intel_lrc.c 61.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
310 311
}

312 313 314 315 316 317 318 319 320
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

321
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
322
{
323
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
324 325
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
326
	u32 *reg_state = ce->lrc_reg_state;
327

328
	GEM_BUG_ON(!IS_ALIGNED(rq->tail, 8));
C
Chris Wilson 已提交
329
	reg_state[CTX_RING_TAIL+1] = rq->tail;
330

331 332 333 334 335
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
336
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
337
		execlists_update_context_pdps(ppgtt, reg_state);
338 339

	return ce->lrc_desc;
340 341
}

342
static void execlists_submit_ports(struct intel_engine_cs *engine)
343
{
344 345
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
346 347 348 349
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

350
	GEM_BUG_ON(port[0].count > 1);
351 352 353 354
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
355
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
356
	port[0].count++;
357 358 359 360 361 362

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
363
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
364
		port[1].count = 1;
365 366 367
	} else {
		desc[1] = 0;
	}
368
	GEM_BUG_ON(desc[0] == desc[1]);
369 370 371 372 373 374 375 376 377 378

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

379
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
380
{
381
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
382
		i915_gem_context_force_single_submission(ctx));
383
}
384

385 386 387 388 389
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
390

391 392
	if (ctx_single_port_submission(prev))
		return false;
393

394
	return true;
395 396
}

397
static void execlists_dequeue(struct intel_engine_cs *engine)
398
{
399
	struct drm_i915_gem_request *last;
400
	struct execlist_port *port = engine->execlist_port;
401
	unsigned long flags;
402
	struct rb_node *rb;
403 404 405 406 407 408
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409
		 * as we resubmit the request. See gen8_emit_breadcrumb()
410 411 412 413
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
414

415
	GEM_BUG_ON(port[1].request);
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
436
	 */
437

438
	spin_lock_irqsave(&engine->timeline->lock, flags);
439 440 441 442 443
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

444 445 446
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
447
		 *
448 449 450 451
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
452
		 */
453 454 455 456 457 458 459 460 461 462 463 464 465
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
466 467
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
468 469 470 471 472 473 474
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
475

476 477 478 479 480
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

481
		__i915_gem_request_submit(cursor);
482
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
483 484 485 486 487
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
488
		engine->execlist_first = rb;
489
	}
490
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
491

492 493
	if (submit)
		execlists_submit_ports(engine);
494 495
}

496
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
497
{
498
	return !engine->execlist_port[0].request;
499 500
}

501
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
502
{
503
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
504

505
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
506 507
}

508
/*
509 510 511
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
512
static void intel_lrc_irq_handler(unsigned long data)
513
{
514
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
515
	struct execlist_port *port = engine->execlist_port;
516
	struct drm_i915_private *dev_priv = engine->i915;
517

518
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
519

520
	while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
521 522 523 524 525 526 527 528 529
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
530 531 532
		if (head == tail)
			break;

533 534
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
535
		do {
536 537 538
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

556 557 558
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

559
			/* Check the context/desc id for this event matches */
560 561
			GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
					 port[0].context_id);
562

563 564 565
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
566
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
567 568 569
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

570
				trace_i915_gem_request_out(port[0].request);
571 572 573 574
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
575

576 577
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
578
		} while (head < tail);
579

580 581 582
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
583 584
	}

585 586
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
587

588
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
589 590
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

617
static void execlists_submit_request(struct drm_i915_gem_request *request)
618
{
619
	struct intel_engine_cs *engine = request->engine;
620
	unsigned long flags;
621

622 623
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
624

625
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
626
		engine->execlist_first = &request->priotree.node;
627
		if (execlists_elsp_ready(engine))
628 629
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
630

631
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

661 662
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

691
		list_safe_reset_next(dep, p, dfs_link);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

732 733
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
734
{
735
	struct intel_context *ce = &ctx->engine[engine->id];
736
	unsigned int flags;
737
	void *vaddr;
738
	int ret;
739

740
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
741

742
	if (ce->pin_count++)
743 744
		return 0;

745 746 747 748 749
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
750
	GEM_BUG_ON(!ce->state);
751

752
	flags = PIN_GLOBAL | PIN_HIGH;
753 754
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
755 756

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
757
	if (ret)
758
		goto err;
759

760
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
761 762
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
763
		goto unpin_vma;
764 765
	}

766
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
767
	if (ret)
768
		goto unpin_map;
769

770
	intel_lr_context_descriptor_update(ctx, engine);
771

772 773
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
774
		i915_ggtt_offset(ce->ring->vma);
775

C
Chris Wilson 已提交
776
	ce->state->obj->mm.dirty = true;
777

778
	i915_gem_context_get(ctx);
779
	return 0;
780

781
unpin_map:
782 783 784
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
785
err:
786
	ce->pin_count = 0;
787 788 789
	return ret;
}

790 791
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
792
{
793
	struct intel_context *ce = &ctx->engine[engine->id];
794

795
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
796
	GEM_BUG_ON(ce->pin_count == 0);
797

798
	if (--ce->pin_count)
799
		return;
800

801
	intel_ring_unpin(ce->ring);
802

803 804
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
805

806
	i915_gem_context_put(ctx);
807 808
}

809
static int execlists_request_alloc(struct drm_i915_gem_request *request)
810 811 812
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
813
	u32 *cs;
814 815
	int ret;

816 817
	GEM_BUG_ON(!ce->pin_count);

818 819 820 821 822 823
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

824
	GEM_BUG_ON(!ce->ring);
825 826 827 828 829 830 831 832 833 834
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
835
			goto err;
836 837
	}

838 839 840
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
841
		goto err_unreserve;
842
	}
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
865
err:
866 867 868
	return ret;
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
885 886
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
887
{
888 889 890 891 892 893 894 895 896
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

897 898 899 900
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
901 902 903 904 905 906 907

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
908 909
}

910 911 912 913 914 915
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
916
 *
917 918
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
919
 *
920 921 922 923
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
924
 */
925
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
926
{
927
	/* WaDisableCtxRestoreArbitration:bdw,chv */
928
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
929

930
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
931 932
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
933

934 935
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
936 937 938 939 940 941 942
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
943

944
	/* Pad to end of cacheline */
945 946
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
947 948 949 950 951 952 953

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

954
	return batch;
955 956
}

957 958 959
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
960
 *
961
 *  The number of DWORDS written are returned using this field.
962 963 964 965
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
966
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
967
{
968
	/* WaDisableCtxRestoreArbitration:bdw,chv */
969 970
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
971

972
	return batch;
973 974
}

975
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
976
{
977
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
978
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
979

980
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
981 982 983 984 985
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
986

987 988
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
989
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
990 991 992 993 994 995 996
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
997
	}
998

999
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1014 1015 1016 1017 1018 1019
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1020 1021
	}

1022
	/* Pad to end of cacheline */
1023 1024
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1025

1026
	return batch;
1027 1028
}

1029
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1030
{
1031
	*batch++ = MI_BATCH_BUFFER_END;
1032

1033
	return batch;
1034 1035
}

1036 1037 1038
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1039
{
1040 1041 1042
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1043

1044
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1045 1046
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1047

1048
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1049 1050 1051
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1052 1053
	}

1054 1055 1056 1057 1058
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1059
	return 0;
1060 1061 1062 1063

err:
	i915_gem_object_put(obj);
	return err;
1064 1065
}

1066
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1067
{
1068
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1069 1070
}

1071 1072
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1073
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1074
{
1075
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1076 1077 1078
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1079
	struct page *page;
1080 1081
	void *batch, *batch_ptr;
	unsigned int i;
1082
	int ret;
1083

1084 1085
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1098
		return 0;
1099
	}
1100

1101
	ret = lrc_setup_wa_ctx(engine);
1102 1103 1104 1105 1106
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1107
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1108
	batch = batch_ptr = kmap_atomic(page);
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1123 1124
	}

1125 1126
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1127 1128
	kunmap_atomic(batch);
	if (ret)
1129
		lrc_destroy_wa_ctx(engine);
1130 1131 1132 1133

	return ret;
}

1134 1135 1136 1137 1138
static u32 port_seqno(struct execlist_port *port)
{
	return port->request ? port->request->global_seqno : 0;
}

1139
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1140
{
1141
	struct drm_i915_private *dev_priv = engine->i915;
1142 1143 1144 1145 1146
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1147

1148
	intel_engine_reset_breadcrumbs(engine);
1149
	intel_engine_init_hangcheck(engine);
1150

1151 1152
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1153
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1154 1155 1156
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1157

1158
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1159

1160
	/* After a GPU reset, we may have requests to replay */
1161
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1162
	if (!execlists_elsp_idle(engine)) {
1163 1164 1165 1166
		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
				 engine->name,
				 port_seqno(&engine->execlist_port[0]),
				 port_seqno(&engine->execlist_port[1]));
1167 1168
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1169
		execlists_submit_ports(engine);
1170
	}
1171 1172

	return 0;
1173 1174
}

1175
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1176
{
1177
	struct drm_i915_private *dev_priv = engine->i915;
1178 1179
	int ret;

1180
	ret = gen8_init_common_ring(engine);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1194
	return init_workarounds_ring(engine);
1195 1196
}

1197
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1198 1199 1200
{
	int ret;

1201
	ret = gen8_init_common_ring(engine);
1202 1203 1204
	if (ret)
		return ret;

1205
	return init_workarounds_ring(engine);
1206 1207
}

1208 1209 1210 1211
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1226

1227 1228 1229 1230 1231 1232 1233
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1234
	ce = &request->ctx->engine[engine->id];
1235 1236 1237
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1238
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1239 1240
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1241
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1258 1259 1260

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1261
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
1262 1263
}

1264 1265 1266
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1267
	struct intel_engine_cs *engine = req->engine;
1268
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1269 1270
	u32 *cs;
	int i;
1271

1272 1273 1274
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1275

1276
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1277
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1278 1279
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1280 1281 1282 1283
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1284 1285
	}

1286 1287
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1288 1289 1290 1291

	return 0;
}

1292
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1293
			      u64 offset, u32 len,
1294
			      const unsigned int flags)
1295
{
1296
	u32 *cs;
1297 1298
	int ret;

1299 1300 1301 1302
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1303 1304
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1305
	if (req->ctx->ppgtt &&
1306 1307 1308 1309 1310 1311
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1312

1313
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1314 1315
	}

1316 1317 1318
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1319 1320

	/* FIXME(BDW): Address space and security selectors. */
1321 1322 1323
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1324 1325 1326 1327
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1328 1329 1330 1331

	return 0;
}

1332
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1333
{
1334
	struct drm_i915_private *dev_priv = engine->i915;
1335 1336 1337
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1338 1339
}

1340
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1341
{
1342
	struct drm_i915_private *dev_priv = engine->i915;
1343
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1344 1345
}

1346
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1347
{
1348
	u32 cmd, *cs;
1349

1350 1351 1352
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1353 1354 1355

	cmd = MI_FLUSH_DW + 1;

1356 1357 1358 1359 1360 1361 1362
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1363
	if (mode & EMIT_INVALIDATE) {
1364
		cmd |= MI_INVALIDATE_TLB;
1365
		if (request->engine->id == VCS)
1366
			cmd |= MI_INVALIDATE_BSD;
1367 1368
	}

1369 1370 1371 1372 1373
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1374 1375 1376 1377

	return 0;
}

1378
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1379
				  u32 mode)
1380
{
1381
	struct intel_engine_cs *engine = request->engine;
1382 1383
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1384
	bool vf_flush_wa = false, dc_flush_wa = false;
1385
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1386
	int len;
1387 1388 1389

	flags |= PIPE_CONTROL_CS_STALL;

1390
	if (mode & EMIT_FLUSH) {
1391 1392
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1393
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1394
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1395 1396
	}

1397
	if (mode & EMIT_INVALIDATE) {
1398 1399 1400 1401 1402 1403 1404 1405 1406
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1407 1408 1409 1410
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1411
		if (IS_GEN9(request->i915))
1412
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1413 1414 1415 1416

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1417
	}
1418

M
Mika Kuoppala 已提交
1419 1420 1421 1422 1423 1424 1425 1426
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1427 1428 1429
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1430

1431 1432
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1433

1434 1435 1436
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1437

1438
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1439

1440 1441
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1442

1443
	intel_ring_advance(request, cs);
1444 1445 1446 1447

	return 0;
}

1448 1449 1450 1451 1452
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1453
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1454
{
1455 1456 1457
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1458
}
1459

1460
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1461
{
1462 1463
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1464

1465 1466 1467 1468 1469 1470 1471
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1472
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1473

1474
	gen8_emit_wa_tail(request, cs);
1475
}
1476

1477 1478
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1479
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1480
					u32 *cs)
1481
{
1482 1483 1484
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1485 1486 1487 1488
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1489 1490 1491 1492 1493 1494
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1495
	/* We're thrashing one dword of HWS. */
1496 1497 1498 1499
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1500
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1501

1502
	gen8_emit_wa_tail(request, cs);
1503 1504
}

1505 1506
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1507
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1508 1509 1510
{
	int ret;

1511
	ret = intel_ring_workarounds_emit(req);
1512 1513 1514
	if (ret)
		return ret;

1515 1516 1517 1518 1519 1520 1521 1522
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1523
	return i915_gem_render_state_emit(req);
1524 1525
}

1526 1527
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1528
 * @engine: Engine Command Streamer.
1529
 */
1530
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1531
{
1532
	struct drm_i915_private *dev_priv;
1533

1534 1535 1536 1537 1538 1539 1540
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1541
	dev_priv = engine->i915;
1542

1543 1544
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1545
	}
1546

1547 1548
	if (engine->cleanup)
		engine->cleanup(engine);
1549

1550 1551 1552
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1553
	}
1554 1555

	intel_engine_cleanup_common(engine);
1556

1557
	lrc_destroy_wa_ctx(engine);
1558
	engine->i915 = NULL;
1559 1560
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1561 1562
}

1563 1564 1565
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1566
	enum intel_engine_id id;
1567

1568
	for_each_engine(engine, dev_priv, id) {
1569
		engine->submit_request = execlists_submit_request;
1570 1571
		engine->schedule = execlists_schedule;
	}
1572 1573
}

1574
static void
1575
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1576 1577
{
	/* Default vfuncs which can be overriden by each engine. */
1578
	engine->init_hw = gen8_init_common_ring;
1579
	engine->reset_hw = reset_common_ring;
1580 1581 1582 1583

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1584 1585
	engine->request_alloc = execlists_request_alloc;

1586
	engine->emit_flush = gen8_emit_flush;
1587
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1588
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1589
	engine->submit_request = execlists_submit_request;
1590
	engine->schedule = execlists_schedule;
1591

1592 1593
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1594
	engine->emit_bb_start = gen8_emit_bb_start;
1595 1596
}

1597
static inline void
1598
logical_ring_default_irqs(struct intel_engine_cs *engine)
1599
{
1600
	unsigned shift = engine->irq_shift;
1601 1602
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1603 1604
}

1605
static int
1606
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1607
{
1608
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1609
	void *hws;
1610 1611

	/* The HWSP is part of the default context object in LRC mode. */
1612
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1613 1614
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1615 1616

	engine->status_page.page_addr = hws + hws_offset;
1617
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1618
	engine->status_page.vma = vma;
1619 1620

	return 0;
1621 1622
}

1623 1624 1625 1626 1627 1628
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1629 1630
	intel_engine_setup_common(engine);

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1655 1656 1657 1658 1659 1660
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1661
	ret = intel_engine_init_common(engine);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1679
int logical_render_ring_init(struct intel_engine_cs *engine)
1680 1681 1682 1683
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1684 1685
	logical_ring_setup(engine);

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1696
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1697
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1698

1699
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1714
	return logical_ring_init(engine);
1715 1716
}

1717
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1718 1719 1720 1721
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1722 1723
}

1724
static u32
1725
make_rpcs(struct drm_i915_private *dev_priv)
1726 1727 1728 1729 1730 1731 1732
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1733
	if (INTEL_GEN(dev_priv) < 9)
1734 1735 1736 1737 1738 1739 1740 1741
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1742
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1743
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1744
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1745 1746 1747 1748
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1749
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1750
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1751
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1752 1753 1754 1755
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1756 1757
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1758
			GEN8_RPCS_EU_MIN_SHIFT;
1759
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1760 1761 1762 1763 1764 1765 1766
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1767
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1768 1769 1770
{
	u32 indirect_ctx_offset;

1771
	switch (INTEL_GEN(engine->i915)) {
1772
	default:
1773
		MISSING_CASE(INTEL_GEN(engine->i915));
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1788
static void execlists_init_reg_state(u32 *regs,
1789 1790 1791
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1792
{
1793 1794
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1829

1830
		if (engine->wa_ctx.vma) {
1831
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1832
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1833

1834
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1835 1836
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1837

1838
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1839
				intel_lr_indirect_ctx_offset(engine) << 6;
1840

1841
			regs[CTX_BB_PER_CTX_PTR + 1] =
1842
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1843
		}
1844
	}
1845 1846 1847 1848

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1849
	/* PDP values well be assigned later if needed */
1850 1851 1852 1853 1854 1855 1856 1857
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1858

1859
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1860 1861 1862 1863
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1864
		ASSIGN_CTX_PML4(ppgtt, regs);
1865 1866
	}

1867 1868 1869 1870
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1871
	}
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1895
	ctx_obj->mm.dirty = true;
1896 1897 1898 1899 1900 1901

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1902

1903
	i915_gem_object_unpin_map(ctx_obj);
1904 1905 1906 1907

	return 0;
}

1908 1909
/**
 * intel_lr_context_size() - return the size of the context for an engine
1910
 * @engine: which engine to find the context size for
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1922
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1923 1924 1925
{
	int ret = 0;

1926
	WARN_ON(INTEL_GEN(engine->i915) < 8);
1927

1928
	switch (engine->id) {
1929
	case RCS:
1930
		if (INTEL_GEN(engine->i915) >= 9)
1931 1932 1933
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1944 1945
}

1946
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1947
					    struct intel_engine_cs *engine)
1948
{
1949
	struct drm_i915_gem_object *ctx_obj;
1950
	struct intel_context *ce = &ctx->engine[engine->id];
1951
	struct i915_vma *vma;
1952
	uint32_t context_size;
1953
	struct intel_ring *ring;
1954 1955
	int ret;

1956
	WARN_ON(ce->state);
1957

1958 1959
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
1960

1961 1962 1963
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1964
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1965
	if (IS_ERR(ctx_obj)) {
1966
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1967
		return PTR_ERR(ctx_obj);
1968 1969
	}

1970
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1971 1972 1973 1974 1975
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1976
	ring = intel_engine_create_ring(engine, ctx->ring_size);
1977 1978
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1979
		goto error_deref_obj;
1980 1981
	}

1982
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1983 1984
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1985
		goto error_ring_free;
1986 1987
	}

1988
	ce->ring = ring;
1989
	ce->state = vma;
1990
	ce->initialised = engine->init_context == NULL;
1991 1992

	return 0;
1993

1994
error_ring_free:
1995
	intel_ring_free(ring);
1996
error_deref_obj:
1997
	i915_gem_object_put(ctx_obj);
1998
	return ret;
1999
}
2000

2001
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2002
{
2003
	struct intel_engine_cs *engine;
2004
	struct i915_gem_context *ctx;
2005
	enum intel_engine_id id;
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2018
		for_each_engine(engine, dev_priv, id) {
2019 2020
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2021

2022 2023
			if (!ce->state)
				continue;
2024

2025 2026 2027 2028
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2029

2030 2031 2032
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2033

C
Chris Wilson 已提交
2034
			ce->state->obj->mm.dirty = true;
2035
			i915_gem_object_unpin_map(ce->state->obj);
2036

2037 2038 2039 2040
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2041 2042
	}
}