intel_lrc.c 81.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227 228
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
229

230 231
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
232 233
static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
					   struct drm_i915_gem_object *default_ctx_obj);
234

235

236 237 238 239 240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
242
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
243 244 245
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
246 247
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
248 249
	WARN_ON(i915.enable_ppgtt == -1);

250 251 252 253 254 255
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

256 257 258
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
264 265 266 267
		return 1;

	return 0;
}
268

269
static void
270
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271
{
272
	struct drm_device *dev = engine->dev;
273

274
	if (IS_GEN8(dev) || IS_GEN9(dev))
275
		engine->idle_lite_restore_wa = ~0;
276

277
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279
					(engine->id == VCS || engine->id == VCS2);
280

281 282
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283 284
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
285 286
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 288 289 290 291 292 293

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 295
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 297
}

298
/**
299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
301
 *
302 303
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
304
 *
305 306 307 308 309 310 311 312 313 314
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
315
 */
316 317
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
318
				   struct intel_engine_cs *engine)
319
{
320
	uint64_t lrca, desc;
321

322
	lrca = ctx->engine[engine->id].lrc_vma->node.start +
323
	       LRC_PPHWSP_PN * PAGE_SIZE;
324

325
	desc = engine->ctx_desc_template;			   /* bits  0-11 */
326 327
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
328

329
	ctx->engine[engine->id].lrc_desc = desc;
330 331
}

332
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
333
				     struct intel_engine_cs *engine)
334
{
335
	return ctx->engine[engine->id].lrc_desc;
336
}
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
355
			   struct intel_engine_cs *engine)
356
{
357
	return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
358 359
}

360 361
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
362
{
363

364
	struct intel_engine_cs *engine = rq0->engine;
365
	struct drm_device *dev = engine->dev;
366
	struct drm_i915_private *dev_priv = dev->dev_private;
367
	uint64_t desc[2];
368

369
	if (rq1) {
370
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
371 372 373 374
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
375

376
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
377
	rq0->elsp_submitted++;
378

379
	/* You must always write both descriptors in the order below. */
380 381
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
382

383
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
384
	/* The context is automatically loaded after the following */
385
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
386

387
	/* ELSP is a wo register, use another nearby reg for posting */
388
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
389 390
}

391 392 393 394 395 396 397 398 399 400
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
401
{
402
	struct intel_engine_cs *engine = rq->engine;
403
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
404
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
405

406
	reg_state[CTX_RING_TAIL+1] = rq->tail;
407

408 409 410 411 412 413 414
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
415 416
}

417 418
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
419
{
420 421
	struct drm_i915_private *dev_priv = rq0->i915;

422
	execlists_update_context(rq0);
423

424
	if (rq1)
425
		execlists_update_context(rq1);
426

427
	spin_lock_irq(&dev_priv->uncore.lock);
428 429
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);

430
	execlists_elsp_write(rq0, rq1);
431 432

	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
433
	spin_unlock_irq(&dev_priv->uncore.lock);
434 435
}

436
static void execlists_context_unqueue(struct intel_engine_cs *engine)
437
{
438
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
439
	struct drm_i915_gem_request *cursor, *tmp;
440

441
	assert_spin_locked(&engine->execlist_lock);
442

443 444 445 446
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
447
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
448

449
	/* Try to read in pairs */
450
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
451 452 453
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
454
		} else if (req0->ctx == cursor->ctx) {
455 456
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
457
			cursor->elsp_submitted = req0->elsp_submitted;
458
			list_move_tail(&req0->execlist_link,
459
				       &engine->execlist_retired_req_list);
460 461 462
			req0 = cursor;
		} else {
			req1 = cursor;
463
			WARN_ON(req1->elsp_submitted);
464 465 466 467
			break;
		}
	}

468 469 470
	if (unlikely(!req0))
		return;

471
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
472
		/*
473 474 475 476 477 478
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
479
		 */
480
		struct intel_ringbuffer *ringbuf;
481

482
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
483 484
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
485 486
	}

487
	execlists_submit_requests(req0, req1);
488 489
}

490
static unsigned int
491
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
492
{
493
	struct drm_i915_gem_request *head_req;
494

495
	assert_spin_locked(&engine->execlist_lock);
496

497
	head_req = list_first_entry_or_null(&engine->execlist_queue,
498
					    struct drm_i915_gem_request,
499 500
					    execlist_link);

501 502
	if (!head_req)
		return 0;
503

504
	if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
505 506 507 508 509 510 511 512
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
513
		       &engine->execlist_retired_req_list);
514

515
	return 1;
516 517
}

518
static u32
519
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
520
		   u32 *context_id)
B
Ben Widawsky 已提交
521
{
522
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
523
	u32 status;
B
Ben Widawsky 已提交
524

525 526
	read_pointer %= GEN8_CSB_ENTRIES;

527
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
528 529 530

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
531

532
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
533 534 535
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
536 537
}

538
/**
539
 * intel_lrc_irq_handler() - handle Context Switch interrupts
540
 * @engine: Engine Command Streamer to handle.
541 542 543 544
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
545
static void intel_lrc_irq_handler(unsigned long data)
546
{
547
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
548
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
549
	u32 status_pointer;
550
	unsigned int read_pointer, write_pointer;
551 552
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
553 554
	unsigned int submit_contexts = 0;

555
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
556

557
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
558

559
	read_pointer = engine->next_context_status_buffer;
560
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
561
	if (read_pointer > write_pointer)
562
		write_pointer += GEN8_CSB_ENTRIES;
563 564

	while (read_pointer < write_pointer) {
565 566 567 568 569 570
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
571

572 573 574 575 576 577 578 579
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

580
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
581 582 583 584 585 586 587

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
588 589 590 591 592
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

593
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
594 595
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
596
				execlists_check_remove_request(engine, csb[i][1]);
597 598
	}

599
	if (submit_contexts) {
600
		if (!engine->disable_lite_restore_wa ||
601 602
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
603
	}
604

605
	spin_unlock(&engine->execlist_lock);
606 607 608

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
609 610
}

611
static void execlists_context_queue(struct drm_i915_gem_request *request)
612
{
613
	struct intel_engine_cs *engine = request->engine;
614
	struct drm_i915_gem_request *cursor;
615
	int num_elements = 0;
616

617
	if (request->ctx != request->i915->kernel_context)
618
		intel_lr_context_pin(request->ctx, engine);
619

620 621
	i915_gem_request_reference(request);

622
	spin_lock_bh(&engine->execlist_lock);
623

624
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
625 626 627 628
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
629
		struct drm_i915_gem_request *tail_req;
630

631
		tail_req = list_last_entry(&engine->execlist_queue,
632
					   struct drm_i915_gem_request,
633 634
					   execlist_link);

635
		if (request->ctx == tail_req->ctx) {
636
			WARN(tail_req->elsp_submitted != 0,
637
				"More than 2 already-submitted reqs queued\n");
638
			list_move_tail(&tail_req->execlist_link,
639
				       &engine->execlist_retired_req_list);
640 641 642
		}
	}

643
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
644
	if (num_elements == 0)
645
		execlists_context_unqueue(engine);
646

647
	spin_unlock_bh(&engine->execlist_lock);
648 649
}

650
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
651
{
652
	struct intel_engine_cs *engine = req->engine;
653 654 655 656
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
657
	if (engine->gpu_caches_dirty)
658 659
		flush_domains = I915_GEM_GPU_DOMAINS;

660
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
661 662 663
	if (ret)
		return ret;

664
	engine->gpu_caches_dirty = false;
665 666 667
	return 0;
}

668
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
669 670
				 struct list_head *vmas)
{
671
	const unsigned other_rings = ~intel_engine_flag(req->engine);
672 673 674 675 676 677 678 679
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

680
		if (obj->active & other_rings) {
681
			ret = i915_gem_object_sync(obj, req->engine, &req);
682 683 684
			if (ret)
				return ret;
		}
685 686 687 688 689 690 691 692 693 694 695 696 697

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
698
	return logical_ring_invalidate_all_caches(req);
699 700
}

701
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
702
{
D
Dave Gordon 已提交
703
	int ret = 0;
704

705
	request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
720
	if (request->ctx != request->i915->kernel_context)
721
		ret = intel_lr_context_pin(request->ctx, request->engine);
D
Dave Gordon 已提交
722 723

	return ret;
724 725
}

726
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
727
				       int bytes)
728
{
729
	struct intel_ringbuffer *ringbuf = req->ringbuf;
730
	struct intel_engine_cs *engine = req->engine;
731
	struct drm_i915_gem_request *target;
732 733
	unsigned space;
	int ret;
734 735 736 737

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

738 739 740
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

741
	list_for_each_entry(target, &engine->request_list, list) {
742 743 744 745 746
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
747
		if (target->ringbuf != ringbuf)
748 749 750
			continue;

		/* Would completion of this request free enough space? */
751
		space = __intel_ring_space(target->postfix, ringbuf->tail,
752 753
					   ringbuf->size);
		if (space >= bytes)
754 755 756
			break;
	}

757
	if (WARN_ON(&target->list == &engine->request_list))
758 759
		return -ENOSPC;

760
	ret = i915_wait_request(target);
761 762 763
	if (ret)
		return ret;

764 765
	ringbuf->space = space;
	return 0;
766 767 768 769
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
770
 * @request: Request to advance the logical ringbuffer of.
771 772 773 774 775 776
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
777
static int
778
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
779
{
780
	struct intel_ringbuffer *ringbuf = request->ringbuf;
781
	struct drm_i915_private *dev_priv = request->i915;
782
	struct intel_engine_cs *engine = request->engine;
783

784 785
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
786

787 788 789 790 791 792 793 794 795
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
796

797
	if (intel_engine_stopped(engine))
798
		return 0;
799

800 801 802 803 804 805 806 807 808 809 810
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
		if (request->ctx != request->i915->kernel_context) {
			intel_lr_context_pin(request->ctx, engine);
			engine->last_context = request->ctx;
		} else {
			engine->last_context = NULL;
		}
	}

811 812 813 814
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
815 816

	return 0;
817 818
}

819
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
820 821 822 823 824 825 826 827 828 829 830 831 832
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

833
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
834
{
835
	struct intel_ringbuffer *ringbuf = req->ringbuf;
836 837 838 839
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
840

841 842 843 844
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
845

846 847 848 849 850 851 852 853 854 855 856
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
857 858 859
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
860 861 862 863 864
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
865
		}
866 867
	}

868 869
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
870 871
		if (unlikely(ret))
			return ret;
872 873 874

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
875 876 877 878 879 880 881 882
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
883
 * @req: The request to start some new work for
884 885 886 887 888 889 890 891 892
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
893
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
894
{
895
	struct drm_i915_private *dev_priv;
896 897
	int ret;

898
	WARN_ON(req == NULL);
899
	dev_priv = req->i915;
900

901 902 903 904 905
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

906
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
907 908 909
	if (ret)
		return ret;

910
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
911 912 913
	return 0;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

929 930 931 932 933 934 935 936 937 938
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
939
 * @dispatch_flags: translated execbuffer call flags.
940 941 942 943 944 945
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
946
int intel_execlists_submission(struct i915_execbuffer_params *params,
947
			       struct drm_i915_gem_execbuffer2 *args,
948
			       struct list_head *vmas)
949
{
950
	struct drm_device       *dev = params->dev;
951
	struct intel_engine_cs *engine = params->engine;
952
	struct drm_i915_private *dev_priv = dev->dev_private;
953
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
954
	u64 exec_start;
955 956 957 958 959 960 961 962 963 964
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
965
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

990
	ret = execlists_move_to_gpu(params->request, vmas);
991 992 993
	if (ret)
		return ret;

994
	if (engine == &dev_priv->engine[RCS] &&
995
	    instp_mode != dev_priv->relative_constants_mode) {
996
		ret = intel_logical_ring_begin(params->request, 4);
997 998 999 1000 1001
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1002
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
1003 1004 1005 1006 1007 1008
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

1009 1010 1011
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

1012
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1013 1014 1015
	if (ret)
		return ret;

1016
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1017

1018
	i915_gem_execbuffer_move_to_active(vmas, params->request);
1019
	i915_gem_execbuffer_retire_commands(params);
1020

1021 1022 1023
	return 0;
}

1024
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1025
{
1026
	struct drm_i915_gem_request *req, *tmp;
1027 1028
	struct list_head retired_list;

1029 1030
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
1031 1032 1033
		return;

	INIT_LIST_HEAD(&retired_list);
1034
	spin_lock_bh(&engine->execlist_lock);
1035
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1036
	spin_unlock_bh(&engine->execlist_lock);
1037 1038

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1039 1040
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
1041
				ctx->engine[engine->id].state;
1042

1043
		if (ctx_obj && (ctx != req->i915->kernel_context))
1044
			intel_lr_context_unpin(ctx, engine);
1045

1046
		list_del(&req->execlist_link);
1047
		i915_gem_request_unreference(req);
1048 1049 1050
	}
}

1051
void intel_logical_ring_stop(struct intel_engine_cs *engine)
1052
{
1053
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1054 1055
	int ret;

1056
	if (!intel_engine_initialized(engine))
1057 1058
		return;

1059
	ret = intel_engine_idle(engine);
1060
	if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1061
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1062
			  engine->name, ret);
1063 1064

	/* TODO: Is this correct with Execlists enabled? */
1065 1066 1067
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1068 1069
		return;
	}
1070
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1071 1072
}

1073
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1074
{
1075
	struct intel_engine_cs *engine = req->engine;
1076 1077
	int ret;

1078
	if (!engine->gpu_caches_dirty)
1079 1080
		return 0;

1081
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1082 1083 1084
	if (ret)
		return ret;

1085
	engine->gpu_caches_dirty = false;
1086 1087 1088
	return 0;
}

1089
static int intel_lr_context_do_pin(struct intel_context *ctx,
1090
				   struct intel_engine_cs *engine)
1091
{
1092
	struct drm_device *dev = engine->dev;
1093
	struct drm_i915_private *dev_priv = dev->dev_private;
1094 1095
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1096
	struct page *lrc_state_page;
1097
	uint32_t *lrc_reg_state;
1098
	int ret;
1099

1100
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1101

1102 1103 1104 1105
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1106

1107 1108 1109 1110 1111 1112
	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
	if (WARN_ON(!lrc_state_page)) {
		ret = -ENODEV;
		goto unpin_ctx_obj;
	}

1113
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1114 1115
	if (ret)
		goto unpin_ctx_obj;
1116

1117 1118
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
1119 1120
	lrc_reg_state = kmap(lrc_state_page);
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1121
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1122
	ctx_obj->dirty = true;
1123

1124 1125 1126
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1127

1128 1129 1130 1131
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1132 1133 1134 1135

	return ret;
}

1136 1137
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
1138 1139 1140
{
	int ret = 0;

1141 1142
	if (ctx->engine[engine->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ctx, engine);
1143 1144
		if (ret)
			goto reset_pin_count;
1145 1146

		i915_gem_context_reference(ctx);
1147 1148 1149
	}
	return ret;

1150
reset_pin_count:
1151
	ctx->engine[engine->id].pin_count = 0;
1152 1153 1154
	return ret;
}

1155 1156
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1157
{
1158
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1159

1160
	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1161 1162 1163
	if (--ctx->engine[engine->id].pin_count == 0) {
		kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1164
		i915_gem_object_ggtt_unpin(ctx_obj);
1165 1166 1167
		ctx->engine[engine->id].lrc_vma = NULL;
		ctx->engine[engine->id].lrc_desc = 0;
		ctx->engine[engine->id].lrc_reg_state = NULL;
1168 1169

		i915_gem_context_unreference(ctx);
1170 1171 1172
	}
}

1173
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1174 1175
{
	int ret, i;
1176
	struct intel_engine_cs *engine = req->engine;
1177
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1178
	struct drm_device *dev = engine->dev;
1179 1180 1181
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1182
	if (w->count == 0)
1183 1184
		return 0;

1185
	engine->gpu_caches_dirty = true;
1186
	ret = logical_ring_flush_all_caches(req);
1187 1188 1189
	if (ret)
		return ret;

1190
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1191 1192 1193 1194 1195
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1196
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1197 1198 1199 1200 1201 1202
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1203
	engine->gpu_caches_dirty = true;
1204
	ret = logical_ring_flush_all_caches(req);
1205 1206 1207 1208 1209 1210
	if (ret)
		return ret;

	return 0;
}

1211
#define wa_ctx_emit(batch, index, cmd)					\
1212
	do {								\
1213 1214
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1215 1216
			return -ENOSPC;					\
		}							\
1217
		batch[__index] = (cmd);					\
1218 1219
	} while (0)

V
Ville Syrjälä 已提交
1220
#define wa_ctx_emit_reg(batch, index, reg) \
1221
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1239
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1240 1241 1242 1243 1244
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1245 1246 1247 1248 1249 1250
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1251
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1252 1253
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1254
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1255
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1256
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1257
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1258 1259 1260
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1261
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1272
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1273
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1274
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1275
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1276
	wa_ctx_emit(batch, index, 0);
1277 1278 1279 1280

	return index;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1319
 *
1320 1321 1322 1323 1324 1325 1326 1327
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1328
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1329 1330 1331 1332
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1333
	uint32_t scratch_addr;
1334 1335
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1336
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1337
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1338

1339
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1340 1341
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1342 1343 1344
		if (rc < 0)
			return rc;
		index = rc;
1345 1346
	}

1347 1348
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1349
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1360

1361 1362
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1363
		wa_ctx_emit(batch, index, MI_NOOP);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1381
 * @batch: page in which WA are loaded
1382 1383 1384 1385 1386 1387 1388 1389 1390
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1391
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1392 1393 1394 1395 1396 1397
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1398
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1399
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1400

1401
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1402 1403 1404 1405

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1406
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1407 1408 1409 1410
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1411
	int ret;
1412
	struct drm_device *dev = engine->dev;
1413 1414
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1415
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1416
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1417
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1418
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1419

1420
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1421
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1422 1423 1424 1425
	if (ret < 0)
		return ret;
	index = ret;

1426 1427 1428 1429 1430 1431 1432
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1433
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1434 1435 1436 1437
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1438
	struct drm_device *dev = engine->dev;
1439 1440
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1441
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1442
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1443
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1444
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1445
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1446 1447 1448 1449 1450
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1451
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1452
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1453
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1454 1455
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1456 1457 1458 1459 1460
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1461
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1462 1463 1464
{
	int ret;

1465 1466 1467
	engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
						   PAGE_ALIGN(size));
	if (!engine->wa_ctx.obj) {
1468 1469 1470 1471
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

1472
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1473 1474 1475
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1476
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1477 1478 1479 1480 1481 1482
		return ret;
	}

	return 0;
}

1483
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1484
{
1485 1486 1487 1488
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1489 1490 1491
	}
}

1492
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1493 1494 1495 1496 1497
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1498
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1499

1500
	WARN_ON(engine->id != RCS);
1501

1502
	/* update this when WA for higher Gen are added */
1503
	if (INTEL_INFO(engine->dev)->gen > 9) {
1504
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1505
			  INTEL_INFO(engine->dev)->gen);
1506
		return 0;
1507
	}
1508

1509
	/* some WA perform writes to scratch page, ensure it is valid */
1510 1511
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1512 1513 1514
		return -EINVAL;
	}

1515
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1516 1517 1518 1519 1520
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1521
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1522 1523 1524
	batch = kmap_atomic(page);
	offset = 0;

1525 1526
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1527 1528 1529 1530 1531 1532
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1533
		ret = gen8_init_perctx_bb(engine,
1534 1535 1536 1537 1538
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1539 1540
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1541 1542 1543 1544 1545 1546
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1547
		ret = gen9_init_perctx_bb(engine,
1548 1549 1550 1551 1552
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1553 1554 1555 1556 1557
	}

out:
	kunmap_atomic(batch);
	if (ret)
1558
		lrc_destroy_wa_ctx_obj(engine);
1559 1560 1561 1562

	return ret;
}

1563
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1564
{
1565
	struct drm_device *dev = engine->dev;
1566
	struct drm_i915_private *dev_priv = dev->dev_private;
1567
	unsigned int next_context_status_buffer_hw;
1568

1569 1570
	lrc_setup_hardware_status_page(engine,
				       dev_priv->kernel_context->engine[engine->id].state);
1571

1572 1573 1574
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1575

1576
	I915_WRITE(RING_MODE_GEN7(engine),
1577 1578
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1579
	POSTING_READ(RING_MODE_GEN7(engine));
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1590 1591
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1592
	 */
1593
	next_context_status_buffer_hw =
1594
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1595 1596 1597 1598 1599 1600 1601 1602 1603

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1604 1605
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1606

1607
	intel_engine_init_hangcheck(engine);
1608 1609 1610 1611

	return 0;
}

1612
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1613
{
1614
	struct drm_device *dev = engine->dev;
1615 1616 1617
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1618
	ret = gen8_init_common_ring(engine);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1632
	return init_workarounds_ring(engine);
1633 1634
}

1635
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1636 1637 1638
{
	int ret;

1639
	ret = gen8_init_common_ring(engine);
1640 1641 1642
	if (ret)
		return ret;

1643
	return init_workarounds_ring(engine);
1644 1645
}

1646 1647 1648
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1649
	struct intel_engine_cs *engine = req->engine;
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1662 1663
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1664
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1665 1666
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1667 1668 1669 1670 1671 1672 1673 1674 1675
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1676
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1677
			      u64 offset, unsigned dispatch_flags)
1678
{
1679
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1680
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1681 1682
	int ret;

1683 1684 1685 1686
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1687 1688
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1689
	if (req->ctx->ppgtt &&
1690
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1691 1692
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1693 1694 1695 1696
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1697

1698
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1699 1700
	}

1701
	ret = intel_logical_ring_begin(req, 4);
1702 1703 1704 1705
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1706 1707 1708 1709
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1710 1711 1712 1713 1714 1715 1716 1717
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1718
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1719
{
1720
	struct drm_device *dev = engine->dev;
1721 1722 1723
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1724
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1725 1726 1727
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1728 1729 1730 1731
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1732 1733 1734 1735 1736 1737
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1738
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1739
{
1740
	struct drm_device *dev = engine->dev;
1741 1742 1743 1744
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1745 1746 1747
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1748 1749 1750 1751
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1752
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1753 1754 1755
			   u32 invalidate_domains,
			   u32 unused)
{
1756
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1757
	struct intel_engine_cs *engine = ringbuf->engine;
1758
	struct drm_device *dev = engine->dev;
1759 1760 1761 1762
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1763
	ret = intel_logical_ring_begin(request, 4);
1764 1765 1766 1767 1768
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1769 1770 1771 1772 1773 1774 1775 1776 1777
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1778
		if (engine == &dev_priv->engine[VCS])
1779
			cmd |= MI_INVALIDATE_BSD;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1793
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1794 1795 1796
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1797
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1798
	struct intel_engine_cs *engine = ringbuf->engine;
1799
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1800
	bool vf_flush_wa = false;
1801 1802 1803 1804 1805 1806 1807 1808
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1809
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1810
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1823 1824 1825 1826
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1827
		if (IS_GEN9(engine->dev))
1828 1829
			vf_flush_wa = true;
	}
1830

1831
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1832 1833 1834
	if (ret)
		return ret;

1835 1836 1837 1838 1839 1840 1841 1842 1843
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1855
static u32 gen8_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1856
{
1857
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1858 1859
}

1860
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1861
{
1862
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1863 1864
}

1865 1866
static u32 bxt_a_get_seqno(struct intel_engine_cs *engine,
			   bool lazy_coherency)
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
1881
		intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1882

1883
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1884 1885
}

1886
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1887
{
1888
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1889 1890

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1891
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1892 1893
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1906
static int gen8_emit_request(struct drm_i915_gem_request *request)
1907
{
1908
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1909 1910
	int ret;

1911
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1912 1913 1914
	if (ret)
		return ret;

1915 1916
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1917 1918

	intel_logical_ring_emit(ringbuf,
1919 1920
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1921
				hws_seqno_address(request->engine) |
1922
				MI_FLUSH_DW_USE_GTT);
1923
	intel_logical_ring_emit(ringbuf, 0);
1924
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1925 1926
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1927 1928
	return intel_logical_ring_advance_and_submit(request);
}
1929

1930 1931 1932 1933
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
	if (ret)
		return ret;

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1948
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1949 1950 1951 1952
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	return intel_logical_ring_advance_and_submit(request);
1953 1954
}

1955
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1956 1957 1958 1959
{
	struct render_state so;
	int ret;

1960
	ret = i915_gem_render_state_prepare(req->engine, &so);
1961 1962 1963 1964 1965 1966
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1967
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1968
				       I915_DISPATCH_SECURE);
1969 1970 1971
	if (ret)
		goto out;

1972
	ret = req->engine->emit_bb_start(req,
1973 1974 1975 1976 1977
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1978
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1979 1980 1981 1982 1983 1984

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1985
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1986 1987 1988
{
	int ret;

1989
	ret = intel_logical_ring_workarounds_emit(req);
1990 1991 1992
	if (ret)
		return ret;

1993 1994 1995 1996 1997 1998 1999 2000
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2001
	return intel_lr_context_render_state_init(req);
2002 2003
}

2004 2005 2006 2007 2008 2009
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
2010
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2011
{
2012
	struct drm_i915_private *dev_priv;
2013

2014
	if (!intel_engine_initialized(engine))
2015 2016
		return;

2017 2018 2019 2020 2021 2022 2023
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

2024
	dev_priv = engine->dev->dev_private;
2025

2026 2027 2028
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2029
	}
2030

2031 2032
	if (engine->cleanup)
		engine->cleanup(engine);
2033

2034 2035
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2036

2037 2038 2039
	if (engine->status_page.obj) {
		kunmap(sg_page(engine->status_page.obj->pages->sgl));
		engine->status_page.obj = NULL;
2040
	}
2041

2042 2043 2044
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
2045

2046 2047
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
2048 2049
}

2050 2051
static void
logical_ring_default_vfuncs(struct drm_device *dev,
2052
			    struct intel_engine_cs *engine)
2053 2054
{
	/* Default vfuncs which can be overriden by each engine. */
2055 2056 2057 2058 2059 2060
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
2061
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2062 2063
		engine->get_seqno = bxt_a_get_seqno;
		engine->set_seqno = bxt_a_set_seqno;
2064
	} else {
2065 2066
		engine->get_seqno = gen8_get_seqno;
		engine->set_seqno = gen8_set_seqno;
2067 2068 2069
	}
}

2070
static inline void
2071
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2072
{
2073 2074
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2075 2076
}

2077
static int
2078
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2079
{
2080
	struct intel_context *dctx = to_i915(dev)->kernel_context;
2081 2082 2083
	int ret;

	/* Intentionally left blank. */
2084
	engine->buffer = NULL;
2085

2086 2087 2088 2089 2090
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
2091

2092 2093 2094 2095
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
2096

2097 2098 2099
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

2100
	logical_ring_init_platform_invariants(engine);
2101

2102
	ret = i915_cmd_parser_init_ring(engine);
2103
	if (ret)
2104
		goto error;
2105

2106
	ret = intel_lr_context_deferred_alloc(dctx, engine);
2107
	if (ret)
2108
		goto error;
2109 2110

	/* As this is the default context, always pin it */
2111
	ret = intel_lr_context_do_pin(dctx, engine);
2112 2113 2114
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
2115
			engine->name, ret);
2116
		goto error;
2117
	}
2118

2119 2120 2121
	return 0;

error:
2122
	intel_logical_ring_cleanup(engine);
2123
	return ret;
2124 2125 2126 2127 2128
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2129
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2130
	int ret;
2131

2132 2133 2134 2135 2136
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2137

2138
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2139
	if (HAS_L3_DPF(dev))
2140
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2141

2142
	logical_ring_default_vfuncs(dev, engine);
2143 2144

	/* Override some for render ring. */
2145
	if (INTEL_INFO(dev)->gen >= 9)
2146
		engine->init_hw = gen9_init_render_ring;
2147
	else
2148 2149 2150 2151 2152
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2153

2154
	engine->dev = dev;
2155

2156
	ret = intel_init_pipe_control(engine);
2157 2158 2159
	if (ret)
		return ret;

2160
	ret = intel_init_workaround_bb(engine);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2171
	ret = logical_ring_init(dev, engine);
2172
	if (ret) {
2173
		lrc_destroy_wa_ctx_obj(engine);
2174
	}
2175 2176

	return ret;
2177 2178 2179 2180 2181
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2182
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2183

2184 2185 2186 2187 2188
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2189

2190 2191
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2192

2193
	return logical_ring_init(dev, engine);
2194 2195 2196 2197 2198
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2199
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2200

2201 2202 2203 2204 2205
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2206

2207 2208
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2209

2210
	return logical_ring_init(dev, engine);
2211 2212 2213 2214 2215
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2216
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2217

2218 2219 2220 2221 2222
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2223

2224 2225
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2226

2227
	return logical_ring_init(dev, engine);
2228 2229 2230 2231 2232
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2233
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2234

2235 2236 2237 2238 2239
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2240

2241 2242
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2243

2244
	return logical_ring_init(dev, engine);
2245 2246
}

2247 2248 2249 2250 2251
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2252
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2253 2254 2255 2256
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2293
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2294
cleanup_blt_ring:
2295
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2296
cleanup_bsd_ring:
2297
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2298
cleanup_render_ring:
2299
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2300 2301 2302 2303

	return ret;
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2347
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2348 2349 2350
{
	u32 indirect_ctx_offset;

2351
	switch (INTEL_INFO(engine->dev)->gen) {
2352
	default:
2353
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2368 2369
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2370 2371
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2372
{
2373
	struct drm_device *dev = engine->dev;
2374
	struct drm_i915_private *dev_priv = dev->dev_private;
2375
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2376 2377 2378 2379
	struct page *page;
	uint32_t *reg_state;
	int ret;

2380 2381 2382
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2399
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2400 2401 2402 2403 2404 2405 2406
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2407
	reg_state[CTX_LRI_HEADER_0] =
2408 2409 2410
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2411 2412
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2413 2414
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2415 2416 2417 2418
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2419 2420 2421
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2422 2423 2424 2425
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2426
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2427 2428 2429 2430 2431 2432
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2433
		       RING_BB_PPGTT);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2449 2450 2451 2452 2453 2454 2455
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2456
				intel_lr_indirect_ctx_offset(engine) << 6;
2457 2458 2459 2460 2461

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2462
	}
2463
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2464 2465
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2466
	/* PDP values well be assigned later if needed */
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2496
		execlists_update_context_pdps(ppgtt, reg_state);
2497 2498
	}

2499
	if (engine->id == RCS) {
2500
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2501 2502
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2503 2504 2505 2506 2507 2508 2509 2510
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2511 2512 2513 2514 2515 2516 2517 2518
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2519 2520
void intel_lr_context_free(struct intel_context *ctx)
{
2521 2522
	int i;

2523
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2524
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2525
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2526

D
Dave Gordon 已提交
2527 2528
		if (!ctx_obj)
			continue;
2529

D
Dave Gordon 已提交
2530 2531 2532
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2533
		}
D
Dave Gordon 已提交
2534 2535 2536 2537

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2538 2539 2540
	}
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2555
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2556 2557 2558
{
	int ret = 0;

2559
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2560

2561
	switch (engine->id) {
2562
	case RCS:
2563
		if (INTEL_INFO(engine->dev)->gen >= 9)
2564 2565 2566
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2577 2578
}

2579 2580
static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
					   struct drm_i915_gem_object *default_ctx_obj)
2581
{
2582
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2583
	struct page *page;
2584

2585
	/* The HWSP is part of the default context object in LRC mode. */
2586
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2587 2588
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2589 2590
	engine->status_page.page_addr = kmap(page);
	engine->status_page.obj = default_ctx_obj;
2591

2592 2593 2594
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
			(u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2595 2596
}

2597
/**
2598
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2599 2600 2601 2602 2603 2604 2605 2606 2607
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2608
 * Return: non-zero on error.
2609
 */
2610 2611

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2612
				    struct intel_engine_cs *engine)
2613
{
2614
	struct drm_device *dev = engine->dev;
2615 2616
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2617
	struct intel_ringbuffer *ringbuf;
2618 2619
	int ret;

2620
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2621
	WARN_ON(ctx->engine[engine->id].state);
2622

2623
	context_size = round_up(intel_lr_context_size(engine), 4096);
2624

2625 2626 2627
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2628
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2629 2630 2631
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2632 2633
	}

2634
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2635 2636
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2637
		goto error_deref_obj;
2638 2639
	}

2640
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2641 2642
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2643
		goto error_ringbuf;
2644 2645
	}

2646 2647
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2648

2649
	if (ctx != ctx->i915->kernel_context && engine->init_context) {
2650
		struct drm_i915_gem_request *req;
2651

2652
		req = i915_gem_request_alloc(engine, ctx);
2653 2654 2655
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2656
			goto error_ringbuf;
2657 2658
		}

2659
		ret = engine->init_context(req);
2660 2661 2662 2663 2664 2665 2666
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2667
	}
2668
	return 0;
2669

2670 2671
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2672
error_deref_obj:
2673
	drm_gem_object_unreference(&ctx_obj->base);
2674 2675
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2676
	return ret;
2677
}
2678 2679 2680 2681 2682

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2683
	struct intel_engine_cs *engine;
2684

2685
	for_each_engine(engine, dev_priv) {
2686
		struct drm_i915_gem_object *ctx_obj =
2687
				ctx->engine[engine->id].state;
2688
		struct intel_ringbuffer *ringbuf =
2689
				ctx->engine[engine->id].ringbuf;
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2700
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}