intel_lrc.c 68.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233 234 235 236
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
237

238 239
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240
 * @dev_priv: i915 device private
241 242 243
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
244
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
245 246 247
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
248
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249
{
250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
253
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254 255
		return 1;

256
	if (INTEL_GEN(dev_priv) >= 9)
257 258
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263 264
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
265 266 267 268
		return 1;

	return 0;
}
269

270
static void
271
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272
{
273
	struct drm_i915_private *dev_priv = engine->i915;
274

275
	engine->disable_lite_restore_wa =
276
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
277
		(engine->id == VCS || engine->id == VCS2);
278

279
	engine->ctx_desc_template = GEN8_CTX_VALID;
280
	if (IS_GEN8(dev_priv))
281 282
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
283 284 285 286 287 288 289

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290 291
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
292 293
}

294
/**
295 296 297
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
298
 * @engine: Engine the descriptor will be used with
299
 *
300 301 302 303 304
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
305 306 307 308 309 310 311
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
312
 */
313
static void
314
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
315
				   struct intel_engine_cs *engine)
316
{
317
	struct intel_context *ce = &ctx->engine[engine->id];
318
	u64 desc;
319

320
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
321

322 323
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
324
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
325
								/* bits 12-31 */
326
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
327

328
	ce->lrc_desc = desc;
329 330
}

331
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
332
				     struct intel_engine_cs *engine)
333
{
334
	return ctx->engine[engine->id].lrc_desc;
335
}
336

337 338 339
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
340
{
341 342 343 344 345 346
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
347

348 349
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
350 351
}

352 353 354 355 356 357 358 359 360
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

361
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
362
{
363
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
364 365
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
366
	u32 *reg_state = ce->lrc_reg_state;
367

C
Chris Wilson 已提交
368
	reg_state[CTX_RING_TAIL+1] = rq->tail;
369

370 371 372 373 374 375 376
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
377 378

	return ce->lrc_desc;
379 380
}

381
static void execlists_submit_ports(struct intel_engine_cs *engine)
382
{
383 384
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
385 386 387 388
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

389 390 391 392 393 394 395 396 397 398 399 400
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
401 402 403
	} else {
		desc[1] = 0;
	}
404
	GEM_BUG_ON(desc[0] == desc[1]);
405 406 407 408 409 410 411 412 413 414

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418
		i915_gem_context_force_single_submission(ctx));
419
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433
static void execlists_dequeue(struct intel_engine_cs *engine)
434
{
435
	struct drm_i915_gem_request *last;
436
	struct execlist_port *port = engine->execlist_port;
437
	unsigned long flags;
438
	struct rb_node *rb;
439 440 441 442 443 444
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
445
		 * as we resubmit the request. See gen8_emit_breadcrumb()
446 447 448 449
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
450

451
	GEM_BUG_ON(port[1].request);
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
472
	 */
473

474
	spin_lock_irqsave(&engine->timeline->lock, flags);
475 476 477 478 479
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

480 481 482
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
483
		 *
484 485 486 487
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
488
		 */
489 490 491 492 493 494 495 496 497 498 499 500 501
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
502 503
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
504 505 506 507 508 509 510
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
511

512 513 514 515 516
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

517
		__i915_gem_request_submit(cursor);
518 519 520 521 522
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
523
		engine->execlist_first = rb;
524
	}
525
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
526

527 528
	if (submit)
		execlists_submit_ports(engine);
529 530
}

531
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
532
{
533
	return !engine->execlist_port[0].request;
534 535
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

558
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
559
{
560
	int port;
B
Ben Widawsky 已提交
561

562 563 564
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
565

566
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
567 568
}

569
/*
570 571 572
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
573
static void intel_lrc_irq_handler(unsigned long data)
574
{
575
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
576
	struct execlist_port *port = engine->execlist_port;
577
	struct drm_i915_private *dev_priv = engine->i915;
578

579
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
612

613 614
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
615 616
		}

617 618 619
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
620 621
	}

622 623
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
624

625
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
626 627
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

654
static void execlists_submit_request(struct drm_i915_gem_request *request)
655
{
656
	struct intel_engine_cs *engine = request->engine;
657
	unsigned long flags;
658

659 660
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
661

662 663
	if (insert_request(&request->priotree, &engine->execlist_queue))
		engine->execlist_first = &request->priotree.node;
664 665
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
666

667
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
668 669
}

670 671 672
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
673 674 675 676
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
677 678

	if (engine != locked) {
679 680
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
681 682 683 684 685 686 687
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
688
	struct intel_engine_cs *engine;
689 690 691 692 693 694 695
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

696 697
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

722 723 724 725 726 727 728
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
729 730
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
731
		}
732

733
		list_safe_reset_next(dep, p, dfs_link);
734 735
	}

736 737 738
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

739 740 741 742 743 744 745 746 747 748 749 750
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
751 752 753 754 755
		if (!RB_EMPTY_NODE(&pt->node)) {
			rb_erase(&pt->node, &engine->execlist_queue);
			if (insert_request(pt, &engine->execlist_queue))
				engine->execlist_first = &pt->node;
		}
756 757
	}

758
	spin_unlock_irq(&engine->timeline->lock);
759 760 761 762

	/* XXX Do we need to preempt to make room for us and our deps? */
}

763 764
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
765
{
766
	struct intel_context *ce = &ctx->engine[engine->id];
767
	unsigned int flags;
768
	void *vaddr;
769
	int ret;
770

771
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
772

773
	if (ce->pin_count++)
774 775
		return 0;

776 777 778 779 780
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
781
	GEM_BUG_ON(!ce->state);
782

783 784 785
	flags = PIN_GLOBAL;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
786
	if (i915_gem_context_is_kernel(ctx))
787 788 789
		flags |= PIN_HIGH;

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
790
	if (ret)
791
		goto err;
792

793
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
794 795
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
796
		goto unpin_vma;
797 798
	}

799
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
800
	if (ret)
801
		goto unpin_map;
802

803
	intel_lr_context_descriptor_update(ctx, engine);
804

805 806
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
807
		i915_ggtt_offset(ce->ring->vma);
808

C
Chris Wilson 已提交
809
	ce->state->obj->mm.dirty = true;
810

811
	i915_gem_context_get(ctx);
812
	return 0;
813

814
unpin_map:
815 816 817
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
818
err:
819
	ce->pin_count = 0;
820 821 822
	return ret;
}

823 824
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
825
{
826
	struct intel_context *ce = &ctx->engine[engine->id];
827

828
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
829
	GEM_BUG_ON(ce->pin_count == 0);
830

831
	if (--ce->pin_count)
832
		return;
833

834
	intel_ring_unpin(ce->ring);
835

836 837
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
838

839
	i915_gem_context_put(ctx);
840 841
}

842
static int execlists_request_alloc(struct drm_i915_gem_request *request)
843 844 845 846 847
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

848 849
	GEM_BUG_ON(!ce->pin_count);

850 851 852 853 854 855
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

856
	GEM_BUG_ON(!ce->ring);
857 858 859 860 861 862 863 864 865 866
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
867
			goto err;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
895
err:
896 897 898
	return ret;
}

899
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
900 901
{
	int ret, i;
902
	struct intel_ring *ring = req->ring;
903
	struct i915_workarounds *w = &req->i915->workarounds;
904

905
	if (w->count == 0)
906 907
		return 0;

908
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
909 910 911
	if (ret)
		return ret;

912
	ret = intel_ring_begin(req, w->count * 2 + 2);
913 914 915
	if (ret)
		return ret;

916
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
917
	for (i = 0; i < w->count; i++) {
918 919
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
920
	}
921
	intel_ring_emit(ring, MI_NOOP);
922

923
	intel_ring_advance(ring);
924

925
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
926 927 928 929 930 931
	if (ret)
		return ret;

	return 0;
}

932
#define wa_ctx_emit(batch, index, cmd)					\
933
	do {								\
934 935
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
936 937
			return -ENOSPC;					\
		}							\
938
		batch[__index] = (cmd);					\
939 940
	} while (0)

V
Ville Syrjälä 已提交
941
#define wa_ctx_emit_reg(batch, index, reg) \
942
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
960
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
961
						uint32_t *batch,
962 963 964 965
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

966
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
967
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
968
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
969
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
970 971 972
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
973
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
974 975 976 977 978 979 980 981 982 983
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

984
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
985
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
986
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
987
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
988
	wa_ctx_emit(batch, index, 0);
989 990 991 992

	return index;
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1012 1013 1014 1015 1016 1017
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1018
 *
1019 1020
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1021
 *
1022 1023 1024 1025
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1026
 */
1027
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1028
				    struct i915_wa_ctx_bb *wa_ctx,
1029
				    uint32_t *batch,
1030 1031
				    uint32_t *offset)
{
1032
	uint32_t scratch_addr;
1033 1034
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1035
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1036
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1037

1038
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1039
	if (IS_BROADWELL(engine->i915)) {
1040
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1041 1042 1043
		if (rc < 0)
			return rc;
		index = rc;
1044 1045
	}

1046 1047
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1048
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1059

1060 1061
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1062
		wa_ctx_emit(batch, index, MI_NOOP);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1073 1074 1075
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1076
 *
1077
 *  The number of DWORDS written are returned using this field.
1078 1079 1080 1081
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1082
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1083
			       struct i915_wa_ctx_bb *wa_ctx,
1084
			       uint32_t *batch,
1085 1086 1087 1088
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1089
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1090
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1091

1092
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1093 1094 1095 1096

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1097
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1098
				    struct i915_wa_ctx_bb *wa_ctx,
1099
				    uint32_t *batch,
1100 1101
				    uint32_t *offset)
{
1102
	int ret;
D
Dave Airlie 已提交
1103
	struct drm_i915_private *dev_priv = engine->i915;
1104 1105
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1106 1107
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1108
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1109

1110
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1111
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1112 1113 1114 1115
	if (ret < 0)
		return ret;
	index = ret;

1116 1117 1118 1119 1120 1121 1122
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1123 1124
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1125
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1126
		u32 scratch_addr =
1127
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1164 1165 1166 1167 1168 1169 1170
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1171
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1172
			       struct i915_wa_ctx_bb *wa_ctx,
1173
			       uint32_t *batch,
1174 1175 1176 1177
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1178 1179
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1180
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1181
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1182 1183 1184 1185 1186
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1187
	/* WaClearTdlStateAckDirtyBits:bxt */
1188
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1206 1207
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1208 1209
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1210 1211 1212 1213 1214
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1215
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1216
{
1217 1218 1219
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1220

1221
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1222 1223
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1224

1225
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1226 1227 1228
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1229 1230
	}

1231 1232 1233 1234 1235
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1236
	return 0;
1237 1238 1239 1240

err:
	i915_gem_object_put(obj);
	return err;
1241 1242
}

1243
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1244
{
1245
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1246 1247
}

1248
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1249
{
1250
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1251 1252 1253
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1254
	int ret;
1255

1256
	WARN_ON(engine->id != RCS);
1257

1258
	/* update this when WA for higher Gen are added */
1259
	if (INTEL_GEN(engine->i915) > 9) {
1260
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1261
			  INTEL_GEN(engine->i915));
1262
		return 0;
1263
	}
1264

1265
	/* some WA perform writes to scratch page, ensure it is valid */
1266
	if (!engine->scratch) {
1267
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1268 1269 1270
		return -EINVAL;
	}

1271
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1272 1273 1274 1275 1276
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1277
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1278 1279 1280
	batch = kmap_atomic(page);
	offset = 0;

1281
	if (IS_GEN8(engine->i915)) {
1282
		ret = gen8_init_indirectctx_bb(engine,
1283 1284 1285 1286 1287 1288
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1289
		ret = gen8_init_perctx_bb(engine,
1290 1291 1292 1293 1294
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1295
	} else if (IS_GEN9(engine->i915)) {
1296
		ret = gen9_init_indirectctx_bb(engine,
1297 1298 1299 1300 1301 1302
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1303
		ret = gen9_init_perctx_bb(engine,
1304 1305 1306 1307 1308
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1309 1310 1311 1312 1313
	}

out:
	kunmap_atomic(batch);
	if (ret)
1314
		lrc_destroy_wa_ctx_obj(engine);
1315 1316 1317 1318

	return ret;
}

1319
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1320
{
1321
	struct drm_i915_private *dev_priv = engine->i915;
1322 1323 1324 1325 1326
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1327

1328
	intel_engine_reset_breadcrumbs(engine);
1329
	intel_engine_init_hangcheck(engine);
1330

1331 1332
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1333 1334
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1335 1336 1337
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1338

1339
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1340

1341 1342 1343 1344
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1345
		execlists_submit_ports(engine);
1346
	}
1347 1348

	return 0;
1349 1350
}

1351
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1352
{
1353
	struct drm_i915_private *dev_priv = engine->i915;
1354 1355
	int ret;

1356
	ret = gen8_init_common_ring(engine);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1370
	return init_workarounds_ring(engine);
1371 1372
}

1373
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1374 1375 1376
{
	int ret;

1377
	ret = gen8_init_common_ring(engine);
1378 1379 1380
	if (ret)
		return ret;

1381
	return init_workarounds_ring(engine);
1382 1383
}

1384 1385 1386 1387 1388
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1403

1404 1405 1406 1407 1408 1409 1410
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1411
	ce = &request->ctx->engine[engine->id];
1412 1413 1414
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1415
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1416 1417
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1418
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1436 1437

	/* Reset WaIdleLiteRestore:bdw,skl as well */
1438 1439 1440
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1441 1442
}

1443 1444 1445
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1446
	struct intel_ring *ring = req->ring;
1447
	struct intel_engine_cs *engine = req->engine;
1448 1449 1450
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1451
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1452 1453 1454
	if (ret)
		return ret;

1455
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1456 1457 1458
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1459 1460 1461 1462
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1463 1464
	}

1465 1466
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1467 1468 1469 1470

	return 0;
}

1471
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1472 1473
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1474
{
1475
	struct intel_ring *ring = req->ring;
1476
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1477 1478
	int ret;

1479 1480 1481 1482
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1483 1484
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1485
	if (req->ctx->ppgtt &&
1486
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1487
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1488
		    !intel_vgpu_active(req->i915)) {
1489 1490 1491 1492
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1493

1494
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1495 1496
	}

1497
	ret = intel_ring_begin(req, 4);
1498 1499 1500 1501
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1502 1503 1504 1505 1506 1507 1508 1509
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1510 1511 1512 1513

	return 0;
}

1514
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1515
{
1516
	struct drm_i915_private *dev_priv = engine->i915;
1517 1518 1519
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1520 1521
}

1522
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1523
{
1524
	struct drm_i915_private *dev_priv = engine->i915;
1525
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1526 1527
}

1528
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1529
{
1530 1531
	struct intel_ring *ring = request->ring;
	u32 cmd;
1532 1533
	int ret;

1534
	ret = intel_ring_begin(request, 4);
1535 1536 1537 1538 1539
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1540 1541 1542 1543 1544 1545 1546
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1547
	if (mode & EMIT_INVALIDATE) {
1548
		cmd |= MI_INVALIDATE_TLB;
1549
		if (request->engine->id == VCS)
1550
			cmd |= MI_INVALIDATE_BSD;
1551 1552
	}

1553 1554 1555 1556 1557 1558 1559
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1560 1561 1562 1563

	return 0;
}

1564
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1565
				  u32 mode)
1566
{
1567
	struct intel_ring *ring = request->ring;
1568
	struct intel_engine_cs *engine = request->engine;
1569 1570
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1571
	bool vf_flush_wa = false, dc_flush_wa = false;
1572 1573
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1574
	int len;
1575 1576 1577

	flags |= PIPE_CONTROL_CS_STALL;

1578
	if (mode & EMIT_FLUSH) {
1579 1580
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1581
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1582
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1583 1584
	}

1585
	if (mode & EMIT_INVALIDATE) {
1586 1587 1588 1589 1590 1591 1592 1593 1594
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1595 1596 1597 1598
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1599
		if (IS_GEN9(request->i915))
1600
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1601 1602 1603 1604

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1605
	}
1606

M
Mika Kuoppala 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1616 1617 1618
	if (ret)
		return ret;

1619
	if (vf_flush_wa) {
1620 1621 1622 1623 1624 1625
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1626 1627
	}

M
Mika Kuoppala 已提交
1628
	if (dc_flush_wa) {
1629 1630 1631 1632 1633 1634
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1635 1636
	}

1637 1638 1639 1640 1641 1642
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1643 1644

	if (dc_flush_wa) {
1645 1646 1647 1648 1649 1650
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1651 1652
	}

1653
	intel_ring_advance(ring);
1654 1655 1656 1657

	return 0;
}

1658
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1670
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1671 1672
}

1673 1674 1675 1676 1677
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1678
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1679
{
C
Chris Wilson 已提交
1680 1681 1682 1683
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1684

C
Chris Wilson 已提交
1685 1686 1687
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1688 1689
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1690

C
Chris Wilson 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1700
}
1701

1702 1703
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1704 1705
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1706
{
1707 1708 1709
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1710 1711 1712 1713
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1714 1715 1716 1717 1718 1719 1720
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1721
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1722 1723 1724 1725 1726 1727
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1728 1729
}

1730 1731
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1732
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1733 1734 1735
{
	int ret;

1736
	ret = intel_logical_ring_workarounds_emit(req);
1737 1738 1739
	if (ret)
		return ret;

1740 1741 1742 1743 1744 1745 1746 1747
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1748
	return i915_gem_render_state_emit(req);
1749 1750
}

1751 1752
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1753
 * @engine: Engine Command Streamer.
1754
 */
1755
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1756
{
1757
	struct drm_i915_private *dev_priv;
1758

1759 1760 1761 1762 1763 1764 1765
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1766
	dev_priv = engine->i915;
1767

1768 1769
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1770
	}
1771

1772 1773
	if (engine->cleanup)
		engine->cleanup(engine);
1774

1775 1776 1777
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1778
	}
1779 1780

	intel_engine_cleanup_common(engine);
1781

1782
	lrc_destroy_wa_ctx_obj(engine);
1783
	engine->i915 = NULL;
1784 1785
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1786 1787
}

1788 1789 1790
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1791
	enum intel_engine_id id;
1792

1793
	for_each_engine(engine, dev_priv, id) {
1794
		engine->submit_request = execlists_submit_request;
1795 1796
		engine->schedule = execlists_schedule;
	}
1797 1798
}

1799
static void
1800
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1801 1802
{
	/* Default vfuncs which can be overriden by each engine. */
1803
	engine->init_hw = gen8_init_common_ring;
1804
	engine->reset_hw = reset_common_ring;
1805 1806 1807 1808

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1809 1810
	engine->request_alloc = execlists_request_alloc;

1811
	engine->emit_flush = gen8_emit_flush;
1812
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1813
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1814
	engine->submit_request = execlists_submit_request;
1815
	engine->schedule = execlists_schedule;
1816

1817 1818
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1819
	engine->emit_bb_start = gen8_emit_bb_start;
1820
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1821
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1822 1823
}

1824
static inline void
1825
logical_ring_default_irqs(struct intel_engine_cs *engine)
1826
{
1827
	unsigned shift = engine->irq_shift;
1828 1829
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1830 1831
}

1832
static int
1833
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1834
{
1835
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1836
	void *hws;
1837 1838

	/* The HWSP is part of the default context object in LRC mode. */
1839
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1840 1841
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1842 1843

	engine->status_page.page_addr = hws + hws_offset;
1844
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1845
	engine->status_page.vma = vma;
1846 1847

	return 0;
1848 1849
}

1850 1851 1852 1853 1854 1855
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1856 1857
	intel_engine_setup_common(engine);

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1883 1884 1885 1886 1887 1888
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1889
	ret = intel_engine_init_common(engine);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1907
int logical_render_ring_init(struct intel_engine_cs *engine)
1908 1909 1910 1911
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1912 1913
	logical_ring_setup(engine);

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1924
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1925
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1926

1927
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1942
	return logical_ring_init(engine);
1943 1944
}

1945
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1946 1947 1948 1949
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1950 1951
}

1952
static u32
1953
make_rpcs(struct drm_i915_private *dev_priv)
1954 1955 1956 1957 1958 1959 1960
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1961
	if (INTEL_GEN(dev_priv) < 9)
1962 1963 1964 1965 1966 1967 1968 1969
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1970
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1971
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1972
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1973 1974 1975 1976
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1977
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1978
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1979
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1980 1981 1982 1983
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1984 1985
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1986
			GEN8_RPCS_EU_MIN_SHIFT;
1987
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1988 1989 1990 1991 1992 1993 1994
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1995
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1996 1997 1998
{
	u32 indirect_ctx_offset;

1999
	switch (INTEL_GEN(engine->i915)) {
2000
	default:
2001
		MISSING_CASE(INTEL_GEN(engine->i915));
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2016 2017 2018 2019
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2020
{
2021 2022
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2023 2024 2025 2026 2027 2028

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2029
	reg_state[CTX_LRI_HEADER_0] =
2030 2031 2032
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2033 2034
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2035
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2036
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2037 2038 2039 2040 2041 2042 2043 2044
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2045
		       RING_CTL_SIZE(ring->size) | RING_VALID);
2046 2047 2048 2049 2050 2051
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2052
		       RING_BB_PPGTT);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2066
		if (engine->wa_ctx.vma) {
2067
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2068
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2069 2070 2071 2072 2073 2074

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2075
				intel_lr_indirect_ctx_offset(engine) << 6;
2076 2077 2078 2079 2080

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2081
	}
2082
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2083 2084
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2085
	/* PDP values well be assigned later if needed */
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2102

2103
	if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2104 2105 2106 2107 2108 2109 2110
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	}

2111
	if (engine->id == RCS) {
2112
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2113
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2114
			       make_rpcs(dev_priv));
2115
	}
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2139
	ctx_obj->mm.dirty = true;
2140 2141 2142 2143 2144 2145

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2146

2147
	i915_gem_object_unpin_map(ctx_obj);
2148 2149 2150 2151

	return 0;
}

2152 2153
/**
 * intel_lr_context_size() - return the size of the context for an engine
2154
 * @engine: which engine to find the context size for
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2166
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2167 2168 2169
{
	int ret = 0;

2170
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2171

2172
	switch (engine->id) {
2173
	case RCS:
2174
		if (INTEL_GEN(engine->i915) >= 9)
2175 2176 2177
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2188 2189
}

2190
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2191
					    struct intel_engine_cs *engine)
2192
{
2193
	struct drm_i915_gem_object *ctx_obj;
2194
	struct intel_context *ce = &ctx->engine[engine->id];
2195
	struct i915_vma *vma;
2196
	uint32_t context_size;
2197
	struct intel_ring *ring;
2198 2199
	int ret;

2200
	WARN_ON(ce->state);
2201

2202 2203
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
2204

2205 2206 2207
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2208
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2209
	if (IS_ERR(ctx_obj)) {
2210
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2211
		return PTR_ERR(ctx_obj);
2212 2213
	}

2214
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2215 2216 2217 2218 2219
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2220
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2221 2222
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2223
		goto error_deref_obj;
2224 2225
	}

2226
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2227 2228
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2229
		goto error_ring_free;
2230 2231
	}

2232
	ce->ring = ring;
2233
	ce->state = vma;
2234
	ce->initialised = engine->init_context == NULL;
2235 2236

	return 0;
2237

2238
error_ring_free:
2239
	intel_ring_free(ring);
2240
error_deref_obj:
2241
	i915_gem_object_put(ctx_obj);
2242
	return ret;
2243
}
2244

2245
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2246
{
2247
	struct intel_engine_cs *engine;
2248
	struct i915_gem_context *ctx;
2249
	enum intel_engine_id id;
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2262
		for_each_engine(engine, dev_priv, id) {
2263 2264
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2265

2266 2267
			if (!ce->state)
				continue;
2268

2269 2270 2271 2272
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2273

2274 2275 2276
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2277

C
Chris Wilson 已提交
2278
			ce->state->obj->mm.dirty = true;
2279
			i915_gem_object_unpin_map(ce->state->obj);
2280

2281 2282 2283 2284
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2285 2286
	}
}