intel_lrc.c 65.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
230
					    struct intel_engine_cs *engine);
231
static int intel_lr_context_pin(struct i915_gem_context *ctx,
232
				struct intel_engine_cs *engine);
233

234 235
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236
 * @dev_priv: i915 device private
237 238 239
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
240
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 242 243
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
244
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
245
{
246 247 248
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
249
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
250 251
		return 1;

252
	if (INTEL_GEN(dev_priv) >= 9)
253 254
		return 1;

255 256 257
	if (enable_execlists == 0)
		return 0;

258 259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266
static void
267
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268
{
269
	struct drm_i915_private *dev_priv = engine->i915;
270

271 272 273 274
	engine->disable_lite_restore_wa =
		(IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
		 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
		(engine->id == VCS || engine->id == VCS2);
275

276
	engine->ctx_desc_template = GEN8_CTX_VALID;
277
	if (IS_GEN8(dev_priv))
278 279
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
280 281 282 283 284 285 286

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
287 288
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
289 290
}

291
/**
292 293 294
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
295
 * @engine: Engine the descriptor will be used with
296
 *
297 298 299 300 301
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
302 303 304 305 306 307 308
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
309
 */
310
static void
311
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
312
				   struct intel_engine_cs *engine)
313
{
314
	struct intel_context *ce = &ctx->engine[engine->id];
315
	u64 desc;
316

317
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
318

319 320
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
321
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
322
								/* bits 12-31 */
323
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
324

325
	ce->lrc_desc = desc;
326 327
}

328
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
329
				     struct intel_engine_cs *engine)
330
{
331
	return ctx->engine[engine->id].lrc_desc;
332
}
333

334 335 336
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
337
{
338 339 340 341 342 343
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
344

345
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
346 347
}

348 349 350 351 352 353 354 355 356
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

357
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
358
{
359
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
360
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361
	u32 *reg_state = ce->lrc_reg_state;
362

363
	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
364

365 366 367 368 369 370 371
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
372 373

	return ce->lrc_desc;
374 375
}

376
static void execlists_submit_ports(struct intel_engine_cs *engine)
377
{
378 379
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
380 381 382 383
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

384 385 386 387 388 389 390 391 392 393 394 395
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
396 397 398
	} else {
		desc[1] = 0;
	}
399
	GEM_BUG_ON(desc[0] == desc[1]);
400 401 402 403 404 405 406 407 408 409

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

410
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
411
{
412 413 414
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
415

416 417 418 419 420
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
421

422 423
	if (ctx_single_port_submission(prev))
		return false;
424

425
	return true;
426 427
}

428
static void execlists_dequeue(struct intel_engine_cs *engine)
429
{
430 431 432 433 434 435 436 437 438 439 440 441 442
	struct drm_i915_gem_request *cursor, *last;
	struct execlist_port *port = engine->execlist_port;
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
		 * as we resubmit the request. See gen8_emit_request()
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
443

444
	GEM_BUG_ON(port[1].request);
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
465
	 */
466

467 468 469 470 471
	spin_lock(&engine->execlist_lock);
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
472
		 *
473 474 475 476
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
477
		 */
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
		last = cursor;
		submit = true;
	}
	if (submit) {
		/* Decouple all the requests submitted from the queue */
		engine->execlist_queue.next = &cursor->execlist_link;
		cursor->execlist_link.prev = &engine->execlist_queue;

		i915_gem_request_assign(&port->request, last);
508
	}
509
	spin_unlock(&engine->execlist_lock);
510

511 512
	if (submit)
		execlists_submit_ports(engine);
513 514
}

515
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
516
{
517
	return !engine->execlist_port[0].request;
518 519
}

520
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
521
{
522
	int port;
B
Ben Widawsky 已提交
523

524 525 526
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
527

528
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
529 530
}

531
/*
532 533 534
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
535
static void intel_lrc_irq_handler(unsigned long data)
536
{
537
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
538
	struct execlist_port *port = engine->execlist_port;
539
	struct drm_i915_private *dev_priv = engine->i915;
540

541
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
574

575 576
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
577 578
		}

579 580 581
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
582 583
	}

584 585
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
586

587
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
588 589
}

590
static void execlists_submit_request(struct drm_i915_gem_request *request)
591
{
592
	struct intel_engine_cs *engine = request->engine;
593
	unsigned long flags;
594

595
	spin_lock_irqsave(&engine->execlist_lock, flags);
596

597
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
598 599
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
600

601
	spin_unlock_irqrestore(&engine->execlist_lock, flags);
602 603
}

604
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
605
{
606
	struct intel_engine_cs *engine = request->engine;
607
	struct intel_context *ce = &request->ctx->engine[engine->id];
608
	int ret;
609

610 611 612 613
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
614
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
615

616
	if (!ce->state) {
617 618 619 620 621
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

622
	request->ring = ce->ring;
623

624 625 626 627 628 629
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
630
		ret = i915_guc_wq_reserve(request);
631 632 633 634
		if (ret)
			return ret;
	}

635 636 637
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
638

639 640 641 642
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

643
	if (!ce->initialised) {
644 645 646 647
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

648
		ce->initialised = true;
649 650 651 652 653 654 655 656 657
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

658
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
659 660 661
	return 0;

err_unpin:
662
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
663
	return ret;
664 665 666
}

/*
667
 * intel_logical_ring_advance() - advance the tail and prepare for submission
668
 * @request: Request to advance the logical ringbuffer of.
669 670 671 672 673 674
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
675
static int
676
intel_logical_ring_advance(struct drm_i915_gem_request *request)
677
{
678
	struct intel_ring *ring = request->ring;
679
	struct intel_engine_cs *engine = request->engine;
680

681 682
	intel_ring_advance(ring);
	request->tail = ring->tail;
683

684 685 686 687 688 689
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
690 691 692
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
693
	request->wa_tail = ring->tail;
694

695 696 697 698 699 700 701 702
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
703
	return 0;
704 705
}

706
static int intel_lr_context_pin(struct i915_gem_context *ctx,
707
				struct intel_engine_cs *engine)
708
{
709
	struct intel_context *ce = &ctx->engine[engine->id];
710 711
	void *vaddr;
	u32 *lrc_reg_state;
712
	int ret;
713

714
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
715

716
	if (ce->pin_count++)
717 718
		return 0;

719 720
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
721
	if (ret)
722
		goto err;
723

724
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
725 726
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
727
		goto unpin_vma;
728 729
	}

730 731
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

732
	ret = intel_ring_pin(ce->ring);
733
	if (ret)
734
		goto unpin_map;
735

736
	intel_lr_context_descriptor_update(ctx, engine);
737

738 739
	lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
740
	ce->lrc_reg_state = lrc_reg_state;
741
	ce->state->obj->dirty = true;
742

743
	/* Invalidate GuC TLB. */
744 745
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
746
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
747
	}
748

749
	i915_gem_context_get(ctx);
750
	return 0;
751

752
unpin_map:
753 754 755
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
756
err:
757
	ce->pin_count = 0;
758 759 760
	return ret;
}

761
void intel_lr_context_unpin(struct i915_gem_context *ctx,
762
			    struct intel_engine_cs *engine)
763
{
764
	struct intel_context *ce = &ctx->engine[engine->id];
765

766
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
767
	GEM_BUG_ON(ce->pin_count == 0);
768

769
	if (--ce->pin_count)
770
		return;
771

772
	intel_ring_unpin(ce->ring);
773

774 775
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
776

777
	i915_gem_context_put(ctx);
778 779
}

780
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
781 782
{
	int ret, i;
783
	struct intel_ring *ring = req->ring;
784
	struct i915_workarounds *w = &req->i915->workarounds;
785

786
	if (w->count == 0)
787 788
		return 0;

789
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
790 791 792
	if (ret)
		return ret;

793
	ret = intel_ring_begin(req, w->count * 2 + 2);
794 795 796
	if (ret)
		return ret;

797
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
798
	for (i = 0; i < w->count; i++) {
799 800
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
801
	}
802
	intel_ring_emit(ring, MI_NOOP);
803

804
	intel_ring_advance(ring);
805

806
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
807 808 809 810 811 812
	if (ret)
		return ret;

	return 0;
}

813
#define wa_ctx_emit(batch, index, cmd)					\
814
	do {								\
815 816
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
817 818
			return -ENOSPC;					\
		}							\
819
		batch[__index] = (cmd);					\
820 821
	} while (0)

V
Ville Syrjälä 已提交
822
#define wa_ctx_emit_reg(batch, index, reg) \
823
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
841
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
842
						uint32_t *batch,
843 844
						uint32_t index)
{
D
Dave Airlie 已提交
845
	struct drm_i915_private *dev_priv = engine->i915;
846 847
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

848
	/*
849
	 * WaDisableLSQCROPERFforOCL:skl,kbl
850 851 852 853
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
854 855
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
856 857
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

858
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
859
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
860
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
861
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
862 863 864
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
865
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
866 867 868 869 870 871 872 873 874 875
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

876
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
877
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
878
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
879
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
880
	wa_ctx_emit(batch, index, 0);
881 882 883 884

	return index;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

904 905 906 907 908 909
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
910
 *
911 912
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
913
 *
914 915 916 917
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
918
 */
919
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
920
				    struct i915_wa_ctx_bb *wa_ctx,
921
				    uint32_t *batch,
922 923
				    uint32_t *offset)
{
924
	uint32_t scratch_addr;
925 926
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

927
	/* WaDisableCtxRestoreArbitration:bdw,chv */
928
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
929

930
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
931
	if (IS_BROADWELL(engine->i915)) {
932
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
933 934 935
		if (rc < 0)
			return rc;
		index = rc;
936 937
	}

938 939
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
940
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
941

942 943 944 945 946 947 948 949 950
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
951

952 953
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
954
		wa_ctx_emit(batch, index, MI_NOOP);
955 956 957 958 959 960 961 962 963 964

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

965 966 967
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
968
 *
969
 *  The number of DWORDS written are returned using this field.
970 971 972 973
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
974
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
975
			       struct i915_wa_ctx_bb *wa_ctx,
976
			       uint32_t *batch,
977 978 979 980
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

981
	/* WaDisableCtxRestoreArbitration:bdw,chv */
982
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
983

984
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
985 986 987 988

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

989
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
990
				    struct i915_wa_ctx_bb *wa_ctx,
991
				    uint32_t *batch,
992 993
				    uint32_t *offset)
{
994
	int ret;
D
Dave Airlie 已提交
995
	struct drm_i915_private *dev_priv = engine->i915;
996 997
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

998
	/* WaDisableCtxRestoreArbitration:skl,bxt */
D
Dave Airlie 已提交
999 1000
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1001
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1002

1003
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1004
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1005 1006 1007 1008
	if (ret < 0)
		return ret;
	index = ret;

1009 1010 1011 1012 1013 1014 1015
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1016 1017
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1018
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1019
		u32 scratch_addr =
1020
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1057 1058 1059 1060 1061 1062 1063
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1064
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1065
			       struct i915_wa_ctx_bb *wa_ctx,
1066
			       uint32_t *batch,
1067 1068 1069 1070
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1071
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1072 1073
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1074
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1075
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1076 1077 1078 1079 1080
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1081
	/* WaClearTdlStateAckDirtyBits:bxt */
1082
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1100
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1101 1102
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1103 1104
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1105 1106 1107 1108 1109
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1110
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1111
{
1112 1113 1114
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1115

1116 1117 1118
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1119

1120 1121 1122 1123
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1124 1125
	}

1126 1127 1128 1129 1130
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1131
	return 0;
1132 1133 1134 1135

err:
	i915_gem_object_put(obj);
	return err;
1136 1137
}

1138
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1139
{
1140
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1141 1142
}

1143
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1144
{
1145
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1146 1147 1148
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1149
	int ret;
1150

1151
	WARN_ON(engine->id != RCS);
1152

1153
	/* update this when WA for higher Gen are added */
1154
	if (INTEL_GEN(engine->i915) > 9) {
1155
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1156
			  INTEL_GEN(engine->i915));
1157
		return 0;
1158
	}
1159

1160
	/* some WA perform writes to scratch page, ensure it is valid */
1161
	if (!engine->scratch) {
1162
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1163 1164 1165
		return -EINVAL;
	}

1166
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1167 1168 1169 1170 1171
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1172
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1173 1174 1175
	batch = kmap_atomic(page);
	offset = 0;

1176
	if (IS_GEN8(engine->i915)) {
1177
		ret = gen8_init_indirectctx_bb(engine,
1178 1179 1180 1181 1182 1183
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1184
		ret = gen8_init_perctx_bb(engine,
1185 1186 1187 1188 1189
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1190
	} else if (IS_GEN9(engine->i915)) {
1191
		ret = gen9_init_indirectctx_bb(engine,
1192 1193 1194 1195 1196 1197
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1198
		ret = gen9_init_perctx_bb(engine,
1199 1200 1201 1202 1203
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1204 1205 1206 1207 1208
	}

out:
	kunmap_atomic(batch);
	if (ret)
1209
		lrc_destroy_wa_ctx_obj(engine);
1210 1211 1212 1213

	return ret;
}

1214 1215
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1216
	struct drm_i915_private *dev_priv = engine->i915;
1217 1218

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1219
		   engine->status_page.ggtt_offset);
1220 1221 1222
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1223
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1224
{
1225
	struct drm_i915_private *dev_priv = engine->i915;
1226 1227 1228 1229 1230
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1231

1232
	lrc_init_hws(engine);
1233

1234 1235
	intel_engine_reset_irq(engine);

1236
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1237

1238
	I915_WRITE(RING_MODE_GEN7(engine),
1239 1240
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1241

1242
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1243

1244
	intel_engine_init_hangcheck(engine);
1245

1246 1247 1248 1249
	if (!execlists_elsp_idle(engine))
		execlists_submit_ports(engine);

	return 0;
1250 1251
}

1252
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1253
{
1254
	struct drm_i915_private *dev_priv = engine->i915;
1255 1256
	int ret;

1257
	ret = gen8_init_common_ring(engine);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1271
	return init_workarounds_ring(engine);
1272 1273
}

1274
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1275 1276 1277
{
	int ret;

1278
	ret = gen8_init_common_ring(engine);
1279 1280 1281
	if (ret)
		return ret;

1282
	return init_workarounds_ring(engine);
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	/* CS is stopped, and we will resubmit both ports on resume */
	GEM_BUG_ON(request->ctx != port[0].request->ctx);
	port[0].count = 0;
	port[1].count = 0;
}

1315 1316 1317
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1318
	struct intel_ring *ring = req->ring;
1319
	struct intel_engine_cs *engine = req->engine;
1320 1321 1322
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1323
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1324 1325 1326
	if (ret)
		return ret;

1327
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1328 1329 1330
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1331 1332 1333 1334
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1335 1336
	}

1337 1338
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1339 1340 1341 1342

	return 0;
}

1343
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1344 1345
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1346
{
1347
	struct intel_ring *ring = req->ring;
1348
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1349 1350
	int ret;

1351 1352 1353 1354
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1355 1356
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1357
	if (req->ctx->ppgtt &&
1358
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1359
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1360
		    !intel_vgpu_active(req->i915)) {
1361 1362 1363 1364
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1365

1366
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1367 1368
	}

1369
	ret = intel_ring_begin(req, 4);
1370 1371 1372 1373
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1374 1375 1376 1377 1378 1379 1380 1381
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1382 1383 1384 1385

	return 0;
}

1386
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1387
{
1388
	struct drm_i915_private *dev_priv = engine->i915;
1389 1390 1391
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1392 1393
}

1394
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1395
{
1396
	struct drm_i915_private *dev_priv = engine->i915;
1397
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1398 1399
}

1400
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1401
{
1402 1403
	struct intel_ring *ring = request->ring;
	u32 cmd;
1404 1405
	int ret;

1406
	ret = intel_ring_begin(request, 4);
1407 1408 1409 1410 1411
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1412 1413 1414 1415 1416 1417 1418
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1419
	if (mode & EMIT_INVALIDATE) {
1420
		cmd |= MI_INVALIDATE_TLB;
1421
		if (request->engine->id == VCS)
1422
			cmd |= MI_INVALIDATE_BSD;
1423 1424
	}

1425 1426 1427 1428 1429 1430 1431
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1432 1433 1434 1435

	return 0;
}

1436
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1437
				  u32 mode)
1438
{
1439
	struct intel_ring *ring = request->ring;
1440
	struct intel_engine_cs *engine = request->engine;
1441 1442
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1443
	bool vf_flush_wa = false, dc_flush_wa = false;
1444 1445
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1446
	int len;
1447 1448 1449

	flags |= PIPE_CONTROL_CS_STALL;

1450
	if (mode & EMIT_FLUSH) {
1451 1452
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1453
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1454
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1455 1456
	}

1457
	if (mode & EMIT_INVALIDATE) {
1458 1459 1460 1461 1462 1463 1464 1465 1466
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1467 1468 1469 1470
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1471
		if (IS_GEN9(request->i915))
1472
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1473 1474 1475 1476

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1477
	}
1478

M
Mika Kuoppala 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1488 1489 1490
	if (ret)
		return ret;

1491
	if (vf_flush_wa) {
1492 1493 1494 1495 1496 1497
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1498 1499
	}

M
Mika Kuoppala 已提交
1500
	if (dc_flush_wa) {
1501 1502 1503 1504 1505 1506
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1507 1508
	}

1509 1510 1511 1512 1513 1514
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1515 1516

	if (dc_flush_wa) {
1517 1518 1519 1520 1521 1522
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1523 1524
	}

1525
	intel_ring_advance(ring);
1526 1527 1528 1529

	return 0;
}

1530
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1542
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1543 1544
}

1545 1546 1547 1548 1549 1550 1551
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1552
static int gen8_emit_request(struct drm_i915_gem_request *request)
1553
{
1554
	struct intel_ring *ring = request->ring;
1555 1556
	int ret;

1557
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1558 1559 1560
	if (ret)
		return ret;

1561 1562
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1563

1564 1565 1566 1567 1568 1569 1570 1571
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1572
	return intel_logical_ring_advance(request);
1573
}
1574

1575 1576
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1577
	struct intel_ring *ring = request->ring;
1578
	int ret;
1579

1580
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1581 1582 1583
	if (ret)
		return ret;

1584 1585 1586
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1587 1588 1589 1590
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1591 1592 1593 1594 1595 1596 1597 1598
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1599
	/* We're thrashing one dword of HWS. */
1600 1601 1602
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1603
	return intel_logical_ring_advance(request);
1604 1605
}

1606
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1607 1608 1609
{
	int ret;

1610
	ret = intel_logical_ring_workarounds_emit(req);
1611 1612 1613
	if (ret)
		return ret;

1614 1615 1616 1617 1618 1619 1620 1621
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1622
	return i915_gem_render_state_init(req);
1623 1624
}

1625 1626
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1627
 * @engine: Engine Command Streamer.
1628
 */
1629
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1630
{
1631
	struct drm_i915_private *dev_priv;
1632

1633
	if (!intel_engine_initialized(engine))
1634 1635
		return;

1636 1637 1638 1639 1640 1641 1642
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1643
	dev_priv = engine->i915;
1644

1645 1646
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1647
	}
1648

1649 1650
	if (engine->cleanup)
		engine->cleanup(engine);
1651

1652
	intel_engine_cleanup_common(engine);
1653

1654 1655 1656
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1657
	}
1658
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1659

1660
	lrc_destroy_wa_ctx_obj(engine);
1661
	engine->i915 = NULL;
1662 1663
}

1664 1665 1666 1667 1668
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv)
1669
		engine->submit_request = execlists_submit_request;
1670 1671
}

1672
static void
1673
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1674 1675
{
	/* Default vfuncs which can be overriden by each engine. */
1676
	engine->init_hw = gen8_init_common_ring;
1677
	engine->reset_hw = reset_common_ring;
1678
	engine->emit_flush = gen8_emit_flush;
1679
	engine->emit_request = gen8_emit_request;
1680
	engine->submit_request = execlists_submit_request;
1681

1682 1683
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1684
	engine->emit_bb_start = gen8_emit_bb_start;
1685
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1686
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1687 1688
}

1689
static inline void
1690
logical_ring_default_irqs(struct intel_engine_cs *engine)
1691
{
1692
	unsigned shift = engine->irq_shift;
1693 1694
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1695 1696
}

1697
static int
1698
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1699
{
1700
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1701
	void *hws;
1702 1703

	/* The HWSP is part of the default context object in LRC mode. */
1704
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1705 1706
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1707 1708

	engine->status_page.page_addr = hws + hws_offset;
1709
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1710
	engine->status_page.vma = vma;
1711 1712

	return 0;
1713 1714
}

1715 1716 1717 1718 1719 1720
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1721 1722
	intel_engine_setup_common(engine);

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1748 1749 1750 1751 1752 1753
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1754
	ret = intel_engine_init_common(engine);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1784
int logical_render_ring_init(struct intel_engine_cs *engine)
1785 1786 1787 1788
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1789 1790
	logical_ring_setup(engine);

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

1803
	ret = intel_engine_create_scratch(engine, 4096);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1826
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1827 1828 1829 1830
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1831 1832
}

1833
static u32
1834
make_rpcs(struct drm_i915_private *dev_priv)
1835 1836 1837 1838 1839 1840 1841
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1842
	if (INTEL_GEN(dev_priv) < 9)
1843 1844 1845 1846 1847 1848 1849 1850
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1851
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1852
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1853
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1854 1855 1856 1857
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1858
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1859
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1860
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1861 1862 1863 1864
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1865 1866
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1867
			GEN8_RPCS_EU_MIN_SHIFT;
1868
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1869 1870 1871 1872 1873 1874 1875
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1876
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1877 1878 1879
{
	u32 indirect_ctx_offset;

1880
	switch (INTEL_GEN(engine->i915)) {
1881
	default:
1882
		MISSING_CASE(INTEL_GEN(engine->i915));
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1897
static int
1898
populate_lr_context(struct i915_gem_context *ctx,
1899
		    struct drm_i915_gem_object *ctx_obj,
1900
		    struct intel_engine_cs *engine,
1901
		    struct intel_ring *ring)
1902
{
1903
	struct drm_i915_private *dev_priv = ctx->i915;
1904
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1905 1906
	void *vaddr;
	u32 *reg_state;
1907 1908
	int ret;

1909 1910 1911
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1912 1913 1914 1915 1916 1917
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

1918
	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1919 1920 1921
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1922 1923
		return ret;
	}
1924
	ctx_obj->dirty = true;
1925 1926 1927

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
1928
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1929 1930 1931 1932 1933 1934

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1935
	reg_state[CTX_LRI_HEADER_0] =
1936 1937 1938
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1939 1940
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1941
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1942
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
1943 1944 1945 1946
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
1947 1948 1949
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1950 1951 1952 1953
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1954
		       ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1955 1956 1957 1958 1959 1960
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1961
		       RING_BB_PPGTT);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1975
		if (engine->wa_ctx.vma) {
1976
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1977
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1978 1979 1980 1981 1982 1983

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1984
				intel_lr_indirect_ctx_offset(engine) << 6;
1985 1986 1987 1988 1989

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1990
	}
1991
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1992 1993
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1994
	/* PDP values well be assigned later if needed */
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2024
		execlists_update_context_pdps(ppgtt, reg_state);
2025 2026
	}

2027
	if (engine->id == RCS) {
2028
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2029
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2030
			       make_rpcs(dev_priv));
2031 2032
	}

2033
	i915_gem_object_unpin_map(ctx_obj);
2034 2035 2036 2037

	return 0;
}

2038 2039
/**
 * intel_lr_context_size() - return the size of the context for an engine
2040
 * @engine: which engine to find the context size for
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2052
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2053 2054 2055
{
	int ret = 0;

2056
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2057

2058
	switch (engine->id) {
2059
	case RCS:
2060
		if (INTEL_GEN(engine->i915) >= 9)
2061 2062 2063
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2074 2075
}

2076
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2077
					    struct intel_engine_cs *engine)
2078
{
2079
	struct drm_i915_gem_object *ctx_obj;
2080
	struct intel_context *ce = &ctx->engine[engine->id];
2081
	struct i915_vma *vma;
2082
	uint32_t context_size;
2083
	struct intel_ring *ring;
2084 2085
	int ret;

2086
	WARN_ON(ce->state);
2087

2088
	context_size = round_up(intel_lr_context_size(engine), 4096);
2089

2090 2091 2092
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2093
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2094
	if (IS_ERR(ctx_obj)) {
2095
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2096
		return PTR_ERR(ctx_obj);
2097 2098
	}

2099 2100 2101 2102 2103 2104
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2105
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2106 2107
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2108
		goto error_deref_obj;
2109 2110
	}

2111
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2112 2113
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2114
		goto error_ring_free;
2115 2116
	}

2117
	ce->ring = ring;
2118
	ce->state = vma;
2119
	ce->initialised = engine->init_context == NULL;
2120 2121

	return 0;
2122

2123
error_ring_free:
2124
	intel_ring_free(ring);
2125
error_deref_obj:
2126
	i915_gem_object_put(ctx_obj);
2127
	return ret;
2128
}
2129

2130
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2131
{
2132
	struct intel_engine_cs *engine;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	struct i915_gem_context *ctx;

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
		for_each_engine(engine, dev_priv) {
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2149

2150 2151
			if (!ce->state)
				continue;
2152

2153 2154 2155 2156
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2157

2158 2159 2160
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2161

2162 2163
			ce->state->obj->dirty = true;
			i915_gem_object_unpin_map(ce->state->obj);
2164

2165 2166 2167 2168
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2169 2170
	}
}