page_alloc.c 213.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <linux/backing-dev.h>
50
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include <linux/page-isolation.h>
52
#include <linux/page_ext.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126 127
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

128
unsigned long totalram_pages __read_mostly;
129
unsigned long totalreserve_pages __read_mostly;
130
unsigned long totalcma_pages __read_mostly;
131

132
int percpu_pagelist_fraction;
133
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

153 154 155 156 157 158 159 160 161
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
162 163 164 165

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
166 167
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
168 169 170 171
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
172 173
}

174
void pm_restrict_gfp_mask(void)
175 176
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
177 178
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
179
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180
}
181 182 183

bool pm_suspended_storage(void)
{
184
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 186 187
		return false;
	return true;
}
188 189
#endif /* CONFIG_PM_SLEEP */

190
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191
unsigned int pageblock_order __read_mostly;
192 193
#endif

194
static void __free_pages_ok(struct page *page, unsigned int order);
195

L
Linus Torvalds 已提交
196 197 198 199 200 201
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
202
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
203 204 205
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
206
 */
207
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208
#ifdef CONFIG_ZONE_DMA
209
	 256,
210
#endif
211
#ifdef CONFIG_ZONE_DMA32
212
	 256,
213
#endif
214
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
215
	 32,
216
#endif
M
Mel Gorman 已提交
217
	 32,
218
};
L
Linus Torvalds 已提交
219 220 221

EXPORT_SYMBOL(totalram_pages);

222
static char * const zone_names[MAX_NR_ZONES] = {
223
#ifdef CONFIG_ZONE_DMA
224
	 "DMA",
225
#endif
226
#ifdef CONFIG_ZONE_DMA32
227
	 "DMA32",
228
#endif
229
	 "Normal",
230
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
231
	 "HighMem",
232
#endif
M
Mel Gorman 已提交
233
	 "Movable",
234 235 236
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
237 238
};

239 240 241 242 243 244 245 246 247 248 249 250 251
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

252 253 254 255 256 257
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
258 259 260
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
261 262
};

L
Linus Torvalds 已提交
263
int min_free_kbytes = 1024;
264
int user_min_free_kbytes = -1;
265
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
266

267 268
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
269
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
270

T
Tejun Heo 已提交
271 272 273 274 275 276
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
278 279 280 281 282

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283

M
Miklos Szeredi 已提交
284 285
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
286
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
287
EXPORT_SYMBOL(nr_node_ids);
288
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
289 290
#endif

291 292
int page_group_by_mobility_disabled __read_mostly;

293 294 295
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	unsigned long max_initialise;
	unsigned long reserved_lowmem;

	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));

	/*
	 * Compensate the all the memblock reservations (e.g. crash kernel)
	 * from the initial estimation to make sure we will initialize enough
	 * memory to boot.
	 */
	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
			pgdat->node_start_pfn + max_initialise);
	max_initialise += reserved_lowmem;

	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
316 317 318 319
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
320
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
321
{
322 323 324
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
342
	if ((*nr_initialised > pgdat->static_init_size) &&
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
468

469
void set_pageblock_migratetype(struct page *page, int migratetype)
470
{
471 472
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
473 474
		migratetype = MIGRATE_UNMOVABLE;

475 476 477 478
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
479
#ifdef CONFIG_DEBUG_VM
480
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
481
{
482 483 484
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
485
	unsigned long sp, start_pfn;
486

487 488
	do {
		seq = zone_span_seqbegin(zone);
489 490
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
491
		if (!zone_spans_pfn(zone, pfn))
492 493 494
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

495
	if (ret)
496 497 498
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
499

500
	return ret;
501 502 503 504
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
505
	if (!pfn_valid_within(page_to_pfn(page)))
506
		return 0;
L
Linus Torvalds 已提交
507
	if (zone != page_zone(page))
508 509 510 511 512 513 514
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
515
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
516 517
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
518
		return 1;
519 520 521
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
522 523
	return 0;
}
N
Nick Piggin 已提交
524
#else
525
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
526 527 528 529 530
{
	return 0;
}
#endif

531 532
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
533
{
534 535 536 537 538 539 540 541 542 543 544 545 546 547
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
548
			pr_alert(
549
			      "BUG: Bad page state: %lu messages suppressed\n",
550 551 552 553 554 555 556 557
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

558
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
559
		current->comm, page_to_pfn(page));
560 561 562 563 564
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
565
	dump_page_owner(page);
566

567
	print_modules();
L
Linus Torvalds 已提交
568
	dump_stack();
569
out:
570
	/* Leave bad fields for debug, except PageBuddy could make trouble */
571
	page_mapcount_reset(page); /* remove PageBuddy */
572
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
573 574 575 576 577
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
578
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
579
 *
580 581
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
582
 *
583 584
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
585
 *
586
 * The first tail page's ->compound_order holds the order of allocation.
587
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
588
 */
589

590
void free_compound_page(struct page *page)
591
{
592
	__free_pages_ok(page, compound_order(page));
593 594
}

595
void prep_compound_page(struct page *page, unsigned int order)
596 597 598 599
{
	int i;
	int nr_pages = 1 << order;

600
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
601 602 603 604
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
605
		set_page_count(p, 0);
606
		p->mapping = TAIL_MAPPING;
607
		set_compound_head(p, page);
608
	}
609
	atomic_set(compound_mapcount_ptr(page), -1);
610 611
}

612 613
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
614 615
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
616
EXPORT_SYMBOL(_debug_pagealloc_enabled);
617 618
bool _debug_guardpage_enabled __read_mostly;

619 620 621 622
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
623
	return kstrtobool(buf, &_debug_pagealloc_enabled);
624 625 626
}
early_param("debug_pagealloc", early_debug_pagealloc);

627 628
static bool need_debug_guardpage(void)
{
629 630 631 632
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

633 634 635
	if (!debug_guardpage_minorder())
		return false;

636 637 638 639 640
	return true;
}

static void init_debug_guardpage(void)
{
641 642 643
	if (!debug_pagealloc_enabled())
		return;

644 645 646
	if (!debug_guardpage_minorder())
		return;

647 648 649 650 651 652 653
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
654 655 656 657 658 659

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
660
		pr_err("Bad debug_guardpage_minorder value\n");
661 662 663
		return 0;
	}
	_debug_guardpage_minorder = res;
664
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
665 666
	return 0;
}
667
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
668

669
static inline bool set_page_guard(struct zone *zone, struct page *page,
670
				unsigned int order, int migratetype)
671
{
672 673 674
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
675 676 677 678
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
679 680

	page_ext = lookup_page_ext(page);
681
	if (unlikely(!page_ext))
682
		return false;
683

684 685
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

686 687 688 689
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
690 691

	return true;
692 693
}

694 695
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
696
{
697 698 699 700 701 702
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
703 704 705
	if (unlikely(!page_ext))
		return;

706 707
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

708 709 710
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
711 712
}
#else
713
struct page_ext_operations debug_guardpage_ops;
714 715
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
716 717
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
718 719
#endif

720
static inline void set_page_order(struct page *page, unsigned int order)
721
{
H
Hugh Dickins 已提交
722
	set_page_private(page, order);
723
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
724 725 726 727
}

static inline void rmv_page_order(struct page *page)
{
728
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
729
	set_page_private(page, 0);
L
Linus Torvalds 已提交
730 731 732 733 734
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
735
 * (a) the buddy is not in a hole (check before calling!) &&
736
 * (b) the buddy is in the buddy system &&
737 738
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
739
 *
740 741 742 743
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
744
 *
745
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
746
 */
747
static inline int page_is_buddy(struct page *page, struct page *buddy,
748
							unsigned int order)
L
Linus Torvalds 已提交
749
{
750
	if (page_is_guard(buddy) && page_order(buddy) == order) {
751 752 753
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

754 755
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

756 757 758
		return 1;
	}

759
	if (PageBuddy(buddy) && page_order(buddy) == order) {
760 761 762 763 764 765 766 767
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

768 769
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

770
		return 1;
771
	}
772
	return 0;
L
Linus Torvalds 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
788 789 790
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
791
 * So when we are allocating or freeing one, we can derive the state of the
792 793
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
794
 * If a block is freed, and its buddy is also free, then this
795
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
796
 *
797
 * -- nyc
L
Linus Torvalds 已提交
798 799
 */

N
Nick Piggin 已提交
800
static inline void __free_one_page(struct page *page,
801
		unsigned long pfn,
802 803
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
804
{
805 806
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
807
	struct page *buddy;
808 809 810
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
811

812
	VM_BUG_ON(!zone_is_initialized(zone));
813
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
814

815
	VM_BUG_ON(migratetype == -1);
816
	if (likely(!is_migrate_isolate(migratetype)))
817
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
818

819
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
820
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
821

822
continue_merging:
823
	while (order < max_order - 1) {
824 825
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
826 827 828

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
829
		if (!page_is_buddy(page, buddy, order))
830
			goto done_merging;
831 832 833 834 835
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
836
			clear_page_guard(zone, buddy, order, migratetype);
837 838 839 840 841
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
842 843 844
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
845 846
		order++;
	}
847 848 849 850 851 852 853 854 855 856 857 858
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

859 860
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
861 862 863 864 865 866 867 868 869 870 871 872
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
873
	set_page_order(page, order);
874 875 876 877 878 879 880 881 882

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
883
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
884
		struct page *higher_page, *higher_buddy;
885 886 887 888
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
889 890
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
891 892 893 894 895 896 897 898
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
899 900 901
	zone->free_area[order].nr_free++;
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

924
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
925
{
926 927 928 929 930
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
931

932
	if (unlikely(atomic_read(&page->_mapcount) != -1))
933 934 935
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
936
	if (unlikely(page_ref_count(page) != 0))
937
		bad_reason = "nonzero _refcount";
938 939 940 941
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
942 943 944 945
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
946
	bad_page(page, bad_reason, bad_flags);
947 948 949 950
}

static inline int free_pages_check(struct page *page)
{
951
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
952 953 954 955
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
956
	return 1;
L
Linus Torvalds 已提交
957 958
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1009 1010
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1011
{
1012
	int bad = 0;
1013 1014 1015

	VM_BUG_ON_PAGE(PageTail(page), page);

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027

1028 1029
		if (compound)
			ClearPageDoubleMap(page);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1040
	if (PageMappingFlags(page))
1041
		page->mapping = NULL;
1042
	if (memcg_kmem_enabled() && PageKmemcg(page))
1043
		memcg_kmem_uncharge(page, order);
1044 1045 1046 1047
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1048

1049 1050 1051
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1052 1053 1054

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1055
					   PAGE_SIZE << order);
1056
		debug_check_no_obj_freed(page_address(page),
1057
					   PAGE_SIZE << order);
1058
	}
1059 1060 1061
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1062
	kasan_free_pages(page, order);
1063 1064 1065 1066

	return true;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1083 1084 1085 1086 1087 1088
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1089
/*
1090
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1091
 * Assumes all pages on list are in same zone, and of same order.
1092
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097 1098 1099
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1100 1101
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1102
{
1103
	int migratetype = 0;
1104
	int batch_free = 0;
1105
	bool isolated_pageblocks;
1106

1107
	spin_lock(&zone->lock);
1108
	isolated_pageblocks = has_isolate_pageblock(zone);
1109

1110
	while (count) {
N
Nick Piggin 已提交
1111
		struct page *page;
1112 1113 1114
		struct list_head *list;

		/*
1115 1116 1117 1118 1119
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1120 1121
		 */
		do {
1122
			batch_free++;
1123 1124 1125 1126
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1127

1128 1129
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1130
			batch_free = count;
1131

1132
		do {
1133 1134
			int mt;	/* migratetype of the to-be-freed page */

1135
			page = list_last_entry(list, struct page, lru);
1136 1137
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1138

1139
			mt = get_pcppage_migratetype(page);
1140 1141 1142
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1143
			if (unlikely(isolated_pageblocks))
1144 1145
				mt = get_pageblock_migratetype(page);

1146 1147 1148
			if (bulkfree_pcp_prepare(page))
				continue;

1149
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1150
			trace_mm_page_pcpu_drain(page, 0, mt);
1151
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1152
	}
1153
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1154 1155
}

1156 1157
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1158
				unsigned int order,
1159
				int migratetype)
L
Linus Torvalds 已提交
1160
{
1161
	spin_lock(&zone->lock);
1162 1163 1164 1165
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1166
	__free_one_page(page, pfn, zone, order, migratetype);
1167
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1168 1169
}

1170 1171 1172
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
1173
	mm_zero_struct_page(page);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1193
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1194
static void __meminit init_reserved_page(unsigned long pfn)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1219 1220 1221 1222 1223 1224
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1225
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1226 1227 1228 1229
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1230 1231 1232 1233 1234
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1235 1236 1237 1238

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1239 1240 1241
			SetPageReserved(page);
		}
	}
1242 1243
}

1244 1245
static void __free_pages_ok(struct page *page, unsigned int order)
{
1246
	unsigned long flags;
M
Minchan Kim 已提交
1247
	int migratetype;
1248
	unsigned long pfn = page_to_pfn(page);
1249

1250
	if (!free_pages_prepare(page, order, true))
1251 1252
		return;

1253
	migratetype = get_pfnblock_migratetype(page, pfn);
1254 1255
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1256
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1257
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1258 1259
}

1260
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1261
{
1262
	unsigned int nr_pages = 1 << order;
1263
	struct page *p = page;
1264
	unsigned int loop;
1265

1266 1267 1268
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1269 1270
		__ClearPageReserved(p);
		set_page_count(p, 0);
1271
	}
1272 1273
	__ClearPageReserved(p);
	set_page_count(p, 0);
1274

1275
	page_zone(page)->managed_pages += nr_pages;
1276 1277
	set_page_refcounted(page);
	__free_pages(page, order);
1278 1279
}

1280 1281
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1282

1283 1284 1285 1286
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1287
	static DEFINE_SPINLOCK(early_pfn_lock);
1288 1289
	int nid;

1290
	spin_lock(&early_pfn_lock);
1291
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1292
	if (nid < 0)
1293
		nid = first_online_node;
1294 1295 1296
	spin_unlock(&early_pfn_lock);

	return nid;
1297 1298 1299 1300
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1301 1302 1303
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1325 1326 1327
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1328 1329 1330 1331 1332 1333
{
	return true;
}
#endif


1334
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1335 1336 1337 1338
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1339
	return __free_pages_boot_core(page, order);
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1371 1372 1373
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1413
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1414 1415
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1416
{
1417 1418
	struct page *page;
	unsigned long i;
1419

1420
	if (!nr_pages)
1421 1422
		return;

1423 1424
	page = pfn_to_page(pfn);

1425
	/* Free a large naturally-aligned chunk if possible */
1426 1427
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1428
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1429
		__free_pages_boot_core(page, pageblock_order);
1430 1431 1432
		return;
	}

1433 1434 1435
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436
		__free_pages_boot_core(page, 0);
1437
	}
1438 1439
}

1440 1441 1442 1443 1444 1445 1446 1447 1448
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * Helper for deferred_init_range, free the given range, reset the counters, and
 * return number of pages freed.
 */
static inline unsigned long __init __def_free(unsigned long *nr_free,
					      unsigned long *free_base_pfn,
					      struct page **page)
{
	unsigned long nr = *nr_free;

	deferred_free_range(*free_base_pfn, nr);
	*free_base_pfn = 0;
	*nr_free = 0;
	*page = NULL;

	return nr;
}

static unsigned long __init deferred_init_range(int nid, int zid,
						unsigned long start_pfn,
						unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long free_base_pfn = 0;
	unsigned long nr_pages = 0;
	unsigned long nr_free = 0;
	struct page *page = NULL;
	unsigned long pfn;

	/*
	 * First we check if pfn is valid on architectures where it is possible
	 * to have holes within pageblock_nr_pages. On systems where it is not
	 * possible, this function is optimized out.
	 *
	 * Then, we check if a current large page is valid by only checking the
	 * validity of the head pfn.
	 *
	 * meminit_pfn_in_nid is checked on systems where pfns can interleave
	 * within a node: a pfn is between start and end of a node, but does not
	 * belong to this memory node.
	 *
	 * Finally, we minimize pfn page lookups and scheduler checks by
	 * performing it only once every pageblock_nr_pages.
	 *
	 * We do it in two loops: first we initialize struct page, than free to
	 * buddy allocator, becuse while we are freeing pages we can access
	 * pages that are ahead (computing buddy page in __free_one_page()).
	 */
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		if (!pfn_valid_within(pfn))
			continue;
		if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
			if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				if (page && (pfn & nr_pgmask))
					page++;
				else
					page = pfn_to_page(pfn);
				__init_single_page(page, pfn, zid, nid);
				cond_resched();
			}
		}
	}

	page = NULL;
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		if (!pfn_valid_within(pfn)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (page && (pfn & nr_pgmask)) {
			page++;
			nr_free++;
		} else {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
			page = pfn_to_page(pfn);
			free_base_pfn = pfn;
			nr_free = 1;
			cond_resched();
		}
	}
	/* Free the last block of pages to allocator */
	nr_pages += __def_free(&nr_free, &free_base_pfn, &page);

	return nr_pages;
}

1539
/* Initialise remaining memory on a node */
1540
static int __init deferred_init_memmap(void *data)
1541
{
1542 1543
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1544 1545
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1546 1547 1548
	unsigned long spfn, epfn;
	phys_addr_t spa, epa;
	int zid;
1549 1550
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1551
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1552
	u64 i;
1553

1554
	if (first_init_pfn == ULONG_MAX) {
1555
		pgdat_init_report_one_done();
1556 1557 1558 1559 1560 1561
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1574
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1575

1576 1577 1578 1579
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1580 1581 1582 1583 1584
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1585
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1586
					jiffies_to_msecs(jiffies - start));
1587 1588

	pgdat_init_report_one_done();
1589 1590
	return 0;
}
1591
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1592 1593 1594

void __init page_alloc_init_late(void)
{
1595 1596 1597
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1598 1599
	int nid;

1600 1601
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1602 1603 1604 1605 1606
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1607
	wait_for_completion(&pgdat_init_all_done_comp);
1608 1609 1610

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1611
#endif
P
Pavel Tatashin 已提交
1612 1613 1614 1615
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1616 1617 1618

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1619 1620
}

1621
#ifdef CONFIG_CMA
1622
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1648
	adjust_managed_page_count(page, pageblock_nr_pages);
1649 1650
}
#endif
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1664
 * -- nyc
L
Linus Torvalds 已提交
1665
 */
N
Nick Piggin 已提交
1666
static inline void expand(struct zone *zone, struct page *page,
1667 1668
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1676
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1677

1678 1679 1680 1681 1682 1683 1684
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1685
			continue;
1686

1687
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1688 1689 1690 1691 1692
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1693
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1694
{
1695 1696
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1697

1698
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1699 1700 1701
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1702
	if (unlikely(page_ref_count(page) != 0))
1703
		bad_reason = "nonzero _count";
1704 1705 1706
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1707 1708 1709
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1710
	}
1711 1712 1713 1714
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1715 1716 1717 1718
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1733 1734
}

1735
static inline bool free_pages_prezeroed(void)
1736 1737
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1738
		page_poisoning_enabled();
1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1788
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1789
							unsigned int alloc_flags)
1790 1791
{
	int i;
1792

1793
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1794

1795
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1796 1797
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1798 1799 1800 1801

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1802
	/*
1803
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1804 1805 1806 1807
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1808 1809 1810 1811
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1812 1813
}

1814 1815 1816 1817
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1818
static __always_inline
1819
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1820 1821 1822
						int migratetype)
{
	unsigned int current_order;
1823
	struct free_area *area;
1824 1825 1826 1827 1828
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1829
		page = list_first_entry_or_null(&area->free_list[migratetype],
1830
							struct page, lru);
1831 1832
		if (!page)
			continue;
1833 1834 1835 1836
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1837
		set_pcppage_migratetype(page, migratetype);
1838 1839 1840 1841 1842 1843 1844
		return page;
	}

	return NULL;
}


1845 1846 1847 1848
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1849
static int fallbacks[MIGRATE_TYPES][4] = {
1850 1851 1852
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1853
#ifdef CONFIG_CMA
1854
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1855
#endif
1856
#ifdef CONFIG_MEMORY_ISOLATION
1857
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1858
#endif
1859 1860
};

1861
#ifdef CONFIG_CMA
1862
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1863 1864 1865 1866 1867 1868 1869 1870 1871
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1872 1873
/*
 * Move the free pages in a range to the free lists of the requested type.
1874
 * Note that start_page and end_pages are not aligned on a pageblock
1875 1876
 * boundary. If alignment is required, use move_freepages_block()
 */
1877
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1878
			  struct page *start_page, struct page *end_page,
1879
			  int migratetype, int *num_movable)
1880 1881
{
	struct page *page;
1882
	unsigned int order;
1883
	int pages_moved = 0;
1884 1885 1886 1887 1888 1889 1890

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1891
	 * grouping pages by mobility
1892
	 */
1893
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1894 1895
#endif

1896 1897 1898
	if (num_movable)
		*num_movable = 0;

1899 1900 1901 1902 1903 1904
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1905 1906 1907
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1908
		if (!PageBuddy(page)) {
1909 1910 1911 1912 1913 1914 1915 1916 1917
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1918 1919 1920 1921 1922
			page++;
			continue;
		}

		order = page_order(page);
1923 1924
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1925
		page += 1 << order;
1926
		pages_moved += 1 << order;
1927 1928
	}

1929
	return pages_moved;
1930 1931
}

1932
int move_freepages_block(struct zone *zone, struct page *page,
1933
				int migratetype, int *num_movable)
1934 1935 1936 1937 1938
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1939
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1940
	start_page = pfn_to_page(start_pfn);
1941 1942
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1943 1944

	/* Do not cross zone boundaries */
1945
	if (!zone_spans_pfn(zone, start_pfn))
1946
		start_page = page;
1947
	if (!zone_spans_pfn(zone, end_pfn))
1948 1949
		return 0;

1950 1951
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1952 1953
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1965
/*
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1976
 */
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2001 2002 2003 2004
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2005 2006
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2007
					int start_type, bool whole_block)
2008
{
2009
	unsigned int current_order = page_order(page);
2010
	struct free_area *area;
2011 2012 2013 2014
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2015

2016 2017 2018 2019
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2020
	if (is_migrate_highatomic(old_block_type))
2021 2022
		goto single_page;

2023 2024 2025
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2026
		goto single_page;
2027 2028
	}

2029 2030 2031 2032
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2057
	/* moving whole block can fail due to zone boundary conditions */
2058
	if (!free_pages)
2059
		goto single_page;
2060

2061 2062 2063 2064 2065
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2066 2067
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2068 2069 2070 2071 2072 2073

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2074 2075
}

2076 2077 2078 2079 2080 2081 2082 2083
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2094
		if (fallback_mt == MIGRATE_TYPES)
2095 2096 2097 2098
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2099

2100 2101 2102
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2103 2104 2105 2106 2107
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2108
	}
2109 2110

	return -1;
2111 2112
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2139 2140
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2141 2142
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2143
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2155 2156 2157
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2158
 */
2159 2160
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2161 2162 2163 2164 2165 2166 2167
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2168
	bool ret;
2169 2170 2171

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2172 2173 2174 2175 2176 2177
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2178 2179 2180 2181 2182 2183
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2184 2185 2186 2187
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2188 2189 2190
				continue;

			/*
2191 2192 2193 2194 2195
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2196
			 */
2197
			if (is_migrate_highatomic_page(page)) {
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2220 2221
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2222 2223 2224 2225
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2226 2227 2228
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2229 2230

	return false;
2231 2232
}

2233 2234 2235 2236 2237
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2238 2239 2240 2241
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2242
 */
2243
static __always_inline bool
2244
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2245
{
2246
	struct free_area *area;
2247
	int current_order;
2248
	struct page *page;
2249 2250
	int fallback_mt;
	bool can_steal;
2251

2252 2253 2254 2255 2256
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2257
	for (current_order = MAX_ORDER - 1; current_order >= order;
2258
				--current_order) {
2259 2260
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2261
				start_migratetype, false, &can_steal);
2262 2263
		if (fallback_mt == -1)
			continue;
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2276

2277 2278
		goto do_steal;
	}
2279

2280
	return false;
2281

2282 2283 2284 2285 2286 2287 2288 2289
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2290 2291
	}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2309 2310
}

2311
/*
L
Linus Torvalds 已提交
2312 2313 2314
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2315 2316
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2317 2318 2319
{
	struct page *page;

2320
retry:
2321
	page = __rmqueue_smallest(zone, order, migratetype);
2322
	if (unlikely(!page)) {
2323 2324 2325
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2326 2327
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2328 2329
	}

2330
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2331
	return page;
L
Linus Torvalds 已提交
2332 2333
}

2334
/*
L
Linus Torvalds 已提交
2335 2336 2337 2338
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2339
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2340
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2341
			int migratetype)
L
Linus Torvalds 已提交
2342
{
2343
	int i, alloced = 0;
2344

2345
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2346
	for (i = 0; i < count; ++i) {
2347
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2348
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2349
			break;
2350

2351 2352 2353
		if (unlikely(check_pcp_refill(page)))
			continue;

2354
		/*
2355 2356 2357 2358 2359 2360 2361 2362
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2363
		 */
2364
		list_add_tail(&page->lru, list);
2365
		alloced++;
2366
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2367 2368
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2369
	}
2370 2371 2372 2373 2374 2375 2376

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2377
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2378
	spin_unlock(&zone->lock);
2379
	return alloced;
L
Linus Torvalds 已提交
2380 2381
}

2382
#ifdef CONFIG_NUMA
2383
/*
2384 2385 2386 2387
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2388 2389
 * Note that this function must be called with the thread pinned to
 * a single processor.
2390
 */
2391
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2392 2393
{
	unsigned long flags;
2394
	int to_drain, batch;
2395

2396
	local_irq_save(flags);
2397
	batch = READ_ONCE(pcp->batch);
2398
	to_drain = min(pcp->count, batch);
2399 2400 2401 2402
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2403
	local_irq_restore(flags);
2404 2405 2406
}
#endif

2407
/*
2408
 * Drain pcplists of the indicated processor and zone.
2409 2410 2411 2412 2413
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2414
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2415
{
N
Nick Piggin 已提交
2416
	unsigned long flags;
2417 2418
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2419

2420 2421
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2422

2423 2424 2425 2426 2427 2428 2429
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2444 2445 2446
	}
}

2447 2448
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2449 2450 2451
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2452
 */
2453
void drain_local_pages(struct zone *zone)
2454
{
2455 2456 2457 2458 2459 2460
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2461 2462
}

2463 2464
static void drain_local_pages_wq(struct work_struct *work)
{
2465 2466 2467 2468 2469 2470 2471 2472
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2473
	drain_local_pages(NULL);
2474
	preempt_enable();
2475 2476
}

2477
/*
2478 2479
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2480 2481
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2482
 * Note that this can be extremely slow as the draining happens in a workqueue.
2483
 */
2484
void drain_all_pages(struct zone *zone)
2485
{
2486 2487 2488 2489 2490 2491 2492 2493
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2494 2495 2496 2497 2498 2499 2500
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2501 2502 2503 2504
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2515

2516 2517 2518 2519 2520 2521 2522
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2523 2524
		struct per_cpu_pageset *pcp;
		struct zone *z;
2525
		bool has_pcps = false;
2526 2527

		if (zone) {
2528
			pcp = per_cpu_ptr(zone->pageset, cpu);
2529
			if (pcp->pcp.count)
2530
				has_pcps = true;
2531 2532 2533 2534 2535 2536 2537
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2538 2539
			}
		}
2540

2541 2542 2543 2544 2545
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2546

2547 2548 2549
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2550
		queue_work_on(cpu, mm_percpu_wq, work);
2551
	}
2552 2553 2554 2555
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2556 2557
}

2558
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2559

2560 2561 2562 2563 2564
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2565 2566
void mark_free_pages(struct zone *zone)
{
2567
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2568
	unsigned long flags;
2569
	unsigned int order, t;
2570
	struct page *page;
L
Linus Torvalds 已提交
2571

2572
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2573 2574 2575
		return;

	spin_lock_irqsave(&zone->lock, flags);
2576

2577
	max_zone_pfn = zone_end_pfn(zone);
2578 2579
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2580
			page = pfn_to_page(pfn);
2581

2582 2583 2584 2585 2586
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2587 2588 2589
			if (page_zone(page) != zone)
				continue;

2590 2591
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2592
		}
L
Linus Torvalds 已提交
2593

2594
	for_each_migratetype_order(order, t) {
2595 2596
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2597
			unsigned long i;
L
Linus Torvalds 已提交
2598

2599
			pfn = page_to_pfn(page);
2600 2601 2602 2603 2604
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2605
				swsusp_set_page_free(pfn_to_page(pfn + i));
2606
			}
2607
		}
2608
	}
L
Linus Torvalds 已提交
2609 2610
	spin_unlock_irqrestore(&zone->lock, flags);
}
2611
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2612

2613
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2614
{
2615
	int migratetype;
L
Linus Torvalds 已提交
2616

2617
	if (!free_pcp_prepare(page))
2618
		return false;
2619

2620
	migratetype = get_pfnblock_migratetype(page, pfn);
2621
	set_pcppage_migratetype(page, migratetype);
2622 2623 2624
	return true;
}

2625
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2626 2627 2628 2629 2630 2631
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2632
	__count_vm_event(PGFREE);
2633

2634 2635 2636
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2637
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2638 2639 2640 2641
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2642
		if (unlikely(is_migrate_isolate(migratetype))) {
2643
			free_one_page(zone, page, pfn, 0, migratetype);
2644
			return;
2645 2646 2647 2648
		}
		migratetype = MIGRATE_MOVABLE;
	}

2649
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2650
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2651
	pcp->count++;
N
Nick Piggin 已提交
2652
	if (pcp->count >= pcp->high) {
2653
		unsigned long batch = READ_ONCE(pcp->batch);
2654 2655
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2656
	}
2657
}
2658

2659 2660 2661
/*
 * Free a 0-order page
 */
2662
void free_unref_page(struct page *page)
2663 2664 2665 2666
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2667
	if (!free_unref_page_prepare(page, pfn))
2668 2669 2670
		return;

	local_irq_save(flags);
2671
	free_unref_page_commit(page, pfn);
2672
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2673 2674
}

2675 2676 2677
/*
 * Free a list of 0-order pages
 */
2678
void free_unref_page_list(struct list_head *list)
2679 2680
{
	struct page *page, *next;
2681 2682 2683 2684 2685
	unsigned long flags, pfn;

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2686
		if (!free_unref_page_prepare(page, pfn))
2687 2688 2689
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2690

2691
	local_irq_save(flags);
2692
	list_for_each_entry_safe(page, next, list, lru) {
2693 2694 2695
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2696 2697
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2698
	}
2699
	local_irq_restore(flags);
2700 2701
}

N
Nick Piggin 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2714 2715
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2716

2717
	for (i = 1; i < (1 << order); i++)
2718
		set_page_refcounted(page + i);
2719
	split_page_owner(page, order);
N
Nick Piggin 已提交
2720
}
K
K. Y. Srinivasan 已提交
2721
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2722

2723
int __isolate_free_page(struct page *page, unsigned int order)
2724 2725 2726
{
	unsigned long watermark;
	struct zone *zone;
2727
	int mt;
2728 2729 2730 2731

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2732
	mt = get_pageblock_migratetype(page);
2733

2734
	if (!is_migrate_isolate(mt)) {
2735 2736 2737 2738 2739 2740 2741
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2742
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2743 2744
			return 0;

2745
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2746
	}
2747 2748 2749 2750 2751

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2752

2753 2754 2755 2756
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2757 2758
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2759 2760
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2761
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2762
			    && !is_migrate_highatomic(mt))
2763 2764 2765
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2766 2767
	}

2768

2769
	return 1UL << order;
2770 2771
}

2772 2773 2774 2775 2776
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2777
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2778 2779
{
#ifdef CONFIG_NUMA
2780
	enum numa_stat_item local_stat = NUMA_LOCAL;
2781

2782 2783 2784 2785
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2786
	if (z->node != numa_node_id())
2787 2788
		local_stat = NUMA_OTHER;

2789
	if (z->node == preferred_zone->node)
2790
		__inc_numa_state(z, NUMA_HIT);
2791
	else {
2792 2793
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2794
	}
2795
	__inc_numa_state(z, local_stat);
2796 2797 2798
#endif
}

2799 2800
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2801
			struct per_cpu_pages *pcp,
2802 2803 2804 2805 2806 2807 2808 2809
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2810
					migratetype);
2811 2812 2813 2814
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2815
		page = list_first_entry(list, struct page, lru);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2831
	unsigned long flags;
2832

2833
	local_irq_save(flags);
2834 2835
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2836
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2837 2838 2839 2840
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2841
	local_irq_restore(flags);
2842 2843 2844
	return page;
}

L
Linus Torvalds 已提交
2845
/*
2846
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2847
 */
2848
static inline
2849
struct page *rmqueue(struct zone *preferred_zone,
2850
			struct zone *zone, unsigned int order,
2851 2852
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2853 2854
{
	unsigned long flags;
2855
	struct page *page;
L
Linus Torvalds 已提交
2856

2857
	if (likely(order == 0)) {
2858 2859 2860 2861
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2862

2863 2864 2865 2866 2867 2868
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2869

2870 2871 2872 2873 2874 2875 2876
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2877
		if (!page)
2878 2879 2880 2881 2882 2883 2884
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2885

2886
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2887
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2888
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2889

2890 2891
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2892
	return page;
N
Nick Piggin 已提交
2893 2894 2895 2896

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2897 2898
}

2899 2900
#ifdef CONFIG_FAIL_PAGE_ALLOC

2901
static struct {
2902 2903
	struct fault_attr attr;

2904
	bool ignore_gfp_highmem;
2905
	bool ignore_gfp_reclaim;
2906
	u32 min_order;
2907 2908
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2909
	.ignore_gfp_reclaim = true,
2910
	.ignore_gfp_highmem = true,
2911
	.min_order = 1,
2912 2913 2914 2915 2916 2917 2918 2919
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2920
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2921
{
2922
	if (order < fail_page_alloc.min_order)
2923
		return false;
2924
	if (gfp_mask & __GFP_NOFAIL)
2925
		return false;
2926
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2927
		return false;
2928 2929
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2930
		return false;
2931 2932 2933 2934 2935 2936 2937 2938

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2939
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2940 2941
	struct dentry *dir;

2942 2943 2944 2945
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2946

2947
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2948
				&fail_page_alloc.ignore_gfp_reclaim))
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2959
	debugfs_remove_recursive(dir);
2960

2961
	return -ENOMEM;
2962 2963 2964 2965 2966 2967 2968 2969
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2970
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2971
{
2972
	return false;
2973 2974 2975 2976
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2977
/*
2978 2979 2980 2981
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2982
 */
2983 2984 2985
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2986
{
2987
	long min = mark;
L
Linus Torvalds 已提交
2988
	int o;
2989
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
2990

2991
	/* free_pages may go negative - that's OK */
2992
	free_pages -= (1 << order) - 1;
2993

R
Rohit Seth 已提交
2994
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2995
		min -= min / 2;
2996 2997 2998 2999 3000 3001

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3002
	if (likely(!alloc_harder)) {
3003
		free_pages -= z->nr_reserved_highatomic;
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3017

3018 3019 3020
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
3021
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3022
#endif
3023

3024 3025 3026 3027 3028 3029
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3030
		return false;
L
Linus Torvalds 已提交
3031

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
3058
	}
3059
	return false;
3060 3061
}

3062
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3063
		      int classzone_idx, unsigned int alloc_flags)
3064 3065 3066 3067 3068
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3095
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3096
			unsigned long mark, int classzone_idx)
3097 3098 3099 3100 3101 3102
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3103
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3104
								free_pages);
L
Linus Torvalds 已提交
3105 3106
}

3107
#ifdef CONFIG_NUMA
3108 3109
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3110
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3111
				RECLAIM_DISTANCE;
3112
}
3113
#else	/* CONFIG_NUMA */
3114 3115 3116 3117
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3118 3119
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3120
/*
3121
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3122 3123 3124
 * a page.
 */
static struct page *
3125 3126
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3127
{
3128
	struct zoneref *z = ac->preferred_zoneref;
3129
	struct zone *zone;
3130 3131
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3132
	/*
3133
	 * Scan zonelist, looking for a zone with enough free.
3134
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3135
	 */
3136
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3137
								ac->nodemask) {
3138
		struct page *page;
3139 3140
		unsigned long mark;

3141 3142
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3143
			!__cpuset_zone_allowed(zone, gfp_mask))
3144
				continue;
3145 3146
		/*
		 * When allocating a page cache page for writing, we
3147 3148
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3149
		 * proportional share of globally allowed dirty pages.
3150
		 * The dirty limits take into account the node's
3151 3152 3153 3154 3155
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3156
		 * exceed the per-node dirty limit in the slowpath
3157
		 * (spread_dirty_pages unset) before going into reclaim,
3158
		 * which is important when on a NUMA setup the allowed
3159
		 * nodes are together not big enough to reach the
3160
		 * global limit.  The proper fix for these situations
3161
		 * will require awareness of nodes in the
3162 3163
		 * dirty-throttling and the flusher threads.
		 */
3164 3165 3166 3167 3168 3169 3170 3171 3172
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3173

3174
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3175
		if (!zone_watermark_fast(zone, order, mark,
3176
				       ac_classzone_idx(ac), alloc_flags)) {
3177 3178
			int ret;

3179 3180 3181 3182 3183
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3184
			if (node_reclaim_mode == 0 ||
3185
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3186 3187
				continue;

3188
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3189
			switch (ret) {
3190
			case NODE_RECLAIM_NOSCAN:
3191
				/* did not scan */
3192
				continue;
3193
			case NODE_RECLAIM_FULL:
3194
				/* scanned but unreclaimable */
3195
				continue;
3196 3197
			default:
				/* did we reclaim enough */
3198
				if (zone_watermark_ok(zone, order, mark,
3199
						ac_classzone_idx(ac), alloc_flags))
3200 3201 3202
					goto try_this_zone;

				continue;
3203
			}
R
Rohit Seth 已提交
3204 3205
		}

3206
try_this_zone:
3207
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3208
				gfp_mask, alloc_flags, ac->migratetype);
3209
		if (page) {
3210
			prep_new_page(page, order, gfp_mask, alloc_flags);
3211 3212 3213 3214 3215 3216 3217 3218

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3219 3220
			return page;
		}
3221
	}
3222

3223
	return NULL;
M
Martin Hicks 已提交
3224 3225
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3240
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3241 3242
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3243
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3244

3245
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3246 3247 3248 3249 3250 3251 3252 3253
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3254
		if (tsk_is_oom_victim(current) ||
3255 3256
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3257
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3258 3259
		filter &= ~SHOW_MEM_FILTER_NODES;

3260
	show_mem(filter, nodemask);
3261 3262
}

3263
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3264 3265 3266 3267 3268 3269
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3270
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3271 3272
		return;

3273
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3274

3275 3276 3277 3278 3279
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3280

3281 3282 3283 3284 3285 3286
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3287
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3288

3289
	dump_stack();
3290
	warn_alloc_show_mem(gfp_mask, nodemask);
3291 3292
}

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3313 3314
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3315
	const struct alloc_context *ac, unsigned long *did_some_progress)
3316
{
3317 3318 3319
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3320
		.memcg = NULL,
3321 3322 3323
		.gfp_mask = gfp_mask,
		.order = order,
	};
3324 3325
	struct page *page;

3326 3327 3328
	*did_some_progress = 0;

	/*
3329 3330
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3331
	 */
3332
	if (!mutex_trylock(&oom_lock)) {
3333
		*did_some_progress = 1;
3334
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3335 3336
		return NULL;
	}
3337

3338 3339 3340
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3341 3342 3343
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3344
	 */
3345 3346 3347
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3348
	if (page)
3349 3350
		goto out;

3351 3352 3353 3354 3355 3356
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3357 3358 3359 3360 3361 3362 3363 3364
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3383

3384
	/* Exhausted what can be done so it's blamo time */
3385
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3386
		*did_some_progress = 1;
3387

3388 3389 3390 3391 3392 3393
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3394 3395
					ALLOC_NO_WATERMARKS, ac);
	}
3396
out:
3397
	mutex_unlock(&oom_lock);
3398 3399 3400
	return page;
}

3401 3402 3403 3404 3405 3406
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3407 3408 3409 3410
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3411
		unsigned int alloc_flags, const struct alloc_context *ac,
3412
		enum compact_priority prio, enum compact_result *compact_result)
3413
{
3414
	struct page *page;
3415
	unsigned int noreclaim_flag;
3416 3417

	if (!order)
3418 3419
		return NULL;

3420
	noreclaim_flag = memalloc_noreclaim_save();
3421
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3422
									prio);
3423
	memalloc_noreclaim_restore(noreclaim_flag);
3424

3425
	if (*compact_result <= COMPACT_INACTIVE)
3426
		return NULL;
3427

3428 3429 3430 3431 3432
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3433

3434
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3435

3436 3437
	if (page) {
		struct zone *zone = page_zone(page);
3438

3439 3440 3441 3442 3443
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3444

3445 3446 3447 3448 3449
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3450

3451
	cond_resched();
3452 3453 3454

	return NULL;
}
3455

3456 3457 3458 3459
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3460
		     int *compaction_retries)
3461 3462
{
	int max_retries = MAX_COMPACT_RETRIES;
3463
	int min_priority;
3464 3465 3466
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3467 3468 3469 3470

	if (!order)
		return false;

3471 3472 3473
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3474 3475 3476 3477 3478
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3479 3480
	if (compaction_failed(compact_result))
		goto check_priority;
3481 3482 3483 3484 3485 3486 3487

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3488 3489 3490 3491
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3492 3493

	/*
3494
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3495 3496 3497 3498 3499 3500 3501 3502
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3503 3504 3505 3506
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3507

3508 3509 3510 3511 3512
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3513 3514
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3515

3516
	if (*compact_priority > min_priority) {
3517 3518
		(*compact_priority)--;
		*compaction_retries = 0;
3519
		ret = true;
3520
	}
3521 3522 3523
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3524
}
3525 3526 3527
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3528
		unsigned int alloc_flags, const struct alloc_context *ac,
3529
		enum compact_priority prio, enum compact_result *compact_result)
3530
{
3531
	*compact_result = COMPACT_SKIPPED;
3532 3533
	return NULL;
}
3534 3535

static inline bool
3536 3537
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3538
		     enum compact_priority *compact_priority,
3539
		     int *compaction_retries)
3540
{
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3559 3560
	return false;
}
3561
#endif /* CONFIG_COMPACTION */
3562

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
#ifdef CONFIG_LOCKDEP
struct lockdep_map __fs_reclaim_map =
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_acquire(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_release(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3604 3605
/* Perform direct synchronous page reclaim */
static int
3606 3607
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3608 3609
{
	struct reclaim_state reclaim_state;
3610
	int progress;
3611
	unsigned int noreclaim_flag;
3612 3613 3614 3615 3616

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3617
	noreclaim_flag = memalloc_noreclaim_save();
3618
	fs_reclaim_acquire(gfp_mask);
3619
	reclaim_state.reclaimed_slab = 0;
3620
	current->reclaim_state = &reclaim_state;
3621

3622 3623
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3624

3625
	current->reclaim_state = NULL;
3626
	fs_reclaim_release(gfp_mask);
3627
	memalloc_noreclaim_restore(noreclaim_flag);
3628 3629 3630

	cond_resched();

3631 3632 3633 3634 3635 3636
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3637
		unsigned int alloc_flags, const struct alloc_context *ac,
3638
		unsigned long *did_some_progress)
3639 3640 3641 3642
{
	struct page *page = NULL;
	bool drained = false;

3643
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3644 3645
	if (unlikely(!(*did_some_progress)))
		return NULL;
3646

3647
retry:
3648
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3649 3650 3651

	/*
	 * If an allocation failed after direct reclaim, it could be because
3652 3653
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3654 3655
	 */
	if (!page && !drained) {
3656
		unreserve_highatomic_pageblock(ac, false);
3657
		drain_all_pages(NULL);
3658 3659 3660 3661
		drained = true;
		goto retry;
	}

3662 3663 3664
	return page;
}

3665
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3666 3667 3668
{
	struct zoneref *z;
	struct zone *zone;
3669
	pg_data_t *last_pgdat = NULL;
3670

3671
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3672 3673
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3674
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3675 3676
		last_pgdat = zone->zone_pgdat;
	}
3677 3678
}

3679
static inline unsigned int
3680 3681
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3682
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3683

3684
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3685
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3686

3687 3688 3689 3690
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3691
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3692
	 */
3693
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3694

3695
	if (gfp_mask & __GFP_ATOMIC) {
3696
		/*
3697 3698
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3699
		 */
3700
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3701
			alloc_flags |= ALLOC_HARDER;
3702
		/*
3703
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3704
		 * comment for __cpuset_node_allowed().
3705
		 */
3706
		alloc_flags &= ~ALLOC_CPUSET;
3707
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3708 3709
		alloc_flags |= ALLOC_HARDER;

3710
#ifdef CONFIG_CMA
3711
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3712 3713
		alloc_flags |= ALLOC_CMA;
#endif
3714 3715 3716
	return alloc_flags;
}

3717
static bool oom_reserves_allowed(struct task_struct *tsk)
3718
{
3719 3720 3721 3722 3723 3724 3725 3726
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3727 3728
		return false;

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3740
	if (gfp_mask & __GFP_MEMALLOC)
3741
		return ALLOC_NO_WATERMARKS;
3742
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3743 3744 3745 3746 3747 3748 3749
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3750

3751 3752 3753 3754 3755 3756
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3757 3758
}

M
Michal Hocko 已提交
3759 3760 3761
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3762 3763 3764 3765
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3766 3767 3768 3769 3770 3771
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3772
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3773 3774 3775 3776
{
	struct zone *zone;
	struct zoneref *z;

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3787 3788 3789 3790
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3791 3792
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3793
		return unreserve_highatomic_pageblock(ac, true);
3794
	}
M
Michal Hocko 已提交
3795

3796 3797 3798 3799 3800
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3801 3802 3803 3804
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3805
		unsigned long reclaimable;
3806 3807
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3808

3809 3810
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3811 3812

		/*
3813 3814
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3815
		 */
3816 3817 3818 3819 3820
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3821 3822 3823 3824 3825 3826 3827
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3828
				unsigned long write_pending;
3829

3830 3831
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3832

3833
				if (2 * write_pending > reclaimable) {
3834 3835 3836 3837
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3838

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3853 3854 3855 3856 3857 3858 3859
			return true;
		}
	}

	return false;
}

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

3893 3894
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3895
						struct alloc_context *ac)
3896
{
3897
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3898
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3899
	struct page *page = NULL;
3900
	unsigned int alloc_flags;
3901
	unsigned long did_some_progress;
3902
	enum compact_priority compact_priority;
3903
	enum compact_result compact_result;
3904 3905
	int compaction_retries;
	int no_progress_loops;
3906 3907
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3908
	unsigned int cpuset_mems_cookie;
3909
	int reserve_flags;
L
Linus Torvalds 已提交
3910

3911 3912 3913 3914 3915 3916
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3917 3918
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3919
		return NULL;
3920
	}
L
Linus Torvalds 已提交
3921

3922 3923 3924 3925 3926 3927 3928 3929
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3930 3931 3932 3933 3934
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3935 3936 3937 3938 3939 3940 3941 3942

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3965 3966
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3967 3968 3969 3970 3971 3972
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3973
	 */
3974 3975 3976 3977
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3978 3979
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3980
						INIT_COMPACT_PRIORITY,
3981 3982 3983 3984
						&compact_result);
		if (page)
			goto got_pg;

3985 3986 3987 3988
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
3989
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4002 4003
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4004
			 * using async compaction.
4005
			 */
4006
			compact_priority = INIT_COMPACT_PRIORITY;
4007 4008
		}
	}
4009

4010
retry:
4011
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4012 4013 4014
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

4015 4016 4017
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4018

4019 4020 4021 4022 4023
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
4024
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4025 4026 4027 4028 4029
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4030
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4031
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4032 4033
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4034

4035
	/* Caller is not willing to reclaim, we can't balance anything */
4036
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4037 4038
		goto nopage;

4039 4040
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
4041
		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
4042 4043 4044
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
4045
	}
4046

4047 4048
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4049 4050
		goto nopage;

4051 4052 4053 4054 4055 4056 4057
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4058
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4059
					compact_priority, &compact_result);
4060 4061
	if (page)
		goto got_pg;
4062

4063 4064
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4065
		goto nopage;
4066

M
Michal Hocko 已提交
4067 4068
	/*
	 * Do not retry costly high order allocations unless they are
4069
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4070
	 */
4071
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4072
		goto nopage;
M
Michal Hocko 已提交
4073 4074

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4075
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4076 4077
		goto retry;

4078 4079 4080 4081 4082 4083 4084
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4085
			should_compact_retry(ac, order, alloc_flags,
4086
				compact_result, &compact_priority,
4087
				&compaction_retries))
4088 4089
		goto retry;

4090 4091 4092

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4093 4094
		goto retry_cpuset;

4095 4096 4097 4098 4099
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4100
	/* Avoid allocations with no watermarks from looping endlessly */
4101 4102
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4103
	     (gfp_mask & __GFP_NOMEMALLOC)))
4104 4105
		goto nopage;

4106
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4107 4108
	if (did_some_progress) {
		no_progress_loops = 0;
4109
		goto retry;
M
Michal Hocko 已提交
4110
	}
4111

L
Linus Torvalds 已提交
4112
nopage:
4113 4114
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4115 4116
		goto retry_cpuset;

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4154 4155 4156 4157
		cond_resched();
		goto retry;
	}
fail:
4158
	warn_alloc(gfp_mask, ac->nodemask,
4159
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4160
got_pg:
4161
	return page;
L
Linus Torvalds 已提交
4162
}
4163

4164
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4165
		int preferred_nid, nodemask_t *nodemask,
4166 4167
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4168
{
4169
	ac->high_zoneidx = gfp_zone(gfp_mask);
4170
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4171 4172
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4173

4174
	if (cpusets_enabled()) {
4175 4176 4177
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4178 4179
		else
			*alloc_flags |= ALLOC_CPUSET;
4180 4181
	}

4182 4183
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4184

4185
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4186 4187

	if (should_fail_alloc_page(gfp_mask, order))
4188
		return false;
4189

4190 4191 4192 4193 4194
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4195

4196 4197 4198 4199
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4200
	/* Dirty zone balancing only done in the fast path */
4201
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4202

4203 4204 4205 4206 4207
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4208 4209 4210 4211 4212 4213 4214 4215
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4216 4217
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4218 4219 4220
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4221
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4222 4223 4224
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4225
	alloc_mask = gfp_mask;
4226
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4227 4228 4229
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4230

4231
	/* First allocation attempt */
4232
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4233 4234
	if (likely(page))
		goto out;
4235

4236
	/*
4237 4238 4239 4240
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4241
	 */
4242
	alloc_mask = current_gfp_context(gfp_mask);
4243
	ac.spread_dirty_pages = false;
4244

4245 4246 4247 4248
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4249
	if (unlikely(ac.nodemask != nodemask))
4250
		ac.nodemask = nodemask;
4251

4252
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4253

4254
out:
4255 4256 4257 4258
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4259 4260
	}

4261 4262
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4263
	return page;
L
Linus Torvalds 已提交
4264
}
4265
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4266 4267 4268 4269

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4270
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4271
{
4272 4273 4274 4275 4276 4277 4278 4279
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4287
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4288
{
4289
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4290 4291 4292
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4293
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4294
{
N
Nick Piggin 已提交
4295
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4296
		if (order == 0)
4297
			free_unref_page(page);
L
Linus Torvalds 已提交
4298 4299 4300 4301 4302 4303 4304
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4305
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4306 4307
{
	if (addr != 0) {
N
Nick Piggin 已提交
4308
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4326 4327
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4347
void __page_frag_cache_drain(struct page *page, unsigned int count)
4348 4349 4350 4351
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4352 4353
		unsigned int order = compound_order(page);

4354
		if (order == 0)
4355
			free_unref_page(page);
4356 4357 4358 4359
		else
			__free_pages_ok(page, order);
	}
}
4360
EXPORT_SYMBOL(__page_frag_cache_drain);
4361

4362 4363
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4364 4365 4366 4367 4368 4369 4370
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4371
		page = __page_frag_cache_refill(nc, gfp_mask);
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4382
		page_ref_add(page, size - 1);
4383 4384

		/* reset page count bias and offset to start of new frag */
4385
		nc->pfmemalloc = page_is_pfmemalloc(page);
4386 4387 4388 4389 4390 4391 4392 4393
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4394
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4395 4396 4397 4398 4399 4400 4401
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4402
		set_page_count(page, size);
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4414
EXPORT_SYMBOL(page_frag_alloc);
4415 4416 4417 4418

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4419
void page_frag_free(void *addr)
4420 4421 4422 4423 4424 4425
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4426
EXPORT_SYMBOL(page_frag_free);
4427

4428 4429
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4463
	return make_alloc_exact(addr, order, size);
4464 4465 4466
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4467 4468 4469
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4470
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4471 4472 4473 4474 4475 4476
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4477
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4478
{
4479
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4480 4481 4482 4483 4484 4485
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4505 4506 4507 4508 4509 4510 4511
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4512 4513
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4514
 */
4515
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4516
{
4517
	struct zoneref *z;
4518 4519
	struct zone *zone;

4520
	/* Just pick one node, since fallback list is circular */
4521
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4522

4523
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4524

4525
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4526
		unsigned long size = zone->managed_pages;
4527
		unsigned long high = high_wmark_pages(zone);
4528 4529
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534
	}

	return sum;
}

4535 4536 4537 4538 4539
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4540
 */
4541
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4542
{
A
Al Viro 已提交
4543
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4544
}
4545
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4546

4547 4548 4549 4550 4551
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4552
 */
4553
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4554
{
M
Mel Gorman 已提交
4555
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4556
}
4557 4558

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4559
{
4560
	if (IS_ENABLED(CONFIG_NUMA))
4561
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4562 4563
}

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4574
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4575 4576 4577 4578 4579 4580 4581 4582

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4583
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4598 4599 4600
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4601 4602 4603 4604 4605 4606 4607

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4608 4609 4610
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4611
	val->sharedram = global_node_page_state(NR_SHMEM);
4612
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4624 4625
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4626 4627
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4628 4629
	pg_data_t *pgdat = NODE_DATA(nid);

4630 4631 4632
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4633
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4634
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4635
#ifdef CONFIG_HIGHMEM
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4646
#else
4647 4648
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4649
#endif
L
Linus Torvalds 已提交
4650 4651 4652 4653
	val->mem_unit = PAGE_SIZE;
}
#endif

4654
/*
4655 4656
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4657
 */
4658
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4659 4660
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4661
		return false;
4662

4663 4664 4665 4666 4667 4668 4669 4670 4671
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4672 4673
}

L
Linus Torvalds 已提交
4674 4675
#define K(x) ((x) << (PAGE_SHIFT-10))

4676 4677 4678 4679 4680
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4681 4682
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4683 4684 4685
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4686
#ifdef CONFIG_MEMORY_ISOLATION
4687
		[MIGRATE_ISOLATE]	= 'I',
4688
#endif
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4700
	printk(KERN_CONT "(%s) ", tmp);
4701 4702
}

L
Linus Torvalds 已提交
4703 4704 4705 4706
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4707 4708 4709 4710
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4711
 */
4712
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4713
{
4714
	unsigned long free_pcp = 0;
4715
	int cpu;
L
Linus Torvalds 已提交
4716
	struct zone *zone;
M
Mel Gorman 已提交
4717
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4718

4719
	for_each_populated_zone(zone) {
4720
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4721
			continue;
4722

4723 4724
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4725 4726
	}

K
KOSAKI Motohiro 已提交
4727 4728
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4729 4730
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4731
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4732
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4733 4734 4735 4736 4737 4738 4739
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4740 4741 4742
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4743 4744
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4745
		global_node_page_state(NR_FILE_MAPPED),
4746
		global_node_page_state(NR_SHMEM),
4747 4748 4749
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4750
		free_pcp,
4751
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4752

M
Mel Gorman 已提交
4753
	for_each_online_pgdat(pgdat) {
4754
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4755 4756
			continue;

M
Mel Gorman 已提交
4757 4758 4759 4760 4761 4762 4763 4764
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4765
			" mapped:%lukB"
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4786
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4787 4788
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4789
			K(node_page_state(pgdat, NR_SHMEM)),
4790 4791 4792 4793 4794 4795 4796 4797
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4798 4799
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4800 4801
	}

4802
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4803 4804
		int i;

4805
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4806
			continue;
4807 4808 4809 4810 4811

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4812
		show_node(zone);
4813 4814
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4815 4816 4817 4818
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4819 4820 4821 4822 4823
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4824
			" writepending:%lukB"
L
Linus Torvalds 已提交
4825
			" present:%lukB"
4826
			" managed:%lukB"
4827
			" mlocked:%lukB"
4828
			" kernel_stack:%lukB"
4829 4830
			" pagetables:%lukB"
			" bounce:%lukB"
4831 4832
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4833
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4834 4835
			"\n",
			zone->name,
4836
			K(zone_page_state(zone, NR_FREE_PAGES)),
4837 4838 4839
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4840 4841 4842 4843 4844
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4845
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4846
			K(zone->present_pages),
4847
			K(zone->managed_pages),
4848
			K(zone_page_state(zone, NR_MLOCK)),
4849
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4850 4851
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4852 4853
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4854
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4855 4856
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4857 4858
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4859 4860
	}

4861
	for_each_populated_zone(zone) {
4862 4863
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4864
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4865

4866
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4867
			continue;
L
Linus Torvalds 已提交
4868
		show_node(zone);
4869
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4870 4871 4872

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4873 4874 4875 4876
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4877
			total += nr[order] << order;
4878 4879 4880 4881 4882 4883

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4884 4885
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4886
		for (order = 0; order < MAX_ORDER; order++) {
4887 4888
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4889 4890 4891
			if (nr[order])
				show_migration_types(types[order]);
		}
4892
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4893 4894
	}

4895 4896
	hugetlb_show_meminfo();

4897
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4898

L
Linus Torvalds 已提交
4899 4900 4901
	show_swap_cache_info();
}

4902 4903 4904 4905 4906 4907
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4908 4909
/*
 * Builds allocation fallback zone lists.
4910 4911
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4912
 */
4913
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
4914
{
4915
	struct zone *zone;
4916
	enum zone_type zone_type = MAX_NR_ZONES;
4917
	int nr_zones = 0;
4918 4919

	do {
4920
		zone_type--;
4921
		zone = pgdat->node_zones + zone_type;
4922
		if (managed_zone(zone)) {
4923
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4924
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4925
		}
4926
	} while (zone_type);
4927

4928
	return nr_zones;
L
Linus Torvalds 已提交
4929 4930 4931
}

#ifdef CONFIG_NUMA
4932 4933 4934

static int __parse_numa_zonelist_order(char *s)
{
4935 4936 4937 4938 4939 4940 4941 4942
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4943 4944 4945 4946 4947 4948 4949
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4950 4951 4952
	if (!s)
		return 0;

4953
	return __parse_numa_zonelist_order(s);
4954 4955 4956
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

4957 4958
char numa_zonelist_order[] = "Node";

4959 4960 4961
/*
 * sysctl handler for numa_zonelist_order
 */
4962
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4963
		void __user *buffer, size_t *length,
4964 4965
		loff_t *ppos)
{
4966
	char *str;
4967 4968
	int ret;

4969 4970 4971 4972 4973
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
4974

4975 4976
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
4977
	return ret;
4978 4979 4980
}


4981
#define MAX_NODE_LOAD (nr_online_nodes)
4982 4983
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4984
/**
4985
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4998
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4999
{
5000
	int n, val;
L
Linus Torvalds 已提交
5001
	int min_val = INT_MAX;
D
David Rientjes 已提交
5002
	int best_node = NUMA_NO_NODE;
5003
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5004

5005 5006 5007 5008 5009
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5010

5011
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017 5018 5019

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5020 5021 5022
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5023
		/* Give preference to headless and unused nodes */
5024 5025
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5044 5045 5046 5047 5048 5049

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5050 5051
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5052
{
5053 5054 5055 5056 5057 5058 5059 5060 5061
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5062

5063 5064 5065 5066 5067
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5068 5069
}

5070 5071 5072 5073 5074
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5075 5076
	struct zoneref *zonerefs;
	int nr_zones;
5077

5078 5079 5080 5081 5082
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5083 5084
}

5085 5086 5087 5088 5089 5090 5091 5092 5093
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5094 5095
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5096
	nodemask_t used_mask;
5097
	int local_node, prev_node;
L
Linus Torvalds 已提交
5098 5099 5100

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5101
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5102 5103
	prev_node = local_node;
	nodes_clear(used_mask);
5104 5105

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5106 5107 5108 5109 5110 5111
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5112 5113
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5114 5115
			node_load[node] = load;

5116
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5117 5118 5119
		prev_node = node;
		load--;
	}
5120

5121
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5122
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5123 5124
}

5125 5126 5127 5128 5129 5130 5131 5132 5133
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5134
	struct zoneref *z;
5135

5136
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5137
				   gfp_zone(GFP_KERNEL),
5138 5139
				   NULL);
	return z->zone->node;
5140 5141
}
#endif
5142

5143 5144
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5145 5146
#else	/* CONFIG_NUMA */

5147
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5148
{
5149
	int node, local_node;
5150 5151
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5152 5153 5154

	local_node = pgdat->node_id;

5155 5156 5157
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5158

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5170 5171
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5172
	}
5173 5174 5175
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5176 5177
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5178 5179
	}

5180 5181
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5182 5183 5184 5185
}

#endif	/* CONFIG_NUMA */

5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5203
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5204

5205
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5206
{
5207
	int nid;
5208
	int __maybe_unused cpu;
5209
	pg_data_t *self = data;
5210 5211 5212
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5213

5214 5215 5216
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5217

5218 5219 5220 5221
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5222 5223
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5224 5225 5226
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5227

5228 5229
			build_zonelists(pgdat);
		}
5230

5231 5232 5233 5234 5235 5236 5237 5238 5239
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5240
		for_each_online_cpu(cpu)
5241
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5242
#endif
5243
	}
5244 5245

	spin_unlock(&lock);
5246 5247
}

5248 5249 5250
static noinline void __init
build_all_zonelists_init(void)
{
5251 5252
	int cpu;

5253
	__build_all_zonelists(NULL);
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5271 5272 5273 5274
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5275 5276
/*
 * unless system_state == SYSTEM_BOOTING.
5277
 *
5278
 * __ref due to call of __init annotated helper build_all_zonelists_init
5279
 * [protected by SYSTEM_BOOTING].
5280
 */
5281
void __ref build_all_zonelists(pg_data_t *pgdat)
5282 5283
{
	if (system_state == SYSTEM_BOOTING) {
5284
		build_all_zonelists_init();
5285
	} else {
5286
		__build_all_zonelists(pgdat);
5287 5288
		/* cpuset refresh routine should be here */
	}
5289
	vm_total_pages = nr_free_pagecache_pages();
5290 5291 5292 5293 5294 5295 5296
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5297
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5298 5299 5300 5301
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5302
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5303 5304 5305
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5306
#ifdef CONFIG_NUMA
5307
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5308
#endif
L
Linus Torvalds 已提交
5309 5310 5311 5312 5313 5314 5315
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5316
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5317
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5318
{
5319
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5320
	unsigned long end_pfn = start_pfn + size;
5321
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5322
	unsigned long pfn;
5323
	unsigned long nr_initialised = 0;
5324 5325 5326
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5327

5328 5329 5330
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5331 5332 5333 5334 5335 5336 5337
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5338
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5339
		/*
5340 5341
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5342
		 */
5343 5344 5345
		if (context != MEMMAP_EARLY)
			goto not_early;

5346 5347 5348 5349 5350 5351 5352 5353 5354
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5355
			continue;
5356
		}
5357 5358 5359 5360
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5361 5362

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5380
			}
D
Dave Hansen 已提交
5381
		}
5382
#endif
5383

5384
not_early:
5385 5386 5387 5388 5389
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5390
		 * kernel allocations are made.
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5402
			cond_resched();
5403 5404 5405
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5406 5407 5408
	}
}

5409
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5410
{
5411
	unsigned int order, t;
5412 5413
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5420
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5421 5422
#endif

5423
static int zone_batchsize(struct zone *zone)
5424
{
5425
#ifdef CONFIG_MMU
5426 5427 5428 5429
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5430
	 * size of the zone.  But no more than 1/2 of a meg.
5431 5432 5433
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5434
	batch = zone->managed_pages / 1024;
5435 5436
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5437 5438 5439 5440 5441
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5442 5443 5444
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5445
	 *
5446 5447 5448 5449
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5450
	 */
5451
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5452

5453
	return batch;
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5471 5472
}

5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5500
/* a companion to pageset_set_high() */
5501 5502
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5503
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5504 5505
}

5506
static void pageset_init(struct per_cpu_pageset *p)
5507 5508
{
	struct per_cpu_pages *pcp;
5509
	int migratetype;
5510

5511 5512
	memset(p, 0, sizeof(*p));

5513
	pcp = &p->pcp;
5514
	pcp->count = 0;
5515 5516
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5517 5518
}

5519 5520 5521 5522 5523 5524
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5525
/*
5526
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5527 5528
 * to the value high for the pageset p.
 */
5529
static void pageset_set_high(struct per_cpu_pageset *p,
5530 5531
				unsigned long high)
{
5532 5533 5534
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5535

5536
	pageset_update(&p->pcp, high, batch);
5537 5538
}

5539 5540
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5541 5542
{
	if (percpu_pagelist_fraction)
5543
		pageset_set_high(pcp,
5544 5545 5546 5547 5548 5549
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5550 5551 5552 5553 5554 5555 5556 5557
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5558
void __meminit setup_zone_pageset(struct zone *zone)
5559 5560 5561
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5562 5563
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5564 5565
}

5566
/*
5567 5568
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5569
 */
5570
void __init setup_per_cpu_pageset(void)
5571
{
5572
	struct pglist_data *pgdat;
5573
	struct zone *zone;
5574

5575 5576
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5577 5578 5579 5580

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5581 5582
}

5583
static __meminit void zone_pcp_init(struct zone *zone)
5584
{
5585 5586 5587 5588 5589 5590
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5591

5592
	if (populated_zone(zone))
5593 5594 5595
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5596 5597
}

5598
void __meminit init_currently_empty_zone(struct zone *zone,
5599
					unsigned long zone_start_pfn,
5600
					unsigned long size)
5601 5602
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5603

5604 5605 5606 5607
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5608 5609 5610 5611 5612 5613
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5614
	zone_init_free_lists(zone);
5615
	zone->initialized = 1;
5616 5617
}

T
Tejun Heo 已提交
5618
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5619
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5620

5621 5622 5623
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5624 5625
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5626
{
5627
	unsigned long start_pfn, end_pfn;
5628
	int nid;
5629

5630 5631
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5632

5633 5634
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5635 5636 5637
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5638 5639 5640
	}

	return nid;
5641 5642 5643 5644
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5645
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5646
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5647
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5648
 *
5649 5650 5651
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5652
 */
5653
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5654
{
5655 5656
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5657

5658 5659 5660
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5661

5662
		if (start_pfn < end_pfn)
5663 5664 5665
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5666 5667 5668
	}
}

5669 5670
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5671
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5672
 *
5673 5674
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5675 5676 5677
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5678 5679
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5680

5681 5682
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5683 5684 5685 5686
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5687 5688 5689
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5690 5691
 *
 * It returns the start and end page frame of a node based on information
5692
 * provided by memblock_set_node(). If called for a node
5693
 * with no available memory, a warning is printed and the start and end
5694
 * PFNs will be 0.
5695
 */
5696
void __meminit get_pfn_range_for_nid(unsigned int nid,
5697 5698
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5699
	unsigned long this_start_pfn, this_end_pfn;
5700
	int i;
5701

5702 5703 5704
	*start_pfn = -1UL;
	*end_pfn = 0;

5705 5706 5707
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5708 5709
	}

5710
	if (*start_pfn == -1UL)
5711 5712 5713
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5714 5715 5716 5717 5718
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5719
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5737
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5738 5739 5740 5741 5742 5743 5744
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5745
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5760 5761 5762 5763 5764 5765
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5766 5767 5768 5769 5770 5771
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5772 5773 5774 5775
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5776
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5777
					unsigned long zone_type,
5778 5779
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5780 5781
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5782 5783
					unsigned long *ignored)
{
5784
	/* When hotadd a new node from cpu_up(), the node should be empty */
5785 5786 5787
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5788
	/* Get the start and end of the zone */
5789 5790
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5791 5792
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5793
				zone_start_pfn, zone_end_pfn);
5794 5795

	/* Check that this node has pages within the zone's required range */
5796
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5797 5798 5799
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5800 5801
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5802 5803

	/* Return the spanned pages */
5804
	return *zone_end_pfn - *zone_start_pfn;
5805 5806 5807 5808
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5809
 * then all holes in the requested range will be accounted for.
5810
 */
5811
unsigned long __meminit __absent_pages_in_range(int nid,
5812 5813 5814
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5815 5816 5817
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5818

5819 5820 5821 5822
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5823
	}
5824
	return nr_absent;
5825 5826 5827 5828 5829 5830 5831
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5832
 * It returns the number of pages frames in memory holes within a range.
5833 5834 5835 5836 5837 5838 5839 5840
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5841
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5842
					unsigned long zone_type,
5843 5844
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5845 5846
					unsigned long *ignored)
{
5847 5848
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5849
	unsigned long zone_start_pfn, zone_end_pfn;
5850
	unsigned long nr_absent;
5851

5852
	/* When hotadd a new node from cpu_up(), the node should be empty */
5853 5854 5855
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5856 5857
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5858

M
Mel Gorman 已提交
5859 5860 5861
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5862 5863 5864 5865 5866 5867 5868
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5886 5887 5888 5889
		}
	}

	return nr_absent;
5890
}
5891

T
Tejun Heo 已提交
5892
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5893
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5894
					unsigned long zone_type,
5895 5896
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5897 5898
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5899 5900
					unsigned long *zones_size)
{
5901 5902 5903 5904 5905 5906 5907 5908
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5909 5910 5911
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5912
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5913
						unsigned long zone_type,
5914 5915
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5916 5917 5918 5919 5920 5921 5922
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5923

T
Tejun Heo 已提交
5924
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5925

5926
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5927 5928 5929 5930
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5931
{
5932
	unsigned long realtotalpages = 0, totalpages = 0;
5933 5934
	enum zone_type i;

5935 5936
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5937
		unsigned long zone_start_pfn, zone_end_pfn;
5938
		unsigned long size, real_size;
5939

5940 5941 5942
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5943 5944
						  &zone_start_pfn,
						  &zone_end_pfn,
5945 5946
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5947 5948
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5949 5950 5951 5952
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5953 5954 5955 5956 5957 5958 5959 5960
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5961 5962 5963 5964 5965
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5966 5967 5968
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5969 5970
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5971 5972 5973
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5974
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5975 5976 5977
{
	unsigned long usemapsize;

5978
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5979 5980
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5981 5982 5983 5984 5985 5986 5987
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5988 5989 5990
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5991
{
5992
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5993
	zone->pageblock_flags = NULL;
5994
	if (usemapsize)
5995 5996 5997
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
5998 5999
}
#else
6000 6001
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6002 6003
#endif /* CONFIG_SPARSEMEM */

6004
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6005

6006
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6007
void __paginginit set_pageblock_order(void)
6008
{
6009 6010
	unsigned int order;

6011 6012 6013 6014
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6015 6016 6017 6018 6019
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6020 6021
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6022 6023
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6024 6025 6026 6027 6028
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6029 6030
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6031 6032 6033
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6034
 */
6035
void __paginginit set_pageblock_order(void)
6036 6037
{
}
6038 6039 6040

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6051
	 * populated regions may not be naturally aligned on page boundary.
6052 6053 6054 6055 6056 6057 6058 6059 6060
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6061 6062 6063 6064 6065
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6066 6067
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6068
 */
6069
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6070
{
6071
	enum zone_type j;
6072
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6073

6074
	pgdat_resize_init(pgdat);
6075 6076 6077 6078
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6079 6080 6081 6082 6083
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6084
#endif
L
Linus Torvalds 已提交
6085
	init_waitqueue_head(&pgdat->kswapd_wait);
6086
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6087 6088 6089
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6090
	pgdat_page_ext_init(pgdat);
6091
	spin_lock_init(&pgdat->lru_lock);
6092
	lruvec_init(node_lruvec(pgdat));
6093

6094 6095
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6096 6097
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6098
		unsigned long size, realsize, freesize, memmap_pages;
6099
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6100

6101 6102
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6103

6104
		/*
6105
		 * Adjust freesize so that it accounts for how much memory
6106 6107 6108
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6109
		memmap_pages = calc_memmap_size(size, realsize);
6110 6111 6112 6113 6114 6115 6116 6117
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6118
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6119 6120
					zone_names[j], memmap_pages, freesize);
		}
6121

6122
		/* Account for reserved pages */
6123 6124
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6125
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6126
					zone_names[0], dma_reserve);
6127 6128
		}

6129
		if (!is_highmem_idx(j))
6130
			nr_kernel_pages += freesize;
6131 6132 6133
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6134
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6135

6136 6137 6138 6139 6140 6141
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6142
#ifdef CONFIG_NUMA
6143
		zone->node = nid;
6144
#endif
L
Linus Torvalds 已提交
6145
		zone->name = zone_names[j];
6146
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6147
		spin_lock_init(&zone->lock);
6148
		zone_seqlock_init(zone);
6149
		zone_pcp_init(zone);
6150

L
Linus Torvalds 已提交
6151 6152 6153
		if (!size)
			continue;

6154
		set_pageblock_order();
6155
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6156
		init_currently_empty_zone(zone, zone_start_pfn, size);
6157
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6158 6159 6160
	}
}

6161
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6162
{
6163
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6164 6165
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6166 6167 6168 6169
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6170
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6171 6172
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6173 6174
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6175
		unsigned long size, end;
A
Andy Whitcroft 已提交
6176 6177
		struct page *map;

6178 6179 6180 6181 6182
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6183
		end = pgdat_end_pfn(pgdat);
6184 6185
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6186 6187
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6188 6189
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6190
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6191
	}
6192
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6193 6194 6195
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6196
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6197
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6198
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6199
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6200
			mem_map -= offset;
T
Tejun Heo 已提交
6201
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6202
	}
L
Linus Torvalds 已提交
6203
#endif
A
Andy Whitcroft 已提交
6204
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6205 6206
}

6207 6208
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6209
{
6210
	pg_data_t *pgdat = NODE_DATA(nid);
6211 6212
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6213

6214
	/* pg_data_t should be reset to zero when it's allocated */
6215
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6216

L
Linus Torvalds 已提交
6217 6218
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6219
	pgdat->per_cpu_nodestats = NULL;
6220 6221
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6222
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6223 6224
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6225 6226
#else
	start_pfn = node_start_pfn;
6227 6228 6229
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6230 6231

	alloc_node_mem_map(pgdat);
6232 6233 6234 6235 6236
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6237

6238
	reset_deferred_meminit(pgdat);
6239
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6240 6241
}

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
#ifdef CONFIG_HAVE_MEMBLOCK
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
#endif /* CONFIG_HAVE_MEMBLOCK */

T
Tejun Heo 已提交
6280
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6281 6282 6283 6284 6285

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6286
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6287
{
6288
	unsigned int highest;
M
Miklos Szeredi 已提交
6289

6290
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6291 6292 6293 6294
	nr_node_ids = highest + 1;
}
#endif

6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6317
	unsigned long start, end, mask;
6318
	int last_nid = -1;
6319
	int i, nid;
6320

6321
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6345
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6346
static unsigned long __init find_min_pfn_for_node(int nid)
6347
{
6348
	unsigned long min_pfn = ULONG_MAX;
6349 6350
	unsigned long start_pfn;
	int i;
6351

6352 6353
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6354

6355
	if (min_pfn == ULONG_MAX) {
6356
		pr_warn("Could not find start_pfn for node %d\n", nid);
6357 6358 6359 6360
		return 0;
	}

	return min_pfn;
6361 6362 6363 6364 6365 6366
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6367
 * memblock_set_node().
6368 6369 6370 6371 6372 6373
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6374 6375 6376
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6377
 * Populate N_MEMORY for calculating usable_nodes.
6378
 */
A
Adrian Bunk 已提交
6379
static unsigned long __init early_calculate_totalpages(void)
6380 6381
{
	unsigned long totalpages = 0;
6382 6383 6384 6385 6386
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6387

6388 6389
		totalpages += pages;
		if (pages)
6390
			node_set_state(nid, N_MEMORY);
6391
	}
6392
	return totalpages;
6393 6394
}

M
Mel Gorman 已提交
6395 6396 6397 6398 6399 6400
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6401
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6402 6403 6404 6405
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6406
	/* save the state before borrow the nodemask */
6407
	nodemask_t saved_node_state = node_states[N_MEMORY];
6408
	unsigned long totalpages = early_calculate_totalpages();
6409
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6410
	struct memblock_region *r;
6411 6412 6413 6414 6415 6416 6417 6418 6419

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6420 6421
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6422 6423
				continue;

E
Emil Medve 已提交
6424
			nid = r->nid;
6425

E
Emil Medve 已提交
6426
			usable_startpfn = PFN_DOWN(r->base);
6427 6428 6429 6430 6431 6432 6433
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6434

6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6465
	/*
6466
	 * If movablecore=nn[KMG] was specified, calculate what size of
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6482
		required_movablecore = min(totalpages, required_movablecore);
6483 6484 6485 6486 6487
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6488 6489 6490 6491 6492
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6493
		goto out;
M
Mel Gorman 已提交
6494 6495 6496 6497 6498 6499 6500

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6501
	for_each_node_state(nid, N_MEMORY) {
6502 6503
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6520
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6521 6522
			unsigned long size_pages;

6523
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6566
			 * satisfied
M
Mel Gorman 已提交
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6580
	 * satisfied
M
Mel Gorman 已提交
6581 6582 6583 6584 6585
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6586
out2:
M
Mel Gorman 已提交
6587 6588 6589 6590
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6591

6592
out:
6593
	/* restore the node_state */
6594
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6595 6596
}

6597 6598
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6599 6600 6601
{
	enum zone_type zone_type;

6602 6603 6604 6605
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6606
		struct zone *zone = &pgdat->node_zones[zone_type];
6607
		if (populated_zone(zone)) {
6608 6609 6610 6611
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6612 6613
			break;
		}
6614 6615 6616
	}
}

6617 6618
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6619
 * @max_zone_pfn: an array of max PFNs for each zone
6620 6621
 *
 * This will call free_area_init_node() for each active node in the system.
6622
 * Using the page ranges provided by memblock_set_node(), the size of each
6623 6624 6625 6626 6627 6628 6629 6630 6631
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6632 6633
	unsigned long start_pfn, end_pfn;
	int i, nid;
6634

6635 6636 6637 6638 6639
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6640 6641 6642 6643

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6644 6645
		if (i == ZONE_MOVABLE)
			continue;
6646 6647 6648 6649 6650 6651

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6652
	}
M
Mel Gorman 已提交
6653 6654 6655

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6656
	find_zone_movable_pfns_for_nodes();
6657 6658

	/* Print out the zone ranges */
6659
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6660 6661 6662
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6663
		pr_info("  %-8s ", zone_names[i]);
6664 6665
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6666
			pr_cont("empty\n");
6667
		else
6668 6669 6670 6671
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6672
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6673 6674 6675
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6676
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6677 6678
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6679 6680
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6681
	}
6682

6683
	/* Print out the early node map */
6684
	pr_info("Early memory node ranges\n");
6685
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6686 6687 6688
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6689 6690

	/* Initialise every node */
6691
	mminit_verify_pageflags_layout();
6692
	setup_nr_node_ids();
6693 6694
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6695
		free_area_init_node(nid, NULL,
6696
				find_min_pfn_for_node(nid), NULL);
6697 6698 6699

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6700 6701
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6702
	}
6703
	zero_resv_unavail();
6704
}
M
Mel Gorman 已提交
6705

6706
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6707 6708 6709 6710 6711 6712
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6713
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6714

6715
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6716 6717 6718 6719
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6720

6721 6722 6723 6724 6725 6726
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6727 6728 6729 6730 6731 6732
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6745
early_param("kernelcore", cmdline_parse_kernelcore);
6746
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6747

T
Tejun Heo 已提交
6748
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6749

6750 6751 6752 6753 6754
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6755 6756 6757 6758
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6759 6760
	spin_unlock(&managed_page_count_lock);
}
6761
EXPORT_SYMBOL(adjust_managed_page_count);
6762

6763
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6764
{
6765 6766
	void *pos;
	unsigned long pages = 0;
6767

6768 6769 6770
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6771
		if ((unsigned int)poison <= 0xFF)
6772 6773
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6774 6775 6776
	}

	if (pages && s)
6777 6778
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6779 6780 6781

	return pages;
}
6782
EXPORT_SYMBOL(free_reserved_area);
6783

6784 6785 6786 6787 6788
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6789
	page_zone(page)->managed_pages++;
6790 6791 6792 6793
	totalhigh_pages++;
}
#endif

6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6816 6817 6818 6819
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6830
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6831
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6832
		", %luK highmem"
6833
#endif
J
Joe Perches 已提交
6834 6835 6836 6837 6838 6839 6840
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6841
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6842
		totalhigh_pages << (PAGE_SHIFT - 10),
6843
#endif
J
Joe Perches 已提交
6844
		str ? ", " : "", str ? str : "");
6845 6846
}

6847
/**
6848 6849
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6850
 *
6851
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6852 6853
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6854 6855 6856
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6857 6858 6859 6860 6861 6862
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6863 6864
void __init free_area_init(unsigned long *zones_size)
{
6865
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6866
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6867
	zero_resv_unavail();
L
Linus Torvalds 已提交
6868 6869
}

6870
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6871 6872
{

6873 6874
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6875

6876 6877 6878 6879 6880 6881 6882
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6883

6884 6885 6886 6887 6888 6889 6890 6891 6892
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6893 6894 6895 6896
}

void __init page_alloc_init(void)
{
6897 6898 6899 6900 6901 6902
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6903 6904
}

6905
/*
6906
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6907 6908 6909 6910 6911 6912
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6913
	enum zone_type i, j;
6914 6915

	for_each_online_pgdat(pgdat) {
6916 6917 6918

		pgdat->totalreserve_pages = 0;

6919 6920
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6921
			long max = 0;
6922 6923 6924 6925 6926 6927 6928

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6929 6930
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6931

6932 6933
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6934

6935
			pgdat->totalreserve_pages += max;
6936

6937 6938 6939 6940 6941 6942
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6943 6944
/*
 * setup_per_zone_lowmem_reserve - called whenever
6945
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6946 6947 6948 6949 6950 6951
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6952
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6953

6954
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6955 6956
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6957
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6958 6959 6960

			zone->lowmem_reserve[j] = 0;

6961 6962
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6963 6964
				struct zone *lower_zone;

6965 6966
				idx--;

L
Linus Torvalds 已提交
6967 6968 6969 6970
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6971
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6972
					sysctl_lowmem_reserve_ratio[idx];
6973
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6974 6975 6976
			}
		}
	}
6977 6978 6979

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6980 6981
}

6982
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6992
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6993 6994 6995
	}

	for_each_zone(zone) {
6996 6997
		u64 tmp;

6998
		spin_lock_irqsave(&zone->lock, flags);
6999
		tmp = (u64)pages_min * zone->managed_pages;
7000
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7001 7002
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7003 7004 7005 7006
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7007
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7008
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7009
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7010
			 */
7011
			unsigned long min_pages;
L
Linus Torvalds 已提交
7012

7013
			min_pages = zone->managed_pages / 1024;
7014
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7015
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7016
		} else {
N
Nick Piggin 已提交
7017 7018
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7019 7020
			 * proportionate to the zone's size.
			 */
7021
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7022 7023
		}

7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7035

7036
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7037
	}
7038 7039 7040

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7041 7042
}

7043 7044 7045 7046 7047 7048 7049 7050 7051
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7052 7053 7054
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7055
	__setup_per_zone_wmarks();
7056
	spin_unlock(&lock);
7057 7058
}

L
Linus Torvalds 已提交
7059 7060 7061 7062 7063 7064 7065
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7066
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7083
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7084 7085
{
	unsigned long lowmem_kbytes;
7086
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7087 7088

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7101
	setup_per_zone_wmarks();
7102
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7103
	setup_per_zone_lowmem_reserve();
7104 7105 7106 7107 7108 7109

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7110 7111
	return 0;
}
7112
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7113 7114

/*
7115
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7116 7117 7118
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7119
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7120
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7121
{
7122 7123 7124 7125 7126 7127
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7128 7129
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7130
		setup_per_zone_wmarks();
7131
	}
L
Linus Torvalds 已提交
7132 7133 7134
	return 0;
}

7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7150
#ifdef CONFIG_NUMA
7151
static void setup_min_unmapped_ratio(void)
7152
{
7153
	pg_data_t *pgdat;
7154 7155
	struct zone *zone;

7156
	for_each_online_pgdat(pgdat)
7157
		pgdat->min_unmapped_pages = 0;
7158

7159
	for_each_zone(zone)
7160
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7161 7162
				sysctl_min_unmapped_ratio) / 100;
}
7163

7164 7165

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7166
	void __user *buffer, size_t *length, loff_t *ppos)
7167 7168 7169
{
	int rc;

7170
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7171 7172 7173
	if (rc)
		return rc;

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7184 7185 7186
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7187
	for_each_zone(zone)
7188
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7189
				sysctl_min_slab_ratio) / 100;
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7203 7204
	return 0;
}
7205 7206
#endif

L
Linus Torvalds 已提交
7207 7208 7209 7210 7211 7212
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7213
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7214 7215
 * if in function of the boot time zone sizes.
 */
7216
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7217
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7218
{
7219
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7220 7221 7222 7223
	setup_per_zone_lowmem_reserve();
	return 0;
}

7224 7225
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7226 7227
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7228
 */
7229
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7230
	void __user *buffer, size_t *length, loff_t *ppos)
7231 7232
{
	struct zone *zone;
7233
	int old_percpu_pagelist_fraction;
7234 7235
	int ret;

7236 7237 7238
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7239
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7254

7255
	for_each_populated_zone(zone) {
7256 7257
		unsigned int cpu;

7258
		for_each_possible_cpu(cpu)
7259 7260
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7261
	}
7262
out:
7263
	mutex_unlock(&pcp_batch_high_lock);
7264
	return ret;
7265 7266
}

7267
#ifdef CONFIG_NUMA
7268
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7319 7320
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7321
{
7322
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7323 7324
	unsigned long log2qty, size;
	void *table = NULL;
7325
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7326 7327 7328 7329

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7330
		numentries = nr_kernel_pages;
7331
		numentries -= arch_reserved_kernel_pages();
7332 7333 7334 7335

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7336

P
Pavel Tatashin 已提交
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7347 7348 7349 7350 7351
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7352 7353

		/* Make sure we've got at least a 0-order allocation.. */
7354 7355 7356 7357 7358 7359 7360 7361
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7362
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7363
	}
7364
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7365 7366 7367 7368 7369 7370

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7371
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7372

7373 7374
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7375 7376 7377
	if (numentries > max)
		numentries = max;

7378
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7379

7380
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7381 7382
	do {
		size = bucketsize << log2qty;
7383 7384 7385 7386 7387 7388
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7389
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7390
		} else {
7391 7392
			/*
			 * If bucketsize is not a power-of-two, we may free
7393 7394
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7395
			 */
7396
			if (get_order(size) < MAX_ORDER) {
7397 7398
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7399
			}
L
Linus Torvalds 已提交
7400 7401 7402 7403 7404 7405
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7406 7407
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7408 7409 7410 7411 7412 7413 7414 7415

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7416

K
KAMEZAWA Hiroyuki 已提交
7417
/*
7418 7419 7420
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7421
 * PageLRU check without isolation or lru_lock could race so that
7422 7423 7424
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7425
 */
7426
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7427
			 int migratetype,
7428
			 bool skip_hwpoisoned_pages)
7429 7430
{
	unsigned long pfn, iter, found;
7431

7432 7433
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7434
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7435 7436
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7437
		return false;
7438

7439 7440 7441 7442 7443 7444 7445 7446 7447
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7448 7449 7450 7451
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7452
		if (!pfn_valid_within(check))
7453
			continue;
7454

7455
		page = pfn_to_page(check);
7456

7457 7458 7459
		if (PageReserved(page))
			return true;

7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7470 7471 7472 7473
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7474
		 * because their page->_refcount is zero at all time.
7475
		 */
7476
		if (!page_ref_count(page)) {
7477 7478 7479 7480
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7481

7482 7483 7484 7485 7486 7487 7488
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7489 7490 7491
		if (__PageMovable(page))
			continue;

7492 7493 7494
		if (!PageLRU(page))
			found++;
		/*
7495 7496 7497
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7508
			return true;
7509
	}
7510
	return false;
7511 7512 7513 7514
}

bool is_pageblock_removable_nolock(struct page *page)
{
7515 7516
	struct zone *zone;
	unsigned long pfn;
7517 7518 7519 7520 7521

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7522 7523
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7524
	 */
7525 7526 7527 7528 7529
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7530
	if (!zone_spans_pfn(zone, pfn))
7531 7532
		return false;

7533
	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
K
KAMEZAWA Hiroyuki 已提交
7534
}
K
KAMEZAWA Hiroyuki 已提交
7535

7536
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7551 7552
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7553 7554
{
	/* This function is based on compact_zone() from compaction.c. */
7555
	unsigned long nr_reclaimed;
7556 7557 7558 7559
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7560
	migrate_prep();
7561

7562
	while (pfn < end || !list_empty(&cc->migratepages)) {
7563 7564 7565 7566 7567
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7568 7569
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7570
			pfn = isolate_migratepages_range(cc, pfn, end);
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7581 7582 7583
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7584

7585
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7586
				    NULL, 0, cc->mode, MR_CMA);
7587
	}
7588 7589 7590 7591 7592
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7593 7594 7595 7596 7597 7598
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7599 7600 7601 7602
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7603
 * @gfp_mask:	GFP mask to use during compaction
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7616
int alloc_contig_range(unsigned long start, unsigned long end,
7617
		       unsigned migratetype, gfp_t gfp_mask)
7618 7619
{
	unsigned long outer_start, outer_end;
7620 7621
	unsigned int order;
	int ret = 0;
7622

7623 7624 7625 7626
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7627
		.mode = MIGRATE_SYNC,
7628
		.ignore_skip_hint = true,
7629
		.gfp_mask = current_gfp_context(gfp_mask),
7630 7631 7632
	};
	INIT_LIST_HEAD(&cc.migratepages);

7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7658 7659
				       pfn_max_align_up(end), migratetype,
				       false);
7660
	if (ret)
7661
		return ret;
7662

7663 7664 7665 7666
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7667
	ret = __alloc_contig_migrate_range(&cc, start, end);
7668
	if (ret && ret != -EBUSY)
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7689
	drain_all_pages(cc.zone);
7690 7691 7692 7693 7694

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7695 7696
			outer_start = start;
			break;
7697 7698 7699 7700
		}
		outer_start &= ~0UL << order;
	}

7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7714
	/* Make sure the range is really isolated. */
7715
	if (test_pages_isolated(outer_start, end, false)) {
7716
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7717
			__func__, outer_start, end);
7718 7719 7720 7721
		ret = -EBUSY;
		goto done;
	}

7722
	/* Grab isolated pages from freelists. */
7723
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7737
				pfn_max_align_up(end), migratetype);
7738 7739 7740 7741 7742
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7743 7744 7745 7746 7747 7748 7749 7750 7751
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7752 7753 7754
}
#endif

7755
#ifdef CONFIG_MEMORY_HOTPLUG
7756 7757 7758 7759
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7760 7761
void __meminit zone_pcp_update(struct zone *zone)
{
7762
	unsigned cpu;
7763
	mutex_lock(&pcp_batch_high_lock);
7764
	for_each_possible_cpu(cpu)
7765 7766
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7767
	mutex_unlock(&pcp_batch_high_lock);
7768 7769 7770
}
#endif

7771 7772 7773
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7774 7775
	int cpu;
	struct per_cpu_pageset *pset;
7776 7777 7778 7779

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7780 7781 7782 7783
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7784 7785 7786 7787 7788 7789
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7790
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7791
/*
7792 7793
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7794 7795 7796 7797 7798 7799
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7800
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7801 7802 7803 7804 7805 7806 7807 7808
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7809
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7829 7830 7831 7832
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7833 7834
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7846 7847 7848 7849 7850 7851

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7852
	unsigned int order;
7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}