page_alloc.c 234.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74
#include "internal.h"
A
Alexander Duyck 已提交
75
#include "page_reporting.h"
L
Linus Torvalds 已提交
76

77 78
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
79
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
80

81 82 83 84 85
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

86 87
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

88 89 90 91 92 93 94 95 96
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97
int _node_numa_mem_[MAX_NUMNODES];
98 99
#endif

100 101 102 103
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

104
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105
volatile unsigned long latent_entropy __latent_entropy;
106 107 108
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
109
/*
110
 * Array of node states.
L
Linus Torvalds 已提交
111
 */
112 113 114 115 116 117 118
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 120
#endif
	[N_MEMORY] = { { [0] = 1UL } },
121 122 123 124 125
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

126 127 128
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

129
unsigned long totalram_pages __read_mostly;
130
unsigned long totalreserve_pages __read_mostly;
131
unsigned long totalcma_pages __read_mostly;
132

133
int percpu_pagelist_fraction;
134
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

154 155 156 157 158
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
159 160 161 162
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
163
 */
164 165 166 167

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
168
{
169
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
170 171 172 173
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
174 175
}

176
void pm_restrict_gfp_mask(void)
177
{
178
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
179 180
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
181
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182
}
183 184 185

bool pm_suspended_storage(void)
{
186
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
187 188 189
		return false;
	return true;
}
190 191
#endif /* CONFIG_PM_SLEEP */

192
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
193
unsigned int pageblock_order __read_mostly;
194 195
#endif

196
static void __free_pages_ok(struct page *page, unsigned int order);
197

L
Linus Torvalds 已提交
198 199 200 201 202 203
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
204
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
205 206 207
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
208
 */
209
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
210
#ifdef CONFIG_ZONE_DMA
211
	[ZONE_DMA] = 256,
212
#endif
213
#ifdef CONFIG_ZONE_DMA32
214
	[ZONE_DMA32] = 256,
215
#endif
216
	[ZONE_NORMAL] = 32,
217
#ifdef CONFIG_HIGHMEM
218
	[ZONE_HIGHMEM] = 0,
219
#endif
220
	[ZONE_MOVABLE] = 0,
221
};
L
Linus Torvalds 已提交
222 223 224

EXPORT_SYMBOL(totalram_pages);

225
static char * const zone_names[MAX_NR_ZONES] = {
226
#ifdef CONFIG_ZONE_DMA
227
	 "DMA",
228
#endif
229
#ifdef CONFIG_ZONE_DMA32
230
	 "DMA32",
231
#endif
232
	 "Normal",
233
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
234
	 "HighMem",
235
#endif
M
Mel Gorman 已提交
236
	 "Movable",
237 238 239
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
240 241
};

242 243 244 245 246 247 248 249 250 251 252 253 254
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

255 256 257 258 259 260
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
261 262 263
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
264 265
};

L
Linus Torvalds 已提交
266
int min_free_kbytes = 1024;
267
int user_min_free_kbytes = -1;
268 269 270 271 272 273 274 275 276 277 278 279
#ifdef CONFIG_DISCONTIGMEM
/*
 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 * are not on separate NUMA nodes. Functionally this works but with
 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 * quite small. By default, do not boost watermarks on discontigmem as in
 * many cases very high-order allocations like THP are likely to be
 * unsupported and the premature reclaim offsets the advantage of long-term
 * fragmentation avoidance.
 */
int watermark_boost_factor __read_mostly;
#else
280
int watermark_boost_factor __read_mostly = 15000;
281
#endif
282
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
283

284 285 286
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
287

T
Tejun Heo 已提交
288
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
289 290 291
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
292
static unsigned long required_kernelcore_percent __initdata;
293
static unsigned long required_movablecore __initdata;
294
static unsigned long required_movablecore_percent __initdata;
295 296
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
297 298 299 300 301

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
302

M
Miklos Szeredi 已提交
303 304
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
305
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
306
EXPORT_SYMBOL(nr_node_ids);
307
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
308 309
#endif

310 311
int page_group_by_mobility_disabled __read_mostly;

312
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
313
static bool deferred_mem_init_enabled __meminitdata;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

340
/* Returns true if the struct page for the pfn is uninitialised */
341
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
342
{
343 344 345
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
346 347 348 349 350 351 352 353 354 355 356 357 358
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
359 360 361
	if (!deferred_mem_init_enabled)
		return true;

362
	/* Always populate low zones for address-constrained allocations */
363 364 365
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
366
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
367 368 369 370 371 372 373
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
374 375 376 377 378 379 380 381 382 383 384

static int __init setup_deferred_mem_init(char *str)
{
	if (!str)
		deferred_mem_init_enabled = true;

	return 0;
}

early_param("deferred_meminit", setup_deferred_mem_init);

385
#else
386 387
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

388 389 390 391 392 393 394 395 396 397 398 399 400
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
501

502
void set_pageblock_migratetype(struct page *page, int migratetype)
503
{
504 505
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
506 507
		migratetype = MIGRATE_UNMOVABLE;

508 509 510 511
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
512
#ifdef CONFIG_DEBUG_VM
513
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
514
{
515 516 517
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
518
	unsigned long sp, start_pfn;
519

520 521
	do {
		seq = zone_span_seqbegin(zone);
522 523
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
524
		if (!zone_spans_pfn(zone, pfn))
525 526 527
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

528
	if (ret)
529 530 531
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
532

533
	return ret;
534 535 536 537
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
538
	if (!pfn_valid_within(page_to_pfn(page)))
539
		return 0;
L
Linus Torvalds 已提交
540
	if (zone != page_zone(page))
541 542 543 544 545 546 547
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
548
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
549 550
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
551
		return 1;
552 553 554
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
555 556
	return 0;
}
N
Nick Piggin 已提交
557
#else
558
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
559 560 561 562 563
{
	return 0;
}
#endif

564 565
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
566
{
567 568 569 570 571 572 573 574 575 576 577 578 579 580
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
581
			pr_alert(
582
			      "BUG: Bad page state: %lu messages suppressed\n",
583 584 585 586 587 588 589 590
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

591
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
592
		current->comm, page_to_pfn(page));
593 594 595 596 597
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
598
	dump_page_owner(page);
599

600
	print_modules();
L
Linus Torvalds 已提交
601
	dump_stack();
602
out:
603
	/* Leave bad fields for debug, except PageBuddy could make trouble */
604
	page_mapcount_reset(page); /* remove PageBuddy */
605
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
606 607 608 609 610
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
611
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
612
 *
613 614
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
615
 *
616 617
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
618
 *
619
 * The first tail page's ->compound_order holds the order of allocation.
620
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
621
 */
622

623
void free_compound_page(struct page *page)
624
{
625
	mem_cgroup_uncharge(page);
626
	__free_pages_ok(page, compound_order(page));
627 628
}

629
void prep_compound_page(struct page *page, unsigned int order)
630 631 632 633
{
	int i;
	int nr_pages = 1 << order;

634
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
635 636 637 638
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
639
		set_page_count(p, 0);
640
		p->mapping = TAIL_MAPPING;
641
		set_compound_head(p, page);
642
	}
643
	atomic_set(compound_mapcount_ptr(page), -1);
644 645
}

646 647
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
648 649
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
650
EXPORT_SYMBOL(_debug_pagealloc_enabled);
651 652
bool _debug_guardpage_enabled __read_mostly;

653 654 655 656
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
657
	return kstrtobool(buf, &_debug_pagealloc_enabled);
658 659 660
}
early_param("debug_pagealloc", early_debug_pagealloc);

661 662
static bool need_debug_guardpage(void)
{
663 664 665 666
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

667 668 669
	if (!debug_guardpage_minorder())
		return false;

670 671 672 673 674
	return true;
}

static void init_debug_guardpage(void)
{
675 676 677
	if (!debug_pagealloc_enabled())
		return;

678 679 680
	if (!debug_guardpage_minorder())
		return;

681 682 683 684 685 686 687
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
688 689 690 691 692 693

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
694
		pr_err("Bad debug_guardpage_minorder value\n");
695 696 697
		return 0;
	}
	_debug_guardpage_minorder = res;
698
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
699 700
	return 0;
}
701
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
702

703
static inline bool set_page_guard(struct zone *zone, struct page *page,
704
				unsigned int order, int migratetype)
705
{
706 707 708
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
709 710 711 712
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
713 714

	page_ext = lookup_page_ext(page);
715
	if (unlikely(!page_ext))
716
		return false;
717

718 719
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

720 721 722 723
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
724 725

	return true;
726 727
}

728 729
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
730
{
731 732 733 734 735 736
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
737 738 739
	if (unlikely(!page_ext))
		return;

740 741
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

742 743 744
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
745 746
}
#else
747
struct page_ext_operations debug_guardpage_ops;
748 749
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
750 751
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
752 753
#endif

754
static inline void set_page_order(struct page *page, unsigned int order)
755
{
H
Hugh Dickins 已提交
756
	set_page_private(page, order);
757
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
758 759 760 761
}

/*
 * This function checks whether a page is free && is the buddy
762
 * we can coalesce a page and its buddy if
763
 * (a) the buddy is not in a hole (check before calling!) &&
764
 * (b) the buddy is in the buddy system &&
765 766
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
767
 *
768 769
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
770
 *
771
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
772
 */
773
static inline int page_is_buddy(struct page *page, struct page *buddy,
774
							unsigned int order)
L
Linus Torvalds 已提交
775
{
776
	if (page_is_guard(buddy) && page_order(buddy) == order) {
777 778 779
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

780 781
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

782 783 784
		return 1;
	}

785
	if (PageBuddy(buddy) && page_order(buddy) == order) {
786 787 788 789 790 791 792 793
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

794 795
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

796
		return 1;
797
	}
798
	return 0;
L
Linus Torvalds 已提交
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
833 834 835 836
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

837 838 839 840 841 842
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
907 908
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
909
 * So when we are allocating or freeing one, we can derive the state of the
910 911
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
912
 * If a block is freed, and its buddy is also free, then this
913
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
914
 *
915
 * -- nyc
L
Linus Torvalds 已提交
916 917
 */

N
Nick Piggin 已提交
918
static inline void __free_one_page(struct page *page,
919
		unsigned long pfn,
920
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
921
		int migratetype, bool report)
L
Linus Torvalds 已提交
922
{
923 924
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
925
	struct page *buddy;
926
	unsigned int max_order;
927
	struct capture_control *capc = task_capc(zone);
928 929

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
930

931
	VM_BUG_ON(!zone_is_initialized(zone));
932
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
933

934
	VM_BUG_ON(migratetype == -1);
935
	if (likely(!is_migrate_isolate(migratetype)))
936
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
937

938
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
939
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
940

941
continue_merging:
942
	while (order < max_order - 1) {
943 944 945 946 947
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
948 949
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
950 951 952

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
953
		if (!page_is_buddy(page, buddy, order))
954
			goto done_merging;
955 956 957 958
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
959
		if (page_is_guard(buddy))
960
			clear_page_guard(zone, buddy, order, migratetype);
961
		else
962
			del_page_from_free_list(buddy, zone, order);
963 964 965
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
966 967
		order++;
	}
968 969 970 971 972 973 974 975 976 977 978 979
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

980 981
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
982 983 984 985 986 987 988 989 990 991 992 993
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
994
	set_page_order(page, order);
995 996 997 998 999 1000 1001 1002 1003

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
1004
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
1005
		struct page *higher_page, *higher_buddy;
1006 1007 1008 1009
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1010 1011
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
1012
			add_to_free_list_tail(page, zone, order,
1013 1014
					      migratetype);
			return;
1015 1016 1017
		}
	}

1018
	add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1019 1020 1021 1022

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1023 1024
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1047
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1048
{
1049 1050 1051 1052 1053
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1054

1055
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1056 1057 1058
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1059
	if (unlikely(page_ref_count(page) != 0))
1060
		bad_reason = "nonzero _refcount";
1061 1062 1063 1064
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1065 1066 1067 1068
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1069
	bad_page(page, bad_reason, bad_flags);
1070 1071 1072 1073
}

static inline int free_pages_check(struct page *page)
{
1074
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1075 1076 1077 1078
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1079
	return 1;
L
Linus Torvalds 已提交
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1098
		/* the first tail page: ->mapping may be compound_mapcount() */
1099 1100 1101 1102 1103 1104 1105 1106
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1107
		 * deferred_list.next -- ignore value.
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1132 1133
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1134
{
1135
	int bad = 0;
1136 1137 1138

	VM_BUG_ON_PAGE(PageTail(page), page);

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1150

1151 1152
		if (compound)
			ClearPageDoubleMap(page);
1153 1154 1155 1156 1157 1158 1159
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
G
Gavin Shan 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

			/*
			 * The page age information is stored in page flags
			 * or node's page array. We need to explicitly clear
			 * it in both cases. Otherwise, the stale age will
			 * be provided when it's allocated again. Also, we
			 * maintain age information for each page in the
			 * compound page, So we have to clear them one by one.
			 */
			kidled_set_page_age(page_pgdat(page + i),
					    page_to_pfn(page + i), 0);
1171 1172 1173
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1174
	if (PageMappingFlags(page))
1175
		page->mapping = NULL;
1176
	if (memcg_kmem_enabled() && PageKmemcg(page))
1177
		memcg_kmem_uncharge(page, order);
1178 1179 1180 1181
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1182

1183
	page_cpupid_reset_last(page);
G
Gavin Shan 已提交
1184
	kidled_set_page_age(page_pgdat(page), page_to_pfn(page), 0);
1185 1186
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1187 1188 1189

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1190
					   PAGE_SIZE << order);
1191
		debug_check_no_obj_freed(page_address(page),
1192
					   PAGE_SIZE << order);
1193
	}
1194 1195 1196
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1197
	kasan_free_nondeferred_pages(page, order);
1198 1199 1200 1201

	return true;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1218 1219 1220 1221 1222 1223
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1224 1225 1226 1227 1228 1229 1230 1231 1232
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1233
/*
1234
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1235
 * Assumes all pages on list are in same zone, and of same order.
1236
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1244 1245
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1246
{
1247
	int migratetype = 0;
1248
	int batch_free = 0;
1249
	int prefetch_nr = 0;
1250
	bool isolated_pageblocks;
1251 1252
	struct page *page, *tmp;
	LIST_HEAD(head);
1253

1254
	while (count) {
1255 1256 1257
		struct list_head *list;

		/*
1258 1259 1260 1261 1262
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1263 1264
		 */
		do {
1265
			batch_free++;
1266 1267 1268 1269
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1270

1271 1272
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1273
			batch_free = count;
1274

1275
		do {
1276
			page = list_last_entry(list, struct page, lru);
1277
			/* must delete to avoid corrupting pcp list */
1278
			list_del(&page->lru);
1279
			pcp->count--;
1280

1281 1282 1283
			if (bulkfree_pcp_prepare(page))
				continue;

1284
			list_add_tail(&page->lru, &head);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1297
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1298
	}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1315
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1316 1317
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1318
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1319 1320
}

1321 1322
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1323
				unsigned int order,
1324
				int migratetype)
L
Linus Torvalds 已提交
1325
{
1326
	spin_lock(&zone->lock);
1327 1328 1329 1330
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1331
	__free_one_page(page, pfn, zone, order, migratetype, true);
1332
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1333 1334
}

1335
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1336
				unsigned long zone, int nid)
1337
{
1338
	mm_zero_struct_page(page);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1352
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1353
static void __meminit init_reserved_page(unsigned long pfn)
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1370
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1371 1372 1373 1374 1375 1376 1377
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1378 1379 1380 1381 1382 1383
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1384
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1385 1386 1387 1388
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1389 1390 1391 1392 1393
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1394 1395 1396 1397

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1398 1399 1400
			SetPageReserved(page);
		}
	}
1401 1402
}

1403 1404
static void __free_pages_ok(struct page *page, unsigned int order)
{
1405
	unsigned long flags;
M
Minchan Kim 已提交
1406
	int migratetype;
1407
	unsigned long pfn = page_to_pfn(page);
1408

1409
	if (!free_pages_prepare(page, order, true))
1410 1411
		return;

1412
	migratetype = get_pfnblock_migratetype(page, pfn);
1413 1414
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1415
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1416
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1417 1418
}

1419
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1420
{
1421
	unsigned int nr_pages = 1 << order;
1422
	struct page *p = page;
1423
	unsigned int loop;
1424

1425 1426 1427
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1428 1429
		__ClearPageReserved(p);
		set_page_count(p, 0);
1430
	}
1431 1432
	__ClearPageReserved(p);
	set_page_count(p, 0);
1433

1434
	page_zone(page)->managed_pages += nr_pages;
1435 1436
	set_page_refcounted(page);
	__free_pages(page, order);
1437 1438
}

1439 1440
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1441

1442 1443 1444 1445
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1446
	static DEFINE_SPINLOCK(early_pfn_lock);
1447 1448
	int nid;

1449
	spin_lock(&early_pfn_lock);
1450
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1451
	if (nid < 0)
1452
		nid = first_online_node;
1453 1454 1455
	spin_unlock(&early_pfn_lock);

	return nid;
1456 1457 1458 1459
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1460 1461
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1462 1463 1464
{
	int nid;

1465
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1479
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1480 1481 1482 1483
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1484
	return __free_pages_boot_core(page, order);
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1516 1517 1518
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1558
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1559 1560
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1561
{
1562 1563
	struct page *page;
	unsigned long i;
1564

1565
	if (!nr_pages)
1566 1567
		return;

1568 1569
	page = pfn_to_page(pfn);

1570
	/* Free a large naturally-aligned chunk if possible */
1571 1572
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1573
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1574
		__free_pages_boot_core(page, pageblock_order);
1575 1576 1577
		return;
	}

1578 1579 1580
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1581
		__free_pages_boot_core(page, 0);
1582
	}
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1594

1595
/*
1596 1597 1598 1599 1600 1601 1602 1603
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1604
 */
1605
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1606
{
1607 1608 1609 1610 1611 1612
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1613

1614 1615 1616 1617
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1618
static void __init deferred_free_pages(unsigned long pfn,
1619 1620 1621 1622
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1623

1624
	for (; pfn < end_pfn; pfn++) {
1625
		if (!deferred_pfn_valid(pfn)) {
1626 1627 1628 1629 1630
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1631
			touch_nmi_watchdog();
1632 1633 1634 1635 1636 1637
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1638 1639
}

1640 1641 1642 1643 1644
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1645
static unsigned long  __init deferred_init_pages(struct zone *zone,
1646 1647
						 unsigned long pfn,
						 unsigned long end_pfn)
1648 1649
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1650
	int nid = zone_to_nid(zone);
1651
	unsigned long nr_pages = 0;
1652
	int zid = zone_idx(zone);
1653 1654
	struct page *page = NULL;

1655
	for (; pfn < end_pfn; pfn++) {
1656
		if (!deferred_pfn_valid(pfn)) {
1657
			page = NULL;
1658
			continue;
1659
		} else if (!page || !(pfn & nr_pgmask)) {
1660
			page = pfn_to_page(pfn);
1661
			touch_nmi_watchdog();
1662 1663
		} else {
			page++;
1664
		}
1665
		__init_single_page(page, pfn, zid, nid);
1666
		nr_pages++;
1667
	}
1668
	return (nr_pages);
1669 1670
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1755 1756 1757 1758 1759
/*
 * Release the pending interrupts for every TICK_PAGE_COUNT pages.
 */
#define TICK_PAGE_COUNT	(32 * 1024)

1760
/* Initialise remaining memory on a node */
1761
static int __init deferred_init_memmap(void *data)
1762
{
1763
	pg_data_t *pgdat = data;
1764
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1765
	unsigned long spfn = 0, epfn = 0, nr_pages = 0, prev_nr_pages = 0;
1766
	unsigned long first_init_pfn, flags;
1767 1768
	unsigned long start = jiffies;
	struct zone *zone;
1769
	int zid;
1770
	u64 i;
1771

1772 1773 1774 1775
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

1776
again:
1777 1778
	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1779
	if (first_init_pfn == ULONG_MAX) {
1780
		pgdat_resize_unlock(pgdat, &flags);
1781
		pgdat_init_report_one_done();
1782 1783 1784
		return 0;
	}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1795 1796 1797 1798 1799

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1800

1801
	/*
1802 1803 1804
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1805
	 */
1806
	while (spfn < epfn) {
1807
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		/*
		 * Release the interrupts for every TICK_PAGE_COUNT pages
		 * (128MB) to give tick timer the chance to update the
		 * system jiffies.
		 */
		if ((nr_pages - prev_nr_pages) > TICK_PAGE_COUNT) {
			prev_nr_pages = nr_pages;
			pgdat->first_deferred_pfn = spfn;
			pgdat_resize_unlock(pgdat, &flags);
			goto again;
		}
	}

1821
zone_empty:
1822
	pgdat->first_deferred_pfn = ULONG_MAX;
1823
	pgdat_resize_unlock(pgdat, &flags);
1824 1825 1826 1827

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1828 1829
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1830 1831

	pgdat_init_report_one_done();
1832 1833
	return 0;
}
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1854
	pg_data_t *pgdat = zone->zone_pgdat;
1855
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1856 1857
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1886 1887 1888 1889
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1890
		pgdat_resize_unlock(pgdat, &flags);
1891 1892
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1893 1894
	}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1905

1906 1907 1908
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1909

1910
		/* If our quota has been met we can stop here */
1911 1912 1913 1914
		if (nr_pages >= nr_pages_needed)
			break;
	}

1915
	pgdat->first_deferred_pfn = spfn;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1933
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1934 1935 1936

void __init page_alloc_init_late(void)
{
1937 1938 1939
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940 1941
	int nid;

1942 1943
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1944 1945 1946 1947 1948
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1949
	wait_for_completion(&pgdat_init_all_done_comp);
1950

1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

1959 1960 1961 1962 1963 1964
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1965 1966
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1967
#endif
P
Pavel Tatashin 已提交
1968 1969 1970 1971
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1972 1973 1974

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1975 1976
}

1977
#ifdef CONFIG_CMA
1978
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1979 1980 1981 1982 1983 1984 1985 1986
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1987
	} while (++p, --i);
1988 1989

	set_pageblock_migratetype(page, MIGRATE_CMA);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2004
	adjust_managed_page_count(page, pageblock_nr_pages);
2005 2006
}
#endif
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2020
 * -- nyc
L
Linus Torvalds 已提交
2021
 */
N
Nick Piggin 已提交
2022
static inline void expand(struct zone *zone, struct page *page,
2023
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2024 2025 2026 2027 2028 2029
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2030
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2031

2032 2033 2034 2035 2036 2037 2038
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2039
			continue;
2040

2041
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2042 2043 2044 2045
		set_page_order(&page[size], high);
	}
}

2046
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2047
{
2048 2049
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2050

2051
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2052 2053 2054
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2055
	if (unlikely(page_ref_count(page) != 0))
2056
		bad_reason = "nonzero _count";
2057 2058 2059
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2060 2061 2062
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2063
	}
2064 2065 2066 2067
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2068 2069 2070 2071
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2086 2087
}

2088
static inline bool free_pages_prezeroed(void)
2089 2090
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2091
		page_poisoning_enabled();
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2128 2129 2130 2131 2132 2133 2134 2135 2136
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2137
	kernel_poison_pages(page, 1 << order, 1);
2138 2139 2140
	set_page_owner(page, order, gfp_flags);
}

2141
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2142
							unsigned int alloc_flags)
2143 2144
{
	int i;
2145

2146
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2147

2148
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2149 2150
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2151 2152 2153 2154

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2155
	/*
2156
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2157 2158 2159 2160
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2161 2162 2163 2164
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2165 2166
}

2167 2168 2169 2170
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2171
static __always_inline
2172
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2173 2174 2175
						int migratetype)
{
	unsigned int current_order;
2176
	struct free_area *area;
2177 2178 2179 2180 2181
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2182
		page = get_page_from_free_area(area, migratetype);
2183 2184
		if (!page)
			continue;
2185 2186
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2187
		set_pcppage_migratetype(page, migratetype);
2188 2189 2190 2191 2192 2193 2194
		return page;
	}

	return NULL;
}


2195 2196 2197 2198
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2199
static int fallbacks[MIGRATE_TYPES][4] = {
2200 2201 2202
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2203
#ifdef CONFIG_CMA
2204
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2205
#endif
2206
#ifdef CONFIG_MEMORY_ISOLATION
2207
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2208
#endif
2209 2210
};

2211
#ifdef CONFIG_CMA
2212
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2213 2214 2215 2216 2217 2218 2219 2220 2221
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2222 2223
/*
 * Move the free pages in a range to the free lists of the requested type.
2224
 * Note that start_page and end_pages are not aligned on a pageblock
2225 2226
 * boundary. If alignment is required, use move_freepages_block()
 */
2227
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2228
			  struct page *start_page, struct page *end_page,
2229
			  int migratetype, int *num_movable)
2230 2231
{
	struct page *page;
2232
	unsigned int order;
2233
	int pages_moved = 0;
2234 2235 2236 2237 2238 2239 2240

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2241
	 * grouping pages by mobility
2242
	 */
2243 2244 2245
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2246 2247
#endif

2248 2249 2250
	if (num_movable)
		*num_movable = 0;

2251 2252 2253 2254 2255 2256
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2257 2258 2259
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2260
		if (!PageBuddy(page)) {
2261 2262 2263 2264 2265 2266 2267 2268 2269
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2270 2271 2272 2273 2274
			page++;
			continue;
		}

		order = page_order(page);
2275
		move_to_free_list(page, zone, order, migratetype);
2276
		page += 1 << order;
2277
		pages_moved += 1 << order;
2278 2279
	}

2280
	return pages_moved;
2281 2282
}

2283
int move_freepages_block(struct zone *zone, struct page *page,
2284
				int migratetype, int *num_movable)
2285 2286 2287 2288 2289
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2290
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2291
	start_page = pfn_to_page(start_pfn);
2292 2293
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2294 2295

	/* Do not cross zone boundaries */
2296
	if (!zone_spans_pfn(zone, start_pfn))
2297
		start_page = page;
2298
	if (!zone_spans_pfn(zone, end_pfn))
2299 2300
		return 0;

2301 2302
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2303 2304
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2316
/*
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2327
 */
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2349 2350 2351 2352 2353 2354
static inline void boost_watermark(struct zone *zone)
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
		return;
2355 2356 2357 2358 2359 2360 2361 2362
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone->managed_pages)
		return;
2363 2364 2365

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
		return;

2378 2379 2380 2381 2382 2383
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
}

2384 2385 2386
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2387 2388 2389 2390
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2391 2392
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2393
		unsigned int alloc_flags, int start_type, bool whole_block)
2394
{
2395
	unsigned int current_order = page_order(page);
2396 2397 2398 2399
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2400

2401 2402 2403 2404
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2405
	if (is_migrate_highatomic(old_block_type))
2406 2407
		goto single_page;

2408 2409 2410
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2411
		goto single_page;
2412 2413
	}

2414 2415 2416 2417 2418 2419 2420
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
	boost_watermark(zone);
	if (alloc_flags & ALLOC_KSWAPD)
2421
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2422

2423 2424 2425 2426
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2451
	/* moving whole block can fail due to zone boundary conditions */
2452
	if (!free_pages)
2453
		goto single_page;
2454

2455 2456 2457 2458 2459
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2460 2461
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2462 2463 2464 2465

	return;

single_page:
2466
	move_to_free_list(page, zone, current_order, start_type);
2467 2468
}

2469 2470 2471 2472 2473 2474 2475 2476
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2487
		if (fallback_mt == MIGRATE_TYPES)
2488 2489
			break;

2490
		if (free_area_empty(area, fallback_mt))
2491
			continue;
2492

2493 2494 2495
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2496 2497 2498 2499 2500
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2501
	}
2502 2503

	return -1;
2504 2505
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2532 2533
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2534 2535
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2536
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2548 2549 2550
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2551
 */
2552 2553
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2554 2555 2556 2557 2558 2559 2560
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2561
	bool ret;
2562 2563 2564

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2565 2566 2567 2568 2569 2570
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2571 2572 2573 2574 2575 2576
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2577
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2578
			if (!page)
2579 2580 2581
				continue;

			/*
2582 2583 2584 2585 2586
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2587
			 */
2588
			if (is_migrate_highatomic_page(page)) {
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2611 2612
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2613 2614 2615 2616
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2617 2618 2619
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2620 2621

	return false;
2622 2623
}

2624 2625 2626 2627 2628
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2629 2630 2631 2632
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2633
 */
2634
static __always_inline bool
2635 2636
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2637
{
2638
	struct free_area *area;
2639
	int current_order;
2640
	int min_order = order;
2641
	struct page *page;
2642 2643
	int fallback_mt;
	bool can_steal;
2644

2645 2646 2647 2648 2649 2650 2651 2652
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2653 2654 2655 2656 2657
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2658
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2659
				--current_order) {
2660 2661
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2662
				start_migratetype, false, &can_steal);
2663 2664
		if (fallback_mt == -1)
			continue;
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2677

2678 2679
		goto do_steal;
	}
2680

2681
	return false;
2682

2683 2684 2685 2686 2687 2688 2689 2690
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2691 2692
	}

2693 2694 2695 2696 2697 2698 2699
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2700
	page = get_page_from_free_area(area, fallback_mt);
2701

2702 2703
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2704 2705 2706 2707 2708 2709

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2710 2711
}

2712
/*
L
Linus Torvalds 已提交
2713 2714 2715
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2716
static __always_inline struct page *
2717 2718
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2719 2720 2721
{
	struct page *page;

2722
retry:
2723
	page = __rmqueue_smallest(zone, order, migratetype);
2724
	if (unlikely(!page)) {
2725 2726 2727
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2728 2729
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2730
			goto retry;
2731 2732
	}

2733
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2734
	return page;
L
Linus Torvalds 已提交
2735 2736
}

2737
/*
L
Linus Torvalds 已提交
2738 2739 2740 2741
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2742
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2743
			unsigned long count, struct list_head *list,
2744
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2745
{
2746
	int i, alloced = 0;
2747

2748
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2749
	for (i = 0; i < count; ++i) {
2750 2751
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2752
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2753
			break;
2754

2755 2756 2757
		if (unlikely(check_pcp_refill(page)))
			continue;

2758
		/*
2759 2760 2761 2762 2763 2764 2765 2766
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2767
		 */
2768
		list_add_tail(&page->lru, list);
2769
		alloced++;
2770
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2771 2772
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2773
	}
2774 2775 2776 2777 2778 2779 2780

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2781
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2782
	spin_unlock(&zone->lock);
2783
	return alloced;
L
Linus Torvalds 已提交
2784 2785
}

2786
#ifdef CONFIG_NUMA
2787
/*
2788 2789 2790 2791
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2792 2793
 * Note that this function must be called with the thread pinned to
 * a single processor.
2794
 */
2795
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2796 2797
{
	unsigned long flags;
2798
	int to_drain, batch;
2799

2800
	local_irq_save(flags);
2801
	batch = READ_ONCE(pcp->batch);
2802
	to_drain = min(pcp->count, batch);
2803
	if (to_drain > 0)
2804
		free_pcppages_bulk(zone, to_drain, pcp);
2805
	local_irq_restore(flags);
2806 2807 2808
}
#endif

2809
/*
2810
 * Drain pcplists of the indicated processor and zone.
2811 2812 2813 2814 2815
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2816
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2817
{
N
Nick Piggin 已提交
2818
	unsigned long flags;
2819 2820
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2821

2822 2823
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2824

2825
	pcp = &pset->pcp;
2826
	if (pcp->count)
2827 2828 2829
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2844 2845 2846
	}
}

2847 2848
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2849 2850 2851
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2852
 */
2853
void drain_local_pages(struct zone *zone)
2854
{
2855 2856 2857 2858 2859 2860
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2861 2862
}

2863 2864
static void drain_local_pages_wq(struct work_struct *work)
{
2865 2866 2867 2868 2869 2870 2871 2872
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2873
	drain_local_pages(NULL);
2874
	preempt_enable();
2875 2876
}

2877
/*
2878 2879
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2880 2881
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2882
 * Note that this can be extremely slow as the draining happens in a workqueue.
2883
 */
2884
void drain_all_pages(struct zone *zone)
2885
{
2886 2887 2888 2889 2890 2891 2892 2893
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2894 2895 2896 2897 2898 2899 2900
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2911

2912 2913 2914 2915 2916 2917 2918
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2919 2920
		struct per_cpu_pageset *pcp;
		struct zone *z;
2921
		bool has_pcps = false;
2922 2923

		if (zone) {
2924
			pcp = per_cpu_ptr(zone->pageset, cpu);
2925
			if (pcp->pcp.count)
2926
				has_pcps = true;
2927 2928 2929 2930 2931 2932 2933
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2934 2935
			}
		}
2936

2937 2938 2939 2940 2941
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2942

2943 2944 2945
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2946
		queue_work_on(cpu, mm_percpu_wq, work);
2947
	}
2948 2949 2950 2951
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2952 2953
}

2954
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2955

2956 2957 2958 2959 2960
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2961 2962
void mark_free_pages(struct zone *zone)
{
2963
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2964
	unsigned long flags;
2965
	unsigned int order, t;
2966
	struct page *page;
L
Linus Torvalds 已提交
2967

2968
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2969 2970 2971
		return;

	spin_lock_irqsave(&zone->lock, flags);
2972

2973
	max_zone_pfn = zone_end_pfn(zone);
2974 2975
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2976
			page = pfn_to_page(pfn);
2977

2978 2979 2980 2981 2982
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2983 2984 2985
			if (page_zone(page) != zone)
				continue;

2986 2987
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2988
		}
L
Linus Torvalds 已提交
2989

2990
	for_each_migratetype_order(order, t) {
2991 2992
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2993
			unsigned long i;
L
Linus Torvalds 已提交
2994

2995
			pfn = page_to_pfn(page);
2996 2997 2998 2999 3000
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3001
				swsusp_set_page_free(pfn_to_page(pfn + i));
3002
			}
3003
		}
3004
	}
L
Linus Torvalds 已提交
3005 3006
	spin_unlock_irqrestore(&zone->lock, flags);
}
3007
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3008

3009
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
3010
{
3011
	int migratetype;
L
Linus Torvalds 已提交
3012

3013
	if (!free_pcp_prepare(page))
3014
		return false;
3015

3016
	migratetype = get_pfnblock_migratetype(page, pfn);
3017
	set_pcppage_migratetype(page, migratetype);
3018 3019 3020
	return true;
}

3021
static void free_unref_page_commit(struct page *page, unsigned long pfn)
3022 3023 3024 3025 3026 3027
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
3028
	__count_vm_event(PGFREE);
3029

3030 3031 3032
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
3033
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3034 3035 3036 3037
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
3038
		if (unlikely(is_migrate_isolate(migratetype))) {
3039
			free_one_page(zone, page, pfn, 0, migratetype);
3040
			return;
3041 3042 3043 3044
		}
		migratetype = MIGRATE_MOVABLE;
	}

3045
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3046
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
3047
	pcp->count++;
N
Nick Piggin 已提交
3048
	if (pcp->count >= pcp->high) {
3049
		unsigned long batch = READ_ONCE(pcp->batch);
3050
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
3051
	}
3052
}
3053

3054 3055 3056
/*
 * Free a 0-order page
 */
3057
void free_unref_page(struct page *page)
3058 3059 3060 3061
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3062
	if (!free_unref_page_prepare(page, pfn))
3063 3064 3065
		return;

	local_irq_save(flags);
3066
	free_unref_page_commit(page, pfn);
3067
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3068 3069
}

3070 3071 3072
/*
 * Free a list of 0-order pages
 */
3073
void free_unref_page_list(struct list_head *list)
3074 3075
{
	struct page *page, *next;
3076
	unsigned long flags, pfn;
3077
	int batch_count = 0;
3078 3079 3080 3081

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3082
		if (!free_unref_page_prepare(page, pfn))
3083 3084 3085
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3086

3087
	local_irq_save(flags);
3088
	list_for_each_entry_safe(page, next, list, lru) {
3089 3090 3091
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3092 3093
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3104
	}
3105
	local_irq_restore(flags);
3106 3107
}

N
Nick Piggin 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3120 3121
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3122

3123
	for (i = 1; i < (1 << order); i++)
3124
		set_page_refcounted(page + i);
3125
	split_page_owner(page, order);
N
Nick Piggin 已提交
3126
}
K
K. Y. Srinivasan 已提交
3127
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3128

3129
int __isolate_free_page(struct page *page, unsigned int order)
3130 3131 3132
{
	unsigned long watermark;
	struct zone *zone;
3133
	int mt;
3134 3135 3136 3137

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3138
	mt = get_pageblock_migratetype(page);
3139

3140
	if (!is_migrate_isolate(mt)) {
3141 3142 3143 3144 3145 3146
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3147
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3148
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3149 3150
			return 0;

3151
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3152
	}
3153 3154

	/* Remove page from free list */
3155

3156
	del_page_from_free_list(page, zone, order);
3157

3158 3159 3160 3161
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3162 3163
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3164 3165
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3166
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3167
			    && !is_migrate_highatomic(mt))
3168 3169 3170
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3171 3172
	}

3173

3174
	return 1UL << order;
3175 3176
}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3193
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3194 3195
}

3196 3197 3198 3199 3200
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3201
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3202 3203
{
#ifdef CONFIG_NUMA
3204
	enum numa_stat_item local_stat = NUMA_LOCAL;
3205

3206 3207 3208 3209
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3210
	if (zone_to_nid(z) != numa_node_id())
3211 3212
		local_stat = NUMA_OTHER;

3213
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3214
		__inc_numa_state(z, NUMA_HIT);
3215
	else {
3216 3217
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3218
	}
3219
	__inc_numa_state(z, local_stat);
3220 3221 3222
#endif
}

3223 3224
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3225
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3226
			struct per_cpu_pages *pcp,
3227 3228 3229 3230 3231 3232 3233 3234
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3235
					migratetype, alloc_flags);
3236 3237 3238 3239
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3240
		page = list_first_entry(list, struct page, lru);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3251 3252
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3253 3254 3255 3256
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3257
	unsigned long flags;
3258

3259
	local_irq_save(flags);
3260 3261
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3262
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3263 3264 3265 3266
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3267
	local_irq_restore(flags);
3268 3269 3270
	return page;
}

L
Linus Torvalds 已提交
3271
/*
3272
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3273
 */
3274
static inline
3275
struct page *rmqueue(struct zone *preferred_zone,
3276
			struct zone *zone, unsigned int order,
3277 3278
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3279 3280
{
	unsigned long flags;
3281
	struct page *page;
L
Linus Torvalds 已提交
3282

3283
	if (likely(order == 0)) {
3284
		page = rmqueue_pcplist(preferred_zone, zone, order,
3285
				gfp_flags, migratetype, alloc_flags);
3286 3287
		goto out;
	}
3288

3289 3290 3291 3292 3293 3294
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3295

3296 3297 3298 3299 3300 3301 3302
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3303
		if (!page)
3304
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3305 3306 3307 3308 3309 3310
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3311

3312
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3313
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3314
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3315

3316
out:
3317 3318 3319 3320 3321 3322
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3323
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3324
	return page;
N
Nick Piggin 已提交
3325 3326 3327 3328

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3329 3330
}

3331 3332
#ifdef CONFIG_FAIL_PAGE_ALLOC

3333
static struct {
3334 3335
	struct fault_attr attr;

3336
	bool ignore_gfp_highmem;
3337
	bool ignore_gfp_reclaim;
3338
	u32 min_order;
3339 3340
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3341
	.ignore_gfp_reclaim = true,
3342
	.ignore_gfp_highmem = true,
3343
	.min_order = 1,
3344 3345 3346 3347 3348 3349 3350 3351
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3352
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3353
{
3354
	if (order < fail_page_alloc.min_order)
3355
		return false;
3356
	if (gfp_mask & __GFP_NOFAIL)
3357
		return false;
3358
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3359
		return false;
3360 3361
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3362
		return false;
3363 3364 3365 3366 3367 3368 3369 3370

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3371
	umode_t mode = S_IFREG | 0600;
3372 3373
	struct dentry *dir;

3374 3375 3376 3377
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3378

3379
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3380
				&fail_page_alloc.ignore_gfp_reclaim))
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3391
	debugfs_remove_recursive(dir);
3392

3393
	return -ENOMEM;
3394 3395 3396 3397 3398 3399 3400 3401
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3402
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3403
{
3404
	return false;
3405 3406 3407 3408
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3409
/*
3410 3411 3412 3413
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3414
 */
3415 3416 3417
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3418
{
3419
	long min = mark;
L
Linus Torvalds 已提交
3420
	int o;
3421
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3422

3423 3424 3425 3426 3427 3428 3429 3430
	/* apply negative memory.wmark_min_adj */
	if ((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) {
		int min_adj = memcg_get_wmark_min_adj(current);

		if (min_adj < 0)
			min -= mark * (-min_adj) / 100;
	}

3431
	/* free_pages may go negative - that's OK */
3432
	free_pages -= (1 << order) - 1;
3433

R
Rohit Seth 已提交
3434
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3435
		min -= min / 2;
3436 3437 3438 3439 3440 3441

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3442
	if (likely(!alloc_harder)) {
3443
		free_pages -= z->nr_reserved_highatomic;
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3457 3458 3459 3460 3461 3462
	/*
	 * Only happens due to memory.wmark_min_adj.
	 * Guarantee safe min after memory.wmark_min_adj?
	 */
	if (min < mark / 4)
		min = mark / 4;
3463

3464 3465 3466 3467 3468 3469
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3470 3471 3472 3473 3474 3475
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3476
		return false;
L
Linus Torvalds 已提交
3477

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3491
			if (!free_area_empty(area, mt))
3492 3493 3494 3495
				return true;
		}

#ifdef CONFIG_CMA
3496
		if ((alloc_flags & ALLOC_CMA) &&
3497
		    !free_area_empty(area, MIGRATE_CMA)) {
3498
			return true;
3499
		}
3500
#endif
3501 3502 3503
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3504
	}
3505
	return false;
3506 3507
}

3508
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3509
		      int classzone_idx, unsigned int alloc_flags)
3510 3511 3512 3513 3514
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3515 3516 3517 3518
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3519 3520 3521 3522 3523 3524 3525
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3526 3527 3528 3529 3530 3531 3532 3533

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3534
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3535 3536 3537 3538 3539 3540
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3541
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3542
			unsigned long mark, int classzone_idx)
3543 3544 3545 3546 3547 3548
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3549
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3550
								free_pages);
L
Linus Torvalds 已提交
3551 3552
}

3553
#ifdef CONFIG_NUMA
3554 3555
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3556
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3557
				RECLAIM_DISTANCE;
3558
}
3559
#else	/* CONFIG_NUMA */
3560 3561 3562 3563
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3564 3565
#endif	/* CONFIG_NUMA */

3566 3567 3568 3569 3570 3571 3572 3573 3574
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
3575
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3576
{
3577 3578 3579 3580 3581 3582
	unsigned int alloc_flags = 0;

	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

#ifdef CONFIG_ZONE_DMA32
3583 3584 3585
	if (!zone)
		return alloc_flags;

3586
	if (zone_idx(zone) != ZONE_NORMAL)
3587
		return alloc_flags;
3588 3589 3590 3591 3592 3593 3594 3595

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
3596
		return alloc_flags;
3597

3598
	alloc_flags |= ALLOC_NOFRAGMENT;
3599 3600
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
3601 3602
}

R
Rohit Seth 已提交
3603
/*
3604
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3605 3606 3607
 * a page.
 */
static struct page *
3608 3609
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3610
{
3611
	struct zoneref *z;
3612
	struct zone *zone;
3613
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3614
	bool no_fallback;
3615

3616
retry:
R
Rohit Seth 已提交
3617
	/*
3618
	 * Scan zonelist, looking for a zone with enough free.
3619
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3620
	 */
3621 3622
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3623
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3624
								ac->nodemask) {
3625
		struct page *page;
3626 3627
		unsigned long mark;

3628 3629
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3630
			!__cpuset_zone_allowed(zone, gfp_mask))
3631
				continue;
3632 3633
		/*
		 * When allocating a page cache page for writing, we
3634 3635
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3636
		 * proportional share of globally allowed dirty pages.
3637
		 * The dirty limits take into account the node's
3638 3639 3640 3641 3642
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3643
		 * exceed the per-node dirty limit in the slowpath
3644
		 * (spread_dirty_pages unset) before going into reclaim,
3645
		 * which is important when on a NUMA setup the allowed
3646
		 * nodes are together not big enough to reach the
3647
		 * global limit.  The proper fix for these situations
3648
		 * will require awareness of nodes in the
3649 3650
		 * dirty-throttling and the flusher threads.
		 */
3651 3652 3653 3654 3655 3656 3657 3658 3659
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3660

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3677
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3678
		if (!zone_watermark_fast(zone, order, mark,
3679
				       ac_classzone_idx(ac), alloc_flags)) {
3680 3681
			int ret;

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3692 3693 3694 3695 3696
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3697
			if (node_reclaim_mode == 0 ||
3698
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3699 3700
				continue;

3701
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3702
			switch (ret) {
3703
			case NODE_RECLAIM_NOSCAN:
3704
				/* did not scan */
3705
				continue;
3706
			case NODE_RECLAIM_FULL:
3707
				/* scanned but unreclaimable */
3708
				continue;
3709 3710
			default:
				/* did we reclaim enough */
3711
				if (zone_watermark_ok(zone, order, mark,
3712
						ac_classzone_idx(ac), alloc_flags))
3713 3714 3715
					goto try_this_zone;

				continue;
3716
			}
R
Rohit Seth 已提交
3717 3718
		}

3719
try_this_zone:
3720
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3721
				gfp_mask, alloc_flags, ac->migratetype);
3722
		if (page) {
3723
			prep_new_page(page, order, gfp_mask, alloc_flags);
3724 3725 3726 3727 3728 3729 3730 3731

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3732
			return page;
3733 3734 3735 3736 3737 3738 3739 3740
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3741
		}
3742
	}
3743

3744 3745 3746 3747 3748 3749 3750 3751 3752
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3753
	return NULL;
M
Martin Hicks 已提交
3754 3755
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3770
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3771 3772
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3773
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3774

3775
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3776 3777 3778 3779 3780 3781 3782 3783
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3784
		if (tsk_is_oom_victim(current) ||
3785 3786
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3787
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3788 3789
		filter &= ~SHOW_MEM_FILTER_NODES;

3790
	show_mem(filter, nodemask);
3791 3792
}

3793
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3794 3795 3796 3797 3798 3799
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3800
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3801 3802
		return;

3803 3804 3805
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3806 3807 3808
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3809
	va_end(args);
J
Joe Perches 已提交
3810

3811
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3812

3813
	dump_stack();
3814
	warn_alloc_show_mem(gfp_mask, nodemask);
3815 3816
}

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3837 3838
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3839
	const struct alloc_context *ac, unsigned long *did_some_progress)
3840
{
3841 3842 3843
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3844
		.memcg = NULL,
3845 3846 3847
		.gfp_mask = gfp_mask,
		.order = order,
	};
3848 3849
	struct page *page;

3850 3851 3852
	*did_some_progress = 0;

	/*
3853 3854
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3855
	 */
3856
	if (!mutex_trylock(&oom_lock)) {
3857
		*did_some_progress = 1;
3858
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3859 3860
		return NULL;
	}
3861

3862 3863 3864
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3865 3866 3867
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3868
	 */
3869 3870 3871
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3872
	if (page)
3873 3874
		goto out;

3875 3876 3877 3878 3879 3880
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3881 3882 3883 3884 3885 3886 3887 3888
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3907

3908
	/* Exhausted what can be done so it's blame time */
3909
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3910
		*did_some_progress = 1;
3911

3912 3913 3914 3915 3916 3917
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3918 3919
					ALLOC_NO_WATERMARKS, ac);
	}
3920
out:
3921
	mutex_unlock(&oom_lock);
3922 3923 3924
	return page;
}

3925 3926 3927 3928 3929 3930
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3931 3932 3933 3934
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3935
		unsigned int alloc_flags, const struct alloc_context *ac,
3936
		enum compact_priority prio, enum compact_result *compact_result)
3937
{
3938
	struct page *page = NULL;
3939
	unsigned long pflags;
3940
	unsigned int noreclaim_flag;
3941
	u64 start;
3942 3943

	if (!order)
3944 3945
		return NULL;

3946
	psi_memstall_enter(&pflags);
3947
	memcg_lat_stat_start(&start);
3948
	noreclaim_flag = memalloc_noreclaim_save();
3949

3950
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3951
									prio, &page);
3952

3953
	memalloc_noreclaim_restore(noreclaim_flag);
3954
	memcg_lat_stat_end(MEM_LAT_DIRECT_COMPACT, start);
3955
	psi_memstall_leave(&pflags);
3956

3957 3958 3959 3960 3961
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3962

3963 3964 3965 3966 3967 3968 3969
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3970

3971 3972
	if (page) {
		struct zone *zone = page_zone(page);
3973

3974 3975 3976 3977 3978
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3979

3980 3981 3982 3983 3984
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3985

3986
	cond_resched();
3987 3988 3989

	return NULL;
}
3990

3991 3992 3993 3994
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3995
		     int *compaction_retries)
3996 3997
{
	int max_retries = MAX_COMPACT_RETRIES;
3998
	int min_priority;
3999 4000 4001
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4002 4003 4004 4005

	if (!order)
		return false;

4006 4007 4008
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4009 4010 4011 4012 4013
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4014 4015
	if (compaction_failed(compact_result))
		goto check_priority;
4016 4017 4018 4019 4020 4021 4022

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
4023 4024 4025 4026
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
4027 4028

	/*
4029
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4030 4031 4032 4033 4034 4035 4036 4037
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4038 4039 4040 4041
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4042

4043 4044 4045 4046 4047
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4048 4049
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4050

4051
	if (*compact_priority > min_priority) {
4052 4053
		(*compact_priority)--;
		*compaction_retries = 0;
4054
		ret = true;
4055
	}
4056 4057 4058
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4059
}
4060 4061 4062
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4063
		unsigned int alloc_flags, const struct alloc_context *ac,
4064
		enum compact_priority prio, enum compact_result *compact_result)
4065
{
4066
	*compact_result = COMPACT_SKIPPED;
4067 4068
	return NULL;
}
4069 4070

static inline bool
4071 4072
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4073
		     enum compact_priority *compact_priority,
4074
		     int *compaction_retries)
4075
{
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
4094 4095
	return false;
}
4096
#endif /* CONFIG_COMPACTION */
4097

4098
#ifdef CONFIG_LOCKDEP
4099
static struct lockdep_map __fs_reclaim_map =
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4111
	if (current->flags & PF_MEMALLOC)
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4134 4135 4136
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4137
		__fs_reclaim_acquire();
4138 4139 4140 4141 4142 4143
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4144
		__fs_reclaim_release();
4145 4146 4147 4148
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4149 4150
/* Perform direct synchronous page reclaim */
static int
4151 4152
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4153 4154
{
	struct reclaim_state reclaim_state;
4155
	int progress;
4156
	unsigned int noreclaim_flag;
4157
	unsigned long pflags;
4158
	u64 start;
4159 4160 4161 4162 4163

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4164
	psi_memstall_enter(&pflags);
4165
	memcg_lat_stat_start(&start);
4166
	fs_reclaim_acquire(gfp_mask);
4167
	noreclaim_flag = memalloc_noreclaim_save();
4168
	reclaim_state.reclaimed_slab = 0;
4169
	current->reclaim_state = &reclaim_state;
4170

4171 4172
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4173

4174
	current->reclaim_state = NULL;
4175
	memalloc_noreclaim_restore(noreclaim_flag);
4176
	fs_reclaim_release(gfp_mask);
4177
	memcg_lat_stat_end(MEM_LAT_GLOBAL_DIRECT_RECLAIM, start);
4178
	psi_memstall_leave(&pflags);
4179 4180 4181

	cond_resched();

4182 4183 4184 4185 4186 4187
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4188
		unsigned int alloc_flags, const struct alloc_context *ac,
4189
		unsigned long *did_some_progress)
4190 4191 4192 4193
{
	struct page *page = NULL;
	bool drained = false;

4194
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4195 4196
	if (unlikely(!(*did_some_progress)))
		return NULL;
4197

4198
retry:
4199
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4200 4201 4202

	/*
	 * If an allocation failed after direct reclaim, it could be because
4203 4204
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4205 4206
	 */
	if (!page && !drained) {
4207
		unreserve_highatomic_pageblock(ac, false);
4208
		drain_all_pages(NULL);
4209 4210 4211 4212
		drained = true;
		goto retry;
	}

4213 4214 4215
	return page;
}

4216 4217
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4218 4219 4220
{
	struct zoneref *z;
	struct zone *zone;
4221
	pg_data_t *last_pgdat = NULL;
4222
	enum zone_type high_zoneidx = ac->high_zoneidx;
4223

4224 4225
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4226
		if (last_pgdat != zone->zone_pgdat)
4227
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4228 4229
		last_pgdat = zone->zone_pgdat;
	}
4230 4231
}

4232
static inline unsigned int
4233 4234
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4235
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4236

4237
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4238
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4239

4240 4241 4242 4243
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4244
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4245
	 */
4246
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4247

4248
	if (gfp_mask & __GFP_ATOMIC) {
4249
		/*
4250 4251
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4252
		 */
4253
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4254
			alloc_flags |= ALLOC_HARDER;
4255
		/*
4256
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4257
		 * comment for __cpuset_node_allowed().
4258
		 */
4259
		alloc_flags &= ~ALLOC_CPUSET;
4260
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4261 4262
		alloc_flags |= ALLOC_HARDER;

4263 4264 4265
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		alloc_flags |= ALLOC_KSWAPD;

4266 4267 4268 4269
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4270 4271 4272
	return alloc_flags;
}

4273
static bool oom_reserves_allowed(struct task_struct *tsk)
4274
{
4275 4276 4277 4278 4279 4280 4281 4282
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4283 4284
		return false;

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4296
	if (gfp_mask & __GFP_MEMALLOC)
4297
		return ALLOC_NO_WATERMARKS;
4298
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4299 4300 4301 4302 4303 4304 4305
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4306

4307 4308 4309 4310 4311 4312
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4313 4314
}

M
Michal Hocko 已提交
4315 4316 4317
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4318 4319 4320 4321
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4322 4323 4324 4325 4326 4327
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4328
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4329 4330 4331 4332
{
	struct zone *zone;
	struct zoneref *z;

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4343 4344 4345 4346
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4347 4348
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4349
		return unreserve_highatomic_pageblock(ac, true);
4350
	}
M
Michal Hocko 已提交
4351

4352 4353 4354 4355 4356
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4357 4358 4359 4360
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4361
		unsigned long reclaimable;
4362 4363
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4364

4365 4366
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4367 4368

		/*
4369 4370
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4371
		 */
4372 4373 4374 4375 4376
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4377 4378 4379 4380 4381 4382 4383
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4384
				unsigned long write_pending;
4385

4386 4387
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4388

4389
				if (2 * write_pending > reclaimable) {
4390 4391 4392 4393
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4394

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4409 4410 4411 4412 4413 4414 4415
			return true;
		}
	}

	return false;
}

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4449 4450
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4451
						struct alloc_context *ac)
4452
{
4453
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4454
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4455
	struct page *page = NULL;
4456
	unsigned int alloc_flags;
4457
	unsigned long did_some_progress;
4458
	enum compact_priority compact_priority;
4459
	enum compact_result compact_result;
4460 4461 4462
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4463
	int reserve_flags;
L
Linus Torvalds 已提交
4464

4465 4466 4467 4468 4469 4470 4471 4472
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4473 4474 4475 4476 4477
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4478 4479 4480 4481 4482 4483 4484 4485

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4497
	if (alloc_flags & ALLOC_KSWAPD)
4498
		wake_all_kswapds(order, gfp_mask, ac);
4499 4500 4501 4502 4503 4504 4505 4506 4507

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4508 4509
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4510 4511 4512 4513 4514 4515
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4516
	 */
4517 4518 4519 4520
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4521 4522
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4523
						INIT_COMPACT_PRIORITY,
4524 4525 4526 4527
						&compact_result);
		if (page)
			goto got_pg;

4528 4529 4530 4531
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4532
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4545 4546
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4547
			 * using async compaction.
4548
			 */
4549
			compact_priority = INIT_COMPACT_PRIORITY;
4550 4551
		}
	}
4552

4553
retry:
4554
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4555
	if (alloc_flags & ALLOC_KSWAPD)
4556
		wake_all_kswapds(order, gfp_mask, ac);
4557

4558 4559 4560
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4561

4562
	/*
4563 4564 4565
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4566
	 */
4567
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4568
		ac->nodemask = NULL;
4569 4570 4571 4572
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4573
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4574
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4575 4576
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4577

4578
	/* Caller is not willing to reclaim, we can't balance anything */
4579
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4580 4581
		goto nopage;

4582 4583
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4584 4585
		goto nopage;

4586 4587 4588 4589 4590 4591 4592
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4593
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4594
					compact_priority, &compact_result);
4595 4596
	if (page)
		goto got_pg;
4597

4598 4599
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4600
		goto nopage;
4601

M
Michal Hocko 已提交
4602 4603
	/*
	 * Do not retry costly high order allocations unless they are
4604
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4605
	 */
4606
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4607
		goto nopage;
M
Michal Hocko 已提交
4608 4609

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4610
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4611 4612
		goto retry;

4613 4614 4615 4616 4617 4618 4619
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4620
			should_compact_retry(ac, order, alloc_flags,
4621
				compact_result, &compact_priority,
4622
				&compaction_retries))
4623 4624
		goto retry;

4625 4626 4627

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4628 4629
		goto retry_cpuset;

4630 4631 4632 4633 4634
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4635
	/* Avoid allocations with no watermarks from looping endlessly */
4636 4637
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4638
	     (gfp_mask & __GFP_NOMEMALLOC)))
4639 4640
		goto nopage;

4641
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4642 4643
	if (did_some_progress) {
		no_progress_loops = 0;
4644
		goto retry;
M
Michal Hocko 已提交
4645
	}
4646

L
Linus Torvalds 已提交
4647
nopage:
4648 4649
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4650 4651
		goto retry_cpuset;

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4689 4690 4691 4692
		cond_resched();
		goto retry;
	}
fail:
4693
	warn_alloc(gfp_mask, ac->nodemask,
4694
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4695
got_pg:
4696 4697 4698 4699

	if (ac->migratetype == MIGRATE_MOVABLE)
		memcg_check_wmark_min_adj(current, ac);

4700
	return page;
L
Linus Torvalds 已提交
4701
}
4702

4703
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4704
		int preferred_nid, nodemask_t *nodemask,
4705 4706
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4707
{
4708
	ac->high_zoneidx = gfp_zone(gfp_mask);
4709
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4710 4711
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4712

4713
	if (cpusets_enabled()) {
4714 4715 4716
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4717 4718
		else
			*alloc_flags |= ALLOC_CPUSET;
4719 4720
	}

4721 4722
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4723

4724
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4725 4726

	if (should_fail_alloc_page(gfp_mask, order))
4727
		return false;
4728

4729 4730 4731
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4732 4733
	return true;
}
4734

4735
/* Determine whether to spread dirty pages and what the first usable zone */
4736
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4737
{
4738
	/* Dirty zone balancing only done in the fast path */
4739
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4740

4741 4742 4743 4744 4745
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4746 4747 4748 4749 4750 4751 4752 4753
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4754 4755
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4756 4757 4758
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4759
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4760 4761
	struct alloc_context ac = { };

4762 4763 4764 4765 4766 4767 4768 4769 4770
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4771
	gfp_mask &= gfp_allowed_mask;
4772
	alloc_mask = gfp_mask;
4773
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4774 4775
		return NULL;

4776
	finalise_ac(gfp_mask, &ac);
4777

4778 4779 4780 4781
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
4782
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4783

4784
	/* First allocation attempt */
4785
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4786 4787
	if (likely(page))
		goto out;
4788

4789
	/*
4790 4791 4792 4793
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4794
	 */
4795
	alloc_mask = current_gfp_context(gfp_mask);
4796
	ac.spread_dirty_pages = false;
4797

4798 4799 4800 4801
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4802
	if (unlikely(ac.nodemask != nodemask))
4803
		ac.nodemask = nodemask;
4804

4805
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4806

4807
out:
4808 4809 4810 4811
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4812 4813
	}

4814 4815
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4816
	return page;
L
Linus Torvalds 已提交
4817
}
4818
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4819 4820

/*
4821 4822 4823
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4824
 */
H
Harvey Harrison 已提交
4825
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4826
{
4827 4828
	struct page *page;

4829
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834 4835
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4836
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4837
{
4838
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4839 4840 4841
}
EXPORT_SYMBOL(get_zeroed_page);

4842
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4843
{
4844 4845 4846 4847
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4848 4849
}

4850 4851 4852 4853 4854
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4855 4856
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4857
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4858 4859
{
	if (addr != 0) {
N
Nick Piggin 已提交
4860
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4861 4862 4863 4864 4865 4866
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4878 4879
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4899
void __page_frag_cache_drain(struct page *page, unsigned int count)
4900 4901 4902
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4903 4904
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4905
}
4906
EXPORT_SYMBOL(__page_frag_cache_drain);
4907

4908 4909
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4910 4911 4912 4913 4914 4915 4916
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4917
		page = __page_frag_cache_refill(nc, gfp_mask);
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4928
		page_ref_add(page, size);
4929 4930

		/* reset page count bias and offset to start of new frag */
4931
		nc->pfmemalloc = page_is_pfmemalloc(page);
4932
		nc->pagecnt_bias = size + 1;
4933 4934 4935 4936 4937 4938 4939
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4940
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4941 4942 4943 4944 4945 4946 4947
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4948
		set_page_count(page, size + 1);
4949 4950

		/* reset page count bias and offset to start of new frag */
4951
		nc->pagecnt_bias = size + 1;
4952 4953 4954 4955 4956 4957 4958 4959
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4960
EXPORT_SYMBOL(page_frag_alloc);
4961 4962 4963 4964

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4965
void page_frag_free(void *addr)
4966 4967 4968
{
	struct page *page = virt_to_head_page(addr);

4969 4970
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4971
}
4972
EXPORT_SYMBOL(page_frag_free);
4973

4974 4975
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5009
	return make_alloc_exact(addr, order, size);
5010 5011 5012
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5013 5014 5015
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5016
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5017 5018 5019 5020 5021 5022
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
5023
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5024
{
5025
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
5026 5027 5028 5029 5030 5031
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5051 5052 5053 5054 5055 5056 5057
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5058 5059
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5060
 */
5061
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5062
{
5063
	struct zoneref *z;
5064 5065
	struct zone *zone;

5066
	/* Just pick one node, since fallback list is circular */
5067
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5068

5069
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5070

5071
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5072
		unsigned long size = zone->managed_pages;
5073
		unsigned long high = high_wmark_pages(zone);
5074 5075
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080
	}

	return sum;
}

5081 5082 5083 5084 5085
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
5086
 */
5087
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5088
{
A
Al Viro 已提交
5089
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5090
}
5091
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5092

5093 5094 5095 5096 5097
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
5098
 */
5099
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5100
{
M
Mel Gorman 已提交
5101
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5102
}
5103 5104

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5105
{
5106
	if (IS_ENABLED(CONFIG_NUMA))
5107
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5108 5109
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5120
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5121 5122

	for_each_zone(zone)
5123
		wmark_low += low_wmark_pages(zone);
5124 5125 5126 5127 5128

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5129
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
5144 5145 5146
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
5147

5148 5149 5150 5151 5152 5153 5154
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

5155 5156 5157 5158 5159 5160
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5161 5162 5163
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
5164
	val->sharedram = global_node_page_state(NR_SHMEM);
5165
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5177 5178
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5179 5180
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5181 5182
	pg_data_t *pgdat = NODE_DATA(nid);

5183 5184 5185
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
5186
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5187
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5188
#ifdef CONFIG_HIGHMEM
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5199
#else
5200 5201
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5202
#endif
L
Linus Torvalds 已提交
5203 5204 5205 5206
	val->mem_unit = PAGE_SIZE;
}
#endif

5207
/*
5208 5209
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5210
 */
5211
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5212 5213
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5214
		return false;
5215

5216 5217 5218 5219 5220 5221 5222 5223 5224
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5225 5226
}

L
Linus Torvalds 已提交
5227 5228
#define K(x) ((x) << (PAGE_SHIFT-10))

5229 5230 5231 5232 5233
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5234 5235
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5236 5237 5238
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5239
#ifdef CONFIG_MEMORY_ISOLATION
5240
		[MIGRATE_ISOLATE]	= 'I',
5241
#endif
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5253
	printk(KERN_CONT "(%s) ", tmp);
5254 5255
}

L
Linus Torvalds 已提交
5256 5257 5258 5259
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5260 5261 5262 5263
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5264
 */
5265
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5266
{
5267
	unsigned long free_pcp = 0;
5268
	int cpu;
L
Linus Torvalds 已提交
5269
	struct zone *zone;
M
Mel Gorman 已提交
5270
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5271

5272
	for_each_populated_zone(zone) {
5273
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5274
			continue;
5275

5276 5277
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5278 5279
	}

K
KOSAKI Motohiro 已提交
5280 5281
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5282 5283
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5284
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5285
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5286 5287 5288 5289 5290 5291 5292
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5293 5294 5295
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5296 5297
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5298
		global_node_page_state(NR_FILE_MAPPED),
5299
		global_node_page_state(NR_SHMEM),
5300 5301 5302
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5303
		free_pcp,
5304
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5305

M
Mel Gorman 已提交
5306
	for_each_online_pgdat(pgdat) {
5307
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5308 5309
			continue;

M
Mel Gorman 已提交
5310 5311 5312 5313 5314 5315 5316 5317
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5318
			" mapped:%lukB"
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5339
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5340 5341
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5342
			K(node_page_state(pgdat, NR_SHMEM)),
5343 5344 5345 5346 5347 5348 5349 5350
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5351 5352
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5353 5354
	}

5355
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5356 5357
		int i;

5358
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5359
			continue;
5360 5361 5362 5363 5364

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5365
		show_node(zone);
5366 5367
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5368 5369 5370 5371
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5372 5373 5374 5375 5376
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5377
			" writepending:%lukB"
L
Linus Torvalds 已提交
5378
			" present:%lukB"
5379
			" managed:%lukB"
5380
			" mlocked:%lukB"
5381
			" kernel_stack:%lukB"
5382 5383
			" pagetables:%lukB"
			" bounce:%lukB"
5384 5385
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5386
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5387 5388
			"\n",
			zone->name,
5389
			K(zone_page_state(zone, NR_FREE_PAGES)),
5390 5391 5392
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5393 5394 5395 5396 5397
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5398
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5399
			K(zone->present_pages),
5400
			K(zone->managed_pages),
5401
			K(zone_page_state(zone, NR_MLOCK)),
5402
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5403 5404
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5405 5406
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5407
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5408 5409
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5410 5411
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5412 5413
	}

5414
	for_each_populated_zone(zone) {
5415 5416
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5417
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5418

5419
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5420
			continue;
L
Linus Torvalds 已提交
5421
		show_node(zone);
5422
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5423 5424 5425

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5426 5427 5428 5429
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5430
			total += nr[order] << order;
5431 5432 5433

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5434
				if (!free_area_empty(area, type))
5435 5436
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5437 5438
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5439
		for (order = 0; order < MAX_ORDER; order++) {
5440 5441
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5442 5443 5444
			if (nr[order])
				show_migration_types(types[order]);
		}
5445
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5446 5447
	}

5448 5449
	hugetlb_show_meminfo();

5450
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5451

L
Linus Torvalds 已提交
5452 5453 5454
	show_swap_cache_info();
}

5455 5456 5457 5458 5459 5460
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5461 5462
/*
 * Builds allocation fallback zone lists.
5463 5464
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5465
 */
5466
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5467
{
5468
	struct zone *zone;
5469
	enum zone_type zone_type = MAX_NR_ZONES;
5470
	int nr_zones = 0;
5471 5472

	do {
5473
		zone_type--;
5474
		zone = pgdat->node_zones + zone_type;
5475
		if (managed_zone(zone)) {
5476
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5477
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5478
		}
5479
	} while (zone_type);
5480

5481
	return nr_zones;
L
Linus Torvalds 已提交
5482 5483 5484
}

#ifdef CONFIG_NUMA
5485 5486 5487

static int __parse_numa_zonelist_order(char *s)
{
5488 5489 5490 5491 5492 5493 5494 5495
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5496 5497 5498 5499 5500 5501 5502
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5503 5504 5505
	if (!s)
		return 0;

5506
	return __parse_numa_zonelist_order(s);
5507 5508 5509
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5510 5511
char numa_zonelist_order[] = "Node";

5512 5513 5514
/*
 * sysctl handler for numa_zonelist_order
 */
5515
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5516
		void __user *buffer, size_t *length,
5517 5518
		loff_t *ppos)
{
5519
	char *str;
5520 5521
	int ret;

5522 5523 5524 5525 5526
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5527

5528 5529
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5530
	return ret;
5531 5532 5533
}


5534
#define MAX_NODE_LOAD (nr_online_nodes)
5535 5536
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5537
/**
5538
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5551
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5552
{
5553
	int n, val;
L
Linus Torvalds 已提交
5554
	int min_val = INT_MAX;
D
David Rientjes 已提交
5555
	int best_node = NUMA_NO_NODE;
5556
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5557

5558 5559 5560 5561 5562
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5563

5564
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5565 5566 5567 5568 5569 5570 5571 5572

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5573 5574 5575
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5576
		/* Give preference to headless and unused nodes */
5577 5578
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5597 5598 5599 5600 5601 5602

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5603 5604
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5605
{
5606 5607 5608 5609 5610 5611 5612 5613 5614
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5615

5616 5617 5618 5619 5620
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5621 5622
}

5623 5624 5625 5626 5627
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5628 5629
	struct zoneref *zonerefs;
	int nr_zones;
5630

5631 5632 5633 5634 5635
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5636 5637
}

5638 5639 5640 5641 5642 5643 5644 5645 5646
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5647 5648
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5649
	nodemask_t used_mask;
5650
	int local_node, prev_node;
L
Linus Torvalds 已提交
5651 5652 5653

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5654
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5655 5656
	prev_node = local_node;
	nodes_clear(used_mask);
5657 5658

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5659 5660 5661 5662 5663 5664
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5665 5666
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5667 5668
			node_load[node] = load;

5669
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5670 5671 5672
		prev_node = node;
		load--;
	}
5673

5674
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5675
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5676 5677
}

5678 5679 5680 5681 5682 5683 5684 5685 5686
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5687
	struct zoneref *z;
5688

5689
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5690
				   gfp_zone(GFP_KERNEL),
5691
				   NULL);
5692
	return zone_to_nid(z->zone);
5693 5694
}
#endif
5695

5696 5697
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5698 5699
#else	/* CONFIG_NUMA */

5700
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5701
{
5702
	int node, local_node;
5703 5704
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5705 5706 5707

	local_node = pgdat->node_id;

5708 5709 5710
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5711

5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5723 5724
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5725
	}
5726 5727 5728
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5729 5730
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5731 5732
	}

5733 5734
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5735 5736 5737 5738
}

#endif	/* CONFIG_NUMA */

5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5756
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5757

5758
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5759
{
5760
	int nid;
5761
	int __maybe_unused cpu;
5762
	pg_data_t *self = data;
5763 5764 5765
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5766

5767 5768 5769
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5770

5771 5772 5773 5774
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5775 5776
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5777 5778 5779
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5780

5781 5782
			build_zonelists(pgdat);
		}
5783

5784 5785 5786 5787 5788 5789 5790 5791 5792
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5793
		for_each_online_cpu(cpu)
5794
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5795
#endif
5796
	}
5797 5798

	spin_unlock(&lock);
5799 5800
}

5801 5802 5803
static noinline void __init
build_all_zonelists_init(void)
{
5804 5805
	int cpu;

5806
	__build_all_zonelists(NULL);
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5824 5825 5826 5827
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5828 5829
/*
 * unless system_state == SYSTEM_BOOTING.
5830
 *
5831
 * __ref due to call of __init annotated helper build_all_zonelists_init
5832
 * [protected by SYSTEM_BOOTING].
5833
 */
5834
void __ref build_all_zonelists(pg_data_t *pgdat)
5835 5836
{
	if (system_state == SYSTEM_BOOTING) {
5837
		build_all_zonelists_init();
5838
	} else {
5839
		__build_all_zonelists(pgdat);
5840 5841
		/* cpuset refresh routine should be here */
	}
5842
	vm_total_pages = nr_free_pagecache_pages();
5843 5844 5845 5846 5847 5848 5849
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5850
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5851 5852 5853 5854
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5855
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5856 5857 5858
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5859
#ifdef CONFIG_NUMA
5860
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5861
#endif
L
Linus Torvalds 已提交
5862 5863 5864 5865 5866 5867 5868
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5869
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5870 5871
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5872
{
A
Andy Whitcroft 已提交
5873
	unsigned long end_pfn = start_pfn + size;
5874
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5875
	unsigned long pfn;
5876
	unsigned long nr_initialised = 0;
5877
	struct page *page;
5878 5879 5880
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5881

5882 5883 5884
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5885 5886 5887 5888 5889 5890 5891
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5892
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5893
		/*
5894 5895
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5896
		 */
5897 5898 5899
		if (context != MEMMAP_EARLY)
			goto not_early;

5900
		if (!early_pfn_valid(pfn))
5901 5902 5903 5904 5905
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5906 5907

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5925
			}
D
Dave Hansen 已提交
5926
		}
5927
#endif
5928

5929
not_early:
5930 5931 5932 5933 5934
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5935 5936 5937 5938 5939
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5940
		 * kernel allocations are made.
5941 5942 5943 5944 5945
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5946 5947 5948
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5949 5950 5951
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5952
			cond_resched();
5953
		}
L
Linus Torvalds 已提交
5954 5955 5956
	}
}

5957
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5958
{
5959
	unsigned int order, t;
5960 5961
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5962 5963 5964 5965 5966 5967
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5968
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5969 5970
#endif

5971
static int zone_batchsize(struct zone *zone)
5972
{
5973
#ifdef CONFIG_MMU
5974 5975 5976 5977
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5978
	 * size of the zone.
5979
	 */
5980
	batch = zone->managed_pages / 1024;
5981 5982 5983
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5984 5985 5986 5987 5988
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5989 5990 5991
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5992
	 *
5993 5994 5995 5996
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5997
	 */
5998
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5999

6000
	return batch;
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6018 6019
}

6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

6047
/* a companion to pageset_set_high() */
6048 6049
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
6050
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6051 6052
}

6053
static void pageset_init(struct per_cpu_pageset *p)
6054 6055
{
	struct per_cpu_pages *pcp;
6056
	int migratetype;
6057

6058 6059
	memset(p, 0, sizeof(*p));

6060
	pcp = &p->pcp;
6061
	pcp->count = 0;
6062 6063
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6064 6065
}

6066 6067 6068 6069 6070 6071
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6072
/*
6073
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6074 6075
 * to the value high for the pageset p.
 */
6076
static void pageset_set_high(struct per_cpu_pageset *p,
6077 6078
				unsigned long high)
{
6079 6080 6081
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6082

6083
	pageset_update(&p->pcp, high, batch);
6084 6085
}

6086 6087
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6088 6089
{
	if (percpu_pagelist_fraction)
6090
		pageset_set_high(pcp,
6091 6092 6093 6094 6095 6096
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6097 6098 6099 6100 6101 6102 6103 6104
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6105
void __meminit setup_zone_pageset(struct zone *zone)
6106 6107 6108
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6109 6110
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6111 6112
}

6113
/*
6114 6115
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6116
 */
6117
void __init setup_per_cpu_pageset(void)
6118
{
6119
	struct pglist_data *pgdat;
6120
	struct zone *zone;
6121

6122 6123
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6124 6125 6126 6127

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6128 6129
}

6130
static __meminit void zone_pcp_init(struct zone *zone)
6131
{
6132 6133 6134 6135 6136 6137
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6138

6139
	if (populated_zone(zone))
6140 6141 6142
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6143 6144
}

6145
void __meminit init_currently_empty_zone(struct zone *zone,
6146
					unsigned long zone_start_pfn,
6147
					unsigned long size)
6148 6149
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6150
	int zone_idx = zone_idx(zone) + 1;
6151

6152 6153
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6154 6155 6156

	zone->zone_start_pfn = zone_start_pfn;

6157 6158 6159 6160 6161 6162
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6163
	zone_init_free_lists(zone);
6164
	zone->initialized = 1;
6165 6166
}

T
Tejun Heo 已提交
6167
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6168
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6169

6170 6171 6172
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6173 6174
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6175
{
6176
	unsigned long start_pfn, end_pfn;
6177
	int nid;
6178

6179 6180
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6181

6182 6183
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
6184 6185 6186
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6187 6188 6189
	}

	return nid;
6190 6191 6192 6193
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6194
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6195
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6196
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6197
 *
6198 6199 6200
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6201
 */
6202
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6203
{
6204 6205
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6206

6207 6208 6209
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6210

6211
		if (start_pfn < end_pfn)
6212 6213 6214
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6215 6216 6217
	}
}

6218 6219
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6220
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6221
 *
6222 6223
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6224 6225 6226
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6227 6228
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6229

6230 6231
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6232 6233 6234 6235
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6236 6237 6238
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6239 6240
 *
 * It returns the start and end page frame of a node based on information
6241
 * provided by memblock_set_node(). If called for a node
6242
 * with no available memory, a warning is printed and the start and end
6243
 * PFNs will be 0.
6244
 */
6245
void __meminit get_pfn_range_for_nid(unsigned int nid,
6246 6247
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6248
	unsigned long this_start_pfn, this_end_pfn;
6249
	int i;
6250

6251 6252 6253
	*start_pfn = -1UL;
	*end_pfn = 0;

6254 6255 6256
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6257 6258
	}

6259
	if (*start_pfn == -1UL)
6260 6261 6262
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6263 6264 6265 6266 6267
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6268
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6286
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6287 6288 6289 6290 6291 6292 6293
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
6294
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6309 6310 6311 6312 6313 6314
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6315 6316 6317 6318 6319 6320
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6321 6322 6323 6324
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
6325
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6326
					unsigned long zone_type,
6327 6328
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6329 6330
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6331 6332
					unsigned long *ignored)
{
6333 6334
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6335
	/* When hotadd a new node from cpu_up(), the node should be empty */
6336 6337 6338
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6339
	/* Get the start and end of the zone */
6340 6341
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6342 6343
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6344
				zone_start_pfn, zone_end_pfn);
6345 6346

	/* Check that this node has pages within the zone's required range */
6347
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6348 6349 6350
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6351 6352
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6353 6354

	/* Return the spanned pages */
6355
	return *zone_end_pfn - *zone_start_pfn;
6356 6357 6358 6359
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6360
 * then all holes in the requested range will be accounted for.
6361
 */
6362
unsigned long __meminit __absent_pages_in_range(int nid,
6363 6364 6365
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6366 6367 6368
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6369

6370 6371 6372 6373
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6374
	}
6375
	return nr_absent;
6376 6377 6378 6379 6380 6381 6382
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6383
 * It returns the number of pages frames in memory holes within a range.
6384 6385 6386 6387 6388 6389 6390 6391
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6392
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6393
					unsigned long zone_type,
6394 6395
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6396 6397
					unsigned long *ignored)
{
6398 6399
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6400
	unsigned long zone_start_pfn, zone_end_pfn;
6401
	unsigned long nr_absent;
6402

6403
	/* When hotadd a new node from cpu_up(), the node should be empty */
6404 6405 6406
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6407 6408
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6409

M
Mel Gorman 已提交
6410 6411 6412
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6413 6414 6415 6416 6417 6418 6419
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6437 6438 6439 6440
		}
	}

	return nr_absent;
6441
}
6442

T
Tejun Heo 已提交
6443
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6444
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6445
					unsigned long zone_type,
6446 6447
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6448 6449
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6450 6451
					unsigned long *zones_size)
{
6452 6453 6454 6455 6456 6457 6458 6459
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6460 6461 6462
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6463
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6464
						unsigned long zone_type,
6465 6466
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6467 6468 6469 6470 6471 6472 6473
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6474

T
Tejun Heo 已提交
6475
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6476

6477
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6478 6479 6480 6481
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6482
{
6483
	unsigned long realtotalpages = 0, totalpages = 0;
6484 6485
	enum zone_type i;

6486 6487
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6488
		unsigned long zone_start_pfn, zone_end_pfn;
6489
		unsigned long size, real_size;
6490

6491 6492 6493
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6494 6495
						  &zone_start_pfn,
						  &zone_end_pfn,
6496 6497
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6498 6499
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6500 6501 6502 6503
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6504 6505 6506 6507 6508 6509 6510 6511
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6512 6513 6514 6515 6516
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6517 6518 6519
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6520 6521
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6522 6523 6524
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6525
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6526 6527 6528
{
	unsigned long usemapsize;

6529
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6530 6531
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6532 6533 6534 6535 6536 6537
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6538
static void __ref setup_usemap(struct pglist_data *pgdat,
6539 6540 6541
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6542
{
6543
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6544
	zone->pageblock_flags = NULL;
6545
	if (usemapsize)
6546 6547 6548
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6549 6550
}
#else
6551 6552
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6553 6554
#endif /* CONFIG_SPARSEMEM */

6555
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6556

6557
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6558
void __init set_pageblock_order(void)
6559
{
6560 6561
	unsigned int order;

6562 6563 6564 6565
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6566 6567 6568 6569 6570
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6571 6572
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6573 6574
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6575 6576 6577 6578 6579
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6580 6581
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6582 6583 6584
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6585
 */
6586
void __init set_pageblock_order(void)
6587 6588
{
}
6589 6590 6591

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6592
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6593
						unsigned long present_pages)
6594 6595 6596 6597 6598 6599 6600 6601
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6602
	 * populated regions may not be naturally aligned on page boundary.
6603 6604 6605 6606 6607 6608 6609 6610 6611
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6612 6613 6614
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6615 6616 6617 6618 6619
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6634
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6635
{
6636
	pgdat_resize_init(pgdat);
6637 6638 6639 6640

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6641
	init_waitqueue_head(&pgdat->kswapd_wait);
6642
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6643

6644
	pgdat_page_ext_init(pgdat);
6645
	spin_lock_init(&pgdat->lru_lock);
6646
	lruvec_init(node_lruvec(pgdat));
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6693

6694
	pgdat_init_internals(pgdat);
6695 6696
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6697 6698
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6699
		unsigned long size, freesize, memmap_pages;
6700
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6701

6702
		size = zone->spanned_pages;
6703
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6704

6705
		/*
6706
		 * Adjust freesize so that it accounts for how much memory
6707 6708 6709
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6710
		memmap_pages = calc_memmap_size(size, freesize);
6711 6712 6713 6714 6715 6716 6717 6718
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6719
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6720 6721
					zone_names[j], memmap_pages, freesize);
		}
6722

6723
		/* Account for reserved pages */
6724 6725
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6726
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6727
					zone_names[0], dma_reserve);
6728 6729
		}

6730
		if (!is_highmem_idx(j))
6731
			nr_kernel_pages += freesize;
6732 6733 6734
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6735
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6736

6737 6738 6739 6740 6741
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6742
		zone_init_internals(zone, j, nid, freesize);
6743

6744
		if (!size)
L
Linus Torvalds 已提交
6745 6746
			continue;

6747
		set_pageblock_order();
6748 6749
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6750
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6751 6752 6753
	}
}

6754
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6755
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6756
{
6757
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6758 6759
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6760 6761 6762 6763
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6764 6765
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6766 6767
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6768
		unsigned long size, end;
A
Andy Whitcroft 已提交
6769 6770
		struct page *map;

6771 6772 6773 6774 6775
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6776
		end = pgdat_end_pfn(pgdat);
6777 6778
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6779
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6780
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6781
	}
6782 6783 6784
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6785
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6786 6787 6788
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6789
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6790
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6791
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6792
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6793
			mem_map -= offset;
T
Tejun Heo 已提交
6794
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6795
	}
L
Linus Torvalds 已提交
6796 6797
#endif
}
6798 6799 6800
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6801

6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6817
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6818 6819
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6820
{
6821
	pg_data_t *pgdat = NODE_DATA(nid);
6822 6823
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6824

6825
	/* pg_data_t should be reset to zero when it's allocated */
6826
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6827

L
Linus Torvalds 已提交
6828 6829
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6830
	pgdat->per_cpu_nodestats = NULL;
6831 6832
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6833
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6834 6835
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6836 6837
#else
	start_pfn = node_start_pfn;
6838 6839 6840
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6841 6842

	alloc_node_mem_map(pgdat);
6843
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6844

6845
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6846 6847
}

6848
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871

/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6872 6873 6874 6875 6876 6877
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6878 6879 6880 6881 6882
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6883
 */
6884
void __init zero_resv_unavail(void)
6885 6886 6887
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6888
	phys_addr_t next = 0;
6889 6890

	/*
6891
	 * Loop through unavailable ranges not covered by memblock.memory.
6892 6893
	 */
	pgcnt = 0;
6894 6895
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6896 6897
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6898 6899
		next = end;
	}
6900
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6901

6902 6903 6904 6905 6906
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6907
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6908
}
6909
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6910

T
Tejun Heo 已提交
6911
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6912 6913 6914 6915 6916

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6917
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6918
{
6919
	unsigned int highest;
M
Miklos Szeredi 已提交
6920

6921
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6922 6923 6924 6925
	nr_node_ids = highest + 1;
}
#endif

6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6948
	unsigned long start, end, mask;
6949
	int last_nid = -1;
6950
	int i, nid;
6951

6952
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6976
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6977
static unsigned long __init find_min_pfn_for_node(int nid)
6978
{
6979
	unsigned long min_pfn = ULONG_MAX;
6980 6981
	unsigned long start_pfn;
	int i;
6982

6983 6984
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6985

6986
	if (min_pfn == ULONG_MAX) {
6987
		pr_warn("Could not find start_pfn for node %d\n", nid);
6988 6989 6990 6991
		return 0;
	}

	return min_pfn;
6992 6993 6994 6995 6996 6997
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6998
 * memblock_set_node().
6999 7000 7001 7002 7003 7004
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

7005 7006 7007
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7008
 * Populate N_MEMORY for calculating usable_nodes.
7009
 */
A
Adrian Bunk 已提交
7010
static unsigned long __init early_calculate_totalpages(void)
7011 7012
{
	unsigned long totalpages = 0;
7013 7014 7015 7016 7017
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7018

7019 7020
		totalpages += pages;
		if (pages)
7021
			node_set_state(nid, N_MEMORY);
7022
	}
7023
	return totalpages;
7024 7025
}

M
Mel Gorman 已提交
7026 7027 7028 7029 7030 7031
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7032
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7033 7034 7035 7036
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7037
	/* save the state before borrow the nodemask */
7038
	nodemask_t saved_node_state = node_states[N_MEMORY];
7039
	unsigned long totalpages = early_calculate_totalpages();
7040
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7041
	struct memblock_region *r;
7042 7043 7044 7045 7046 7047 7048 7049 7050

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
7051 7052
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
7053 7054
				continue;

E
Emil Medve 已提交
7055
			nid = r->nid;
7056

E
Emil Medve 已提交
7057
			usable_startpfn = PFN_DOWN(r->base);
7058 7059 7060 7061 7062 7063 7064
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7065

7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7096
	/*
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7124
		required_movablecore = min(totalpages, required_movablecore);
7125 7126 7127 7128 7129
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7130 7131 7132 7133 7134
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7135
		goto out;
M
Mel Gorman 已提交
7136 7137 7138 7139 7140 7141 7142

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7143
	for_each_node_state(nid, N_MEMORY) {
7144 7145
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7162
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7163 7164
			unsigned long size_pages;

7165
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7208
			 * satisfied
M
Mel Gorman 已提交
7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7222
	 * satisfied
M
Mel Gorman 已提交
7223 7224 7225 7226 7227
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7228
out2:
M
Mel Gorman 已提交
7229 7230 7231 7232
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7233

7234
out:
7235
	/* restore the node_state */
7236
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7237 7238
}

7239 7240
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7241 7242 7243
{
	enum zone_type zone_type;

7244 7245 7246 7247
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7248
		struct zone *zone = &pgdat->node_zones[zone_type];
7249
		if (populated_zone(zone)) {
7250 7251 7252 7253
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
7254 7255
			break;
		}
7256 7257 7258
	}
}

7259 7260
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7261
 * @max_zone_pfn: an array of max PFNs for each zone
7262 7263
 *
 * This will call free_area_init_node() for each active node in the system.
7264
 * Using the page ranges provided by memblock_set_node(), the size of each
7265 7266 7267 7268 7269 7270 7271 7272 7273
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7274 7275
	unsigned long start_pfn, end_pfn;
	int i, nid;
7276

7277 7278 7279 7280 7281
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7282 7283 7284 7285

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7286 7287
		if (i == ZONE_MOVABLE)
			continue;
7288 7289 7290 7291 7292 7293

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7294
	}
M
Mel Gorman 已提交
7295 7296 7297

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7298
	find_zone_movable_pfns_for_nodes();
7299 7300

	/* Print out the zone ranges */
7301
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7302 7303 7304
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7305
		pr_info("  %-8s ", zone_names[i]);
7306 7307
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7308
			pr_cont("empty\n");
7309
		else
7310 7311 7312 7313
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7314
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7315 7316 7317
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7318
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7319 7320
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7321 7322
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7323
	}
7324

7325
	/* Print out the early node map */
7326
	pr_info("Early memory node ranges\n");
7327
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7328 7329 7330
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7331 7332

	/* Initialise every node */
7333
	mminit_verify_pageflags_layout();
7334
	setup_nr_node_ids();
7335
	zero_resv_unavail();
7336 7337
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7338
		free_area_init_node(nid, NULL,
7339
				find_min_pfn_for_node(nid), NULL);
7340 7341 7342

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7343 7344
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7345 7346
	}
}
M
Mel Gorman 已提交
7347

7348 7349
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7350 7351
{
	unsigned long long coremem;
7352 7353
	char *endptr;

M
Mel Gorman 已提交
7354 7355 7356
	if (!p)
		return -EINVAL;

7357 7358 7359 7360 7361
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7362

7363 7364 7365 7366 7367
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7368

7369 7370 7371
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7372 7373
	return 0;
}
M
Mel Gorman 已提交
7374

7375 7376 7377 7378 7379 7380
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7381 7382 7383 7384 7385 7386
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7387 7388
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7389 7390 7391 7392 7393 7394 7395 7396
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7397 7398
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7399 7400
}

M
Mel Gorman 已提交
7401
early_param("kernelcore", cmdline_parse_kernelcore);
7402
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7403

T
Tejun Heo 已提交
7404
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7405

7406 7407 7408 7409 7410
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7411 7412 7413 7414
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7415 7416
	spin_unlock(&managed_page_count_lock);
}
7417
EXPORT_SYMBOL(adjust_managed_page_count);
7418

7419
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7420
{
7421 7422
	void *pos;
	unsigned long pages = 0;
7423

7424 7425 7426
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7438
		if ((unsigned int)poison <= 0xFF)
7439 7440 7441
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7442 7443 7444
	}

	if (pages && s)
7445 7446
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7447 7448 7449

	return pages;
}
7450
EXPORT_SYMBOL(free_reserved_area);
7451

7452 7453 7454 7455 7456
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7457
	page_zone(page)->managed_pages++;
7458 7459 7460 7461
	totalhigh_pages++;
}
#endif

7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7484 7485 7486 7487
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7498
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7499
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7500
		", %luK highmem"
7501
#endif
J
Joe Perches 已提交
7502 7503 7504 7505 7506 7507 7508
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7509
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7510
		totalhigh_pages << (PAGE_SHIFT - 10),
7511
#endif
J
Joe Perches 已提交
7512
		str ? ", " : "", str ? str : "");
7513 7514
}

7515
/**
7516 7517
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7518
 *
7519
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7520 7521
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7522 7523 7524
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7525 7526 7527 7528 7529 7530
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7531 7532
void __init free_area_init(unsigned long *zones_size)
{
7533
	zero_resv_unavail();
7534
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7535 7536 7537
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7538
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7539 7540
{

7541 7542
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7543

7544 7545 7546 7547 7548 7549 7550
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7551

7552 7553 7554 7555 7556 7557 7558 7559 7560
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7561 7562 7563 7564
}

void __init page_alloc_init(void)
{
7565 7566 7567 7568 7569 7570
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7571 7572
}

7573
/*
7574
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7575 7576 7577 7578 7579 7580
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7581
	enum zone_type i, j;
7582 7583

	for_each_online_pgdat(pgdat) {
7584 7585 7586

		pgdat->totalreserve_pages = 0;

7587 7588
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7589
			long max = 0;
7590 7591 7592 7593 7594 7595 7596

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7597 7598
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7599

7600 7601
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7602

7603
			pgdat->totalreserve_pages += max;
7604

7605 7606 7607 7608 7609 7610
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7611 7612
/*
 * setup_per_zone_lowmem_reserve - called whenever
7613
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7614 7615 7616 7617 7618 7619
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7620
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7621

7622
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7623 7624
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7625
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7626 7627 7628

			zone->lowmem_reserve[j] = 0;

7629 7630
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7631 7632
				struct zone *lower_zone;

7633
				idx--;
L
Linus Torvalds 已提交
7634
				lower_zone = pgdat->node_zones + idx;
7635 7636 7637 7638 7639 7640 7641 7642

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7643
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7644 7645 7646
			}
		}
	}
7647 7648 7649

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7650 7651
}

7652
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7653 7654 7655 7656 7657 7658 7659 7660 7661
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7662
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7663 7664 7665
	}

	for_each_zone(zone) {
7666 7667
		u64 tmp;

7668
		spin_lock_irqsave(&zone->lock, flags);
7669
		tmp = (u64)pages_min * zone->managed_pages;
7670
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7671 7672
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7673 7674 7675 7676
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7677
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7678
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7679
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7680
			 */
7681
			unsigned long min_pages;
L
Linus Torvalds 已提交
7682

7683
			min_pages = zone->managed_pages / 1024;
7684
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7685
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7686
		} else {
N
Nick Piggin 已提交
7687 7688
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7689 7690
			 * proportionate to the zone's size.
			 */
7691
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7692 7693
		}

7694 7695 7696 7697 7698 7699 7700 7701 7702
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

7703
		zone->watermark_boost = 0;
7704 7705
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7706

7707
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7708
	}
7709 7710 7711

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7712 7713
}

7714 7715 7716 7717 7718 7719 7720 7721 7722
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7723 7724 7725
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7726
	__setup_per_zone_wmarks();
7727
	spin_unlock(&lock);
7728 7729
}

L
Linus Torvalds 已提交
7730 7731 7732 7733 7734 7735 7736
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7737
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7754
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7755 7756
{
	unsigned long lowmem_kbytes;
7757
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7758 7759

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7772
	setup_per_zone_wmarks();
7773
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7774
	setup_per_zone_lowmem_reserve();
7775 7776 7777 7778 7779 7780

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7781 7782
	return 0;
}
7783
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7784 7785

/*
7786
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7787 7788 7789
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7790
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7791
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7792
{
7793 7794 7795 7796 7797 7798
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7799 7800
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7801
		setup_per_zone_wmarks();
7802
	}
L
Linus Torvalds 已提交
7803 7804 7805
	return 0;
}

7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817
int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	return 0;
}

7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7833
#ifdef CONFIG_NUMA
7834
static void setup_min_unmapped_ratio(void)
7835
{
7836
	pg_data_t *pgdat;
7837 7838
	struct zone *zone;

7839
	for_each_online_pgdat(pgdat)
7840
		pgdat->min_unmapped_pages = 0;
7841

7842
	for_each_zone(zone)
7843
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7844 7845
				sysctl_min_unmapped_ratio) / 100;
}
7846

7847 7848

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7849
	void __user *buffer, size_t *length, loff_t *ppos)
7850 7851 7852
{
	int rc;

7853
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7854 7855 7856
	if (rc)
		return rc;

7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7867 7868 7869
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7870
	for_each_zone(zone)
7871
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7872
				sysctl_min_slab_ratio) / 100;
7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7886 7887
	return 0;
}
7888 7889
#endif

L
Linus Torvalds 已提交
7890 7891 7892 7893 7894 7895
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7896
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7897 7898
 * if in function of the boot time zone sizes.
 */
7899
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7900
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7901
{
7902
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7903 7904 7905 7906
	setup_per_zone_lowmem_reserve();
	return 0;
}

7907 7908
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7909 7910
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7911
 */
7912
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7913
	void __user *buffer, size_t *length, loff_t *ppos)
7914 7915
{
	struct zone *zone;
7916
	int old_percpu_pagelist_fraction;
7917 7918
	int ret;

7919 7920 7921
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7922
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7937

7938
	for_each_populated_zone(zone) {
7939 7940
		unsigned int cpu;

7941
		for_each_possible_cpu(cpu)
7942 7943
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7944
	}
7945
out:
7946
	mutex_unlock(&pcp_batch_high_lock);
7947
	return ret;
7948 7949
}

7950
#ifdef CONFIG_NUMA
7951
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8002 8003
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8004
{
8005
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8006 8007
	unsigned long log2qty, size;
	void *table = NULL;
8008
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
8009 8010 8011 8012

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8013
		numentries = nr_kernel_pages;
8014
		numentries -= arch_reserved_kernel_pages();
8015 8016 8017 8018

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8019

P
Pavel Tatashin 已提交
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8030 8031 8032 8033 8034
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8035 8036

		/* Make sure we've got at least a 0-order allocation.. */
8037 8038 8039 8040 8041 8042 8043 8044
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8045
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8046
	}
8047
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8048 8049 8050 8051 8052 8053

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8054
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8055

8056 8057
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8058 8059 8060
	if (numentries > max)
		numentries = max;

8061
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8062

8063
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8064 8065
	do {
		size = bucketsize << log2qty;
8066 8067 8068 8069 8070 8071
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
8072
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8073
		} else {
8074 8075
			/*
			 * If bucketsize is not a power-of-two, we may free
8076 8077
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8078
			 */
8079
			if (get_order(size) < MAX_ORDER) {
8080 8081
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
8082
			}
L
Linus Torvalds 已提交
8083 8084 8085 8086 8087 8088
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8089 8090
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
8091 8092 8093 8094 8095 8096 8097 8098

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8099

K
KAMEZAWA Hiroyuki 已提交
8100
/*
8101 8102 8103
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8104
 * PageLRU check without isolation or lru_lock could race so that
8105 8106 8107
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8108
 */
8109
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8110
			 int migratetype, int flags)
8111 8112
{
	unsigned long pfn, iter, found;
8113

8114
	/*
8115 8116 8117 8118 8119
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8120 8121
	 */

8122 8123 8124 8125 8126 8127 8128 8129 8130
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

8131 8132 8133 8134
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

8135
		if (!pfn_valid_within(check))
8136
			continue;
8137

8138
		page = pfn_to_page(check);
8139

8140
		if (PageReserved(page))
8141
			goto unmovable;
8142

8143 8144 8145 8146 8147 8148 8149 8150
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8151 8152 8153 8154 8155 8156
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8157 8158
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8159

8160
			if (!hugepage_migration_supported(page_hstate(head)))
8161 8162
				goto unmovable;

8163 8164
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8165 8166 8167
			continue;
		}

8168 8169 8170 8171
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8172
		 * because their page->_refcount is zero at all time.
8173
		 */
8174
		if (!page_ref_count(page)) {
8175 8176 8177 8178
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8179

8180 8181 8182 8183
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8184
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8185 8186
			continue;

8187 8188 8189
		if (__PageMovable(page))
			continue;

8190 8191 8192
		if (!PageLRU(page))
			found++;
		/*
8193 8194 8195
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8206
			goto unmovable;
8207
	}
8208
	return false;
8209 8210 8211
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
8212 8213
}

8214
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8229 8230
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8231 8232
{
	/* This function is based on compact_zone() from compaction.c. */
8233
	unsigned long nr_reclaimed;
8234 8235 8236 8237
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8238
	migrate_prep();
8239

8240
	while (pfn < end || !list_empty(&cc->migratepages)) {
8241 8242 8243 8244 8245
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8246 8247
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8248
			pfn = isolate_migratepages_range(cc, pfn, end);
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8259 8260 8261
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8262

8263
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8264
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8265
	}
8266 8267 8268 8269 8270
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8271 8272 8273 8274 8275 8276
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8277 8278 8279 8280
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8281
 * @gfp_mask:	GFP mask to use during compaction
8282 8283
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8284
 * aligned.  The PFN range must belong to a single zone.
8285
 *
8286 8287 8288
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8289 8290 8291 8292 8293
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8294
int alloc_contig_range(unsigned long start, unsigned long end,
8295
		       unsigned migratetype, gfp_t gfp_mask)
8296 8297
{
	unsigned long outer_start, outer_end;
8298 8299
	unsigned int order;
	int ret = 0;
8300

8301 8302 8303 8304
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8305
		.mode = MIGRATE_SYNC,
8306
		.ignore_skip_hint = true,
8307
		.no_set_skip_hint = true,
8308
		.gfp_mask = current_gfp_context(gfp_mask),
8309 8310 8311
	};
	INIT_LIST_HEAD(&cc.migratepages);

8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8337
				       pfn_max_align_up(end), migratetype, 0);
8338
	if (ret)
8339
		return ret;
8340

8341 8342
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8343 8344 8345 8346 8347 8348 8349
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8350
	 */
8351
	ret = __alloc_contig_migrate_range(&cc, start, end);
8352
	if (ret && ret != -EBUSY)
8353
		goto done;
8354
	ret =0;
8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8374
	drain_all_pages(cc.zone);
8375 8376 8377 8378 8379

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8380 8381
			outer_start = start;
			break;
8382 8383 8384 8385
		}
		outer_start &= ~0UL << order;
	}

8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8399
	/* Make sure the range is really isolated. */
8400
	if (test_pages_isolated(outer_start, end, 0)) {
8401
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8402
			__func__, outer_start, end);
8403 8404 8405 8406
		ret = -EBUSY;
		goto done;
	}

8407
	/* Grab isolated pages from freelists. */
8408
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8422
				pfn_max_align_up(end), migratetype);
8423 8424 8425 8426 8427
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8428 8429 8430 8431 8432 8433 8434 8435 8436
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8437 8438 8439
}
#endif

8440 8441 8442 8443
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8444 8445
void __meminit zone_pcp_update(struct zone *zone)
{
8446
	unsigned cpu;
8447
	mutex_lock(&pcp_batch_high_lock);
8448
	for_each_possible_cpu(cpu)
8449 8450
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8451
	mutex_unlock(&pcp_batch_high_lock);
8452 8453
}

8454 8455 8456
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8457 8458
	int cpu;
	struct per_cpu_pageset *pset;
8459 8460 8461 8462

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8463 8464 8465 8466
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8467 8468 8469 8470 8471 8472
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8473
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8474
/*
8475 8476
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8477 8478 8479 8480 8481 8482
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8483
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8484 8485 8486 8487 8488 8489 8490 8491
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8492
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8493 8494 8495 8496 8497 8498 8499 8500 8501
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8502 8503 8504 8505 8506 8507 8508 8509 8510 8511
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8512 8513 8514 8515
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8516 8517
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8518
#endif
8519
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8520 8521 8522 8523 8524 8525 8526
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8527 8528 8529 8530 8531 8532

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8533
	unsigned int order;
8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif