intel_lrc.c 61.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309 310
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
311 312
}

313 314 315 316 317 318 319 320 321
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

322
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323
{
324
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 326
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327
	u32 *reg_state = ce->lrc_reg_state;
328

329
	assert_ring_tail_valid(rq->ring, rq->tail);
C
Chris Wilson 已提交
330
	reg_state[CTX_RING_TAIL+1] = rq->tail;
331

332 333 334 335 336
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
337
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
338
		execlists_update_context_pdps(ppgtt, reg_state);
339 340

	return ce->lrc_desc;
341 342
}

343
static void execlists_submit_ports(struct intel_engine_cs *engine)
344
{
345 346
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
347 348 349 350
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

351
	GEM_BUG_ON(port[0].count > 1);
352 353 354 355
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
356
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
357
	port[0].count++;
358 359 360 361 362 363

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
364
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
365
		port[1].count = 1;
366 367 368
	} else {
		desc[1] = 0;
	}
369
	GEM_BUG_ON(desc[0] == desc[1]);
370 371 372 373 374 375 376 377 378 379

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

380
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
381
{
382
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
383
		i915_gem_context_force_single_submission(ctx));
384
}
385

386 387 388 389 390
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
391

392 393
	if (ctx_single_port_submission(prev))
		return false;
394

395
	return true;
396 397
}

398
static void execlists_dequeue(struct intel_engine_cs *engine)
399
{
400
	struct drm_i915_gem_request *last;
401
	struct execlist_port *port = engine->execlist_port;
402
	struct rb_node *rb;
403 404 405 406 407 408
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409
		 * as we resubmit the request. See gen8_emit_breadcrumb()
410 411 412 413
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
414

415
	GEM_BUG_ON(port[1].request);
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
436
	 */
437

438
	spin_lock_irq(&engine->timeline->lock);
439 440 441 442 443
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

444 445 446
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
447
		 *
448 449 450 451
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
452
		 */
453 454 455 456 457 458 459 460 461 462 463 464 465
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
466 467
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
468 469 470 471 472 473 474
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
475

476 477 478 479 480
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

481
		__i915_gem_request_submit(cursor);
482
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
483 484 485 486 487
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
488
		engine->execlist_first = rb;
489
	}
490
	spin_unlock_irq(&engine->timeline->lock);
491

492 493
	if (submit)
		execlists_submit_ports(engine);
494 495
}

496
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
497
{
498
	return !engine->execlist_port[0].request;
499 500
}

501
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
502
{
503
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
504

505
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
506 507
}

508
/*
509 510 511
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
512
static void intel_lrc_irq_handler(unsigned long data)
513
{
514
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
515
	struct execlist_port *port = engine->execlist_port;
516
	struct drm_i915_private *dev_priv = engine->i915;
517

518
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
519

520 521 522 523 524
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
525 526 527 528
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
529
		unsigned int head, tail;
530

531 532 533 534 535 536 537 538 539 540 541
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
542 543 544 545 546 547 548 549
		head = readl(csb_mmio);
		tail = GEN8_CSB_WRITE_PTR(head);
		head = GEN8_CSB_READ_PTR(head);
		while (head != tail) {
			unsigned int status;

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

568
			status = readl(buf + 2 * head);
569 570 571
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

572
			/* Check the context/desc id for this event matches */
573
			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
574
					 port[0].context_id);
575

576 577 578
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
579
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
580 581 582
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

583
				trace_i915_gem_request_out(port[0].request);
584 585 586 587
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
588

589 590
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
591
		}
592

593
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
594
		       csb_mmio);
595 596
	}

597 598
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
599

600
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
601 602
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

629
static void execlists_submit_request(struct drm_i915_gem_request *request)
630
{
631
	struct intel_engine_cs *engine = request->engine;
632
	unsigned long flags;
633

634 635
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
636

637
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
638
		engine->execlist_first = &request->priotree.node;
639
		if (execlists_elsp_ready(engine))
640 641
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
642

643
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
644 645
}

646 647 648
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
649 650 651 652
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
653 654

	if (engine != locked) {
655 656
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
657 658 659 660 661 662 663
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
664
	struct intel_engine_cs *engine;
665 666 667 668 669 670 671
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

672 673
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

698 699 700 701 702 703 704
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
705 706
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
707
		}
708

709
		list_safe_reset_next(dep, p, dfs_link);
710 711
	}

712 713 714
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

715 716 717 718 719 720 721 722 723 724 725 726
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
727 728 729 730 731
		if (!RB_EMPTY_NODE(&pt->node)) {
			rb_erase(&pt->node, &engine->execlist_queue);
			if (insert_request(pt, &engine->execlist_queue))
				engine->execlist_first = &pt->node;
		}
732 733
	}

734
	spin_unlock_irq(&engine->timeline->lock);
735 736 737 738

	/* XXX Do we need to preempt to make room for us and our deps? */
}

739 740
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
741
{
742
	struct intel_context *ce = &ctx->engine[engine->id];
743
	unsigned int flags;
744
	void *vaddr;
745
	int ret;
746

747
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
748

749
	if (ce->pin_count++)
750
		return 0;
751
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
752

753 754 755 756 757
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
758
	GEM_BUG_ON(!ce->state);
759

760
	flags = PIN_GLOBAL | PIN_HIGH;
761 762
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
763 764

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
765
	if (ret)
766
		goto err;
767

768
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
769 770
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
771
		goto unpin_vma;
772 773
	}

774
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
775
	if (ret)
776
		goto unpin_map;
777

778
	intel_lr_context_descriptor_update(ctx, engine);
779

780 781
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
782
		i915_ggtt_offset(ce->ring->vma);
783

C
Chris Wilson 已提交
784
	ce->state->obj->mm.dirty = true;
785

786
	i915_gem_context_get(ctx);
787
	return 0;
788

789
unpin_map:
790 791 792
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
793
err:
794
	ce->pin_count = 0;
795 796 797
	return ret;
}

798 799
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
800
{
801
	struct intel_context *ce = &ctx->engine[engine->id];
802

803
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
804
	GEM_BUG_ON(ce->pin_count == 0);
805

806
	if (--ce->pin_count)
807
		return;
808

809
	intel_ring_unpin(ce->ring);
810

811 812
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
813

814
	i915_gem_context_put(ctx);
815 816
}

817
static int execlists_request_alloc(struct drm_i915_gem_request *request)
818 819 820
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
821
	u32 *cs;
822 823
	int ret;

824 825
	GEM_BUG_ON(!ce->pin_count);

826 827 828 829 830 831
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

832
	GEM_BUG_ON(!ce->ring);
833 834 835 836 837 838 839 840 841 842
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
843
			goto err;
844 845
	}

846 847 848
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
849
		goto err_unreserve;
850
	}
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
873
err:
874 875 876
	return ret;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
893 894
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
895
{
896 897 898 899 900 901 902 903 904
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

905 906 907 908
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
909 910 911 912 913 914 915

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
916 917
}

918 919 920 921 922 923
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
924
 *
925 926
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
927
 *
928 929 930 931
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
932
 */
933
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
934
{
935
	/* WaDisableCtxRestoreArbitration:bdw,chv */
936
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
937

938
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
939 940
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
941

942 943
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
944 945 946 947 948 949 950
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
951

952
	/* Pad to end of cacheline */
953 954
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
955 956 957 958 959 960 961

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

962
	return batch;
963 964
}

965 966 967
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
968
 *
969
 *  The number of DWORDS written are returned using this field.
970 971 972 973
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
974
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
975
{
976
	/* WaDisableCtxRestoreArbitration:bdw,chv */
977 978
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
979

980
	return batch;
981 982
}

983
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
984
{
985
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
986
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
987

988
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
989 990 991 992 993
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
994

995 996
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
997
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
998 999 1000 1001 1002 1003 1004
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1005
	}
1006

1007
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1022 1023 1024 1025 1026 1027
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1028 1029
	}

1030
	/* Pad to end of cacheline */
1031 1032
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1033

1034
	return batch;
1035 1036
}

1037
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1038
{
1039
	*batch++ = MI_BATCH_BUFFER_END;
1040

1041
	return batch;
1042 1043
}

1044 1045 1046
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1047
{
1048 1049 1050
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1051

1052
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1053 1054
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1055

1056
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1057 1058 1059
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1060 1061
	}

1062 1063 1064 1065 1066
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1067
	return 0;
1068 1069 1070 1071

err:
	i915_gem_object_put(obj);
	return err;
1072 1073
}

1074
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1075
{
1076
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1077 1078
}

1079 1080
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1081
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1082
{
1083
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1084 1085 1086
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1087
	struct page *page;
1088 1089
	void *batch, *batch_ptr;
	unsigned int i;
1090
	int ret;
1091

1092 1093
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1106
		return 0;
1107
	}
1108

1109
	ret = lrc_setup_wa_ctx(engine);
1110 1111 1112 1113 1114
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1115
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1116
	batch = batch_ptr = kmap_atomic(page);
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1131 1132
	}

1133 1134
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1135 1136
	kunmap_atomic(batch);
	if (ret)
1137
		lrc_destroy_wa_ctx(engine);
1138 1139 1140 1141

	return ret;
}

1142 1143 1144 1145 1146
static u32 port_seqno(struct execlist_port *port)
{
	return port->request ? port->request->global_seqno : 0;
}

1147
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1148
{
1149
	struct drm_i915_private *dev_priv = engine->i915;
1150 1151 1152 1153 1154
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1155

1156
	intel_engine_reset_breadcrumbs(engine);
1157
	intel_engine_init_hangcheck(engine);
1158

1159 1160
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1161
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1162 1163 1164
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1165

1166
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1167

1168
	/* After a GPU reset, we may have requests to replay */
1169
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1170
	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
1171 1172 1173 1174
		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
				 engine->name,
				 port_seqno(&engine->execlist_port[0]),
				 port_seqno(&engine->execlist_port[1]));
1175 1176
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1177
		execlists_submit_ports(engine);
1178
	}
1179 1180

	return 0;
1181 1182
}

1183
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1184
{
1185
	struct drm_i915_private *dev_priv = engine->i915;
1186 1187
	int ret;

1188
	ret = gen8_init_common_ring(engine);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1202
	return init_workarounds_ring(engine);
1203 1204
}

1205
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1206 1207 1208
{
	int ret;

1209
	ret = gen8_init_common_ring(engine);
1210 1211 1212
	if (ret)
		return ret;

1213
	return init_workarounds_ring(engine);
1214 1215
}

1216 1217 1218 1219
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1234

1235 1236 1237 1238 1239 1240 1241
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1242
	ce = &request->ctx->engine[engine->id];
1243 1244 1245
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1246
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1247 1248
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1249
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1262 1263

	/* Reset WaIdleLiteRestore:bdw,skl as well */
1264 1265 1266
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1267
	assert_ring_tail_valid(request->ring, request->tail);
1268 1269
}

1270 1271 1272
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1273
	struct intel_engine_cs *engine = req->engine;
1274
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1275 1276
	u32 *cs;
	int i;
1277

1278 1279 1280
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1281

1282
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1283
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1284 1285
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1286 1287 1288 1289
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1290 1291
	}

1292 1293
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1294 1295 1296 1297

	return 0;
}

1298
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1299
			      u64 offset, u32 len,
1300
			      const unsigned int flags)
1301
{
1302
	u32 *cs;
1303 1304
	int ret;

1305 1306 1307 1308
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1309 1310
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1311
	if (req->ctx->ppgtt &&
1312 1313 1314 1315 1316 1317
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1318

1319
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1320 1321
	}

1322 1323 1324
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1325 1326

	/* FIXME(BDW): Address space and security selectors. */
1327 1328 1329
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1330 1331 1332 1333
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1334 1335 1336 1337

	return 0;
}

1338
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1339
{
1340
	struct drm_i915_private *dev_priv = engine->i915;
1341 1342 1343
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1344 1345
}

1346
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1347
{
1348
	struct drm_i915_private *dev_priv = engine->i915;
1349
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1350 1351
}

1352
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1353
{
1354
	u32 cmd, *cs;
1355

1356 1357 1358
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1359 1360 1361

	cmd = MI_FLUSH_DW + 1;

1362 1363 1364 1365 1366 1367 1368
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1369
	if (mode & EMIT_INVALIDATE) {
1370
		cmd |= MI_INVALIDATE_TLB;
1371
		if (request->engine->id == VCS)
1372
			cmd |= MI_INVALIDATE_BSD;
1373 1374
	}

1375 1376 1377 1378 1379
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1380 1381 1382 1383

	return 0;
}

1384
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1385
				  u32 mode)
1386
{
1387
	struct intel_engine_cs *engine = request->engine;
1388 1389
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1390
	bool vf_flush_wa = false, dc_flush_wa = false;
1391
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1392
	int len;
1393 1394 1395

	flags |= PIPE_CONTROL_CS_STALL;

1396
	if (mode & EMIT_FLUSH) {
1397 1398
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1399
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1400
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1401 1402
	}

1403
	if (mode & EMIT_INVALIDATE) {
1404 1405 1406 1407 1408 1409 1410 1411 1412
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1413 1414 1415 1416
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1417
		if (IS_GEN9(request->i915))
1418
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1419 1420 1421 1422

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1423
	}
1424

M
Mika Kuoppala 已提交
1425 1426 1427 1428 1429 1430 1431 1432
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1433 1434 1435
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1436

1437 1438
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1439

1440 1441 1442
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1443

1444
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1445

1446 1447
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1448

1449
	intel_ring_advance(request, cs);
1450 1451 1452 1453

	return 0;
}

1454 1455 1456 1457 1458
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1459
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1460
{
1461 1462 1463
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1464
}
1465

1466
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1467
{
1468 1469
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1470

1471 1472 1473 1474 1475 1476 1477
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1478
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1479

1480
	gen8_emit_wa_tail(request, cs);
1481
}
1482

1483 1484
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1485
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1486
					u32 *cs)
1487
{
1488 1489 1490
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1491 1492 1493 1494
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1495 1496 1497 1498 1499 1500
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1501
	/* We're thrashing one dword of HWS. */
1502 1503 1504 1505
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1506
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1507

1508
	gen8_emit_wa_tail(request, cs);
1509 1510
}

1511 1512
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1513
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1514 1515 1516
{
	int ret;

1517
	ret = intel_ring_workarounds_emit(req);
1518 1519 1520
	if (ret)
		return ret;

1521 1522 1523 1524 1525 1526 1527 1528
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1529
	return i915_gem_render_state_emit(req);
1530 1531
}

1532 1533
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1534
 * @engine: Engine Command Streamer.
1535
 */
1536
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1537
{
1538
	struct drm_i915_private *dev_priv;
1539

1540 1541 1542 1543 1544 1545 1546
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1547
	dev_priv = engine->i915;
1548

1549 1550
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1551
	}
1552

1553 1554
	if (engine->cleanup)
		engine->cleanup(engine);
1555

1556 1557 1558
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1559
	}
1560 1561

	intel_engine_cleanup_common(engine);
1562

1563
	lrc_destroy_wa_ctx(engine);
1564
	engine->i915 = NULL;
1565 1566
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1567 1568
}

1569
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1570
{
1571 1572
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1573
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1574 1575
}

1576
static void
1577
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1578 1579
{
	/* Default vfuncs which can be overriden by each engine. */
1580
	engine->init_hw = gen8_init_common_ring;
1581
	engine->reset_hw = reset_common_ring;
1582 1583 1584 1585

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1586 1587
	engine->request_alloc = execlists_request_alloc;

1588
	engine->emit_flush = gen8_emit_flush;
1589
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1590
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1591 1592

	engine->set_default_submission = execlists_set_default_submission;
1593

1594 1595
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1596
	engine->emit_bb_start = gen8_emit_bb_start;
1597 1598
}

1599
static inline void
1600
logical_ring_default_irqs(struct intel_engine_cs *engine)
1601
{
1602
	unsigned shift = engine->irq_shift;
1603 1604
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1605 1606
}

1607
static int
1608
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1609
{
1610
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1611
	void *hws;
1612 1613

	/* The HWSP is part of the default context object in LRC mode. */
1614
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1615 1616
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1617 1618

	engine->status_page.page_addr = hws + hws_offset;
1619
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1620
	engine->status_page.vma = vma;
1621 1622

	return 0;
1623 1624
}

1625 1626 1627 1628 1629 1630
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1631 1632
	intel_engine_setup_common(engine);

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1657 1658 1659 1660 1661 1662
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1663
	ret = intel_engine_init_common(engine);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1681
int logical_render_ring_init(struct intel_engine_cs *engine)
1682 1683 1684 1685
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1686 1687
	logical_ring_setup(engine);

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1698
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1699
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1700

1701
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1716
	return logical_ring_init(engine);
1717 1718
}

1719
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1720 1721 1722 1723
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1724 1725
}

1726
static u32
1727
make_rpcs(struct drm_i915_private *dev_priv)
1728 1729 1730 1731 1732 1733 1734
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1735
	if (INTEL_GEN(dev_priv) < 9)
1736 1737 1738 1739 1740 1741 1742 1743
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1744
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1745
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1746
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1747 1748 1749 1750
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1751
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1752
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1753
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1754 1755 1756 1757
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1758 1759
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1760
			GEN8_RPCS_EU_MIN_SHIFT;
1761
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1762 1763 1764 1765 1766 1767 1768
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1769
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1770 1771 1772
{
	u32 indirect_ctx_offset;

1773
	switch (INTEL_GEN(engine->i915)) {
1774
	default:
1775
		MISSING_CASE(INTEL_GEN(engine->i915));
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1790
static void execlists_init_reg_state(u32 *regs,
1791 1792 1793
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1794
{
1795 1796
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1831

1832
		if (engine->wa_ctx.vma) {
1833
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1834
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1835

1836
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1837 1838
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1839

1840
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1841
				intel_lr_indirect_ctx_offset(engine) << 6;
1842

1843
			regs[CTX_BB_PER_CTX_PTR + 1] =
1844
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1845
		}
1846
	}
1847 1848 1849 1850

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1851
	/* PDP values well be assigned later if needed */
1852 1853 1854 1855 1856 1857 1858 1859
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1860

1861
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1862 1863 1864 1865
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1866
		ASSIGN_CTX_PML4(ppgtt, regs);
1867 1868
	}

1869 1870 1871 1872
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1873
	}
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1897
	ctx_obj->mm.dirty = true;
1898 1899 1900 1901 1902 1903

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1904

1905
	i915_gem_object_unpin_map(ctx_obj);
1906 1907 1908 1909

	return 0;
}

1910 1911
/**
 * intel_lr_context_size() - return the size of the context for an engine
1912
 * @engine: which engine to find the context size for
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1924
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1925 1926 1927
{
	int ret = 0;

1928
	WARN_ON(INTEL_GEN(engine->i915) < 8);
1929

1930
	switch (engine->id) {
1931
	case RCS:
1932
		if (INTEL_GEN(engine->i915) >= 9)
1933 1934 1935
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1946 1947
}

1948
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1949
					    struct intel_engine_cs *engine)
1950
{
1951
	struct drm_i915_gem_object *ctx_obj;
1952
	struct intel_context *ce = &ctx->engine[engine->id];
1953
	struct i915_vma *vma;
1954
	uint32_t context_size;
1955
	struct intel_ring *ring;
1956 1957
	int ret;

1958
	WARN_ON(ce->state);
1959

1960 1961
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
1962

1963 1964 1965
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1966
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1967
	if (IS_ERR(ctx_obj)) {
1968
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1969
		return PTR_ERR(ctx_obj);
1970 1971
	}

1972
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1973 1974 1975 1976 1977
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1978
	ring = intel_engine_create_ring(engine, ctx->ring_size);
1979 1980
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1981
		goto error_deref_obj;
1982 1983
	}

1984
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1985 1986
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1987
		goto error_ring_free;
1988 1989
	}

1990
	ce->ring = ring;
1991
	ce->state = vma;
1992
	ce->initialised = engine->init_context == NULL;
1993 1994

	return 0;
1995

1996
error_ring_free:
1997
	intel_ring_free(ring);
1998
error_deref_obj:
1999
	i915_gem_object_put(ctx_obj);
2000
	return ret;
2001
}
2002

2003
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2004
{
2005
	struct intel_engine_cs *engine;
2006
	struct i915_gem_context *ctx;
2007
	enum intel_engine_id id;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2020
		for_each_engine(engine, dev_priv, id) {
2021 2022
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2023

2024 2025
			if (!ce->state)
				continue;
2026

2027 2028 2029 2030
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2031

2032 2033 2034
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2035

C
Chris Wilson 已提交
2036
			ce->state->obj->mm.dirty = true;
2037
			i915_gem_object_unpin_map(ce->state->obj);
2038

2039 2040 2041
			ce->ring->head = ce->ring->tail = 0;
			intel_ring_update_space(ce->ring);
		}
2042 2043
	}
}