page_alloc.c 208.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kmemcheck.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39 40
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
41
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
42 43
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
44
#include <linux/vmstat.h>
45
#include <linux/mempolicy.h>
46
#include <linux/memremap.h>
47
#include <linux/stop_machine.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
69

70
#include <asm/sections.h>
L
Linus Torvalds 已提交
71
#include <asm/tlbflush.h>
72
#include <asm/div64.h>
L
Linus Torvalds 已提交
73 74
#include "internal.h"

75 76
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
77
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
78

79 80 81 82 83
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

84 85 86 87 88 89 90 91 92
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93
int _node_numa_mem_[MAX_NUMNODES];
94 95
#endif

96 97 98 99
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

100
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101
volatile unsigned long latent_entropy __latent_entropy;
102 103 104
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
105
/*
106
 * Array of node states.
L
Linus Torvalds 已提交
107
 */
108 109 110 111 112 113 114
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 116 117
#endif
#ifdef CONFIG_MOVABLE_NODE
	[N_MEMORY] = { { [0] = 1UL } },
118 119 120 121 122 123
#endif
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

124 125 126
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

127
unsigned long totalram_pages __read_mostly;
128
unsigned long totalreserve_pages __read_mostly;
129
unsigned long totalcma_pages __read_mostly;
130

131
int percpu_pagelist_fraction;
132
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

152 153 154 155 156 157 158 159 160
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
161 162 163 164

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
165 166
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
167 168 169 170
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
171 172
}

173
void pm_restrict_gfp_mask(void)
174 175
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
176 177
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
178
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179
}
180 181 182

bool pm_suspended_storage(void)
{
183
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 185 186
		return false;
	return true;
}
187 188
#endif /* CONFIG_PM_SLEEP */

189
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190
unsigned int pageblock_order __read_mostly;
191 192
#endif

193
static void __free_pages_ok(struct page *page, unsigned int order);
194

L
Linus Torvalds 已提交
195 196 197 198 199 200
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
201
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
202 203 204
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
205
 */
206
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207
#ifdef CONFIG_ZONE_DMA
208
	 256,
209
#endif
210
#ifdef CONFIG_ZONE_DMA32
211
	 256,
212
#endif
213
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
214
	 32,
215
#endif
M
Mel Gorman 已提交
216
	 32,
217
};
L
Linus Torvalds 已提交
218 219 220

EXPORT_SYMBOL(totalram_pages);

221
static char * const zone_names[MAX_NR_ZONES] = {
222
#ifdef CONFIG_ZONE_DMA
223
	 "DMA",
224
#endif
225
#ifdef CONFIG_ZONE_DMA32
226
	 "DMA32",
227
#endif
228
	 "Normal",
229
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
230
	 "HighMem",
231
#endif
M
Mel Gorman 已提交
232
	 "Movable",
233 234 235
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
236 237
};

238 239 240 241 242 243 244 245 246 247 248 249 250
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

251 252 253 254 255 256
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
257 258 259
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
260 261
};

L
Linus Torvalds 已提交
262
int min_free_kbytes = 1024;
263
int user_min_free_kbytes = -1;
264
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
265

266 267
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
268
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
269

T
Tejun Heo 已提交
270 271 272 273 274 275
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
277 278 279 280 281

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282

M
Miklos Szeredi 已提交
283 284
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
285
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
286
EXPORT_SYMBOL(nr_node_ids);
287
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
288 289
#endif

290 291
int page_group_by_mobility_disabled __read_mostly;

292 293 294 295 296 297 298
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
299
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300
{
301 302 303
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 305 306 307 308 309 310 311 312 313 314 315 316
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
317 318
	unsigned long max_initialise;

319 320 321
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
322 323 324 325 326 327
	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));
328 329

	(*nr_initialised)++;
330
	if ((*nr_initialised > max_initialise) &&
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
456

457
void set_pageblock_migratetype(struct page *page, int migratetype)
458
{
459 460
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
461 462
		migratetype = MIGRATE_UNMOVABLE;

463 464 465 466
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
467
#ifdef CONFIG_DEBUG_VM
468
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
469
{
470 471 472
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
473
	unsigned long sp, start_pfn;
474

475 476
	do {
		seq = zone_span_seqbegin(zone);
477 478
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
479
		if (!zone_spans_pfn(zone, pfn))
480 481 482
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

483
	if (ret)
484 485 486
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
487

488
	return ret;
489 490 491 492
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
493
	if (!pfn_valid_within(page_to_pfn(page)))
494
		return 0;
L
Linus Torvalds 已提交
495
	if (zone != page_zone(page))
496 497 498 499 500 501 502 503 504 505
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
static int bad_range(struct zone *zone, struct page *page)
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
506
		return 1;
507 508 509
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
510 511
	return 0;
}
N
Nick Piggin 已提交
512 513 514 515 516 517 518
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
	return 0;
}
#endif

519 520
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
521
{
522 523 524 525 526 527 528 529 530 531 532 533 534 535
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
536
			pr_alert(
537
			      "BUG: Bad page state: %lu messages suppressed\n",
538 539 540 541 542 543 544 545
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

546
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
547
		current->comm, page_to_pfn(page));
548 549 550 551 552
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
553
	dump_page_owner(page);
554

555
	print_modules();
L
Linus Torvalds 已提交
556
	dump_stack();
557
out:
558
	/* Leave bad fields for debug, except PageBuddy could make trouble */
559
	page_mapcount_reset(page); /* remove PageBuddy */
560
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
561 562 563 564 565
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
566
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
567
 *
568 569
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
570
 *
571 572
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
573
 *
574
 * The first tail page's ->compound_order holds the order of allocation.
575
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
576
 */
577

578
void free_compound_page(struct page *page)
579
{
580
	__free_pages_ok(page, compound_order(page));
581 582
}

583
void prep_compound_page(struct page *page, unsigned int order)
584 585 586 587
{
	int i;
	int nr_pages = 1 << order;

588
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 590 591 592
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
593
		set_page_count(p, 0);
594
		p->mapping = TAIL_MAPPING;
595
		set_compound_head(p, page);
596
	}
597
	atomic_set(compound_mapcount_ptr(page), -1);
598 599
}

600 601
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
602 603
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604
EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 606
bool _debug_guardpage_enabled __read_mostly;

607 608 609 610
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
611
	return kstrtobool(buf, &_debug_pagealloc_enabled);
612 613 614
}
early_param("debug_pagealloc", early_debug_pagealloc);

615 616
static bool need_debug_guardpage(void)
{
617 618 619 620
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

621 622 623
	if (!debug_guardpage_minorder())
		return false;

624 625 626 627 628
	return true;
}

static void init_debug_guardpage(void)
{
629 630 631
	if (!debug_pagealloc_enabled())
		return;

632 633 634
	if (!debug_guardpage_minorder())
		return;

635 636 637 638 639 640 641
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
642 643 644 645 646 647

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
648
		pr_err("Bad debug_guardpage_minorder value\n");
649 650 651
		return 0;
	}
	_debug_guardpage_minorder = res;
652
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
653 654
	return 0;
}
655
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656

657
static inline bool set_page_guard(struct zone *zone, struct page *page,
658
				unsigned int order, int migratetype)
659
{
660 661 662
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
663 664 665 666
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
667 668

	page_ext = lookup_page_ext(page);
669
	if (unlikely(!page_ext))
670
		return false;
671

672 673
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

674 675 676 677
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 679

	return true;
680 681
}

682 683
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
684
{
685 686 687 688 689 690
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
691 692 693
	if (unlikely(!page_ext))
		return;

694 695
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

696 697 698
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
699 700
}
#else
701
struct page_ext_operations debug_guardpage_ops;
702 703
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
704 705
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
706 707
#endif

708
static inline void set_page_order(struct page *page, unsigned int order)
709
{
H
Hugh Dickins 已提交
710
	set_page_private(page, order);
711
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
712 713 714 715
}

static inline void rmv_page_order(struct page *page)
{
716
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
717
	set_page_private(page, 0);
L
Linus Torvalds 已提交
718 719 720 721 722
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
723
 * (a) the buddy is not in a hole (check before calling!) &&
724
 * (b) the buddy is in the buddy system &&
725 726
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
727
 *
728 729 730 731
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
732
 *
733
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
734
 */
735
static inline int page_is_buddy(struct page *page, struct page *buddy,
736
							unsigned int order)
L
Linus Torvalds 已提交
737
{
738
	if (page_is_guard(buddy) && page_order(buddy) == order) {
739 740 741
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

742 743
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

744 745 746
		return 1;
	}

747
	if (PageBuddy(buddy) && page_order(buddy) == order) {
748 749 750 751 752 753 754 755
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

756 757
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

758
		return 1;
759
	}
760
	return 0;
L
Linus Torvalds 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
776 777 778
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
779
 * So when we are allocating or freeing one, we can derive the state of the
780 781
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
782
 * If a block is freed, and its buddy is also free, then this
783
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
784
 *
785
 * -- nyc
L
Linus Torvalds 已提交
786 787
 */

N
Nick Piggin 已提交
788
static inline void __free_one_page(struct page *page,
789
		unsigned long pfn,
790 791
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
792
{
793 794
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
795
	struct page *buddy;
796 797 798
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
799

800
	VM_BUG_ON(!zone_is_initialized(zone));
801
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
802

803
	VM_BUG_ON(migratetype == -1);
804
	if (likely(!is_migrate_isolate(migratetype)))
805
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
806

807
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
809

810
continue_merging:
811
	while (order < max_order - 1) {
812 813
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
814 815 816

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
817
		if (!page_is_buddy(page, buddy, order))
818
			goto done_merging;
819 820 821 822 823
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
824
			clear_page_guard(zone, buddy, order, migratetype);
825 826 827 828 829
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
830 831 832
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
833 834
		order++;
	}
835 836 837 838 839 840 841 842 843 844 845 846
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

847 848
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
849 850 851 852 853 854 855 856 857 858 859 860
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
861
	set_page_order(page, order);
862 863 864 865 866 867 868 869 870

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
871
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872
		struct page *higher_page, *higher_buddy;
873 874 875 876
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 878
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 880 881 882 883 884 885 886
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
887 888 889
	zone->free_area[order].nr_free++;
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

912
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
913
{
914 915 916 917 918
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
919

920
	if (unlikely(atomic_read(&page->_mapcount) != -1))
921 922 923
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
924
	if (unlikely(page_ref_count(page) != 0))
925
		bad_reason = "nonzero _refcount";
926 927 928 929
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
930 931 932 933
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
934
	bad_page(page, bad_reason, bad_flags);
935 936 937 938
}

static inline int free_pages_check(struct page *page)
{
939
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
940 941 942 943
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
944
	return 1;
L
Linus Torvalds 已提交
945 946
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

997 998
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
999
{
1000
	int bad = 0;
1001 1002 1003

	VM_BUG_ON_PAGE(PageTail(page), page);

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	trace_mm_page_free(page, order);
	kmemcheck_free_shadow(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016

1017 1018
		if (compound)
			ClearPageDoubleMap(page);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1029
	if (PageMappingFlags(page))
1030
		page->mapping = NULL;
1031
	if (memcg_kmem_enabled() && PageKmemcg(page))
1032
		memcg_kmem_uncharge(page, order);
1033 1034 1035 1036
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1037

1038 1039 1040
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1041 1042 1043

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1044
					   PAGE_SIZE << order);
1045
		debug_check_no_obj_freed(page_address(page),
1046
					   PAGE_SIZE << order);
1047
	}
1048 1049 1050
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1051
	kasan_free_pages(page, order);
1052 1053 1054 1055

	return true;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1072 1073 1074 1075 1076 1077
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1078
/*
1079
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1080
 * Assumes all pages on list are in same zone, and of same order.
1081
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087 1088
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1089 1090
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1091
{
1092
	int migratetype = 0;
1093
	int batch_free = 0;
1094
	bool isolated_pageblocks;
1095

1096
	spin_lock(&zone->lock);
1097
	isolated_pageblocks = has_isolate_pageblock(zone);
1098

1099
	while (count) {
N
Nick Piggin 已提交
1100
		struct page *page;
1101 1102 1103
		struct list_head *list;

		/*
1104 1105 1106 1107 1108
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1109 1110
		 */
		do {
1111
			batch_free++;
1112 1113 1114 1115
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1116

1117 1118
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1119
			batch_free = count;
1120

1121
		do {
1122 1123
			int mt;	/* migratetype of the to-be-freed page */

1124
			page = list_last_entry(list, struct page, lru);
1125 1126
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1127

1128
			mt = get_pcppage_migratetype(page);
1129 1130 1131
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1132
			if (unlikely(isolated_pageblocks))
1133 1134
				mt = get_pageblock_migratetype(page);

1135 1136 1137
			if (bulkfree_pcp_prepare(page))
				continue;

1138
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139
			trace_mm_page_pcpu_drain(page, 0, mt);
1140
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1141
	}
1142
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1143 1144
}

1145 1146
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1147
				unsigned int order,
1148
				int migratetype)
L
Linus Torvalds 已提交
1149
{
1150
	spin_lock(&zone->lock);
1151 1152 1153 1154
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1155
	__free_one_page(page, pfn, zone, order, migratetype);
1156
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1157 1158
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1207 1208 1209 1210 1211 1212
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1213
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 1215 1216 1217
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1218 1219 1220 1221 1222
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1223 1224 1225 1226

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1227 1228 1229
			SetPageReserved(page);
		}
	}
1230 1231
}

1232 1233
static void __free_pages_ok(struct page *page, unsigned int order)
{
1234
	unsigned long flags;
M
Minchan Kim 已提交
1235
	int migratetype;
1236
	unsigned long pfn = page_to_pfn(page);
1237

1238
	if (!free_pages_prepare(page, order, true))
1239 1240
		return;

1241
	migratetype = get_pfnblock_migratetype(page, pfn);
1242 1243
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1244
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1245
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1246 1247
}

1248
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249
{
1250
	unsigned int nr_pages = 1 << order;
1251
	struct page *p = page;
1252
	unsigned int loop;
1253

1254 1255 1256
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1257 1258
		__ClearPageReserved(p);
		set_page_count(p, 0);
1259
	}
1260 1261
	__ClearPageReserved(p);
	set_page_count(p, 0);
1262

1263
	page_zone(page)->managed_pages += nr_pages;
1264 1265
	set_page_refcounted(page);
	__free_pages(page, order);
1266 1267
}

1268 1269
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270

1271 1272 1273 1274
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1275
	static DEFINE_SPINLOCK(early_pfn_lock);
1276 1277
	int nid;

1278
	spin_lock(&early_pfn_lock);
1279
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280
	if (nid < 0)
1281
		nid = first_online_node;
1282 1283 1284
	spin_unlock(&early_pfn_lock);

	return nid;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	return true;
}
#endif


1320
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 1322 1323 1324
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1325
	return __free_pages_boot_core(page, order);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1397
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398
static void __init deferred_free_range(struct page *page,
1399 1400 1401 1402 1403 1404 1405 1406
					unsigned long pfn, int nr_pages)
{
	int i;

	if (!page)
		return;

	/* Free a large naturally-aligned chunk if possible */
1407 1408
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1409
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410
		__free_pages_boot_core(page, pageblock_order);
1411 1412 1413
		return;
	}

1414 1415 1416
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417
		__free_pages_boot_core(page, 0);
1418
	}
1419 1420
}

1421 1422 1423 1424 1425 1426 1427 1428 1429
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1430

1431
/* Initialise remaining memory on a node */
1432
static int __init deferred_init_memmap(void *data)
1433
{
1434 1435
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1436 1437 1438 1439 1440 1441 1442
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
	unsigned long walk_start, walk_end;
	int i, zid;
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444

1445
	if (first_init_pfn == ULONG_MAX) {
1446
		pgdat_init_report_one_done();
1447 1448 1449 1450 1451 1452
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}

	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
		unsigned long pfn, end_pfn;
1468
		struct page *page = NULL;
1469 1470 1471
		struct page *free_base_page = NULL;
		unsigned long free_base_pfn = 0;
		int nr_to_free = 0;
1472 1473 1474 1475 1476 1477 1478 1479 1480

		end_pfn = min(walk_end, zone_end_pfn(zone));
		pfn = first_init_pfn;
		if (pfn < walk_start)
			pfn = walk_start;
		if (pfn < zone->zone_start_pfn)
			pfn = zone->zone_start_pfn;

		for (; pfn < end_pfn; pfn++) {
1481
			if (!pfn_valid_within(pfn))
1482
				goto free_range;
1483

1484 1485
			/*
			 * Ensure pfn_valid is checked every
1486
			 * pageblock_nr_pages for memory holes
1487
			 */
1488
			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 1490
				if (!pfn_valid(pfn)) {
					page = NULL;
1491
					goto free_range;
1492 1493 1494 1495 1496
				}
			}

			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				page = NULL;
1497
				goto free_range;
1498 1499 1500
			}

			/* Minimise pfn page lookups and scheduler checks */
1501
			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 1503
				page++;
			} else {
1504 1505 1506 1507 1508 1509
				nr_pages += nr_to_free;
				deferred_free_range(free_base_page,
						free_base_pfn, nr_to_free);
				free_base_page = NULL;
				free_base_pfn = nr_to_free = 0;

1510 1511 1512
				page = pfn_to_page(pfn);
				cond_resched();
			}
1513 1514 1515

			if (page->flags) {
				VM_BUG_ON(page_zone(page) != zone);
1516
				goto free_range;
1517 1518 1519
			}

			__init_single_page(page, pfn, zid, nid);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
			if (!free_base_page) {
				free_base_page = page;
				free_base_pfn = pfn;
				nr_to_free = 0;
			}
			nr_to_free++;

			/* Where possible, batch up pages for a single free */
			continue;
free_range:
			/* Free the current block of pages to allocator */
			nr_pages += nr_to_free;
			deferred_free_range(free_base_page, free_base_pfn,
								nr_to_free);
			free_base_page = NULL;
			free_base_pfn = nr_to_free = 0;
1536
		}
1537 1538 1539
		/* Free the last block of pages to allocator */
		nr_pages += nr_to_free;
		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540

1541 1542 1543 1544 1545 1546
		first_init_pfn = max(end_pfn, first_init_pfn);
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1547
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548
					jiffies_to_msecs(jiffies - start));
1549 1550

	pgdat_init_report_one_done();
1551 1552
	return 0;
}
1553
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554 1555 1556

void __init page_alloc_init_late(void)
{
1557 1558 1559
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 1561
	int nid;

1562 1563
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 1565 1566 1567 1568
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1569
	wait_for_completion(&pgdat_init_all_done_comp);
1570 1571 1572

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1573 1574 1575 1576
#endif

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1577 1578
}

1579
#ifdef CONFIG_CMA
1580
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1606
	adjust_managed_page_count(page, pageblock_nr_pages);
1607 1608
}
#endif
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1622
 * -- nyc
L
Linus Torvalds 已提交
1623
 */
N
Nick Piggin 已提交
1624
static inline void expand(struct zone *zone, struct page *page,
1625 1626
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1627 1628 1629 1630 1631 1632 1633
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1634
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635

1636 1637 1638 1639 1640 1641 1642
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1643
			continue;
1644

1645
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1651
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1652
{
1653 1654
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1655

1656
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 1658 1659
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1660
	if (unlikely(page_ref_count(page) != 0))
1661
		bad_reason = "nonzero _count";
1662 1663 1664
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1665 1666 1667
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1668
	}
1669 1670 1671 1672
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1673 1674 1675 1676
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1691 1692
}

1693
static inline bool free_pages_prezeroed(void)
1694 1695
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696
		page_poisoning_enabled();
1697 1698
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1746
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747
							unsigned int alloc_flags)
1748 1749
{
	int i;
1750

1751
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1752

1753
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1754 1755
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1756 1757 1758 1759

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1760
	/*
1761
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 1763 1764 1765
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1766 1767 1768 1769
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1770 1771
}

1772 1773 1774 1775
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1776 1777
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1778 1779 1780
						int migratetype)
{
	unsigned int current_order;
1781
	struct free_area *area;
1782 1783 1784 1785 1786
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1787
		page = list_first_entry_or_null(&area->free_list[migratetype],
1788
							struct page, lru);
1789 1790
		if (!page)
			continue;
1791 1792 1793 1794
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1795
		set_pcppage_migratetype(page, migratetype);
1796 1797 1798 1799 1800 1801 1802
		return page;
	}

	return NULL;
}


1803 1804 1805 1806
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1807
static int fallbacks[MIGRATE_TYPES][4] = {
1808 1809 1810
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1811
#ifdef CONFIG_CMA
1812
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1813
#endif
1814
#ifdef CONFIG_MEMORY_ISOLATION
1815
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1816
#endif
1817 1818
};

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1830 1831
/*
 * Move the free pages in a range to the free lists of the requested type.
1832
 * Note that start_page and end_pages are not aligned on a pageblock
1833 1834
 * boundary. If alignment is required, use move_freepages_block()
 */
1835
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1836
			  struct page *start_page, struct page *end_page,
1837
			  int migratetype, int *num_movable)
1838 1839
{
	struct page *page;
1840
	unsigned int order;
1841
	int pages_moved = 0;
1842 1843 1844 1845 1846 1847 1848

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1849
	 * grouping pages by mobility
1850
	 */
1851
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1852 1853
#endif

1854 1855 1856
	if (num_movable)
		*num_movable = 0;

1857 1858 1859 1860 1861 1862
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1863 1864 1865
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1866
		if (!PageBuddy(page)) {
1867 1868 1869 1870 1871 1872 1873 1874 1875
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1876 1877 1878 1879 1880
			page++;
			continue;
		}

		order = page_order(page);
1881 1882
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1883
		page += 1 << order;
1884
		pages_moved += 1 << order;
1885 1886
	}

1887
	return pages_moved;
1888 1889
}

1890
int move_freepages_block(struct zone *zone, struct page *page,
1891
				int migratetype, int *num_movable)
1892 1893 1894 1895 1896
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1897
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898
	start_page = pfn_to_page(start_pfn);
1899 1900
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 1902

	/* Do not cross zone boundaries */
1903
	if (!zone_spans_pfn(zone, start_pfn))
1904
		start_page = page;
1905
	if (!zone_spans_pfn(zone, end_pfn))
1906 1907
		return 0;

1908 1909
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1923
/*
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1934
 */
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
1959 1960 1961 1962
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
1963 1964
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
1965
					int start_type, bool whole_block)
1966
{
1967
	unsigned int current_order = page_order(page);
1968
	struct free_area *area;
1969 1970 1971 1972
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
1973

1974 1975 1976 1977
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
1978
	if (is_migrate_highatomic(old_block_type))
1979 1980
		goto single_page;

1981 1982 1983
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
1984
		goto single_page;
1985 1986
	}

1987 1988 1989 1990
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2015
	/* moving whole block can fail due to zone boundary conditions */
2016
	if (!free_pages)
2017
		goto single_page;
2018

2019 2020 2021 2022 2023
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2024 2025
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2026 2027 2028 2029 2030 2031

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2032 2033
}

2034 2035 2036 2037 2038 2039 2040 2041
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2052
		if (fallback_mt == MIGRATE_TYPES)
2053 2054 2055 2056
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2057

2058 2059 2060
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2061 2062 2063 2064 2065
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2066
	}
2067 2068

	return -1;
2069 2070
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2097 2098
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2099 2100
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2101
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2113 2114 2115
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2116
 */
2117 2118
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2119 2120 2121 2122 2123 2124 2125
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2126
	bool ret;
2127 2128 2129

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2130 2131 2132 2133 2134 2135
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2136 2137 2138 2139 2140 2141
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2142 2143 2144 2145
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2146 2147 2148
				continue;

			/*
2149 2150 2151 2152 2153
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2154
			 */
2155
			if (is_migrate_highatomic_page(page)) {
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2178 2179
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2180 2181 2182 2183
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2184 2185 2186
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2187 2188

	return false;
2189 2190
}

2191 2192 2193 2194 2195 2196 2197
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
 */
static inline bool
2198
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2199
{
2200
	struct free_area *area;
2201
	unsigned int current_order;
2202
	struct page *page;
2203 2204
	int fallback_mt;
	bool can_steal;
2205 2206

	/* Find the largest possible block of pages in the other list */
2207 2208 2209
	for (current_order = MAX_ORDER-1;
				current_order >= order && current_order <= MAX_ORDER-1;
				--current_order) {
2210 2211
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2212
				start_migratetype, false, &can_steal);
2213 2214
		if (fallback_mt == -1)
			continue;
2215

2216
		page = list_first_entry(&area->free_list[fallback_mt],
2217
						struct page, lru);
2218

2219 2220
		steal_suitable_fallback(zone, page, start_migratetype,
								can_steal);
2221

2222 2223
		trace_mm_page_alloc_extfrag(page, order, current_order,
			start_migratetype, fallback_mt);
2224

2225
		return true;
2226 2227
	}

2228
	return false;
2229 2230
}

2231
/*
L
Linus Torvalds 已提交
2232 2233 2234
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2235
static struct page *__rmqueue(struct zone *zone, unsigned int order,
2236
				int migratetype)
L
Linus Torvalds 已提交
2237 2238 2239
{
	struct page *page;

2240
retry:
2241
	page = __rmqueue_smallest(zone, order, migratetype);
2242
	if (unlikely(!page)) {
2243 2244 2245
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2246 2247
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2248 2249
	}

2250
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2251
	return page;
L
Linus Torvalds 已提交
2252 2253
}

2254
/*
L
Linus Torvalds 已提交
2255 2256 2257 2258
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2259
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2260
			unsigned long count, struct list_head *list,
2261
			int migratetype, bool cold)
L
Linus Torvalds 已提交
2262
{
2263
	int i, alloced = 0;
2264

2265
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2266
	for (i = 0; i < count; ++i) {
2267
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2268
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2269
			break;
2270

2271 2272 2273
		if (unlikely(check_pcp_refill(page)))
			continue;

2274 2275 2276 2277 2278 2279 2280 2281 2282
		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
2283
		if (likely(!cold))
2284 2285 2286
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
2287
		list = &page->lru;
2288
		alloced++;
2289
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2290 2291
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2292
	}
2293 2294 2295 2296 2297 2298 2299

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2300
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2301
	spin_unlock(&zone->lock);
2302
	return alloced;
L
Linus Torvalds 已提交
2303 2304
}

2305
#ifdef CONFIG_NUMA
2306
/*
2307 2308 2309 2310
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2311 2312
 * Note that this function must be called with the thread pinned to
 * a single processor.
2313
 */
2314
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2315 2316
{
	unsigned long flags;
2317
	int to_drain, batch;
2318

2319
	local_irq_save(flags);
2320
	batch = READ_ONCE(pcp->batch);
2321
	to_drain = min(pcp->count, batch);
2322 2323 2324 2325
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2326
	local_irq_restore(flags);
2327 2328 2329
}
#endif

2330
/*
2331
 * Drain pcplists of the indicated processor and zone.
2332 2333 2334 2335 2336
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2337
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2338
{
N
Nick Piggin 已提交
2339
	unsigned long flags;
2340 2341
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2342

2343 2344
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2345

2346 2347 2348 2349 2350 2351 2352
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2353

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2367 2368 2369
	}
}

2370 2371
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2372 2373 2374
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2375
 */
2376
void drain_local_pages(struct zone *zone)
2377
{
2378 2379 2380 2381 2382 2383
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2384 2385
}

2386 2387
static void drain_local_pages_wq(struct work_struct *work)
{
2388 2389 2390 2391 2392 2393 2394 2395
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2396
	drain_local_pages(NULL);
2397
	preempt_enable();
2398 2399
}

2400
/*
2401 2402
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2403 2404
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2405
 * Note that this can be extremely slow as the draining happens in a workqueue.
2406
 */
2407
void drain_all_pages(struct zone *zone)
2408
{
2409 2410 2411 2412 2413 2414 2415 2416
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2417 2418 2419 2420 2421 2422 2423
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2424 2425 2426 2427
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2438

2439 2440 2441 2442 2443 2444 2445
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2446 2447
		struct per_cpu_pageset *pcp;
		struct zone *z;
2448
		bool has_pcps = false;
2449 2450

		if (zone) {
2451
			pcp = per_cpu_ptr(zone->pageset, cpu);
2452
			if (pcp->pcp.count)
2453
				has_pcps = true;
2454 2455 2456 2457 2458 2459 2460
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2461 2462
			}
		}
2463

2464 2465 2466 2467 2468
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2469

2470 2471 2472
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2473
		queue_work_on(cpu, mm_percpu_wq, work);
2474
	}
2475 2476 2477 2478
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2479 2480
}

2481
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2482 2483 2484

void mark_free_pages(struct zone *zone)
{
2485 2486
	unsigned long pfn, max_zone_pfn;
	unsigned long flags;
2487
	unsigned int order, t;
2488
	struct page *page;
L
Linus Torvalds 已提交
2489

2490
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2491 2492 2493
		return;

	spin_lock_irqsave(&zone->lock, flags);
2494

2495
	max_zone_pfn = zone_end_pfn(zone);
2496 2497
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2498
			page = pfn_to_page(pfn);
2499 2500 2501 2502

			if (page_zone(page) != zone)
				continue;

2503 2504
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2505
		}
L
Linus Torvalds 已提交
2506

2507
	for_each_migratetype_order(order, t) {
2508 2509
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2510
			unsigned long i;
L
Linus Torvalds 已提交
2511

2512
			pfn = page_to_pfn(page);
2513
			for (i = 0; i < (1UL << order); i++)
2514
				swsusp_set_page_free(pfn_to_page(pfn + i));
2515
		}
2516
	}
L
Linus Torvalds 已提交
2517 2518
	spin_unlock_irqrestore(&zone->lock, flags);
}
2519
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2520 2521 2522

/*
 * Free a 0-order page
2523
 * cold == true ? free a cold page : free a hot page
L
Linus Torvalds 已提交
2524
 */
2525
void free_hot_cold_page(struct page *page, bool cold)
L
Linus Torvalds 已提交
2526 2527 2528
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
2529
	unsigned long flags;
2530
	unsigned long pfn = page_to_pfn(page);
2531
	int migratetype;
L
Linus Torvalds 已提交
2532

2533
	if (!free_pcp_prepare(page))
2534 2535
		return;

2536
	migratetype = get_pfnblock_migratetype(page, pfn);
2537
	set_pcppage_migratetype(page, migratetype);
2538 2539
	local_irq_save(flags);
	__count_vm_event(PGFREE);
2540

2541 2542 2543
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2544
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2545 2546 2547 2548
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2549
		if (unlikely(is_migrate_isolate(migratetype))) {
2550
			free_one_page(zone, page, pfn, 0, migratetype);
2551 2552 2553 2554 2555
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

2556
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2557
	if (!cold)
2558
		list_add(&page->lru, &pcp->lists[migratetype]);
2559 2560
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2561
	pcp->count++;
N
Nick Piggin 已提交
2562
	if (pcp->count >= pcp->high) {
2563
		unsigned long batch = READ_ONCE(pcp->batch);
2564 2565
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2566
	}
2567 2568

out:
2569
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2570 2571
}

2572 2573 2574
/*
 * Free a list of 0-order pages
 */
2575
void free_hot_cold_page_list(struct list_head *list, bool cold)
2576 2577 2578 2579
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
2580
		trace_mm_page_free_batched(page, cold);
2581 2582 2583 2584
		free_hot_cold_page(page, cold);
	}
}

N
Nick Piggin 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2597 2598
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

#ifdef CONFIG_KMEMCHECK
	/*
	 * Split shadow pages too, because free(page[0]) would
	 * otherwise free the whole shadow.
	 */
	if (kmemcheck_page_is_tracked(page))
		split_page(virt_to_page(page[0].shadow), order);
#endif

2609
	for (i = 1; i < (1 << order); i++)
2610
		set_page_refcounted(page + i);
2611
	split_page_owner(page, order);
N
Nick Piggin 已提交
2612
}
K
K. Y. Srinivasan 已提交
2613
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2614

2615
int __isolate_free_page(struct page *page, unsigned int order)
2616 2617 2618
{
	unsigned long watermark;
	struct zone *zone;
2619
	int mt;
2620 2621 2622 2623

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2624
	mt = get_pageblock_migratetype(page);
2625

2626
	if (!is_migrate_isolate(mt)) {
2627 2628 2629 2630 2631 2632 2633
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2634
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2635 2636
			return 0;

2637
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2638
	}
2639 2640 2641 2642 2643

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2644

2645 2646 2647 2648
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2649 2650
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2651 2652
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2653
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2654
			    && !is_migrate_highatomic(mt))
2655 2656 2657
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2658 2659
	}

2660

2661
	return 1UL << order;
2662 2663
}

2664 2665 2666 2667 2668
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2669
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2670 2671 2672 2673
{
#ifdef CONFIG_NUMA
	enum zone_stat_item local_stat = NUMA_LOCAL;

2674
	if (z->node != numa_node_id())
2675 2676
		local_stat = NUMA_OTHER;

2677
	if (z->node == preferred_zone->node)
2678
		__inc_zone_state(z, NUMA_HIT);
2679
	else {
2680 2681 2682
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
	}
2683
	__inc_zone_state(z, local_stat);
2684 2685 2686
#endif
}

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
			bool cold, struct per_cpu_pages *pcp,
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				return NULL;
		}

		if (cold)
			page = list_last_entry(list, struct page, lru);
		else
			page = list_first_entry(list, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
	struct page *page;
2724
	unsigned long flags;
2725

2726
	local_irq_save(flags);
2727 2728 2729 2730 2731 2732 2733
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2734
	local_irq_restore(flags);
2735 2736 2737
	return page;
}

L
Linus Torvalds 已提交
2738
/*
2739
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2740
 */
2741
static inline
2742
struct page *rmqueue(struct zone *preferred_zone,
2743
			struct zone *zone, unsigned int order,
2744 2745
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2746 2747
{
	unsigned long flags;
2748
	struct page *page;
L
Linus Torvalds 已提交
2749

2750
	if (likely(order == 0)) {
2751 2752 2753 2754
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2755

2756 2757 2758 2759 2760 2761
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2762

2763 2764 2765 2766 2767 2768 2769
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2770
		if (!page)
2771 2772 2773 2774 2775 2776 2777
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2778

2779
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2780
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2781
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2782

2783 2784
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2785
	return page;
N
Nick Piggin 已提交
2786 2787 2788 2789

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2790 2791
}

2792 2793
#ifdef CONFIG_FAIL_PAGE_ALLOC

2794
static struct {
2795 2796
	struct fault_attr attr;

2797
	bool ignore_gfp_highmem;
2798
	bool ignore_gfp_reclaim;
2799
	u32 min_order;
2800 2801
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2802
	.ignore_gfp_reclaim = true,
2803
	.ignore_gfp_highmem = true,
2804
	.min_order = 1,
2805 2806 2807 2808 2809 2810 2811 2812
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2813
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2814
{
2815
	if (order < fail_page_alloc.min_order)
2816
		return false;
2817
	if (gfp_mask & __GFP_NOFAIL)
2818
		return false;
2819
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2820
		return false;
2821 2822
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2823
		return false;
2824 2825 2826 2827 2828 2829 2830 2831

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2832
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2833 2834
	struct dentry *dir;

2835 2836 2837 2838
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2839

2840
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2841
				&fail_page_alloc.ignore_gfp_reclaim))
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2852
	debugfs_remove_recursive(dir);
2853

2854
	return -ENOMEM;
2855 2856 2857 2858 2859 2860 2861 2862
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2863
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2864
{
2865
	return false;
2866 2867 2868 2869
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2870
/*
2871 2872 2873 2874
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2875
 */
2876 2877 2878
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2879
{
2880
	long min = mark;
L
Linus Torvalds 已提交
2881
	int o;
2882
	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
L
Linus Torvalds 已提交
2883

2884
	/* free_pages may go negative - that's OK */
2885
	free_pages -= (1 << order) - 1;
2886

R
Rohit Seth 已提交
2887
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2888
		min -= min / 2;
2889 2890 2891 2892 2893 2894

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
2895
	if (likely(!alloc_harder))
2896 2897
		free_pages -= z->nr_reserved_highatomic;
	else
L
Linus Torvalds 已提交
2898
		min -= min / 4;
2899

2900 2901 2902
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
2903
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2904
#endif
2905

2906 2907 2908 2909 2910 2911
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2912
		return false;
L
Linus Torvalds 已提交
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
2928

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
2940
	}
2941
	return false;
2942 2943
}

2944
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2945
		      int classzone_idx, unsigned int alloc_flags)
2946 2947 2948 2949 2950
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

2977
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2978
			unsigned long mark, int classzone_idx)
2979 2980 2981 2982 2983 2984
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

2985
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2986
								free_pages);
L
Linus Torvalds 已提交
2987 2988
}

2989
#ifdef CONFIG_NUMA
2990 2991
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
2992
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2993
				RECLAIM_DISTANCE;
2994
}
2995
#else	/* CONFIG_NUMA */
2996 2997 2998 2999
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3000 3001
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3002
/*
3003
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3004 3005 3006
 * a page.
 */
static struct page *
3007 3008
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3009
{
3010
	struct zoneref *z = ac->preferred_zoneref;
3011
	struct zone *zone;
3012 3013
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3014
	/*
3015
	 * Scan zonelist, looking for a zone with enough free.
3016
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3017
	 */
3018
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3019
								ac->nodemask) {
3020
		struct page *page;
3021 3022
		unsigned long mark;

3023 3024
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3025
			!__cpuset_zone_allowed(zone, gfp_mask))
3026
				continue;
3027 3028
		/*
		 * When allocating a page cache page for writing, we
3029 3030
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3031
		 * proportional share of globally allowed dirty pages.
3032
		 * The dirty limits take into account the node's
3033 3034 3035 3036 3037
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3038
		 * exceed the per-node dirty limit in the slowpath
3039
		 * (spread_dirty_pages unset) before going into reclaim,
3040
		 * which is important when on a NUMA setup the allowed
3041
		 * nodes are together not big enough to reach the
3042
		 * global limit.  The proper fix for these situations
3043
		 * will require awareness of nodes in the
3044 3045
		 * dirty-throttling and the flusher threads.
		 */
3046 3047 3048 3049 3050 3051 3052 3053 3054
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3055

3056
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3057
		if (!zone_watermark_fast(zone, order, mark,
3058
				       ac_classzone_idx(ac), alloc_flags)) {
3059 3060
			int ret;

3061 3062 3063 3064 3065
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3066
			if (node_reclaim_mode == 0 ||
3067
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3068 3069
				continue;

3070
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3071
			switch (ret) {
3072
			case NODE_RECLAIM_NOSCAN:
3073
				/* did not scan */
3074
				continue;
3075
			case NODE_RECLAIM_FULL:
3076
				/* scanned but unreclaimable */
3077
				continue;
3078 3079
			default:
				/* did we reclaim enough */
3080
				if (zone_watermark_ok(zone, order, mark,
3081
						ac_classzone_idx(ac), alloc_flags))
3082 3083 3084
					goto try_this_zone;

				continue;
3085
			}
R
Rohit Seth 已提交
3086 3087
		}

3088
try_this_zone:
3089
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3090
				gfp_mask, alloc_flags, ac->migratetype);
3091
		if (page) {
3092
			prep_new_page(page, order, gfp_mask, alloc_flags);
3093 3094 3095 3096 3097 3098 3099 3100

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3101 3102
			return page;
		}
3103
	}
3104

3105
	return NULL;
M
Martin Hicks 已提交
3106 3107
}

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3122
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3123 3124
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3125
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3126

3127
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
		if (test_thread_flag(TIF_MEMDIE) ||
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3139
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3140 3141
		filter &= ~SHOW_MEM_FILTER_NODES;

3142
	show_mem(filter, nodemask);
3143 3144
}

3145
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3146 3147 3148 3149 3150 3151
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3152
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3153 3154
		return;

3155
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3156

3157 3158 3159 3160 3161
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3162

3163 3164 3165 3166 3167 3168
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3169
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3170

3171
	dump_stack();
3172
	warn_alloc_show_mem(gfp_mask, nodemask);
3173 3174
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3195 3196
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3197
	const struct alloc_context *ac, unsigned long *did_some_progress)
3198
{
3199 3200 3201
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3202
		.memcg = NULL,
3203 3204 3205
		.gfp_mask = gfp_mask,
		.order = order,
	};
3206 3207
	struct page *page;

3208 3209 3210
	*did_some_progress = 0;

	/*
3211 3212
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3213
	 */
3214
	if (!mutex_trylock(&oom_lock)) {
3215
		*did_some_progress = 1;
3216
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3217 3218
		return NULL;
	}
3219

3220 3221 3222 3223 3224
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
	 * we're still under heavy pressure.
	 */
3225 3226
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3227
	if (page)
3228 3229
		goto out;

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3254

3255
	/* Exhausted what can be done so it's blamo time */
3256
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3257
		*did_some_progress = 1;
3258

3259 3260 3261 3262 3263 3264
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3265 3266
					ALLOC_NO_WATERMARKS, ac);
	}
3267
out:
3268
	mutex_unlock(&oom_lock);
3269 3270 3271
	return page;
}

3272 3273 3274 3275 3276 3277
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3278 3279 3280 3281
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3282
		unsigned int alloc_flags, const struct alloc_context *ac,
3283
		enum compact_priority prio, enum compact_result *compact_result)
3284
{
3285
	struct page *page;
3286
	unsigned int noreclaim_flag = current->flags & PF_MEMALLOC;
3287 3288

	if (!order)
3289 3290
		return NULL;

3291
	current->flags |= PF_MEMALLOC;
3292
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3293
									prio);
3294
	current->flags = (current->flags & ~PF_MEMALLOC) | noreclaim_flag;
3295

3296
	if (*compact_result <= COMPACT_INACTIVE)
3297
		return NULL;
3298

3299 3300 3301 3302 3303
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3304

3305
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3306

3307 3308
	if (page) {
		struct zone *zone = page_zone(page);
3309

3310 3311 3312 3313 3314
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3315

3316 3317 3318 3319 3320
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3321

3322
	cond_resched();
3323 3324 3325

	return NULL;
}
3326

3327 3328 3329 3330
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3331
		     int *compaction_retries)
3332 3333
{
	int max_retries = MAX_COMPACT_RETRIES;
3334
	int min_priority;
3335 3336 3337
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3338 3339 3340 3341

	if (!order)
		return false;

3342 3343 3344
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3345 3346 3347 3348 3349
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3350 3351
	if (compaction_failed(compact_result))
		goto check_priority;
3352 3353 3354 3355 3356 3357 3358

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3359 3360 3361 3362
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373

	/*
	 * !costly requests are much more important than __GFP_REPEAT
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3374 3375 3376 3377
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3378

3379 3380 3381 3382 3383
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3384 3385
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3386

3387
	if (*compact_priority > min_priority) {
3388 3389
		(*compact_priority)--;
		*compaction_retries = 0;
3390
		ret = true;
3391
	}
3392 3393 3394
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3395
}
3396 3397 3398
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3399
		unsigned int alloc_flags, const struct alloc_context *ac,
3400
		enum compact_priority prio, enum compact_result *compact_result)
3401
{
3402
	*compact_result = COMPACT_SKIPPED;
3403 3404
	return NULL;
}
3405 3406

static inline bool
3407 3408
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3409
		     enum compact_priority *compact_priority,
3410
		     int *compaction_retries)
3411
{
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3430 3431
	return false;
}
3432
#endif /* CONFIG_COMPACTION */
3433

3434 3435
/* Perform direct synchronous page reclaim */
static int
3436 3437
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3438 3439
{
	struct reclaim_state reclaim_state;
3440
	int progress;
3441 3442 3443 3444 3445

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3446
	current->flags |= PF_MEMALLOC;
3447 3448
	lockdep_set_current_reclaim_state(gfp_mask);
	reclaim_state.reclaimed_slab = 0;
3449
	current->reclaim_state = &reclaim_state;
3450

3451 3452
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3453

3454
	current->reclaim_state = NULL;
3455
	lockdep_clear_current_reclaim_state();
3456
	current->flags &= ~PF_MEMALLOC;
3457 3458 3459

	cond_resched();

3460 3461 3462 3463 3464 3465
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3466
		unsigned int alloc_flags, const struct alloc_context *ac,
3467
		unsigned long *did_some_progress)
3468 3469 3470 3471
{
	struct page *page = NULL;
	bool drained = false;

3472
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3473 3474
	if (unlikely(!(*did_some_progress)))
		return NULL;
3475

3476
retry:
3477
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3478 3479 3480

	/*
	 * If an allocation failed after direct reclaim, it could be because
3481 3482
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3483 3484
	 */
	if (!page && !drained) {
3485
		unreserve_highatomic_pageblock(ac, false);
3486
		drain_all_pages(NULL);
3487 3488 3489 3490
		drained = true;
		goto retry;
	}

3491 3492 3493
	return page;
}

3494
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3495 3496 3497
{
	struct zoneref *z;
	struct zone *zone;
3498
	pg_data_t *last_pgdat = NULL;
3499

3500
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3501 3502
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3503
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3504 3505
		last_pgdat = zone->zone_pgdat;
	}
3506 3507
}

3508
static inline unsigned int
3509 3510
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3511
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3512

3513
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3514
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3515

3516 3517 3518 3519
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3520
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3521
	 */
3522
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3523

3524
	if (gfp_mask & __GFP_ATOMIC) {
3525
		/*
3526 3527
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3528
		 */
3529
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3530
			alloc_flags |= ALLOC_HARDER;
3531
		/*
3532
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3533
		 * comment for __cpuset_node_allowed().
3534
		 */
3535
		alloc_flags &= ~ALLOC_CPUSET;
3536
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3537 3538
		alloc_flags |= ALLOC_HARDER;

3539
#ifdef CONFIG_CMA
3540
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3541 3542
		alloc_flags |= ALLOC_CMA;
#endif
3543 3544 3545
	return alloc_flags;
}

3546 3547
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	if (gfp_mask & __GFP_MEMALLOC)
		return true;
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
		return true;
	if (!in_interrupt() &&
			((current->flags & PF_MEMALLOC) ||
			 unlikely(test_thread_flag(TIF_MEMDIE))))
		return true;

	return false;
3561 3562
}

M
Michal Hocko 已提交
3563 3564 3565
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3566 3567 3568 3569
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3570 3571 3572 3573 3574 3575
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3576
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3577 3578 3579 3580
{
	struct zone *zone;
	struct zoneref *z;

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3591 3592 3593 3594
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3595 3596
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3597
		return unreserve_highatomic_pageblock(ac, true);
3598
	}
M
Michal Hocko 已提交
3599

3600 3601 3602 3603 3604
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3605 3606 3607 3608
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3609
		unsigned long reclaimable;
3610 3611
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3612

3613 3614
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3615 3616

		/*
3617 3618
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3619
		 */
3620 3621 3622 3623 3624
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3625 3626 3627 3628 3629 3630 3631
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3632
				unsigned long write_pending;
3633

3634 3635
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3636

3637
				if (2 * write_pending > reclaimable) {
3638 3639 3640 3641
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3642

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3657 3658 3659 3660 3661 3662 3663
			return true;
		}
	}

	return false;
}

3664 3665
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3666
						struct alloc_context *ac)
3667
{
3668
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3669
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3670
	struct page *page = NULL;
3671
	unsigned int alloc_flags;
3672
	unsigned long did_some_progress;
3673
	enum compact_priority compact_priority;
3674
	enum compact_result compact_result;
3675 3676
	int compaction_retries;
	int no_progress_loops;
3677 3678
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3679
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
3680

3681 3682 3683 3684 3685 3686
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3687 3688
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3689
		return NULL;
3690
	}
L
Linus Torvalds 已提交
3691

3692 3693 3694 3695 3696 3697 3698 3699
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3700 3701 3702 3703 3704
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3705 3706 3707 3708 3709 3710 3711 3712

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3735 3736
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3737 3738 3739 3740 3741 3742
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3743
	 */
3744 3745 3746 3747
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3748 3749
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3750
						INIT_COMPACT_PRIORITY,
3751 3752 3753 3754
						&compact_result);
		if (page)
			goto got_pg;

3755 3756 3757 3758
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
3759
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3772 3773
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
3774
			 * using async compaction.
3775
			 */
3776
			compact_priority = INIT_COMPACT_PRIORITY;
3777 3778
		}
	}
3779

3780
retry:
3781
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3782 3783 3784
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

3785 3786 3787
	if (gfp_pfmemalloc_allowed(gfp_mask))
		alloc_flags = ALLOC_NO_WATERMARKS;

3788 3789 3790 3791 3792
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
3793
	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3794 3795 3796 3797 3798
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

3799
	/* Attempt with potentially adjusted zonelist and alloc_flags */
3800
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
3801 3802
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
3803

3804
	/* Caller is not willing to reclaim, we can't balance anything */
3805
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
3806 3807
		goto nopage;

3808 3809
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
3810
		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3811 3812 3813
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
3814
	}
3815

3816 3817
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
3818 3819
		goto nopage;

3820 3821 3822 3823 3824 3825 3826
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
3827
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3828
					compact_priority, &compact_result);
3829 3830
	if (page)
		goto got_pg;
3831

3832 3833
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
3834
		goto nopage;
3835

M
Michal Hocko 已提交
3836 3837 3838 3839
	/*
	 * Do not retry costly high order allocations unless they are
	 * __GFP_REPEAT
	 */
3840
	if (costly_order && !(gfp_mask & __GFP_REPEAT))
3841
		goto nopage;
M
Michal Hocko 已提交
3842 3843

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3844
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
3845 3846
		goto retry;

3847 3848 3849 3850 3851 3852 3853
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
3854
			should_compact_retry(ac, order, alloc_flags,
3855
				compact_result, &compact_priority,
3856
				&compaction_retries))
3857 3858
		goto retry;

3859 3860 3861 3862 3863 3864 3865
	/*
	 * It's possible we raced with cpuset update so the OOM would be
	 * premature (see below the nopage: label for full explanation).
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3866 3867 3868 3869 3870
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

3871 3872 3873 3874
	/* Avoid allocations with no watermarks from looping endlessly */
	if (test_thread_flag(TIF_MEMDIE))
		goto nopage;

3875
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
3876 3877
	if (did_some_progress) {
		no_progress_loops = 0;
3878
		goto retry;
M
Michal Hocko 已提交
3879
	}
3880

L
Linus Torvalds 已提交
3881
nopage:
3882
	/*
3883 3884 3885 3886 3887
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
3888 3889 3890 3891
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

3929 3930 3931 3932
		cond_resched();
		goto retry;
	}
fail:
3933
	warn_alloc(gfp_mask, ac->nodemask,
3934
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
3935
got_pg:
3936
	return page;
L
Linus Torvalds 已提交
3937
}
3938

3939 3940 3941 3942
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
		struct zonelist *zonelist, nodemask_t *nodemask,
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
3943
{
3944 3945 3946 3947
	ac->high_zoneidx = gfp_zone(gfp_mask);
	ac->zonelist = zonelist;
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3948

3949
	if (cpusets_enabled()) {
3950 3951 3952
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
3953 3954
		else
			*alloc_flags |= ALLOC_CPUSET;
3955 3956
	}

3957 3958
	lockdep_trace_alloc(gfp_mask);

3959
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3960 3961

	if (should_fail_alloc_page(gfp_mask, order))
3962
		return false;
3963

3964 3965 3966 3967 3968
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
3969

3970 3971 3972 3973
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
3974
	/* Dirty zone balancing only done in the fast path */
3975
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3976

3977 3978 3979 3980 3981
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
			struct zonelist *zonelist, nodemask_t *nodemask)
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4003

4004
	/* First allocation attempt */
4005
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4006 4007
	if (likely(page))
		goto out;
4008

4009
	/*
4010 4011 4012 4013
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4014
	 */
4015
	alloc_mask = current_gfp_context(gfp_mask);
4016
	ac.spread_dirty_pages = false;
4017

4018 4019 4020 4021
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4022
	if (unlikely(ac.nodemask != nodemask))
4023
		ac.nodemask = nodemask;
4024

4025
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4026

4027
out:
4028 4029 4030 4031
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4032 4033
	}

4034 4035 4036 4037 4038
	if (kmemcheck_enabled && page)
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);

	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4039
	return page;
L
Linus Torvalds 已提交
4040
}
4041
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4042 4043 4044 4045

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4046
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4047
{
4048 4049 4050 4051 4052 4053 4054 4055
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4063
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4064
{
4065
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4066 4067 4068
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4069
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4070
{
N
Nick Piggin 已提交
4071
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4072
		if (order == 0)
4073
			free_hot_cold_page(page, false);
L
Linus Torvalds 已提交
4074 4075 4076 4077 4078 4079 4080
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4081
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4082 4083
{
	if (addr != 0) {
N
Nick Piggin 已提交
4084
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4085 4086 4087 4088 4089 4090
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4102 4103
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4123
void __page_frag_cache_drain(struct page *page, unsigned int count)
4124 4125 4126 4127
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4128 4129
		unsigned int order = compound_order(page);

4130 4131 4132 4133 4134 4135
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}
4136
EXPORT_SYMBOL(__page_frag_cache_drain);
4137

4138 4139
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4140 4141 4142 4143 4144 4145 4146
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4147
		page = __page_frag_cache_refill(nc, gfp_mask);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4158
		page_ref_add(page, size - 1);
4159 4160

		/* reset page count bias and offset to start of new frag */
4161
		nc->pfmemalloc = page_is_pfmemalloc(page);
4162 4163 4164 4165 4166 4167 4168 4169
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4170
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4171 4172 4173 4174 4175 4176 4177
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4178
		set_page_count(page, size);
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4190
EXPORT_SYMBOL(page_frag_alloc);
4191 4192 4193 4194

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4195
void page_frag_free(void *addr)
4196 4197 4198 4199 4200 4201
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4202
EXPORT_SYMBOL(page_frag_free);
4203

4204 4205
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4239
	return make_alloc_exact(addr, order, size);
4240 4241 4242
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4243 4244 4245
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4246
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4247 4248 4249 4250 4251 4252
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4253
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4254
{
4255
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4256 4257 4258 4259 4260 4261
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4281 4282 4283 4284 4285 4286 4287
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4288 4289
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4290
 */
4291
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4292
{
4293
	struct zoneref *z;
4294 4295
	struct zone *zone;

4296
	/* Just pick one node, since fallback list is circular */
4297
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4298

4299
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4300

4301
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4302
		unsigned long size = zone->managed_pages;
4303
		unsigned long high = high_wmark_pages(zone);
4304 4305
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310
	}

	return sum;
}

4311 4312 4313 4314 4315
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4316
 */
4317
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4318
{
A
Al Viro 已提交
4319
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4320
}
4321
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4322

4323 4324 4325 4326 4327
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4328
 */
4329
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4330
{
M
Mel Gorman 已提交
4331
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4332
}
4333 4334

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4335
{
4336
	if (IS_ENABLED(CONFIG_NUMA))
4337
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4338 4339
}

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4350
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
	available += global_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4383 4384 4385
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4386
	val->sharedram = global_node_page_state(NR_SHMEM);
4387
	val->freeram = global_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4399 4400
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4401 4402
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4403 4404
	pg_data_t *pgdat = NODE_DATA(nid);

4405 4406 4407
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4408
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4409
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4410
#ifdef CONFIG_HIGHMEM
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4421
#else
4422 4423
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4424
#endif
L
Linus Torvalds 已提交
4425 4426 4427 4428
	val->mem_unit = PAGE_SIZE;
}
#endif

4429
/*
4430 4431
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4432
 */
4433
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4434 4435
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4436
		return false;
4437

4438 4439 4440 4441 4442 4443 4444 4445 4446
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4447 4448
}

L
Linus Torvalds 已提交
4449 4450
#define K(x) ((x) << (PAGE_SHIFT-10))

4451 4452 4453 4454 4455
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4456 4457
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4458 4459 4460
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4461
#ifdef CONFIG_MEMORY_ISOLATION
4462
		[MIGRATE_ISOLATE]	= 'I',
4463
#endif
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4475
	printk(KERN_CONT "(%s) ", tmp);
4476 4477
}

L
Linus Torvalds 已提交
4478 4479 4480 4481
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4482 4483 4484 4485
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4486
 */
4487
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4488
{
4489
	unsigned long free_pcp = 0;
4490
	int cpu;
L
Linus Torvalds 已提交
4491
	struct zone *zone;
M
Mel Gorman 已提交
4492
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4493

4494
	for_each_populated_zone(zone) {
4495
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4496
			continue;
4497

4498 4499
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4500 4501
	}

K
KOSAKI Motohiro 已提交
4502 4503
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4504 4505
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4506
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4507
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4508 4509 4510 4511 4512 4513 4514
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4515 4516 4517
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4518 4519
		global_page_state(NR_SLAB_RECLAIMABLE),
		global_page_state(NR_SLAB_UNRECLAIMABLE),
4520
		global_node_page_state(NR_FILE_MAPPED),
4521
		global_node_page_state(NR_SHMEM),
4522
		global_page_state(NR_PAGETABLE),
4523
		global_page_state(NR_BOUNCE),
4524 4525
		global_page_state(NR_FREE_PAGES),
		free_pcp,
4526
		global_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4527

M
Mel Gorman 已提交
4528
	for_each_online_pgdat(pgdat) {
4529
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4530 4531
			continue;

M
Mel Gorman 已提交
4532 4533 4534 4535 4536 4537 4538 4539
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4540
			" mapped:%lukB"
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4561
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4562 4563
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4564
			K(node_page_state(pgdat, NR_SHMEM)),
4565 4566 4567 4568 4569 4570 4571 4572
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4573 4574
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4575 4576
	}

4577
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4578 4579
		int i;

4580
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4581
			continue;
4582 4583 4584 4585 4586

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4587
		show_node(zone);
4588 4589
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4590 4591 4592 4593
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4594 4595 4596 4597 4598
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4599
			" writepending:%lukB"
L
Linus Torvalds 已提交
4600
			" present:%lukB"
4601
			" managed:%lukB"
4602 4603 4604
			" mlocked:%lukB"
			" slab_reclaimable:%lukB"
			" slab_unreclaimable:%lukB"
4605
			" kernel_stack:%lukB"
4606 4607
			" pagetables:%lukB"
			" bounce:%lukB"
4608 4609
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4610
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4611 4612
			"\n",
			zone->name,
4613
			K(zone_page_state(zone, NR_FREE_PAGES)),
4614 4615 4616
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4617 4618 4619 4620 4621
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4622
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4623
			K(zone->present_pages),
4624
			K(zone->managed_pages),
4625 4626 4627
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4628
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4629 4630
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4631 4632
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4633
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4634 4635
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4636 4637
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4638 4639
	}

4640
	for_each_populated_zone(zone) {
4641 4642
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4643
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4644

4645
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4646
			continue;
L
Linus Torvalds 已提交
4647
		show_node(zone);
4648
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4649 4650 4651

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4652 4653 4654 4655
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4656
			total += nr[order] << order;
4657 4658 4659 4660 4661 4662

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4663 4664
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4665
		for (order = 0; order < MAX_ORDER; order++) {
4666 4667
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4668 4669 4670
			if (nr[order])
				show_migration_types(types[order]);
		}
4671
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4672 4673
	}

4674 4675
	hugetlb_show_meminfo();

4676
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4677

L
Linus Torvalds 已提交
4678 4679 4680
	show_swap_cache_info();
}

4681 4682 4683 4684 4685 4686
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4687 4688
/*
 * Builds allocation fallback zone lists.
4689 4690
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4691
 */
4692
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4693
				int nr_zones)
L
Linus Torvalds 已提交
4694
{
4695
	struct zone *zone;
4696
	enum zone_type zone_type = MAX_NR_ZONES;
4697 4698

	do {
4699
		zone_type--;
4700
		zone = pgdat->node_zones + zone_type;
4701
		if (managed_zone(zone)) {
4702 4703
			zoneref_set_zone(zone,
				&zonelist->_zonerefs[nr_zones++]);
4704
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4705
		}
4706
	} while (zone_type);
4707

4708
	return nr_zones;
L
Linus Torvalds 已提交
4709 4710
}

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

/*
 *  zonelist_order:
 *  0 = automatic detection of better ordering.
 *  1 = order by ([node] distance, -zonetype)
 *  2 = order by (-zonetype, [node] distance)
 *
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 *  the same zonelist. So only NUMA can configure this param.
 */
#define ZONELIST_ORDER_DEFAULT  0
#define ZONELIST_ORDER_NODE     1
#define ZONELIST_ORDER_ZONE     2

/* zonelist order in the kernel.
 * set_zonelist_order() will set this to NODE or ZONE.
 */
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};


L
Linus Torvalds 已提交
4732
#ifdef CONFIG_NUMA
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN	16
char numa_zonelist_order[16] = "default";

/*
 * interface for configure zonelist ordering.
 * command line option "numa_zonelist_order"
 *	= "[dD]efault	- default, automatic configuration.
 *	= "[nN]ode 	- order by node locality, then by zone within node
 *	= "[zZ]one      - order by zone, then by locality within zone
 */

static int __parse_numa_zonelist_order(char *s)
{
	if (*s == 'd' || *s == 'D') {
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
	} else if (*s == 'n' || *s == 'N') {
		user_zonelist_order = ZONELIST_ORDER_NODE;
	} else if (*s == 'z' || *s == 'Z') {
		user_zonelist_order = ZONELIST_ORDER_ZONE;
	} else {
4756
		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4757 4758 4759 4760 4761 4762 4763
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	int ret;

	if (!s)
		return 0;

	ret = __parse_numa_zonelist_order(s);
	if (ret == 0)
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);

	return ret;
4774 4775 4776 4777 4778 4779
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

/*
 * sysctl handler for numa_zonelist_order
 */
4780
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4781
		void __user *buffer, size_t *length,
4782 4783 4784 4785
		loff_t *ppos)
{
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
	int ret;
4786
	static DEFINE_MUTEX(zl_order_mutex);
4787

4788
	mutex_lock(&zl_order_mutex);
4789 4790 4791 4792 4793 4794 4795
	if (write) {
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
			ret = -EINVAL;
			goto out;
		}
		strcpy(saved_string, (char *)table->data);
	}
4796
	ret = proc_dostring(table, write, buffer, length, ppos);
4797
	if (ret)
4798
		goto out;
4799 4800
	if (write) {
		int oldval = user_zonelist_order;
4801 4802 4803

		ret = __parse_numa_zonelist_order((char *)table->data);
		if (ret) {
4804 4805 4806
			/*
			 * bogus value.  restore saved string
			 */
4807
			strncpy((char *)table->data, saved_string,
4808 4809
				NUMA_ZONELIST_ORDER_LEN);
			user_zonelist_order = oldval;
4810 4811
		} else if (oldval != user_zonelist_order) {
			mutex_lock(&zonelists_mutex);
4812
			build_all_zonelists(NULL, NULL);
4813 4814
			mutex_unlock(&zonelists_mutex);
		}
4815
	}
4816 4817 4818
out:
	mutex_unlock(&zl_order_mutex);
	return ret;
4819 4820 4821
}


4822
#define MAX_NODE_LOAD (nr_online_nodes)
4823 4824
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4825
/**
4826
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4839
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4840
{
4841
	int n, val;
L
Linus Torvalds 已提交
4842
	int min_val = INT_MAX;
D
David Rientjes 已提交
4843
	int best_node = NUMA_NO_NODE;
4844
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4845

4846 4847 4848 4849 4850
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4851

4852
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
4853 4854 4855 4856 4857 4858 4859 4860

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

4861 4862 4863
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
4864
		/* Give preference to headless and unused nodes */
4865 4866
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

4885 4886 4887 4888 4889 4890 4891

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
L
Linus Torvalds 已提交
4892
{
4893
	int j;
L
Linus Torvalds 已提交
4894
	struct zonelist *zonelist;
4895

4896
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4897
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4898
		;
4899
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4900 4901
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4902 4903
}

4904 4905 4906 4907 4908 4909 4910 4911
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
	int j;
	struct zonelist *zonelist;

4912
	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4913
	j = build_zonelists_node(pgdat, zonelist, 0);
4914 4915
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4916 4917
}

4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */
static int node_order[MAX_NUMNODES];

static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
	int pos, j, node;
	int zone_type;		/* needs to be signed */
	struct zone *z;
	struct zonelist *zonelist;

4933
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4934 4935 4936 4937 4938
	pos = 0;
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
		for (j = 0; j < nr_nodes; j++) {
			node = node_order[j];
			z = &NODE_DATA(node)->node_zones[zone_type];
4939
			if (managed_zone(z)) {
4940 4941
				zoneref_set_zone(z,
					&zonelist->_zonerefs[pos++]);
4942
				check_highest_zone(zone_type);
4943 4944 4945
			}
		}
	}
4946 4947
	zonelist->_zonerefs[pos].zone = NULL;
	zonelist->_zonerefs[pos].zone_idx = 0;
4948 4949
}

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
#if defined(CONFIG_64BIT)
/*
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 * penalty to every machine in case the specialised case applies. Default
 * to Node-ordering on 64-bit NUMA machines
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_NODE;
}
#else
/*
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 * by the kernel. If processes running on node 0 deplete the low memory zone
 * then reclaim will occur more frequency increasing stalls and potentially
 * be easier to OOM if a large percentage of the zone is under writeback or
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 * Hence, default to zone ordering on 32-bit.
 */
4969 4970 4971 4972
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_ZONE;
}
4973
#endif /* CONFIG_64BIT */
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

static void set_zonelist_order(void)
{
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
		current_zonelist_order = default_zonelist_order();
	else
		current_zonelist_order = user_zonelist_order;
}

static void build_zonelists(pg_data_t *pgdat)
{
4985
	int i, node, load;
L
Linus Torvalds 已提交
4986
	nodemask_t used_mask;
4987 4988
	int local_node, prev_node;
	struct zonelist *zonelist;
4989
	unsigned int order = current_zonelist_order;
L
Linus Torvalds 已提交
4990 4991

	/* initialize zonelists */
4992
	for (i = 0; i < MAX_ZONELISTS; i++) {
L
Linus Torvalds 已提交
4993
		zonelist = pgdat->node_zonelists + i;
4994 4995
		zonelist->_zonerefs[0].zone = NULL;
		zonelist->_zonerefs[0].zone_idx = 0;
L
Linus Torvalds 已提交
4996 4997 4998 4999
	}

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5000
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5001 5002
	prev_node = local_node;
	nodes_clear(used_mask);
5003 5004

	memset(node_order, 0, sizeof(node_order));
5005
	i = 0;
5006

L
Linus Torvalds 已提交
5007 5008 5009 5010 5011 5012
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5013 5014
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5015 5016
			node_load[node] = load;

L
Linus Torvalds 已提交
5017 5018
		prev_node = node;
		load--;
5019 5020 5021
		if (order == ZONELIST_ORDER_NODE)
			build_zonelists_in_node_order(pgdat, node);
		else
5022
			node_order[i++] = node;	/* remember order */
5023
	}
L
Linus Torvalds 已提交
5024

5025 5026
	if (order == ZONELIST_ORDER_ZONE) {
		/* calculate node order -- i.e., DMA last! */
5027
		build_zonelists_in_zone_order(pgdat, i);
L
Linus Torvalds 已提交
5028
	}
5029 5030

	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5031 5032
}

5033 5034 5035 5036 5037 5038 5039 5040 5041
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5042
	struct zoneref *z;
5043

5044
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5045
				   gfp_zone(GFP_KERNEL),
5046 5047
				   NULL);
	return z->zone->node;
5048 5049
}
#endif
5050

5051 5052
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5053 5054
#else	/* CONFIG_NUMA */

5055 5056 5057 5058 5059 5060
static void set_zonelist_order(void)
{
	current_zonelist_order = ZONELIST_ORDER_ZONE;
}

static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5061
{
5062
	int node, local_node;
5063 5064
	enum zone_type j;
	struct zonelist *zonelist;
L
Linus Torvalds 已提交
5065 5066 5067

	local_node = pgdat->node_id;

5068
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5069
	j = build_zonelists_node(pgdat, zonelist, 0);
L
Linus Torvalds 已提交
5070

5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5082
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
L
Linus Torvalds 已提交
5083
	}
5084 5085 5086
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5087
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5088 5089
	}

5090 5091
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
L
Linus Torvalds 已提交
5092 5093 5094 5095
}

#endif	/* CONFIG_NUMA */

5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5113
static void setup_zone_pageset(struct zone *zone);
5114

5115 5116 5117 5118 5119 5120
/*
 * Global mutex to protect against size modification of zonelists
 * as well as to serialize pageset setup for the new populated zone.
 */
DEFINE_MUTEX(zonelists_mutex);

5121
/* return values int ....just for stop_machine() */
5122
static int __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5123
{
5124
	int nid;
5125
	int cpu;
5126
	pg_data_t *self = data;
5127

5128 5129 5130
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5131 5132 5133 5134 5135

	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
	}

5136
	for_each_online_node(nid) {
5137 5138 5139
		pg_data_t *pgdat = NODE_DATA(nid);

		build_zonelists(pgdat);
5140
	}
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
5155
	for_each_possible_cpu(cpu) {
5156 5157
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
		if (cpu_online(cpu))
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
	}

5172 5173 5174
	return 0;
}

5175 5176 5177 5178 5179 5180 5181 5182
static noinline void __init
build_all_zonelists_init(void)
{
	__build_all_zonelists(NULL);
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5183 5184 5185
/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
5186 5187 5188 5189 5190
 *
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 * [we're only called with non-NULL zone through __meminit paths] and
 * (2) call of __init annotated helper build_all_zonelists_init
 * [protected by SYSTEM_BOOTING].
5191
 */
5192
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5193
{
5194 5195
	set_zonelist_order();

5196
	if (system_state == SYSTEM_BOOTING) {
5197
		build_all_zonelists_init();
5198
	} else {
5199
#ifdef CONFIG_MEMORY_HOTPLUG
5200 5201
		if (zone)
			setup_zone_pageset(zone);
5202
#endif
5203 5204
		/* we have to stop all cpus to guarantee there is no user
		   of zonelist */
5205
		stop_machine(__build_all_zonelists, pgdat, NULL);
5206 5207
		/* cpuset refresh routine should be here */
	}
5208
	vm_total_pages = nr_free_pagecache_pages();
5209 5210 5211 5212 5213 5214 5215
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5216
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5217 5218 5219 5220
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

J
Joe Perches 已提交
5221 5222 5223 5224 5225
	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
		nr_online_nodes,
		zonelist_order_name[current_zonelist_order],
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5226
#ifdef CONFIG_NUMA
5227
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5228
#endif
L
Linus Torvalds 已提交
5229 5230 5231 5232 5233 5234 5235
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5236
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5237
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5238
{
5239
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5240
	unsigned long end_pfn = start_pfn + size;
5241
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5242
	unsigned long pfn;
5243
	unsigned long nr_initialised = 0;
5244 5245 5246
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5247

5248 5249 5250
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5251 5252 5253 5254 5255 5256 5257
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5258
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5259
		/*
5260 5261
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5262
		 */
5263 5264 5265
		if (context != MEMMAP_EARLY)
			goto not_early;

5266 5267 5268 5269 5270 5271 5272 5273 5274
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5275
			continue;
5276
		}
5277 5278 5279 5280
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5281 5282

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5300
			}
D
Dave Hansen 已提交
5301
		}
5302
#endif
5303

5304
not_early:
5305 5306 5307 5308 5309
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5310
		 * kernel allocations are made.
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5325 5326 5327
	}
}

5328
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5329
{
5330
	unsigned int order, t;
5331 5332
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5339
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5340 5341
#endif

5342
static int zone_batchsize(struct zone *zone)
5343
{
5344
#ifdef CONFIG_MMU
5345 5346 5347 5348
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5349
	 * size of the zone.  But no more than 1/2 of a meg.
5350 5351 5352
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5353
	batch = zone->managed_pages / 1024;
5354 5355
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5356 5357 5358 5359 5360
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5361 5362 5363
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5364
	 *
5365 5366 5367 5368
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5369
	 */
5370
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5371

5372
	return batch;
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5390 5391
}

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5419
/* a companion to pageset_set_high() */
5420 5421
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5422
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5423 5424
}

5425
static void pageset_init(struct per_cpu_pageset *p)
5426 5427
{
	struct per_cpu_pages *pcp;
5428
	int migratetype;
5429

5430 5431
	memset(p, 0, sizeof(*p));

5432
	pcp = &p->pcp;
5433
	pcp->count = 0;
5434 5435
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5436 5437
}

5438 5439 5440 5441 5442 5443
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5444
/*
5445
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5446 5447
 * to the value high for the pageset p.
 */
5448
static void pageset_set_high(struct per_cpu_pageset *p,
5449 5450
				unsigned long high)
{
5451 5452 5453
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5454

5455
	pageset_update(&p->pcp, high, batch);
5456 5457
}

5458 5459
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5460 5461
{
	if (percpu_pagelist_fraction)
5462
		pageset_set_high(pcp,
5463 5464 5465 5466 5467 5468
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5469 5470 5471 5472 5473 5474 5475 5476
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5477
static void __meminit setup_zone_pageset(struct zone *zone)
5478 5479 5480
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5481 5482
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5483 5484
}

5485
/*
5486 5487
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5488
 */
5489
void __init setup_per_cpu_pageset(void)
5490
{
5491
	struct pglist_data *pgdat;
5492
	struct zone *zone;
5493

5494 5495
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5496 5497 5498 5499

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5500 5501
}

5502
static __meminit void zone_pcp_init(struct zone *zone)
5503
{
5504 5505 5506 5507 5508 5509
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5510

5511
	if (populated_zone(zone))
5512 5513 5514
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5515 5516
}

5517
int __meminit init_currently_empty_zone(struct zone *zone,
5518
					unsigned long zone_start_pfn,
5519
					unsigned long size)
5520 5521
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5522

5523 5524 5525 5526
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5527 5528 5529 5530 5531 5532
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5533
	zone_init_free_lists(zone);
5534
	zone->initialized = 1;
5535 5536

	return 0;
5537 5538
}

T
Tejun Heo 已提交
5539
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5540
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5541

5542 5543 5544
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5545 5546
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5547
{
5548
	unsigned long start_pfn, end_pfn;
5549
	int nid;
5550

5551 5552
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5553

5554 5555
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5556 5557 5558
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5559 5560 5561
	}

	return nid;
5562 5563 5564 5565
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5566
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5567
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5568
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5569
 *
5570 5571 5572
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5573
 */
5574
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5575
{
5576 5577
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5578

5579 5580 5581
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5582

5583
		if (start_pfn < end_pfn)
5584 5585 5586
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5587 5588 5589
	}
}

5590 5591
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5592
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5593
 *
5594 5595
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5596 5597 5598
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5599 5600
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5601

5602 5603
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5604 5605 5606 5607
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5608 5609 5610
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5611 5612
 *
 * It returns the start and end page frame of a node based on information
5613
 * provided by memblock_set_node(). If called for a node
5614
 * with no available memory, a warning is printed and the start and end
5615
 * PFNs will be 0.
5616
 */
5617
void __meminit get_pfn_range_for_nid(unsigned int nid,
5618 5619
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5620
	unsigned long this_start_pfn, this_end_pfn;
5621
	int i;
5622

5623 5624 5625
	*start_pfn = -1UL;
	*end_pfn = 0;

5626 5627 5628
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5629 5630
	}

5631
	if (*start_pfn == -1UL)
5632 5633 5634
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5635 5636 5637 5638 5639
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5640
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5658
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5659 5660 5661 5662 5663 5664 5665
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5666
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5681 5682 5683 5684 5685 5686
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5687 5688 5689 5690 5691 5692
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5693 5694 5695 5696
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5697
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5698
					unsigned long zone_type,
5699 5700
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5701 5702
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5703 5704
					unsigned long *ignored)
{
5705
	/* When hotadd a new node from cpu_up(), the node should be empty */
5706 5707 5708
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5709
	/* Get the start and end of the zone */
5710 5711
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5712 5713
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5714
				zone_start_pfn, zone_end_pfn);
5715 5716

	/* Check that this node has pages within the zone's required range */
5717
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5718 5719 5720
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5721 5722
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5723 5724

	/* Return the spanned pages */
5725
	return *zone_end_pfn - *zone_start_pfn;
5726 5727 5728 5729
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5730
 * then all holes in the requested range will be accounted for.
5731
 */
5732
unsigned long __meminit __absent_pages_in_range(int nid,
5733 5734 5735
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5736 5737 5738
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5739

5740 5741 5742 5743
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5744
	}
5745
	return nr_absent;
5746 5747 5748 5749 5750 5751 5752
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5753
 * It returns the number of pages frames in memory holes within a range.
5754 5755 5756 5757 5758 5759 5760 5761
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5762
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5763
					unsigned long zone_type,
5764 5765
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5766 5767
					unsigned long *ignored)
{
5768 5769
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5770
	unsigned long zone_start_pfn, zone_end_pfn;
5771
	unsigned long nr_absent;
5772

5773
	/* When hotadd a new node from cpu_up(), the node should be empty */
5774 5775 5776
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5777 5778
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5779

M
Mel Gorman 已提交
5780 5781 5782
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5783 5784 5785 5786 5787 5788 5789
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5807 5808 5809 5810
		}
	}

	return nr_absent;
5811
}
5812

T
Tejun Heo 已提交
5813
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5814
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5815
					unsigned long zone_type,
5816 5817
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5818 5819
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5820 5821
					unsigned long *zones_size)
{
5822 5823 5824 5825 5826 5827 5828 5829
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5830 5831 5832
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5833
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5834
						unsigned long zone_type,
5835 5836
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5837 5838 5839 5840 5841 5842 5843
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5844

T
Tejun Heo 已提交
5845
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5846

5847
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5848 5849 5850 5851
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5852
{
5853
	unsigned long realtotalpages = 0, totalpages = 0;
5854 5855
	enum zone_type i;

5856 5857
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5858
		unsigned long zone_start_pfn, zone_end_pfn;
5859
		unsigned long size, real_size;
5860

5861 5862 5863
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5864 5865
						  &zone_start_pfn,
						  &zone_end_pfn,
5866 5867
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5868 5869
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5870 5871 5872 5873
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5874 5875 5876 5877 5878 5879 5880 5881
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5882 5883 5884 5885 5886
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5887 5888 5889
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5890 5891
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5892 5893 5894
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5895
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5896 5897 5898
{
	unsigned long usemapsize;

5899
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5900 5901
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5902 5903 5904 5905 5906 5907 5908
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5909 5910 5911
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5912
{
5913
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5914
	zone->pageblock_flags = NULL;
5915
	if (usemapsize)
5916 5917 5918
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
5919 5920
}
#else
5921 5922
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
5923 5924
#endif /* CONFIG_SPARSEMEM */

5925
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5926

5927
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5928
void __paginginit set_pageblock_order(void)
5929
{
5930 5931
	unsigned int order;

5932 5933 5934 5935
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

5936 5937 5938 5939 5940
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

5941 5942
	/*
	 * Assume the largest contiguous order of interest is a huge page.
5943 5944
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
5945 5946 5947 5948 5949
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5950 5951
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5952 5953 5954
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
5955
 */
5956
void __paginginit set_pageblock_order(void)
5957 5958
{
}
5959 5960 5961

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
5972
	 * populated regions may not be naturally aligned on page boundary.
5973 5974 5975 5976 5977 5978 5979 5980 5981
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
5982 5983 5984 5985 5986
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
5987 5988
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
5989
 */
5990
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
5991
{
5992
	enum zone_type j;
5993
	int nid = pgdat->node_id;
5994
	int ret;
L
Linus Torvalds 已提交
5995

5996
	pgdat_resize_init(pgdat);
5997 5998 5999 6000
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6001 6002 6003 6004 6005
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6006
#endif
L
Linus Torvalds 已提交
6007
	init_waitqueue_head(&pgdat->kswapd_wait);
6008
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6009 6010 6011
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6012
	pgdat_page_ext_init(pgdat);
6013
	spin_lock_init(&pgdat->lru_lock);
6014
	lruvec_init(node_lruvec(pgdat));
6015

L
Linus Torvalds 已提交
6016 6017
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6018
		unsigned long size, realsize, freesize, memmap_pages;
6019
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6020

6021 6022
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6023

6024
		/*
6025
		 * Adjust freesize so that it accounts for how much memory
6026 6027 6028
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6029
		memmap_pages = calc_memmap_size(size, realsize);
6030 6031 6032 6033 6034 6035 6036 6037
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6038
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6039 6040
					zone_names[j], memmap_pages, freesize);
		}
6041

6042
		/* Account for reserved pages */
6043 6044
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6045
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6046
					zone_names[0], dma_reserve);
6047 6048
		}

6049
		if (!is_highmem_idx(j))
6050
			nr_kernel_pages += freesize;
6051 6052 6053
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6054
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6055

6056 6057 6058 6059 6060 6061
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6062
#ifdef CONFIG_NUMA
6063
		zone->node = nid;
6064
#endif
L
Linus Torvalds 已提交
6065
		zone->name = zone_names[j];
6066
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6067
		spin_lock_init(&zone->lock);
6068
		zone_seqlock_init(zone);
6069
		zone_pcp_init(zone);
6070

L
Linus Torvalds 已提交
6071 6072 6073
		if (!size)
			continue;

6074
		set_pageblock_order();
6075
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6076
		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6077
		BUG_ON(ret);
6078
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6079 6080 6081
	}
}

6082
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6083
{
6084
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6085 6086
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6087 6088 6089 6090
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6091
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6092 6093
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6094 6095
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6096
		unsigned long size, end;
A
Andy Whitcroft 已提交
6097 6098
		struct page *map;

6099 6100 6101 6102 6103
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6104
		end = pgdat_end_pfn(pgdat);
6105 6106
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6107 6108
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6109 6110
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6111
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6112
	}
6113
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6114 6115 6116
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6117
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6118
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6119
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6120
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6121
			mem_map -= offset;
T
Tejun Heo 已提交
6122
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6123
	}
L
Linus Torvalds 已提交
6124
#endif
A
Andy Whitcroft 已提交
6125
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6126 6127
}

6128 6129
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6130
{
6131
	pg_data_t *pgdat = NODE_DATA(nid);
6132 6133
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6134

6135
	/* pg_data_t should be reset to zero when it's allocated */
6136
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6137

6138
	reset_deferred_meminit(pgdat);
L
Linus Torvalds 已提交
6139 6140
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6141
	pgdat->per_cpu_nodestats = NULL;
6142 6143
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6144
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6145 6146
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6147 6148
#else
	start_pfn = node_start_pfn;
6149 6150 6151
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6152 6153

	alloc_node_mem_map(pgdat);
6154 6155 6156 6157 6158
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6159

6160
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6161 6162
}

T
Tejun Heo 已提交
6163
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6164 6165 6166 6167 6168

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6169
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6170
{
6171
	unsigned int highest;
M
Miklos Szeredi 已提交
6172

6173
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6174 6175 6176 6177
	nr_node_ids = highest + 1;
}
#endif

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6200
	unsigned long start, end, mask;
6201
	int last_nid = -1;
6202
	int i, nid;
6203

6204
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6228
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6229
static unsigned long __init find_min_pfn_for_node(int nid)
6230
{
6231
	unsigned long min_pfn = ULONG_MAX;
6232 6233
	unsigned long start_pfn;
	int i;
6234

6235 6236
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6237

6238
	if (min_pfn == ULONG_MAX) {
6239
		pr_warn("Could not find start_pfn for node %d\n", nid);
6240 6241 6242 6243
		return 0;
	}

	return min_pfn;
6244 6245 6246 6247 6248 6249
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6250
 * memblock_set_node().
6251 6252 6253 6254 6255 6256
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6257 6258 6259
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6260
 * Populate N_MEMORY for calculating usable_nodes.
6261
 */
A
Adrian Bunk 已提交
6262
static unsigned long __init early_calculate_totalpages(void)
6263 6264
{
	unsigned long totalpages = 0;
6265 6266 6267 6268 6269
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6270

6271 6272
		totalpages += pages;
		if (pages)
6273
			node_set_state(nid, N_MEMORY);
6274
	}
6275
	return totalpages;
6276 6277
}

M
Mel Gorman 已提交
6278 6279 6280 6281 6282 6283
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6284
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6285 6286 6287 6288
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6289
	/* save the state before borrow the nodemask */
6290
	nodemask_t saved_node_state = node_states[N_MEMORY];
6291
	unsigned long totalpages = early_calculate_totalpages();
6292
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6293
	struct memblock_region *r;
6294 6295 6296 6297 6298 6299 6300 6301 6302

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6303 6304
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6305 6306
				continue;

E
Emil Medve 已提交
6307
			nid = r->nid;
6308

E
Emil Medve 已提交
6309
			usable_startpfn = PFN_DOWN(r->base);
6310 6311 6312 6313 6314 6315 6316
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6317

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6348
	/*
6349
	 * If movablecore=nn[KMG] was specified, calculate what size of
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6365
		required_movablecore = min(totalpages, required_movablecore);
6366 6367 6368 6369 6370
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6371 6372 6373 6374 6375
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6376
		goto out;
M
Mel Gorman 已提交
6377 6378 6379 6380 6381 6382 6383

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6384
	for_each_node_state(nid, N_MEMORY) {
6385 6386
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6403
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6404 6405
			unsigned long size_pages;

6406
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6449
			 * satisfied
M
Mel Gorman 已提交
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6463
	 * satisfied
M
Mel Gorman 已提交
6464 6465 6466 6467 6468
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6469
out2:
M
Mel Gorman 已提交
6470 6471 6472 6473
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6474

6475
out:
6476
	/* restore the node_state */
6477
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6478 6479
}

6480 6481
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6482 6483 6484
{
	enum zone_type zone_type;

6485 6486 6487 6488
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6489
		struct zone *zone = &pgdat->node_zones[zone_type];
6490
		if (populated_zone(zone)) {
6491 6492 6493 6494
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6495 6496
			break;
		}
6497 6498 6499
	}
}

6500 6501
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6502
 * @max_zone_pfn: an array of max PFNs for each zone
6503 6504
 *
 * This will call free_area_init_node() for each active node in the system.
6505
 * Using the page ranges provided by memblock_set_node(), the size of each
6506 6507 6508 6509 6510 6511 6512 6513 6514
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6515 6516
	unsigned long start_pfn, end_pfn;
	int i, nid;
6517

6518 6519 6520 6521 6522
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6523 6524 6525 6526

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6527 6528
		if (i == ZONE_MOVABLE)
			continue;
6529 6530 6531 6532 6533 6534

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6535
	}
M
Mel Gorman 已提交
6536 6537 6538

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6539
	find_zone_movable_pfns_for_nodes();
6540 6541

	/* Print out the zone ranges */
6542
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6543 6544 6545
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6546
		pr_info("  %-8s ", zone_names[i]);
6547 6548
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6549
			pr_cont("empty\n");
6550
		else
6551 6552 6553 6554
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6555
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6556 6557 6558
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6559
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6560 6561
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6562 6563
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6564
	}
6565

6566
	/* Print out the early node map */
6567
	pr_info("Early memory node ranges\n");
6568
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6569 6570 6571
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6572 6573

	/* Initialise every node */
6574
	mminit_verify_pageflags_layout();
6575
	setup_nr_node_ids();
6576 6577
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6578
		free_area_init_node(nid, NULL,
6579
				find_min_pfn_for_node(nid), NULL);
6580 6581 6582

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6583 6584
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6585 6586
	}
}
M
Mel Gorman 已提交
6587

6588
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6589 6590 6591 6592 6593 6594
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6595
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6596

6597
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6598 6599 6600 6601
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6602

6603 6604 6605 6606 6607 6608
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6609 6610 6611 6612 6613 6614
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6627
early_param("kernelcore", cmdline_parse_kernelcore);
6628
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6629

T
Tejun Heo 已提交
6630
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6631

6632 6633 6634 6635 6636
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6637 6638 6639 6640
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6641 6642
	spin_unlock(&managed_page_count_lock);
}
6643
EXPORT_SYMBOL(adjust_managed_page_count);
6644

6645
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6646
{
6647 6648
	void *pos;
	unsigned long pages = 0;
6649

6650 6651 6652
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6653
		if ((unsigned int)poison <= 0xFF)
6654 6655
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6656 6657 6658
	}

	if (pages && s)
6659 6660
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6661 6662 6663

	return pages;
}
6664
EXPORT_SYMBOL(free_reserved_area);
6665

6666 6667 6668 6669 6670
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6671
	page_zone(page)->managed_pages++;
6672 6673 6674 6675
	totalhigh_pages++;
}
#endif

6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6698 6699 6700 6701
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6712
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6713
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6714
		", %luK highmem"
6715
#endif
J
Joe Perches 已提交
6716 6717 6718 6719 6720 6721 6722
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6723
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6724
		totalhigh_pages << (PAGE_SHIFT - 10),
6725
#endif
J
Joe Perches 已提交
6726
		str ? ", " : "", str ? str : "");
6727 6728
}

6729
/**
6730 6731
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6732
 *
6733
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6734 6735
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6736 6737 6738
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6739 6740 6741 6742 6743 6744
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6745 6746
void __init free_area_init(unsigned long *zones_size)
{
6747
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6748 6749 6750
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

6751
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6752 6753
{

6754 6755
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6756

6757 6758 6759 6760 6761 6762 6763
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6764

6765 6766 6767 6768 6769 6770 6771 6772 6773
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6774 6775 6776 6777
}

void __init page_alloc_init(void)
{
6778 6779 6780 6781 6782 6783
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6784 6785
}

6786
/*
6787
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6788 6789 6790 6791 6792 6793
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6794
	enum zone_type i, j;
6795 6796

	for_each_online_pgdat(pgdat) {
6797 6798 6799

		pgdat->totalreserve_pages = 0;

6800 6801
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6802
			long max = 0;
6803 6804 6805 6806 6807 6808 6809

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6810 6811
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6812

6813 6814
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6815

6816
			pgdat->totalreserve_pages += max;
6817

6818 6819 6820 6821 6822 6823
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6824 6825
/*
 * setup_per_zone_lowmem_reserve - called whenever
6826
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6827 6828 6829 6830 6831 6832
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6833
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6834

6835
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6836 6837
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6838
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6839 6840 6841

			zone->lowmem_reserve[j] = 0;

6842 6843
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6844 6845
				struct zone *lower_zone;

6846 6847
				idx--;

L
Linus Torvalds 已提交
6848 6849 6850 6851
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6852
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6853
					sysctl_lowmem_reserve_ratio[idx];
6854
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6855 6856 6857
			}
		}
	}
6858 6859 6860

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6861 6862
}

6863
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6873
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6874 6875 6876
	}

	for_each_zone(zone) {
6877 6878
		u64 tmp;

6879
		spin_lock_irqsave(&zone->lock, flags);
6880
		tmp = (u64)pages_min * zone->managed_pages;
6881
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6882 6883
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6884 6885 6886 6887
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6888
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6889
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6890
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6891
			 */
6892
			unsigned long min_pages;
L
Linus Torvalds 已提交
6893

6894
			min_pages = zone->managed_pages / 1024;
6895
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6896
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
6897
		} else {
N
Nick Piggin 已提交
6898 6899
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
6900 6901
			 * proportionate to the zone's size.
			 */
6902
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
6903 6904
		}

6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6916

6917
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
6918
	}
6919 6920 6921

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6922 6923
}

6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
	mutex_lock(&zonelists_mutex);
	__setup_per_zone_wmarks();
	mutex_unlock(&zonelists_mutex);
}

L
Linus Torvalds 已提交
6938 6939 6940 6941 6942 6943 6944
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
6945
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
6962
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
6963 6964
{
	unsigned long lowmem_kbytes;
6965
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
6966 6967

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
6980
	setup_per_zone_wmarks();
6981
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
6982
	setup_per_zone_lowmem_reserve();
6983 6984 6985 6986 6987 6988

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
6989 6990
	return 0;
}
6991
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
6992 6993

/*
6994
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
6995 6996 6997
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
6998
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6999
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7000
{
7001 7002 7003 7004 7005 7006
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7007 7008
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7009
		setup_per_zone_wmarks();
7010
	}
L
Linus Torvalds 已提交
7011 7012 7013
	return 0;
}

7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7029
#ifdef CONFIG_NUMA
7030
static void setup_min_unmapped_ratio(void)
7031
{
7032
	pg_data_t *pgdat;
7033 7034
	struct zone *zone;

7035
	for_each_online_pgdat(pgdat)
7036
		pgdat->min_unmapped_pages = 0;
7037

7038
	for_each_zone(zone)
7039
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7040 7041
				sysctl_min_unmapped_ratio) / 100;
}
7042

7043 7044

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7045
	void __user *buffer, size_t *length, loff_t *ppos)
7046 7047 7048
{
	int rc;

7049
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7050 7051 7052
	if (rc)
		return rc;

7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7063 7064 7065
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7066
	for_each_zone(zone)
7067
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7068
				sysctl_min_slab_ratio) / 100;
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7082 7083
	return 0;
}
7084 7085
#endif

L
Linus Torvalds 已提交
7086 7087 7088 7089 7090 7091
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7092
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7093 7094
 * if in function of the boot time zone sizes.
 */
7095
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7096
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7097
{
7098
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7099 7100 7101 7102
	setup_per_zone_lowmem_reserve();
	return 0;
}

7103 7104
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7105 7106
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7107
 */
7108
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7109
	void __user *buffer, size_t *length, loff_t *ppos)
7110 7111
{
	struct zone *zone;
7112
	int old_percpu_pagelist_fraction;
7113 7114
	int ret;

7115 7116 7117
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7118
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7133

7134
	for_each_populated_zone(zone) {
7135 7136
		unsigned int cpu;

7137
		for_each_possible_cpu(cpu)
7138 7139
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7140
	}
7141
out:
7142
	mutex_unlock(&pcp_batch_high_lock);
7143
	return ret;
7144 7145
}

7146
#ifdef CONFIG_NUMA
7147
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

L
Linus Torvalds 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7183 7184
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7185
{
7186
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7187 7188 7189 7190 7191 7192
	unsigned long log2qty, size;
	void *table = NULL;

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7193
		numentries = nr_kernel_pages;
7194
		numentries -= arch_reserved_kernel_pages();
7195 7196 7197 7198

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7199 7200 7201 7202 7203 7204

		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7205 7206

		/* Make sure we've got at least a 0-order allocation.. */
7207 7208 7209 7210 7211 7212 7213 7214
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7215
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7216
	}
7217
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7218 7219 7220 7221 7222 7223

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7224
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7225

7226 7227
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7228 7229 7230
	if (numentries > max)
		numentries = max;

7231
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7232 7233 7234 7235

	do {
		size = bucketsize << log2qty;
		if (flags & HASH_EARLY)
7236
			table = memblock_virt_alloc_nopanic(size, 0);
L
Linus Torvalds 已提交
7237 7238 7239
		else if (hashdist)
			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
		else {
7240 7241
			/*
			 * If bucketsize is not a power-of-two, we may free
7242 7243
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7244
			 */
7245
			if (get_order(size) < MAX_ORDER) {
7246
				table = alloc_pages_exact(size, GFP_ATOMIC);
7247 7248
				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
			}
L
Linus Torvalds 已提交
7249 7250 7251 7252 7253 7254
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7255 7256
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7257 7258 7259 7260 7261 7262 7263 7264

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7265

K
KAMEZAWA Hiroyuki 已提交
7266
/*
7267 7268 7269
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7270
 * PageLRU check without isolation or lru_lock could race so that
7271 7272 7273
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7274
 */
7275 7276
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
			 bool skip_hwpoisoned_pages)
7277 7278
{
	unsigned long pfn, iter, found;
7279 7280
	int mt;

7281 7282
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7283
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7284 7285
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7286
		return false;
7287 7288
	mt = get_pageblock_migratetype(page);
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7289
		return false;
7290 7291 7292 7293 7294

	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7295
		if (!pfn_valid_within(check))
7296
			continue;
7297

7298
		page = pfn_to_page(check);
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309

		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7310 7311 7312 7313
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7314
		 * because their page->_refcount is zero at all time.
7315
		 */
7316
		if (!page_ref_count(page)) {
7317 7318 7319 7320
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7321

7322 7323 7324 7325 7326 7327 7328
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7329 7330 7331
		if (__PageMovable(page))
			continue;

7332 7333 7334
		if (!PageLRU(page))
			found++;
		/*
7335 7336 7337
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7348
			return true;
7349
	}
7350
	return false;
7351 7352 7353 7354
}

bool is_pageblock_removable_nolock(struct page *page)
{
7355 7356
	struct zone *zone;
	unsigned long pfn;
7357 7358 7359 7360 7361

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7362 7363
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7364
	 */
7365 7366 7367 7368 7369
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7370
	if (!zone_spans_pfn(zone, pfn))
7371 7372
		return false;

7373
	return !has_unmovable_pages(zone, page, 0, true);
K
KAMEZAWA Hiroyuki 已提交
7374
}
K
KAMEZAWA Hiroyuki 已提交
7375

7376
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7391 7392
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7393 7394
{
	/* This function is based on compact_zone() from compaction.c. */
7395
	unsigned long nr_reclaimed;
7396 7397 7398 7399
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7400
	migrate_prep();
7401

7402
	while (pfn < end || !list_empty(&cc->migratepages)) {
7403 7404 7405 7406 7407
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7408 7409
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7410
			pfn = isolate_migratepages_range(cc, pfn, end);
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7421 7422 7423
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7424

7425
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7426
				    NULL, 0, cc->mode, MR_CMA);
7427
	}
7428 7429 7430 7431 7432
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7433 7434 7435 7436 7437 7438
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7439 7440 7441 7442
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7443
 * @gfp_mask:	GFP mask to use during compaction
7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7456
int alloc_contig_range(unsigned long start, unsigned long end,
7457
		       unsigned migratetype, gfp_t gfp_mask)
7458 7459
{
	unsigned long outer_start, outer_end;
7460 7461
	unsigned int order;
	int ret = 0;
7462

7463 7464 7465 7466
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7467
		.mode = MIGRATE_SYNC,
7468
		.ignore_skip_hint = true,
7469
		.gfp_mask = current_gfp_context(gfp_mask),
7470 7471 7472
	};
	INIT_LIST_HEAD(&cc.migratepages);

7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7498 7499
				       pfn_max_align_up(end), migratetype,
				       false);
7500
	if (ret)
7501
		return ret;
7502

7503 7504 7505 7506
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7507
	ret = __alloc_contig_migrate_range(&cc, start, end);
7508
	if (ret && ret != -EBUSY)
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7529
	drain_all_pages(cc.zone);
7530 7531 7532 7533 7534

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7535 7536
			outer_start = start;
			break;
7537 7538 7539 7540
		}
		outer_start &= ~0UL << order;
	}

7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7554
	/* Make sure the range is really isolated. */
7555
	if (test_pages_isolated(outer_start, end, false)) {
7556 7557
		pr_info("%s: [%lx, %lx) PFNs busy\n",
			__func__, outer_start, end);
7558 7559 7560 7561
		ret = -EBUSY;
		goto done;
	}

7562
	/* Grab isolated pages from freelists. */
7563
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7577
				pfn_max_align_up(end), migratetype);
7578 7579 7580 7581 7582
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7583 7584 7585 7586 7587 7588 7589 7590 7591
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7592 7593 7594
}
#endif

7595
#ifdef CONFIG_MEMORY_HOTPLUG
7596 7597 7598 7599
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7600 7601
void __meminit zone_pcp_update(struct zone *zone)
{
7602
	unsigned cpu;
7603
	mutex_lock(&pcp_batch_high_lock);
7604
	for_each_possible_cpu(cpu)
7605 7606
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7607
	mutex_unlock(&pcp_batch_high_lock);
7608 7609 7610
}
#endif

7611 7612 7613
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7614 7615
	int cpu;
	struct per_cpu_pageset *pset;
7616 7617 7618 7619

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7620 7621 7622 7623
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7624 7625 7626 7627 7628 7629
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7630
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7631
/*
7632 7633
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7634 7635 7636 7637 7638 7639
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7640
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7668 7669 7670 7671
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7672 7673
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7685 7686 7687 7688 7689 7690

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7691
	unsigned int order;
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}