NULL;
815
		return eb->vma[handle];
816 817
	} else {
		struct hlist_head *head;
818
		struct i915_vma *vma;
819

820
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
821
		hlist_for_each_entry(vma, head, exec_node) {
822 823
			if (vma->exec_handle == handle)
				return vma;
824 825 826
		}
		return NULL;
	}
827 828
}

829
static void eb_release_vmas(const struct i915_execbuffer *eb)
830
{
831 832 833 834
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
835 836
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
837

838
		if (!vma)
839
			break;
840

841 842 843
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
844

845 846
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
847

848
		if (flags & __EXEC_OBJECT_HAS_REF)
849
			i915_vma_put(vma);
850
	}
851 852
}

853
static void eb_reset_vmas(const struct i915_execbuffer *eb)
854
{
855
	eb_release_vmas(eb);
856
	if (eb->lut_size > 0)
857 858
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
859 860
}

861
static void eb_destroy(const struct i915_execbuffer *eb)
862
{
863 864
	GEM_BUG_ON(eb->reloc_cache.rq);

865
	if (eb->lut_size > 0)
866
		kfree(eb->buckets);
867 868
}

869
static inline u64
870
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
871
		  const struct i915_vma *target)
872
{
873
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
874 875
}

876 877
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
878
{
879
	cache->page = -1;
880
	cache->vaddr = 0;
881
	/* Must be a variable in the struct to allow GCC to unroll. */
882
	cache->gen = INTEL_GEN(i915);
883
	cache->has_llc = HAS_LLC(i915);
884
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
885 886
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
887
	cache->node.allocated = false;
888 889
	cache->rq = NULL;
	cache->rq_size = 0;
890
}
891

892 893 894 895 896 897 898 899
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
900 901
}

902 903
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

904 905 906 907 908 909 910
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

911 912 913 914 915 916 917
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

918
	__i915_request_add(cache->rq, true);
919 920 921
	cache->rq = NULL;
}

922
static void reloc_cache_reset(struct reloc_cache *cache)
923
{
924
	void *vaddr;
925

926 927 928
	if (cache->rq)
		reloc_gpu_flush(cache);

929 930
	if (!cache->vaddr)
		return;
931

932 933 934 935
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
936

937 938 939
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
940
		wmb();
941
		io_mapping_unmap_atomic((void __iomem *)vaddr);
942
		if (cache->node.allocated) {
943
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
944 945 946

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
947
					       cache->node.size);
948 949 950
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
951
		}
952
	}
953 954 955

	cache->vaddr = 0;
	cache->page = -1;
956 957 958 959
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
960
			unsigned long page)
961
{
962 963 964 965 966 967
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
968
		int err;
969

970 971 972
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
973 974 975

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
976

977 978 979 980
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
981 982
	}

983 984
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
985
	cache->page = page;
986

987
	return vaddr;
988 989
}

990 991
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
992
			 unsigned long page)
993
{
994
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
995
	unsigned long offset;
996
	void *vaddr;
997

998
	if (cache->vaddr) {
999
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1000 1001
	} else {
		struct i915_vma *vma;
1002
		int err;
1003

1004
		if (use_cpu_reloc(cache, obj))
1005
			return NULL;
1006

1007 1008 1009
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1010

1011
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 1013 1014
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1015 1016
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1017
			err = drm_mm_insert_node_in_range
1018
				(&ggtt->base.mm, &cache->node,
1019
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1020
				 0, ggtt->mappable_end,
1021
				 DRM_MM_INSERT_LOW);
1022
			if (err) /* no inactive aperture space, use cpu reloc */
1023
				return NULL;
1024
		} else {
1025 1026
			err = i915_vma_put_fence(vma);
			if (err) {
1027
				i915_vma_unpin(vma);
1028
				return ERR_PTR(err);
1029
			}
1030

1031 1032
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1033
		}
1034
	}
1035

1036 1037
	offset = cache->node.start;
	if (cache->node.allocated) {
1038
		wmb();
1039 1040 1041 1042 1043
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1044 1045
	}

1046
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1047
							 offset);
1048 1049
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1050

1051
	return vaddr;
1052 1053
}

1054 1055
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1056
			 unsigned long page)
1057
{
1058
	void *vaddr;
1059

1060 1061 1062 1063 1064 1065 1066 1067
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1068 1069
	}

1070
	return vaddr;
1071 1072
}

1073
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1074
{
1075 1076 1077 1078 1079
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1080

1081
		*addr = value;
1082

1083 1084
		/*
		 * Writes to the same cacheline are serialised by the CPU
1085 1086 1087 1088 1089 1090 1091 1092 1093
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1094 1095
}

1096 1097 1098 1099 1100 1101
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1102
	struct i915_request *rq;
1103 1104 1105 1106
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1107
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1108 1109 1110 1111 1112 1113

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1114 1115 1116
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1135
	rq = i915_request_alloc(eb->engine, eb->ctx);
1136 1137 1138 1139 1140
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1141
	err = i915_request_await_object(rq, vma->obj, true);
1142 1143 1144 1145 1146 1147 1148 1149 1150
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1151
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1152
	i915_vma_move_to_active(batch, rq, 0);
1153 1154 1155
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1156 1157
	i915_vma_unpin(batch);

1158
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1159 1160 1161
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
1173
	i915_request_add(rq);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1194 1195 1196 1197
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1198 1199 1200
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1212 1213
static u64
relocate_entry(struct i915_vma *vma,
1214
	       const struct drm_i915_gem_relocation_entry *reloc,
1215 1216
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1217
{
1218
	u64 offset = reloc->offset;
1219 1220
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1221
	void *vaddr;
1222

1223 1224
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1225
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1226 1227 1228 1229 1230 1231 1232 1233 1234
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1235
		else
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1282
repeat:
1283
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1284 1285 1286 1287 1288
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1289
			eb->reloc_cache.vaddr);
1290 1291 1292 1293 1294 1295

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1296 1297
	}

1298
out:
1299
	return target->node.start | UPDATE;
1300 1301
}

1302 1303 1304 1305
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1306
{
1307
	struct i915_vma *target;
1308
	int err;
1309

1310
	/* we've already hold a reference to all valid objects */
1311 1312
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1313
		return -ENOENT;
1314

1315
	/* Validate that the target is in a valid r/w GPU domain */
1316
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1317
		DRM_DEBUG("reloc with multiple write domains: "
1318
			  "target %d offset %d "
1319
			  "read %08x write %08x",
1320
			  reloc->target_handle,
1321 1322 1323
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1324
		return -EINVAL;
1325
	}
1326 1327
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1328
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1329
			  "target %d offset %d "
1330
			  "read %08x write %08x",
1331
			  reloc->target_handle,
1332 1333 1334
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1335
		return -EINVAL;
1336 1337
	}

1338
	if (reloc->write_domain) {
1339
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1355
	}
1356

1357 1358
	/*
	 * If the relocation already has the right value in it, no
1359 1360
	 * more work needs to be done.
	 */
1361 1362
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1363
		return 0;
1364 1365

	/* Check that the relocation address is valid... */
1366
	if (unlikely(reloc->offset >
1367
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1368
		DRM_DEBUG("Relocation beyond object bounds: "
1369 1370 1371 1372
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1373
		return -EINVAL;
1374
	}
1375
	if (unlikely(reloc->offset & 3)) {
1376
		DRM_DEBUG("Relocation not 4-byte aligned: "
1377 1378 1379
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1380
		return -EINVAL;
1381 1382
	}

1383 1384 1385 1386 1387 1388
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1389
	 * out of our synchronisation.
1390
	 */
1391
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1392

1393
	/* and update the user's relocation entry */
1394
	return relocate_entry(vma, reloc, eb, target);
1395 1396
}

1397
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1398
{
1399
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1400 1401
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1402
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1403
	unsigned int remain;
1404

1405
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1406
	remain = entry->relocation_count;
1407 1408
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1409

1410 1411 1412 1413 1414
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1415
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1416 1417 1418 1419 1420 1421 1422
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1423

1424 1425
		/*
		 * This is the fast path and we cannot handle a pagefault
1426 1427 1428 1429 1430 1431 1432
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1433
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1434
		pagefault_enable();
1435 1436
		if (unlikely(copied)) {
			remain = -EFAULT;
1437 1438
			goto out;
		}
1439

1440
		remain -= count;
1441
		do {
1442
			u64 offset = eb_relocate_entry(eb, vma, r);
1443

1444 1445 1446
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1447
				goto out;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1473
			}
1474 1475 1476
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1477
out:
1478
	reloc_cache_reset(&eb->reloc_cache);
1479
	return remain;
1480 1481 1482
}

static int
1483
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1484
{
1485
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1486 1487 1488 1489
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1490 1491

	for (i = 0; i < entry->relocation_count; i++) {
1492
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1493

1494 1495 1496 1497
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1498
	}
1499 1500 1501 1502
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1503 1504
}

1505
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1506
{
1507 1508 1509
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1510

1511 1512 1513
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1514

1515 1516
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1517

1518 1519 1520 1521
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1522

1523 1524 1525 1526 1527
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1528
	}
1529
	return __get_user(c, end - 1);
1530
}
1531

1532
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1533
{
1534 1535 1536
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1537

1538 1539 1540 1541 1542 1543
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1544

1545 1546
		if (nreloc == 0)
			continue;
1547

1548 1549 1550
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1551

1552 1553
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1554

1555
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1556 1557 1558 1559 1560
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1561

1562 1563 1564 1565 1566 1567 1568
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1569
					     (char __user *)urelocs + copied,
1570 1571 1572 1573 1574
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1575

1576 1577
			copied += len;
		} while (copied < size);
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1596

1597 1598
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1599

1600
	return 0;
1601

1602 1603 1604 1605 1606 1607 1608 1609
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1610 1611
}

1612
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1613
{
1614 1615
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1616

1617
	if (unlikely(i915_modparams.prefault_disable))
1618
		return 0;
1619

1620 1621
	for (i = 0; i < count; i++) {
		int err;
1622

1623 1624 1625 1626
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1627

1628
	return 0;
1629 1630
}

1631
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1632
{
1633
	struct drm_device *dev = &eb->i915->drm;
1634
	bool have_copy = false;
1635
	struct i915_vma *vma;
1636 1637 1638 1639 1640 1641 1642
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1643

1644
	/* We may process another execbuffer during the unlock... */
1645
	eb_reset_vmas(eb);
1646 1647
	mutex_unlock(&dev->struct_mutex);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1669
	}
1670 1671 1672
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1673 1674
	}

1675 1676 1677
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1678 1679
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1680
		mutex_lock(&dev->struct_mutex);
1681
		goto out;
1682 1683
	}

1684
	/* reacquire the objects */
1685 1686
	err = eb_lookup_vmas(eb);
	if (err)
1687
		goto err;
1688

1689 1690
	GEM_BUG_ON(!eb->batch);

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1703 1704
	}

1705 1706
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1707 1708 1709 1710 1711 1712
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1734
	return err;
1735 1736
}

1737
static int eb_relocate(struct i915_execbuffer *eb)
1738
{
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1758
static void eb_export_fence(struct i915_vma *vma,
1759
			    struct i915_request *rq,
1760 1761
			    unsigned int flags)
{
1762
	struct reservation_object *resv = vma->resv;
1763 1764 1765 1766 1767 1768 1769 1770

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
1771
		reservation_object_add_excl_fence(resv, &rq->fence);
1772
	else if (reservation_object_reserve_shared(resv) == 0)
1773
		reservation_object_add_shared_fence(resv, &rq->fence);
1774 1775 1776 1777 1778 1779 1780 1781
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1782

1783
	for (i = 0; i < count; i++) {
1784 1785
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1786
		struct drm_i915_gem_object *obj = vma->obj;
1787

1788
		if (flags & EXEC_OBJECT_CAPTURE) {
1789
			struct i915_capture_list *capture;
1790 1791 1792 1793 1794

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1795
			capture->next = eb->request->capture_list;
1796
			capture->vma = eb->vma[i];
1797
			eb->request->capture_list = capture;
1798 1799
		}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1813
			if (i915_gem_clflush_object(obj, 0))
1814
				flags &= ~EXEC_OBJECT_ASYNC;
1815 1816
		}

1817 1818
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1819

1820
		err = i915_request_await_object
1821
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1822 1823 1824 1825 1826
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1827 1828 1829 1830 1831
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1832

1833 1834 1835 1836
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1837
			i915_vma_put(vma);
1838
	}
1839
	eb->exec = NULL;
1840

1841
	/* Unconditionally flush any chipset caches (for streaming writes). */
1842
	i915_gem_chipset_flush(eb->i915);
1843

1844
	return 0;
1845 1846
}

1847
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1848
{
1849
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1850 1851
		return false;

C
Chris Wilson 已提交
1852
	/* Kernel clipping was a DRI1 misfeature */
1853 1854 1855 1856
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1869 1870
}

1871
void i915_vma_move_to_active(struct i915_vma *vma,
1872
			     struct i915_request *rq,
1873 1874 1875
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
1876
	const unsigned int idx = rq->engine->id;
1877

1878
	lockdep_assert_held(&rq->i915->drm.struct_mutex);
1879 1880
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1881 1882
	/*
	 * Add a reference if we're newly entering the active list.
1883 1884 1885 1886 1887 1888
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1889 1890 1891
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
1892
	i915_gem_active_set(&vma->last_read[idx], rq);
1893
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1894

1895
	obj->write_domain = 0;
1896
	if (flags & EXEC_OBJECT_WRITE) {
1897
		obj->write_domain = I915_GEM_DOMAIN_RENDER;
1898

1899
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1900
			i915_gem_active_set(&obj->frontbuffer_write, rq);
1901

1902
		obj->read_domains = 0;
1903
	}
1904
	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1905

1906
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
1907
		i915_gem_active_set(&vma->last_fence, rq);
1908 1909
}

1910
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1911
{
1912 1913
	u32 *cs;
	int i;
1914

1915
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1916 1917 1918
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1919

1920
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1921 1922
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1923

1924
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1925
	for (i = 0; i < 4; i++) {
1926 1927
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1928
	}
1929
	*cs++ = MI_NOOP;
1930
	intel_ring_advance(rq, cs);
1931 1932 1933 1934

	return 0;
}

1935
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1936 1937
{
	struct drm_i915_gem_object *shadow_batch_obj;
1938
	struct i915_vma *vma;
1939
	int err;
1940

1941 1942
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1943
	if (IS_ERR(shadow_batch_obj))
1944
		return ERR_CAST(shadow_batch_obj);
1945

1946
	err = intel_engine_cmd_parser(eb->engine,
1947
				      eb->batch->obj,
1948
				      shadow_batch_obj,
1949 1950
				      eb->batch_start_offset,
				      eb->batch_len,
1951
				      is_master);
1952 1953
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1954 1955
			vma = NULL;
		else
1956
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1957 1958
		goto out;
	}
1959

C
Chris Wilson 已提交
1960 1961 1962
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1963

1964 1965 1966 1967 1968
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1969

C
Chris Wilson 已提交
1970
out:
C
Chris Wilson 已提交
1971
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1972
	return vma;
1973
}
1974

1975
static void
1976
add_to_client(struct i915_request *rq, struct drm_file *file)
1977
{
1978 1979
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1980 1981
}

1982
static int eb_submit(struct i915_execbuffer *eb)
1983
{
1984
	int err;
1985

1986 1987 1988
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1989

1990
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1991 1992 1993
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1994 1995
	}

1996
	err = eb->engine->emit_bb_start(eb->request,
1997 1998 1999
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2000 2001 2002
					eb->batch_flags);
	if (err)
		return err;
2003

C
Chris Wilson 已提交
2004
	return 0;
2005 2006
}

2007
/*
2008
 * Find one BSD ring to dispatch the corresponding BSD command.
2009
 * The engine index is returned.
2010
 */
2011
static unsigned int
2012 2013
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2014 2015 2016
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2017
	/* Check whether the file_priv has already selected one ring. */
2018 2019 2020
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2021

2022
	return file_priv->bsd_engine;
2023 2024
}

2025 2026
#define I915_USER_RINGS (4)

2027
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2028 2029 2030 2031 2032 2033 2034
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2035 2036 2037 2038
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2039 2040
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2041
	struct intel_engine_cs *engine;
2042 2043 2044

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2045
		return NULL;
2046 2047 2048 2049 2050 2051
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2052
		return NULL;
2053 2054 2055 2056 2057 2058
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2059
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2060 2061
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2062
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2063 2064 2065 2066
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2067
			return NULL;
2068 2069
		}

2070
		engine = dev_priv->engine[_VCS(bsd_idx)];
2071
	} else {
2072
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2073 2074
	}

2075
	if (!engine) {
2076
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2077
		return NULL;
2078 2079
	}

2080
	return engine;
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2095
	const unsigned long nfences = args->num_cliprects;
2096 2097
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2098
	unsigned long n;
2099 2100 2101 2102 2103
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2104 2105 2106 2107 2108
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2109 2110 2111
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2112
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2113 2114
		return ERR_PTR(-EFAULT);

2115
	fences = kvmalloc_array(nfences, sizeof(*fences),
2116
				__GFP_NOWARN | GFP_KERNEL);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2129 2130 2131 2132 2133
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2134 2135 2136 2137 2138 2139 2140
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2141 2142 2143
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2179
		fence = drm_syncobj_fence_get(syncobj);
2180 2181 2182
		if (!fence)
			return -EINVAL;

2183
		err = i915_request_await_dma_fence(eb->request, fence);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2212
static int
2213
i915_gem_do_execbuffer(struct drm_device *dev,
2214 2215
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2216 2217
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2218
{
2219
	struct i915_execbuffer eb;
2220 2221 2222
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2223
	int err;
2224

2225
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2226 2227
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2228

2229 2230 2231
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2232
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2233
		args->flags |= __EXEC_HAS_RELOC;
2234

2235
	eb.exec = exec;
2236 2237
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2238 2239
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2240 2241 2242
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2243 2244
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2245
	eb.buffer_count = args->buffer_count;
2246 2247 2248
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2249
	eb.batch_flags = 0;
2250
	if (args->flags & I915_EXEC_SECURE) {
2251
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2252 2253
		    return -EPERM;

2254
		eb.batch_flags |= I915_DISPATCH_SECURE;
2255
	}
2256
	if (args->flags & I915_EXEC_IS_PINNED)
2257
		eb.batch_flags |= I915_DISPATCH_PINNED;
2258

2259 2260
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2261 2262
		return -EINVAL;

2263
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2264
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2265 2266 2267
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2268
		if (eb.engine->id != RCS) {
2269
			DRM_DEBUG("RS is not available on %s\n",
2270
				 eb.engine->name);
2271 2272 2273
			return -EINVAL;
		}

2274
		eb.batch_flags |= I915_DISPATCH_RS;
2275 2276
	}

2277 2278
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2279 2280
		if (!in_fence)
			return -EINVAL;
2281 2282 2283 2284 2285
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2286
			err = out_fence_fd;
2287
			goto err_in_fence;
2288 2289 2290
		}
	}

2291 2292 2293 2294 2295
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2296

2297 2298 2299 2300
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2301 2302
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2303 2304 2305 2306 2307
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2308
	intel_runtime_pm_get(eb.i915);
2309

2310 2311 2312
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2313

2314
	err = eb_relocate(&eb);
2315
	if (err) {
2316 2317 2318 2319 2320 2321 2322 2323 2324
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2325
	}
2326

2327
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2328
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2329 2330
		err = -EINVAL;
		goto err_vma;
2331
	}
2332 2333
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2334
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2335 2336
		err = -EINVAL;
		goto err_vma;
2337
	}
2338

2339
	if (eb_use_cmdparser(&eb)) {
2340 2341
		struct i915_vma *vma;

2342
		vma = eb_parse(&eb, drm_is_current_master(file));
2343
		if (IS_ERR(vma)) {
2344 2345
			err = PTR_ERR(vma);
			goto err_vma;
2346
		}
2347

2348
		if (vma) {
2349 2350 2351 2352 2353 2354 2355 2356 2357
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2358
			eb.batch_flags |= I915_DISPATCH_SECURE;
2359 2360
			eb.batch_start_offset = 0;
			eb.batch = vma;
2361
		}
2362 2363
	}

2364 2365
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2366

2367 2368
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2369
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2370
	 * hsw should have this fixed, but bdw mucks it up again. */
2371
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2372
		struct i915_vma *vma;
2373

2374 2375 2376 2377 2378 2379
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2380
		 *   so we don't really have issues with multiple objects not
2381 2382 2383
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2384
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2385
		if (IS_ERR(vma)) {
2386 2387
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2388
		}
2389

2390
		eb.batch = vma;
2391
	}
2392

2393 2394 2395
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2396
	/* Allocate a request for this batch buffer nice and early. */
2397
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2398
	if (IS_ERR(eb.request)) {
2399
		err = PTR_ERR(eb.request);
2400
		goto err_batch_unpin;
2401
	}
2402

2403
	if (in_fence) {
2404
		err = i915_request_await_dma_fence(eb.request, in_fence);
2405
		if (err < 0)
2406 2407 2408
			goto err_request;
	}

2409 2410 2411 2412 2413 2414
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2415
	if (out_fence_fd != -1) {
2416
		out_fence = sync_file_create(&eb.request->fence);
2417
		if (!out_fence) {
2418
			err = -ENOMEM;
2419 2420 2421 2422
			goto err_request;
		}
	}

2423 2424
	/*
	 * Whilst this request exists, batch_obj will be on the
2425 2426 2427 2428 2429
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2430
	eb.request->batch = eb.batch;
2431

2432
	trace_i915_request_queue(eb.request, eb.batch_flags);
2433
	err = eb_submit(&eb);
2434
err_request:
2435
	__i915_request_add(eb.request, err == 0);
2436
	add_to_client(eb.request, file);
2437

2438 2439 2440
	if (fences)
		signal_fence_array(&eb, fences);

2441
	if (out_fence) {
2442
		if (err == 0) {
2443
			fd_install(out_fence_fd, out_fence->file);
2444
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2445 2446 2447 2448 2449 2450
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2451

2452
err_batch_unpin:
2453
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2454
		i915_vma_unpin(eb.batch);
2455 2456 2457
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2458
	mutex_unlock(&dev->struct_mutex);
2459
err_rpm:
2460
	intel_runtime_pm_put(eb.i915);
2461 2462
	i915_gem_context_put(eb.ctx);
err_destroy:
2463
	eb_destroy(&eb);
2464
err_out_fence:
2465 2466
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2467
err_in_fence:
2468
	dma_fence_put(in_fence);
2469
	return err;
2470 2471
}

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2492 2493 2494 2495 2496
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2497 2498
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2499 2500 2501 2502 2503
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2504
	const size_t count = args->buffer_count;
2505 2506
	unsigned int i;
	int err;
2507

2508 2509
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2510 2511 2512
		return -EINVAL;
	}

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2527
	/* Copy in the exec list from userland */
2528
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2529
				   __GFP_NOWARN | GFP_KERNEL);
2530
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2531
				    __GFP_NOWARN | GFP_KERNEL);
2532
	if (exec_list == NULL || exec2_list == NULL) {
2533
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2534
			  args->buffer_count);
M
Michal Hocko 已提交
2535 2536
		kvfree(exec_list);
		kvfree(exec2_list);
2537 2538
		return -ENOMEM;
	}
2539
	err = copy_from_user(exec_list,
2540
			     u64_to_user_ptr(args->buffers_ptr),
2541
			     sizeof(*exec_list) * count);
2542
	if (err) {
2543
		DRM_DEBUG("copy %d exec entries failed %d\n",
2544
			  args->buffer_count, err);
M
Michal Hocko 已提交
2545 2546
		kvfree(exec_list);
		kvfree(exec2_list);
2547 2548 2549 2550 2551 2552 2553 2554 2555
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2556
		if (INTEL_GEN(to_i915(dev)) < 4)
2557 2558 2559 2560 2561
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2562
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2563
	if (exec2.flags & __EXEC_HAS_RELOC) {
2564
		struct drm_i915_gem_exec_object __user *user_exec_list =
2565
			u64_to_user_ptr(args->buffers_ptr);
2566

2567
		/* Copy the new buffer offsets back to the user's exec list. */
2568
		for (i = 0; i < args->buffer_count; i++) {
2569 2570 2571
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2572
			exec2_list[i].offset =
2573 2574 2575 2576 2577
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2578
				break;
2579 2580 2581
		}
	}

M
Michal Hocko 已提交
2582 2583
	kvfree(exec_list);
	kvfree(exec2_list);
2584
	return err;
2585 2586 2587
}

int
2588 2589
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2590 2591
{
	struct drm_i915_gem_execbuffer2 *args = data;
2592
	struct drm_i915_gem_exec_object2 *exec2_list;
2593
	struct drm_syncobj **fences = NULL;
2594
	const size_t count = args->buffer_count;
2595
	int err;
2596

2597 2598
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2599 2600 2601
		return -EINVAL;
	}

2602 2603 2604 2605
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2606
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2607
				    __GFP_NOWARN | GFP_KERNEL);
2608
	if (exec2_list == NULL) {
2609 2610
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2611 2612
		return -ENOMEM;
	}
2613 2614
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2615 2616
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2617
		kvfree(exec2_list);
2618 2619 2620
		return -EFAULT;
	}

2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2630 2631 2632 2633 2634 2635 2636 2637

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2638
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2639 2640
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2641

2642 2643
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2644
		for (i = 0; i < args->buffer_count; i++) {
2645 2646 2647
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2648
			exec2_list[i].offset =
2649 2650 2651 2652
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2653
		}
2654 2655
end_user:
		user_access_end();
2656 2657
	}

2658
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2659
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2660
	kvfree(exec2_list);
2661
	return err;
2662
}