page_alloc.c 213.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <linux/backing-dev.h>
50
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include <linux/page-isolation.h>
52
#include <linux/page_ext.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126 127
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

128
unsigned long totalram_pages __read_mostly;
129
unsigned long totalreserve_pages __read_mostly;
130
unsigned long totalcma_pages __read_mostly;
131

132
int percpu_pagelist_fraction;
133
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

153 154 155 156 157 158 159 160 161
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
162 163 164 165

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
166 167
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
168 169 170 171
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
172 173
}

174
void pm_restrict_gfp_mask(void)
175 176
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
177 178
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
179
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180
}
181 182 183

bool pm_suspended_storage(void)
{
184
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 186 187
		return false;
	return true;
}
188 189
#endif /* CONFIG_PM_SLEEP */

190
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191
unsigned int pageblock_order __read_mostly;
192 193
#endif

194
static void __free_pages_ok(struct page *page, unsigned int order);
195

L
Linus Torvalds 已提交
196 197 198 199 200 201
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
202
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
203 204 205
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
206
 */
207
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208
#ifdef CONFIG_ZONE_DMA
209
	 256,
210
#endif
211
#ifdef CONFIG_ZONE_DMA32
212
	 256,
213
#endif
214
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
215
	 32,
216
#endif
M
Mel Gorman 已提交
217
	 32,
218
};
L
Linus Torvalds 已提交
219 220 221

EXPORT_SYMBOL(totalram_pages);

222
static char * const zone_names[MAX_NR_ZONES] = {
223
#ifdef CONFIG_ZONE_DMA
224
	 "DMA",
225
#endif
226
#ifdef CONFIG_ZONE_DMA32
227
	 "DMA32",
228
#endif
229
	 "Normal",
230
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
231
	 "HighMem",
232
#endif
M
Mel Gorman 已提交
233
	 "Movable",
234 235 236
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
237 238
};

239 240 241 242 243 244 245 246 247 248 249 250 251
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

252 253 254 255 256 257
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
258 259 260
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
261 262
};

L
Linus Torvalds 已提交
263
int min_free_kbytes = 1024;
264
int user_min_free_kbytes = -1;
265
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
266

267 268
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
269
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
270

T
Tejun Heo 已提交
271 272 273 274 275 276
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
278 279 280 281 282

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283

M
Miklos Szeredi 已提交
284 285
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
286
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
287
EXPORT_SYMBOL(nr_node_ids);
288
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
289 290
#endif

291 292
int page_group_by_mobility_disabled __read_mostly;

293
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294 295 296 297 298 299 300

/*
 * Determine how many pages need to be initialized durig early boot
 * (non-deferred initialization).
 * The value of first_deferred_pfn will be set later, once non-deferred pages
 * are initialized, but for now set it ULONG_MAX.
 */
301 302
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
303 304 305
	phys_addr_t start_addr, end_addr;
	unsigned long max_pgcnt;
	unsigned long reserved;
306 307 308 309 310

	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
311 312
	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
			(pgdat->node_spanned_pages >> 8));
313 314 315 316 317 318

	/*
	 * Compensate the all the memblock reservations (e.g. crash kernel)
	 * from the initial estimation to make sure we will initialize enough
	 * memory to boot.
	 */
319 320 321 322
	start_addr = PFN_PHYS(pgdat->node_start_pfn);
	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
	reserved = memblock_reserved_memory_within(start_addr, end_addr);
	max_pgcnt += PHYS_PFN(reserved);
323

324
	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 326 327 328
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
329
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
330
{
331 332 333
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
351
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
477

478
void set_pageblock_migratetype(struct page *page, int migratetype)
479
{
480 481
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
482 483
		migratetype = MIGRATE_UNMOVABLE;

484 485 486 487
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
488
#ifdef CONFIG_DEBUG_VM
489
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
490
{
491 492 493
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
494
	unsigned long sp, start_pfn;
495

496 497
	do {
		seq = zone_span_seqbegin(zone);
498 499
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
500
		if (!zone_spans_pfn(zone, pfn))
501 502 503
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

504
	if (ret)
505 506 507
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
508

509
	return ret;
510 511 512 513
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
514
	if (!pfn_valid_within(page_to_pfn(page)))
515
		return 0;
L
Linus Torvalds 已提交
516
	if (zone != page_zone(page))
517 518 519 520 521 522 523
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
524
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 526
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
527
		return 1;
528 529 530
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
531 532
	return 0;
}
N
Nick Piggin 已提交
533
#else
534
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
535 536 537 538 539
{
	return 0;
}
#endif

540 541
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
542
{
543 544 545 546 547 548 549 550 551 552 553 554 555 556
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
557
			pr_alert(
558
			      "BUG: Bad page state: %lu messages suppressed\n",
559 560 561 562 563 564 565 566
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

567
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
568
		current->comm, page_to_pfn(page));
569 570 571 572 573
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
574
	dump_page_owner(page);
575

576
	print_modules();
L
Linus Torvalds 已提交
577
	dump_stack();
578
out:
579
	/* Leave bad fields for debug, except PageBuddy could make trouble */
580
	page_mapcount_reset(page); /* remove PageBuddy */
581
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
582 583 584 585 586
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
587
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
588
 *
589 590
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
591
 *
592 593
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
594
 *
595
 * The first tail page's ->compound_order holds the order of allocation.
596
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
597
 */
598

599
void free_compound_page(struct page *page)
600
{
601
	__free_pages_ok(page, compound_order(page));
602 603
}

604
void prep_compound_page(struct page *page, unsigned int order)
605 606 607 608
{
	int i;
	int nr_pages = 1 << order;

609
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 611 612 613
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
614
		set_page_count(p, 0);
615
		p->mapping = TAIL_MAPPING;
616
		set_compound_head(p, page);
617
	}
618
	atomic_set(compound_mapcount_ptr(page), -1);
619 620
}

621 622
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
623 624
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625
EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 627
bool _debug_guardpage_enabled __read_mostly;

628 629 630 631
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
632
	return kstrtobool(buf, &_debug_pagealloc_enabled);
633 634 635
}
early_param("debug_pagealloc", early_debug_pagealloc);

636 637
static bool need_debug_guardpage(void)
{
638 639 640 641
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

642 643 644
	if (!debug_guardpage_minorder())
		return false;

645 646 647 648 649
	return true;
}

static void init_debug_guardpage(void)
{
650 651 652
	if (!debug_pagealloc_enabled())
		return;

653 654 655
	if (!debug_guardpage_minorder())
		return;

656 657 658 659 660 661 662
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
663 664 665 666 667 668

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
669
		pr_err("Bad debug_guardpage_minorder value\n");
670 671 672
		return 0;
	}
	_debug_guardpage_minorder = res;
673
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 675
	return 0;
}
676
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
677

678
static inline bool set_page_guard(struct zone *zone, struct page *page,
679
				unsigned int order, int migratetype)
680
{
681 682 683
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
684 685 686 687
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
688 689

	page_ext = lookup_page_ext(page);
690
	if (unlikely(!page_ext))
691
		return false;
692

693 694
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

695 696 697 698
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
699 700

	return true;
701 702
}

703 704
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
705
{
706 707 708 709 710 711
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
712 713 714
	if (unlikely(!page_ext))
		return;

715 716
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

717 718 719
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
720 721
}
#else
722
struct page_ext_operations debug_guardpage_ops;
723 724
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
725 726
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
727 728
#endif

729
static inline void set_page_order(struct page *page, unsigned int order)
730
{
H
Hugh Dickins 已提交
731
	set_page_private(page, order);
732
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
733 734 735 736
}

static inline void rmv_page_order(struct page *page)
{
737
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
738
	set_page_private(page, 0);
L
Linus Torvalds 已提交
739 740 741 742 743
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
744
 * (a) the buddy is not in a hole (check before calling!) &&
745
 * (b) the buddy is in the buddy system &&
746 747
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
748
 *
749 750 751 752
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
753
 *
754
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
755
 */
756
static inline int page_is_buddy(struct page *page, struct page *buddy,
757
							unsigned int order)
L
Linus Torvalds 已提交
758
{
759
	if (page_is_guard(buddy) && page_order(buddy) == order) {
760 761 762
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

763 764
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

765 766 767
		return 1;
	}

768
	if (PageBuddy(buddy) && page_order(buddy) == order) {
769 770 771 772 773 774 775 776
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

777 778
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

779
		return 1;
780
	}
781
	return 0;
L
Linus Torvalds 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
797 798 799
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
800
 * So when we are allocating or freeing one, we can derive the state of the
801 802
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
803
 * If a block is freed, and its buddy is also free, then this
804
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
805
 *
806
 * -- nyc
L
Linus Torvalds 已提交
807 808
 */

N
Nick Piggin 已提交
809
static inline void __free_one_page(struct page *page,
810
		unsigned long pfn,
811 812
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
813
{
814 815
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
816
	struct page *buddy;
817 818 819
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
820

821
	VM_BUG_ON(!zone_is_initialized(zone));
822
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
823

824
	VM_BUG_ON(migratetype == -1);
825
	if (likely(!is_migrate_isolate(migratetype)))
826
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
827

828
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
830

831
continue_merging:
832
	while (order < max_order - 1) {
833 834
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
835 836 837

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
838
		if (!page_is_buddy(page, buddy, order))
839
			goto done_merging;
840 841 842 843 844
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
845
			clear_page_guard(zone, buddy, order, migratetype);
846 847 848 849 850
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
851 852 853
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
854 855
		order++;
	}
856 857 858 859 860 861 862 863 864 865 866 867
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

868 869
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
870 871 872 873 874 875 876 877 878 879 880 881
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
882
	set_page_order(page, order);
883 884 885 886 887 888 889 890 891

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
892
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893
		struct page *higher_page, *higher_buddy;
894 895 896 897
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 899
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 901 902 903 904 905 906 907
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
908 909 910
	zone->free_area[order].nr_free++;
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

933
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
934
{
935 936 937 938 939
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
940

941
	if (unlikely(atomic_read(&page->_mapcount) != -1))
942 943 944
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
945
	if (unlikely(page_ref_count(page) != 0))
946
		bad_reason = "nonzero _refcount";
947 948 949 950
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
951 952 953 954
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
955
	bad_page(page, bad_reason, bad_flags);
956 957 958 959
}

static inline int free_pages_check(struct page *page)
{
960
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 962 963 964
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
965
	return 1;
L
Linus Torvalds 已提交
966 967
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1018 1019
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1020
{
1021
	int bad = 0;
1022 1023 1024

	VM_BUG_ON_PAGE(PageTail(page), page);

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1036

1037 1038
		if (compound)
			ClearPageDoubleMap(page);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1049
	if (PageMappingFlags(page))
1050
		page->mapping = NULL;
1051
	if (memcg_kmem_enabled() && PageKmemcg(page))
1052
		memcg_kmem_uncharge(page, order);
1053 1054 1055 1056
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1057

1058 1059 1060
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1061 1062 1063

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1064
					   PAGE_SIZE << order);
1065
		debug_check_no_obj_freed(page_address(page),
1066
					   PAGE_SIZE << order);
1067
	}
1068 1069 1070
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1071
	kasan_free_pages(page, order);
1072 1073 1074 1075

	return true;
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1092 1093 1094 1095 1096 1097
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1098
/*
1099
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1100
 * Assumes all pages on list are in same zone, and of same order.
1101
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1102 1103 1104 1105 1106 1107 1108
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1109 1110
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1111
{
1112
	int migratetype = 0;
1113
	int batch_free = 0;
1114
	bool isolated_pageblocks;
1115

1116
	spin_lock(&zone->lock);
1117
	isolated_pageblocks = has_isolate_pageblock(zone);
1118

1119
	while (count) {
N
Nick Piggin 已提交
1120
		struct page *page;
1121 1122 1123
		struct list_head *list;

		/*
1124 1125 1126 1127 1128
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1129 1130
		 */
		do {
1131
			batch_free++;
1132 1133 1134 1135
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1136

1137 1138
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1139
			batch_free = count;
1140

1141
		do {
1142 1143
			int mt;	/* migratetype of the to-be-freed page */

1144
			page = list_last_entry(list, struct page, lru);
1145 1146
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1147

1148
			mt = get_pcppage_migratetype(page);
1149 1150 1151
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1152
			if (unlikely(isolated_pageblocks))
1153 1154
				mt = get_pageblock_migratetype(page);

1155 1156 1157
			if (bulkfree_pcp_prepare(page))
				continue;

1158
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159
			trace_mm_page_pcpu_drain(page, 0, mt);
1160
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1161
	}
1162
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1163 1164
}

1165 1166
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1167
				unsigned int order,
1168
				int migratetype)
L
Linus Torvalds 已提交
1169
{
1170
	spin_lock(&zone->lock);
1171 1172 1173 1174
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1175
	__free_one_page(page, pfn, zone, order, migratetype);
1176
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1177 1178
}

1179 1180 1181
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
1182
	mm_zero_struct_page(page);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1202
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203
static void __meminit init_reserved_page(unsigned long pfn)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1228 1229 1230 1231 1232 1233
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1234
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1235 1236 1237 1238
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1239 1240 1241 1242 1243
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1244 1245 1246 1247

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1248 1249 1250
			SetPageReserved(page);
		}
	}
1251 1252
}

1253 1254
static void __free_pages_ok(struct page *page, unsigned int order)
{
1255
	unsigned long flags;
M
Minchan Kim 已提交
1256
	int migratetype;
1257
	unsigned long pfn = page_to_pfn(page);
1258

1259
	if (!free_pages_prepare(page, order, true))
1260 1261
		return;

1262
	migratetype = get_pfnblock_migratetype(page, pfn);
1263 1264
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1265
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1266
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1267 1268
}

1269
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1270
{
1271
	unsigned int nr_pages = 1 << order;
1272
	struct page *p = page;
1273
	unsigned int loop;
1274

1275 1276 1277
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1278 1279
		__ClearPageReserved(p);
		set_page_count(p, 0);
1280
	}
1281 1282
	__ClearPageReserved(p);
	set_page_count(p, 0);
1283

1284
	page_zone(page)->managed_pages += nr_pages;
1285 1286
	set_page_refcounted(page);
	__free_pages(page, order);
1287 1288
}

1289 1290
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291

1292 1293 1294 1295
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1296
	static DEFINE_SPINLOCK(early_pfn_lock);
1297 1298
	int nid;

1299
	spin_lock(&early_pfn_lock);
1300
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1301
	if (nid < 0)
1302
		nid = first_online_node;
1303 1304 1305
	spin_unlock(&early_pfn_lock);

	return nid;
1306 1307 1308 1309
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1310 1311 1312
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1334 1335 1336
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1337 1338 1339 1340 1341 1342
{
	return true;
}
#endif


1343
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1344 1345 1346 1347
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1348
	return __free_pages_boot_core(page, order);
1349 1350
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1380 1381 1382
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1422
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 1424
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1425
{
1426 1427
	struct page *page;
	unsigned long i;
1428

1429
	if (!nr_pages)
1430 1431
		return;

1432 1433
	page = pfn_to_page(pfn);

1434
	/* Free a large naturally-aligned chunk if possible */
1435 1436
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1437
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1438
		__free_pages_boot_core(page, pageblock_order);
1439 1440 1441
		return;
	}

1442 1443 1444
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445
		__free_pages_boot_core(page, 0);
1446
	}
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
/*
 * Helper for deferred_init_range, free the given range, reset the counters, and
 * return number of pages freed.
 */
static inline unsigned long __init __def_free(unsigned long *nr_free,
					      unsigned long *free_base_pfn,
					      struct page **page)
{
	unsigned long nr = *nr_free;

	deferred_free_range(*free_base_pfn, nr);
	*free_base_pfn = 0;
	*nr_free = 0;
	*page = NULL;

	return nr;
}

static unsigned long __init deferred_init_range(int nid, int zid,
						unsigned long start_pfn,
						unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long free_base_pfn = 0;
	unsigned long nr_pages = 0;
	unsigned long nr_free = 0;
	struct page *page = NULL;
	unsigned long pfn;

	/*
	 * First we check if pfn is valid on architectures where it is possible
	 * to have holes within pageblock_nr_pages. On systems where it is not
	 * possible, this function is optimized out.
	 *
	 * Then, we check if a current large page is valid by only checking the
	 * validity of the head pfn.
	 *
	 * meminit_pfn_in_nid is checked on systems where pfns can interleave
	 * within a node: a pfn is between start and end of a node, but does not
	 * belong to this memory node.
	 *
	 * Finally, we minimize pfn page lookups and scheduler checks by
	 * performing it only once every pageblock_nr_pages.
	 *
	 * We do it in two loops: first we initialize struct page, than free to
	 * buddy allocator, becuse while we are freeing pages we can access
	 * pages that are ahead (computing buddy page in __free_one_page()).
	 */
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		if (!pfn_valid_within(pfn))
			continue;
		if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
			if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				if (page && (pfn & nr_pgmask))
					page++;
				else
					page = pfn_to_page(pfn);
				__init_single_page(page, pfn, zid, nid);
				cond_resched();
			}
		}
	}

	page = NULL;
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		if (!pfn_valid_within(pfn)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (page && (pfn & nr_pgmask)) {
			page++;
			nr_free++;
		} else {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
			page = pfn_to_page(pfn);
			free_base_pfn = pfn;
			nr_free = 1;
			cond_resched();
		}
	}
	/* Free the last block of pages to allocator */
	nr_pages += __def_free(&nr_free, &free_base_pfn, &page);

	return nr_pages;
}

1548
/* Initialise remaining memory on a node */
1549
static int __init deferred_init_memmap(void *data)
1550
{
1551 1552
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1553 1554
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1555 1556 1557
	unsigned long spfn, epfn;
	phys_addr_t spa, epa;
	int zid;
1558 1559
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561
	u64 i;
1562

1563
	if (first_init_pfn == ULONG_MAX) {
1564
		pgdat_init_report_one_done();
1565 1566 1567 1568 1569 1570
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1583
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584

1585 1586 1587 1588
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1589 1590 1591 1592 1593
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1594
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1595
					jiffies_to_msecs(jiffies - start));
1596 1597

	pgdat_init_report_one_done();
1598 1599
	return 0;
}
1600
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1601 1602 1603

void __init page_alloc_init_late(void)
{
1604 1605 1606
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1607 1608
	int nid;

1609 1610
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1611 1612 1613 1614 1615
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1616
	wait_for_completion(&pgdat_init_all_done_comp);
1617 1618 1619

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1620
#endif
P
Pavel Tatashin 已提交
1621 1622 1623 1624
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1625 1626 1627

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1628 1629
}

1630
#ifdef CONFIG_CMA
1631
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1657
	adjust_managed_page_count(page, pageblock_nr_pages);
1658 1659
}
#endif
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1673
 * -- nyc
L
Linus Torvalds 已提交
1674
 */
N
Nick Piggin 已提交
1675
static inline void expand(struct zone *zone, struct page *page,
1676 1677
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1685
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1686

1687 1688 1689 1690 1691 1692 1693
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1694
			continue;
1695

1696
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1702
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1703
{
1704 1705
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1706

1707
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1708 1709 1710
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1711
	if (unlikely(page_ref_count(page) != 0))
1712
		bad_reason = "nonzero _count";
1713 1714 1715
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1716 1717 1718
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1719
	}
1720 1721 1722 1723
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1724 1725 1726 1727
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1742 1743
}

1744
static inline bool free_pages_prezeroed(void)
1745 1746
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1747
		page_poisoning_enabled();
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1797
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1798
							unsigned int alloc_flags)
1799 1800
{
	int i;
1801

1802
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1803

1804
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1805 1806
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1807 1808 1809 1810

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1811
	/*
1812
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1813 1814 1815 1816
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1817 1818 1819 1820
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1821 1822
}

1823 1824 1825 1826
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1827
static __always_inline
1828
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1829 1830 1831
						int migratetype)
{
	unsigned int current_order;
1832
	struct free_area *area;
1833 1834 1835 1836 1837
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1838
		page = list_first_entry_or_null(&area->free_list[migratetype],
1839
							struct page, lru);
1840 1841
		if (!page)
			continue;
1842 1843 1844 1845
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1846
		set_pcppage_migratetype(page, migratetype);
1847 1848 1849 1850 1851 1852 1853
		return page;
	}

	return NULL;
}


1854 1855 1856 1857
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1858
static int fallbacks[MIGRATE_TYPES][4] = {
1859 1860 1861
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1862
#ifdef CONFIG_CMA
1863
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1864
#endif
1865
#ifdef CONFIG_MEMORY_ISOLATION
1866
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1867
#endif
1868 1869
};

1870
#ifdef CONFIG_CMA
1871
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1872 1873 1874 1875 1876 1877 1878 1879 1880
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1881 1882
/*
 * Move the free pages in a range to the free lists of the requested type.
1883
 * Note that start_page and end_pages are not aligned on a pageblock
1884 1885
 * boundary. If alignment is required, use move_freepages_block()
 */
1886
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1887
			  struct page *start_page, struct page *end_page,
1888
			  int migratetype, int *num_movable)
1889 1890
{
	struct page *page;
1891
	unsigned int order;
1892
	int pages_moved = 0;
1893 1894 1895 1896 1897 1898 1899

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1900
	 * grouping pages by mobility
1901
	 */
1902
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1903 1904
#endif

1905 1906 1907
	if (num_movable)
		*num_movable = 0;

1908 1909 1910 1911 1912 1913
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1914 1915 1916
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1917
		if (!PageBuddy(page)) {
1918 1919 1920 1921 1922 1923 1924 1925 1926
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1927 1928 1929 1930 1931
			page++;
			continue;
		}

		order = page_order(page);
1932 1933
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1934
		page += 1 << order;
1935
		pages_moved += 1 << order;
1936 1937
	}

1938
	return pages_moved;
1939 1940
}

1941
int move_freepages_block(struct zone *zone, struct page *page,
1942
				int migratetype, int *num_movable)
1943 1944 1945 1946 1947
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1948
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1949
	start_page = pfn_to_page(start_pfn);
1950 1951
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1952 1953

	/* Do not cross zone boundaries */
1954
	if (!zone_spans_pfn(zone, start_pfn))
1955
		start_page = page;
1956
	if (!zone_spans_pfn(zone, end_pfn))
1957 1958
		return 0;

1959 1960
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1961 1962
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1974
/*
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1985
 */
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2010 2011 2012 2013
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2014 2015
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2016
					int start_type, bool whole_block)
2017
{
2018
	unsigned int current_order = page_order(page);
2019
	struct free_area *area;
2020 2021 2022 2023
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2024

2025 2026 2027 2028
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2029
	if (is_migrate_highatomic(old_block_type))
2030 2031
		goto single_page;

2032 2033 2034
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2035
		goto single_page;
2036 2037
	}

2038 2039 2040 2041
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2066
	/* moving whole block can fail due to zone boundary conditions */
2067
	if (!free_pages)
2068
		goto single_page;
2069

2070 2071 2072 2073 2074
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2075 2076
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2077 2078 2079 2080 2081 2082

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2083 2084
}

2085 2086 2087 2088 2089 2090 2091 2092
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2103
		if (fallback_mt == MIGRATE_TYPES)
2104 2105 2106 2107
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2108

2109 2110 2111
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2112 2113 2114 2115 2116
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2117
	}
2118 2119

	return -1;
2120 2121
}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2148 2149
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2150 2151
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2152
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2164 2165 2166
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2167
 */
2168 2169
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2170 2171 2172 2173 2174 2175 2176
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2177
	bool ret;
2178 2179 2180

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2181 2182 2183 2184 2185 2186
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2187 2188 2189 2190 2191 2192
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2193 2194 2195 2196
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2197 2198 2199
				continue;

			/*
2200 2201 2202 2203 2204
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2205
			 */
2206
			if (is_migrate_highatomic_page(page)) {
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2229 2230
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2231 2232 2233 2234
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2235 2236 2237
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2238 2239

	return false;
2240 2241
}

2242 2243 2244 2245 2246
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2247 2248 2249 2250
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2251
 */
2252
static __always_inline bool
2253
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2254
{
2255
	struct free_area *area;
2256
	int current_order;
2257
	struct page *page;
2258 2259
	int fallback_mt;
	bool can_steal;
2260

2261 2262 2263 2264 2265
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2266
	for (current_order = MAX_ORDER - 1; current_order >= order;
2267
				--current_order) {
2268 2269
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2270
				start_migratetype, false, &can_steal);
2271 2272
		if (fallback_mt == -1)
			continue;
2273

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2285

2286 2287
		goto do_steal;
	}
2288

2289
	return false;
2290

2291 2292 2293 2294 2295 2296 2297 2298
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2299 2300
	}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2318 2319
}

2320
/*
L
Linus Torvalds 已提交
2321 2322 2323
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2324 2325
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2326 2327 2328
{
	struct page *page;

2329
retry:
2330
	page = __rmqueue_smallest(zone, order, migratetype);
2331
	if (unlikely(!page)) {
2332 2333 2334
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2335 2336
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2337 2338
	}

2339
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2340
	return page;
L
Linus Torvalds 已提交
2341 2342
}

2343
/*
L
Linus Torvalds 已提交
2344 2345 2346 2347
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2348
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2349
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2350
			int migratetype)
L
Linus Torvalds 已提交
2351
{
2352
	int i, alloced = 0;
2353

2354
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2355
	for (i = 0; i < count; ++i) {
2356
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2357
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2358
			break;
2359

2360 2361 2362
		if (unlikely(check_pcp_refill(page)))
			continue;

2363
		/*
2364 2365 2366 2367 2368 2369 2370 2371
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2372
		 */
2373
		list_add_tail(&page->lru, list);
2374
		alloced++;
2375
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2376 2377
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2378
	}
2379 2380 2381 2382 2383 2384 2385

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2386
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2387
	spin_unlock(&zone->lock);
2388
	return alloced;
L
Linus Torvalds 已提交
2389 2390
}

2391
#ifdef CONFIG_NUMA
2392
/*
2393 2394 2395 2396
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2397 2398
 * Note that this function must be called with the thread pinned to
 * a single processor.
2399
 */
2400
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2401 2402
{
	unsigned long flags;
2403
	int to_drain, batch;
2404

2405
	local_irq_save(flags);
2406
	batch = READ_ONCE(pcp->batch);
2407
	to_drain = min(pcp->count, batch);
2408 2409 2410 2411
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2412
	local_irq_restore(flags);
2413 2414 2415
}
#endif

2416
/*
2417
 * Drain pcplists of the indicated processor and zone.
2418 2419 2420 2421 2422
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2423
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2424
{
N
Nick Piggin 已提交
2425
	unsigned long flags;
2426 2427
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2428

2429 2430
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2431

2432 2433 2434 2435 2436 2437 2438
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2439

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2453 2454 2455
	}
}

2456 2457
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2458 2459 2460
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2461
 */
2462
void drain_local_pages(struct zone *zone)
2463
{
2464 2465 2466 2467 2468 2469
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2470 2471
}

2472 2473
static void drain_local_pages_wq(struct work_struct *work)
{
2474 2475 2476 2477 2478 2479 2480 2481
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2482
	drain_local_pages(NULL);
2483
	preempt_enable();
2484 2485
}

2486
/*
2487 2488
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2489 2490
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2491
 * Note that this can be extremely slow as the draining happens in a workqueue.
2492
 */
2493
void drain_all_pages(struct zone *zone)
2494
{
2495 2496 2497 2498 2499 2500 2501 2502
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2503 2504 2505 2506 2507 2508 2509
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2520

2521 2522 2523 2524 2525 2526 2527
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2528 2529
		struct per_cpu_pageset *pcp;
		struct zone *z;
2530
		bool has_pcps = false;
2531 2532

		if (zone) {
2533
			pcp = per_cpu_ptr(zone->pageset, cpu);
2534
			if (pcp->pcp.count)
2535
				has_pcps = true;
2536 2537 2538 2539 2540 2541 2542
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2543 2544
			}
		}
2545

2546 2547 2548 2549 2550
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2551

2552 2553 2554
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2555
		queue_work_on(cpu, mm_percpu_wq, work);
2556
	}
2557 2558 2559 2560
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2561 2562
}

2563
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2564

2565 2566 2567 2568 2569
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2570 2571
void mark_free_pages(struct zone *zone)
{
2572
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2573
	unsigned long flags;
2574
	unsigned int order, t;
2575
	struct page *page;
L
Linus Torvalds 已提交
2576

2577
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2578 2579 2580
		return;

	spin_lock_irqsave(&zone->lock, flags);
2581

2582
	max_zone_pfn = zone_end_pfn(zone);
2583 2584
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2585
			page = pfn_to_page(pfn);
2586

2587 2588 2589 2590 2591
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2592 2593 2594
			if (page_zone(page) != zone)
				continue;

2595 2596
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2597
		}
L
Linus Torvalds 已提交
2598

2599
	for_each_migratetype_order(order, t) {
2600 2601
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2602
			unsigned long i;
L
Linus Torvalds 已提交
2603

2604
			pfn = page_to_pfn(page);
2605 2606 2607 2608 2609
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2610
				swsusp_set_page_free(pfn_to_page(pfn + i));
2611
			}
2612
		}
2613
	}
L
Linus Torvalds 已提交
2614 2615
	spin_unlock_irqrestore(&zone->lock, flags);
}
2616
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2617

2618
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2619
{
2620
	int migratetype;
L
Linus Torvalds 已提交
2621

2622
	if (!free_pcp_prepare(page))
2623
		return false;
2624

2625
	migratetype = get_pfnblock_migratetype(page, pfn);
2626
	set_pcppage_migratetype(page, migratetype);
2627 2628 2629
	return true;
}

2630
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2631 2632 2633 2634 2635 2636
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2637
	__count_vm_event(PGFREE);
2638

2639 2640 2641
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2642
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2643 2644 2645 2646
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2647
		if (unlikely(is_migrate_isolate(migratetype))) {
2648
			free_one_page(zone, page, pfn, 0, migratetype);
2649
			return;
2650 2651 2652 2653
		}
		migratetype = MIGRATE_MOVABLE;
	}

2654
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2655
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2656
	pcp->count++;
N
Nick Piggin 已提交
2657
	if (pcp->count >= pcp->high) {
2658
		unsigned long batch = READ_ONCE(pcp->batch);
2659 2660
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2661
	}
2662
}
2663

2664 2665 2666
/*
 * Free a 0-order page
 */
2667
void free_unref_page(struct page *page)
2668 2669 2670 2671
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2672
	if (!free_unref_page_prepare(page, pfn))
2673 2674 2675
		return;

	local_irq_save(flags);
2676
	free_unref_page_commit(page, pfn);
2677
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2678 2679
}

2680 2681 2682
/*
 * Free a list of 0-order pages
 */
2683
void free_unref_page_list(struct list_head *list)
2684 2685
{
	struct page *page, *next;
2686 2687 2688 2689 2690
	unsigned long flags, pfn;

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2691
		if (!free_unref_page_prepare(page, pfn))
2692 2693 2694
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2695

2696
	local_irq_save(flags);
2697
	list_for_each_entry_safe(page, next, list, lru) {
2698 2699 2700
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2701 2702
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2703
	}
2704
	local_irq_restore(flags);
2705 2706
}

N
Nick Piggin 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2719 2720
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2721

2722
	for (i = 1; i < (1 << order); i++)
2723
		set_page_refcounted(page + i);
2724
	split_page_owner(page, order);
N
Nick Piggin 已提交
2725
}
K
K. Y. Srinivasan 已提交
2726
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2727

2728
int __isolate_free_page(struct page *page, unsigned int order)
2729 2730 2731
{
	unsigned long watermark;
	struct zone *zone;
2732
	int mt;
2733 2734 2735 2736

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2737
	mt = get_pageblock_migratetype(page);
2738

2739
	if (!is_migrate_isolate(mt)) {
2740 2741 2742 2743 2744 2745 2746
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2747
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2748 2749
			return 0;

2750
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2751
	}
2752 2753 2754 2755 2756

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2757

2758 2759 2760 2761
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2762 2763
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2764 2765
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2766
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2767
			    && !is_migrate_highatomic(mt))
2768 2769 2770
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2771 2772
	}

2773

2774
	return 1UL << order;
2775 2776
}

2777 2778 2779 2780 2781
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2782
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2783 2784
{
#ifdef CONFIG_NUMA
2785
	enum numa_stat_item local_stat = NUMA_LOCAL;
2786

2787 2788 2789 2790
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2791
	if (z->node != numa_node_id())
2792 2793
		local_stat = NUMA_OTHER;

2794
	if (z->node == preferred_zone->node)
2795
		__inc_numa_state(z, NUMA_HIT);
2796
	else {
2797 2798
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2799
	}
2800
	__inc_numa_state(z, local_stat);
2801 2802 2803
#endif
}

2804 2805
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2806
			struct per_cpu_pages *pcp,
2807 2808 2809 2810 2811 2812 2813 2814
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2815
					migratetype);
2816 2817 2818 2819
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2820
		page = list_first_entry(list, struct page, lru);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2836
	unsigned long flags;
2837

2838
	local_irq_save(flags);
2839 2840
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2841
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2842 2843 2844 2845
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2846
	local_irq_restore(flags);
2847 2848 2849
	return page;
}

L
Linus Torvalds 已提交
2850
/*
2851
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2852
 */
2853
static inline
2854
struct page *rmqueue(struct zone *preferred_zone,
2855
			struct zone *zone, unsigned int order,
2856 2857
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2858 2859
{
	unsigned long flags;
2860
	struct page *page;
L
Linus Torvalds 已提交
2861

2862
	if (likely(order == 0)) {
2863 2864 2865 2866
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2867

2868 2869 2870 2871 2872 2873
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2874

2875 2876 2877 2878 2879 2880 2881
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2882
		if (!page)
2883 2884 2885 2886 2887 2888 2889
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2890

2891
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2892
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2893
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2894

2895 2896
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2897
	return page;
N
Nick Piggin 已提交
2898 2899 2900 2901

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2902 2903
}

2904 2905
#ifdef CONFIG_FAIL_PAGE_ALLOC

2906
static struct {
2907 2908
	struct fault_attr attr;

2909
	bool ignore_gfp_highmem;
2910
	bool ignore_gfp_reclaim;
2911
	u32 min_order;
2912 2913
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2914
	.ignore_gfp_reclaim = true,
2915
	.ignore_gfp_highmem = true,
2916
	.min_order = 1,
2917 2918 2919 2920 2921 2922 2923 2924
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2925
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2926
{
2927
	if (order < fail_page_alloc.min_order)
2928
		return false;
2929
	if (gfp_mask & __GFP_NOFAIL)
2930
		return false;
2931
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2932
		return false;
2933 2934
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2935
		return false;
2936 2937 2938 2939 2940 2941 2942 2943

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2944
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2945 2946
	struct dentry *dir;

2947 2948 2949 2950
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2951

2952
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2953
				&fail_page_alloc.ignore_gfp_reclaim))
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2964
	debugfs_remove_recursive(dir);
2965

2966
	return -ENOMEM;
2967 2968 2969 2970 2971 2972 2973 2974
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2975
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2976
{
2977
	return false;
2978 2979 2980 2981
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2982
/*
2983 2984 2985 2986
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2987
 */
2988 2989 2990
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2991
{
2992
	long min = mark;
L
Linus Torvalds 已提交
2993
	int o;
2994
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
2995

2996
	/* free_pages may go negative - that's OK */
2997
	free_pages -= (1 << order) - 1;
2998

R
Rohit Seth 已提交
2999
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3000
		min -= min / 2;
3001 3002 3003 3004 3005 3006

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3007
	if (likely(!alloc_harder)) {
3008
		free_pages -= z->nr_reserved_highatomic;
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3022

3023 3024 3025
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
3026
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3027
#endif
3028

3029 3030 3031 3032 3033 3034
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3035
		return false;
L
Linus Torvalds 已提交
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
3060 3061 3062
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3063
	}
3064
	return false;
3065 3066
}

3067
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3068
		      int classzone_idx, unsigned int alloc_flags)
3069 3070 3071 3072 3073
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3100
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3101
			unsigned long mark, int classzone_idx)
3102 3103 3104 3105 3106 3107
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3108
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3109
								free_pages);
L
Linus Torvalds 已提交
3110 3111
}

3112
#ifdef CONFIG_NUMA
3113 3114
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3115
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3116
				RECLAIM_DISTANCE;
3117
}
3118
#else	/* CONFIG_NUMA */
3119 3120 3121 3122
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3123 3124
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3125
/*
3126
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3127 3128 3129
 * a page.
 */
static struct page *
3130 3131
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3132
{
3133
	struct zoneref *z = ac->preferred_zoneref;
3134
	struct zone *zone;
3135 3136
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3137
	/*
3138
	 * Scan zonelist, looking for a zone with enough free.
3139
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3140
	 */
3141
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3142
								ac->nodemask) {
3143
		struct page *page;
3144 3145
		unsigned long mark;

3146 3147
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3148
			!__cpuset_zone_allowed(zone, gfp_mask))
3149
				continue;
3150 3151
		/*
		 * When allocating a page cache page for writing, we
3152 3153
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3154
		 * proportional share of globally allowed dirty pages.
3155
		 * The dirty limits take into account the node's
3156 3157 3158 3159 3160
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3161
		 * exceed the per-node dirty limit in the slowpath
3162
		 * (spread_dirty_pages unset) before going into reclaim,
3163
		 * which is important when on a NUMA setup the allowed
3164
		 * nodes are together not big enough to reach the
3165
		 * global limit.  The proper fix for these situations
3166
		 * will require awareness of nodes in the
3167 3168
		 * dirty-throttling and the flusher threads.
		 */
3169 3170 3171 3172 3173 3174 3175 3176 3177
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3178

3179
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3180
		if (!zone_watermark_fast(zone, order, mark,
3181
				       ac_classzone_idx(ac), alloc_flags)) {
3182 3183
			int ret;

3184 3185 3186 3187 3188
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3189
			if (node_reclaim_mode == 0 ||
3190
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3191 3192
				continue;

3193
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3194
			switch (ret) {
3195
			case NODE_RECLAIM_NOSCAN:
3196
				/* did not scan */
3197
				continue;
3198
			case NODE_RECLAIM_FULL:
3199
				/* scanned but unreclaimable */
3200
				continue;
3201 3202
			default:
				/* did we reclaim enough */
3203
				if (zone_watermark_ok(zone, order, mark,
3204
						ac_classzone_idx(ac), alloc_flags))
3205 3206 3207
					goto try_this_zone;

				continue;
3208
			}
R
Rohit Seth 已提交
3209 3210
		}

3211
try_this_zone:
3212
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3213
				gfp_mask, alloc_flags, ac->migratetype);
3214
		if (page) {
3215
			prep_new_page(page, order, gfp_mask, alloc_flags);
3216 3217 3218 3219 3220 3221 3222 3223

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3224 3225
			return page;
		}
3226
	}
3227

3228
	return NULL;
M
Martin Hicks 已提交
3229 3230
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3245
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3246 3247
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3248
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3249

3250
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3251 3252 3253 3254 3255 3256 3257 3258
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3259
		if (tsk_is_oom_victim(current) ||
3260 3261
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3262
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3263 3264
		filter &= ~SHOW_MEM_FILTER_NODES;

3265
	show_mem(filter, nodemask);
3266 3267
}

3268
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3269 3270 3271 3272 3273 3274
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3275
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3276 3277
		return;

3278 3279 3280
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3281 3282 3283
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3284
	va_end(args);
J
Joe Perches 已提交
3285

3286
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3287

3288
	dump_stack();
3289
	warn_alloc_show_mem(gfp_mask, nodemask);
3290 3291
}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3312 3313
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3314
	const struct alloc_context *ac, unsigned long *did_some_progress)
3315
{
3316 3317 3318
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3319
		.memcg = NULL,
3320 3321 3322
		.gfp_mask = gfp_mask,
		.order = order,
	};
3323 3324
	struct page *page;

3325 3326 3327
	*did_some_progress = 0;

	/*
3328 3329
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3330
	 */
3331
	if (!mutex_trylock(&oom_lock)) {
3332
		*did_some_progress = 1;
3333
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3334 3335
		return NULL;
	}
3336

3337 3338 3339
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3340 3341 3342
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3343
	 */
3344 3345 3346
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3347
	if (page)
3348 3349
		goto out;

3350 3351 3352 3353 3354 3355
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3356 3357 3358 3359 3360 3361 3362 3363
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3382

3383
	/* Exhausted what can be done so it's blamo time */
3384
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3385
		*did_some_progress = 1;
3386

3387 3388 3389 3390 3391 3392
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3393 3394
					ALLOC_NO_WATERMARKS, ac);
	}
3395
out:
3396
	mutex_unlock(&oom_lock);
3397 3398 3399
	return page;
}

3400 3401 3402 3403 3404 3405
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3406 3407 3408 3409
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3410
		unsigned int alloc_flags, const struct alloc_context *ac,
3411
		enum compact_priority prio, enum compact_result *compact_result)
3412
{
3413
	struct page *page;
3414
	unsigned int noreclaim_flag;
3415 3416

	if (!order)
3417 3418
		return NULL;

3419
	noreclaim_flag = memalloc_noreclaim_save();
3420
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3421
									prio);
3422
	memalloc_noreclaim_restore(noreclaim_flag);
3423

3424
	if (*compact_result <= COMPACT_INACTIVE)
3425
		return NULL;
3426

3427 3428 3429 3430 3431
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3432

3433
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3434

3435 3436
	if (page) {
		struct zone *zone = page_zone(page);
3437

3438 3439 3440 3441 3442
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3443

3444 3445 3446 3447 3448
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3449

3450
	cond_resched();
3451 3452 3453

	return NULL;
}
3454

3455 3456 3457 3458
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3459
		     int *compaction_retries)
3460 3461
{
	int max_retries = MAX_COMPACT_RETRIES;
3462
	int min_priority;
3463 3464 3465
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3466 3467 3468 3469

	if (!order)
		return false;

3470 3471 3472
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3473 3474 3475 3476 3477
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3478 3479
	if (compaction_failed(compact_result))
		goto check_priority;
3480 3481 3482 3483 3484 3485 3486

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3487 3488 3489 3490
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3491 3492

	/*
3493
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3494 3495 3496 3497 3498 3499 3500 3501
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3502 3503 3504 3505
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3506

3507 3508 3509 3510 3511
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3512 3513
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3514

3515
	if (*compact_priority > min_priority) {
3516 3517
		(*compact_priority)--;
		*compaction_retries = 0;
3518
		ret = true;
3519
	}
3520 3521 3522
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3523
}
3524 3525 3526
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3527
		unsigned int alloc_flags, const struct alloc_context *ac,
3528
		enum compact_priority prio, enum compact_result *compact_result)
3529
{
3530
	*compact_result = COMPACT_SKIPPED;
3531 3532
	return NULL;
}
3533 3534

static inline bool
3535 3536
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3537
		     enum compact_priority *compact_priority,
3538
		     int *compaction_retries)
3539
{
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3558 3559
	return false;
}
3560
#endif /* CONFIG_COMPACTION */
3561

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
#ifdef CONFIG_LOCKDEP
struct lockdep_map __fs_reclaim_map =
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_acquire(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_release(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3603 3604
/* Perform direct synchronous page reclaim */
static int
3605 3606
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3607 3608
{
	struct reclaim_state reclaim_state;
3609
	int progress;
3610
	unsigned int noreclaim_flag;
3611 3612 3613 3614 3615

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3616
	noreclaim_flag = memalloc_noreclaim_save();
3617
	fs_reclaim_acquire(gfp_mask);
3618
	reclaim_state.reclaimed_slab = 0;
3619
	current->reclaim_state = &reclaim_state;
3620

3621 3622
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3623

3624
	current->reclaim_state = NULL;
3625
	fs_reclaim_release(gfp_mask);
3626
	memalloc_noreclaim_restore(noreclaim_flag);
3627 3628 3629

	cond_resched();

3630 3631 3632 3633 3634 3635
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3636
		unsigned int alloc_flags, const struct alloc_context *ac,
3637
		unsigned long *did_some_progress)
3638 3639 3640 3641
{
	struct page *page = NULL;
	bool drained = false;

3642
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3643 3644
	if (unlikely(!(*did_some_progress)))
		return NULL;
3645

3646
retry:
3647
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3648 3649 3650

	/*
	 * If an allocation failed after direct reclaim, it could be because
3651 3652
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3653 3654
	 */
	if (!page && !drained) {
3655
		unreserve_highatomic_pageblock(ac, false);
3656
		drain_all_pages(NULL);
3657 3658 3659 3660
		drained = true;
		goto retry;
	}

3661 3662 3663
	return page;
}

3664
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3665 3666 3667
{
	struct zoneref *z;
	struct zone *zone;
3668
	pg_data_t *last_pgdat = NULL;
3669

3670
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3671 3672
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3673
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3674 3675
		last_pgdat = zone->zone_pgdat;
	}
3676 3677
}

3678
static inline unsigned int
3679 3680
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3681
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3682

3683
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3684
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3685

3686 3687 3688 3689
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3690
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3691
	 */
3692
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3693

3694
	if (gfp_mask & __GFP_ATOMIC) {
3695
		/*
3696 3697
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3698
		 */
3699
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3700
			alloc_flags |= ALLOC_HARDER;
3701
		/*
3702
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3703
		 * comment for __cpuset_node_allowed().
3704
		 */
3705
		alloc_flags &= ~ALLOC_CPUSET;
3706
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3707 3708
		alloc_flags |= ALLOC_HARDER;

3709
#ifdef CONFIG_CMA
3710
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3711 3712
		alloc_flags |= ALLOC_CMA;
#endif
3713 3714 3715
	return alloc_flags;
}

3716
static bool oom_reserves_allowed(struct task_struct *tsk)
3717
{
3718 3719 3720 3721 3722 3723 3724 3725
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3726 3727
		return false;

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3739
	if (gfp_mask & __GFP_MEMALLOC)
3740
		return ALLOC_NO_WATERMARKS;
3741
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3742 3743 3744 3745 3746 3747 3748
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3749

3750 3751 3752 3753 3754 3755
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3756 3757
}

M
Michal Hocko 已提交
3758 3759 3760
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3761 3762 3763 3764
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3765 3766 3767 3768 3769 3770
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3771
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3772 3773 3774 3775
{
	struct zone *zone;
	struct zoneref *z;

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3786 3787 3788 3789
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3790 3791
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3792
		return unreserve_highatomic_pageblock(ac, true);
3793
	}
M
Michal Hocko 已提交
3794

3795 3796 3797 3798 3799
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3800 3801 3802 3803
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3804
		unsigned long reclaimable;
3805 3806
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3807

3808 3809
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3810 3811

		/*
3812 3813
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3814
		 */
3815 3816 3817 3818 3819
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3820 3821 3822 3823 3824 3825 3826
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3827
				unsigned long write_pending;
3828

3829 3830
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3831

3832
				if (2 * write_pending > reclaimable) {
3833 3834 3835 3836
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3837

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3852 3853 3854 3855 3856 3857 3858
			return true;
		}
	}

	return false;
}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

3892 3893
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3894
						struct alloc_context *ac)
3895
{
3896
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3897
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3898
	struct page *page = NULL;
3899
	unsigned int alloc_flags;
3900
	unsigned long did_some_progress;
3901
	enum compact_priority compact_priority;
3902
	enum compact_result compact_result;
3903 3904 3905
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
3906
	int reserve_flags;
L
Linus Torvalds 已提交
3907

3908 3909 3910 3911 3912 3913
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3914 3915
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3916
		return NULL;
3917
	}
L
Linus Torvalds 已提交
3918

3919 3920 3921 3922 3923 3924 3925 3926
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3927 3928 3929 3930 3931
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3932 3933 3934 3935 3936 3937 3938 3939

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3962 3963
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3964 3965 3966 3967 3968 3969
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3970
	 */
3971 3972 3973 3974
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3975 3976
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3977
						INIT_COMPACT_PRIORITY,
3978 3979 3980 3981
						&compact_result);
		if (page)
			goto got_pg;

3982 3983 3984 3985
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
3986
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3999 4000
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4001
			 * using async compaction.
4002
			 */
4003
			compact_priority = INIT_COMPACT_PRIORITY;
4004 4005
		}
	}
4006

4007
retry:
4008
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4009 4010 4011
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

4012 4013 4014
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4015

4016 4017 4018 4019 4020
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
4021
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4022 4023 4024 4025 4026
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4027
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4028
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4029 4030
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4031

4032
	/* Caller is not willing to reclaim, we can't balance anything */
4033
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4034 4035
		goto nopage;

4036 4037
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4038 4039
		goto nopage;

4040 4041 4042 4043 4044 4045 4046
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4047
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4048
					compact_priority, &compact_result);
4049 4050
	if (page)
		goto got_pg;
4051

4052 4053
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4054
		goto nopage;
4055

M
Michal Hocko 已提交
4056 4057
	/*
	 * Do not retry costly high order allocations unless they are
4058
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4059
	 */
4060
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4061
		goto nopage;
M
Michal Hocko 已提交
4062 4063

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4064
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4065 4066
		goto retry;

4067 4068 4069 4070 4071 4072 4073
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4074
			should_compact_retry(ac, order, alloc_flags,
4075
				compact_result, &compact_priority,
4076
				&compaction_retries))
4077 4078
		goto retry;

4079 4080 4081

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4082 4083
		goto retry_cpuset;

4084 4085 4086 4087 4088
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4089
	/* Avoid allocations with no watermarks from looping endlessly */
4090 4091
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4092
	     (gfp_mask & __GFP_NOMEMALLOC)))
4093 4094
		goto nopage;

4095
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4096 4097
	if (did_some_progress) {
		no_progress_loops = 0;
4098
		goto retry;
M
Michal Hocko 已提交
4099
	}
4100

L
Linus Torvalds 已提交
4101
nopage:
4102 4103
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4104 4105
		goto retry_cpuset;

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4143 4144 4145 4146
		cond_resched();
		goto retry;
	}
fail:
4147
	warn_alloc(gfp_mask, ac->nodemask,
4148
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4149
got_pg:
4150
	return page;
L
Linus Torvalds 已提交
4151
}
4152

4153
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4154
		int preferred_nid, nodemask_t *nodemask,
4155 4156
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4157
{
4158
	ac->high_zoneidx = gfp_zone(gfp_mask);
4159
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4160 4161
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4162

4163
	if (cpusets_enabled()) {
4164 4165 4166
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4167 4168
		else
			*alloc_flags |= ALLOC_CPUSET;
4169 4170
	}

4171 4172
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4173

4174
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4175 4176

	if (should_fail_alloc_page(gfp_mask, order))
4177
		return false;
4178

4179 4180 4181 4182 4183
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4184

4185 4186 4187 4188
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4189
	/* Dirty zone balancing only done in the fast path */
4190
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4191

4192 4193 4194 4195 4196
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4197 4198 4199 4200 4201 4202 4203 4204
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4205 4206
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4207 4208 4209
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4210
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4211 4212 4213
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4214
	alloc_mask = gfp_mask;
4215
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4216 4217 4218
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4219

4220
	/* First allocation attempt */
4221
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4222 4223
	if (likely(page))
		goto out;
4224

4225
	/*
4226 4227 4228 4229
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4230
	 */
4231
	alloc_mask = current_gfp_context(gfp_mask);
4232
	ac.spread_dirty_pages = false;
4233

4234 4235 4236 4237
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4238
	if (unlikely(ac.nodemask != nodemask))
4239
		ac.nodemask = nodemask;
4240

4241
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4242

4243
out:
4244 4245 4246 4247
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4248 4249
	}

4250 4251
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4252
	return page;
L
Linus Torvalds 已提交
4253
}
4254
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4255 4256 4257 4258

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4259
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4260
{
4261 4262 4263 4264 4265 4266 4267 4268
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4276
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4277
{
4278
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4279 4280 4281
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4282
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4283
{
N
Nick Piggin 已提交
4284
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4285
		if (order == 0)
4286
			free_unref_page(page);
L
Linus Torvalds 已提交
4287 4288 4289 4290 4291 4292 4293
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4294
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4295 4296
{
	if (addr != 0) {
N
Nick Piggin 已提交
4297
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4298 4299 4300 4301 4302 4303
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4315 4316
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4336
void __page_frag_cache_drain(struct page *page, unsigned int count)
4337 4338 4339 4340
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4341 4342
		unsigned int order = compound_order(page);

4343
		if (order == 0)
4344
			free_unref_page(page);
4345 4346 4347 4348
		else
			__free_pages_ok(page, order);
	}
}
4349
EXPORT_SYMBOL(__page_frag_cache_drain);
4350

4351 4352
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4353 4354 4355 4356 4357 4358 4359
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4360
		page = __page_frag_cache_refill(nc, gfp_mask);
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4371
		page_ref_add(page, size - 1);
4372 4373

		/* reset page count bias and offset to start of new frag */
4374
		nc->pfmemalloc = page_is_pfmemalloc(page);
4375 4376 4377 4378 4379 4380 4381 4382
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4383
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4384 4385 4386 4387 4388 4389 4390
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4391
		set_page_count(page, size);
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4403
EXPORT_SYMBOL(page_frag_alloc);
4404 4405 4406 4407

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4408
void page_frag_free(void *addr)
4409 4410 4411 4412 4413 4414
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4415
EXPORT_SYMBOL(page_frag_free);
4416

4417 4418
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4452
	return make_alloc_exact(addr, order, size);
4453 4454 4455
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4456 4457 4458
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4459
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4460 4461 4462 4463 4464 4465
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4466
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4467
{
4468
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4469 4470 4471 4472 4473 4474
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4494 4495 4496 4497 4498 4499 4500
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4501 4502
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4503
 */
4504
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4505
{
4506
	struct zoneref *z;
4507 4508
	struct zone *zone;

4509
	/* Just pick one node, since fallback list is circular */
4510
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4511

4512
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4513

4514
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4515
		unsigned long size = zone->managed_pages;
4516
		unsigned long high = high_wmark_pages(zone);
4517 4518
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523
	}

	return sum;
}

4524 4525 4526 4527 4528
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4529
 */
4530
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4531
{
A
Al Viro 已提交
4532
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4533
}
4534
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4535

4536 4537 4538 4539 4540
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4541
 */
4542
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4543
{
M
Mel Gorman 已提交
4544
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4545
}
4546 4547

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4548
{
4549
	if (IS_ENABLED(CONFIG_NUMA))
4550
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4551 4552
}

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4563
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4564 4565 4566 4567 4568 4569 4570 4571

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4572
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4587 4588 4589
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4590 4591 4592 4593 4594 4595 4596

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4597 4598 4599
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4600
	val->sharedram = global_node_page_state(NR_SHMEM);
4601
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4613 4614
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4615 4616
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4617 4618
	pg_data_t *pgdat = NODE_DATA(nid);

4619 4620 4621
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4622
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4623
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4624
#ifdef CONFIG_HIGHMEM
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4635
#else
4636 4637
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4638
#endif
L
Linus Torvalds 已提交
4639 4640 4641 4642
	val->mem_unit = PAGE_SIZE;
}
#endif

4643
/*
4644 4645
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4646
 */
4647
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4648 4649
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4650
		return false;
4651

4652 4653 4654 4655 4656 4657 4658 4659 4660
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4661 4662
}

L
Linus Torvalds 已提交
4663 4664
#define K(x) ((x) << (PAGE_SHIFT-10))

4665 4666 4667 4668 4669
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4670 4671
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4672 4673 4674
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4675
#ifdef CONFIG_MEMORY_ISOLATION
4676
		[MIGRATE_ISOLATE]	= 'I',
4677
#endif
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4689
	printk(KERN_CONT "(%s) ", tmp);
4690 4691
}

L
Linus Torvalds 已提交
4692 4693 4694 4695
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4696 4697 4698 4699
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4700
 */
4701
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4702
{
4703
	unsigned long free_pcp = 0;
4704
	int cpu;
L
Linus Torvalds 已提交
4705
	struct zone *zone;
M
Mel Gorman 已提交
4706
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4707

4708
	for_each_populated_zone(zone) {
4709
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4710
			continue;
4711

4712 4713
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4714 4715
	}

K
KOSAKI Motohiro 已提交
4716 4717
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4718 4719
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4720
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4721
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4722 4723 4724 4725 4726 4727 4728
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4729 4730 4731
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4732 4733
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4734
		global_node_page_state(NR_FILE_MAPPED),
4735
		global_node_page_state(NR_SHMEM),
4736 4737 4738
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4739
		free_pcp,
4740
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4741

M
Mel Gorman 已提交
4742
	for_each_online_pgdat(pgdat) {
4743
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4744 4745
			continue;

M
Mel Gorman 已提交
4746 4747 4748 4749 4750 4751 4752 4753
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4754
			" mapped:%lukB"
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4775
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4776 4777
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4778
			K(node_page_state(pgdat, NR_SHMEM)),
4779 4780 4781 4782 4783 4784 4785 4786
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4787 4788
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4789 4790
	}

4791
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4792 4793
		int i;

4794
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4795
			continue;
4796 4797 4798 4799 4800

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4801
		show_node(zone);
4802 4803
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4804 4805 4806 4807
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4808 4809 4810 4811 4812
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4813
			" writepending:%lukB"
L
Linus Torvalds 已提交
4814
			" present:%lukB"
4815
			" managed:%lukB"
4816
			" mlocked:%lukB"
4817
			" kernel_stack:%lukB"
4818 4819
			" pagetables:%lukB"
			" bounce:%lukB"
4820 4821
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4822
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4823 4824
			"\n",
			zone->name,
4825
			K(zone_page_state(zone, NR_FREE_PAGES)),
4826 4827 4828
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4829 4830 4831 4832 4833
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4834
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4835
			K(zone->present_pages),
4836
			K(zone->managed_pages),
4837
			K(zone_page_state(zone, NR_MLOCK)),
4838
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4839 4840
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4841 4842
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4843
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4844 4845
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4846 4847
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4848 4849
	}

4850
	for_each_populated_zone(zone) {
4851 4852
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4853
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4854

4855
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4856
			continue;
L
Linus Torvalds 已提交
4857
		show_node(zone);
4858
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4859 4860 4861

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4862 4863 4864 4865
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4866
			total += nr[order] << order;
4867 4868 4869 4870 4871 4872

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4873 4874
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4875
		for (order = 0; order < MAX_ORDER; order++) {
4876 4877
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4878 4879 4880
			if (nr[order])
				show_migration_types(types[order]);
		}
4881
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4882 4883
	}

4884 4885
	hugetlb_show_meminfo();

4886
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4887

L
Linus Torvalds 已提交
4888 4889 4890
	show_swap_cache_info();
}

4891 4892 4893 4894 4895 4896
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4897 4898
/*
 * Builds allocation fallback zone lists.
4899 4900
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4901
 */
4902
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
4903
{
4904
	struct zone *zone;
4905
	enum zone_type zone_type = MAX_NR_ZONES;
4906
	int nr_zones = 0;
4907 4908

	do {
4909
		zone_type--;
4910
		zone = pgdat->node_zones + zone_type;
4911
		if (managed_zone(zone)) {
4912
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4913
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4914
		}
4915
	} while (zone_type);
4916

4917
	return nr_zones;
L
Linus Torvalds 已提交
4918 4919 4920
}

#ifdef CONFIG_NUMA
4921 4922 4923

static int __parse_numa_zonelist_order(char *s)
{
4924 4925 4926 4927 4928 4929 4930 4931
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4932 4933 4934 4935 4936 4937 4938
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4939 4940 4941
	if (!s)
		return 0;

4942
	return __parse_numa_zonelist_order(s);
4943 4944 4945
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

4946 4947
char numa_zonelist_order[] = "Node";

4948 4949 4950
/*
 * sysctl handler for numa_zonelist_order
 */
4951
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4952
		void __user *buffer, size_t *length,
4953 4954
		loff_t *ppos)
{
4955
	char *str;
4956 4957
	int ret;

4958 4959 4960 4961 4962
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
4963

4964 4965
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
4966
	return ret;
4967 4968 4969
}


4970
#define MAX_NODE_LOAD (nr_online_nodes)
4971 4972
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4973
/**
4974
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4987
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4988
{
4989
	int n, val;
L
Linus Torvalds 已提交
4990
	int min_val = INT_MAX;
D
David Rientjes 已提交
4991
	int best_node = NUMA_NO_NODE;
4992
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4993

4994 4995 4996 4997 4998
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4999

5000
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5001 5002 5003 5004 5005 5006 5007 5008

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5009 5010 5011
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5012
		/* Give preference to headless and unused nodes */
5013 5014
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5033 5034 5035 5036 5037 5038

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5039 5040
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5041
{
5042 5043 5044 5045 5046 5047 5048 5049 5050
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5051

5052 5053 5054 5055 5056
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5057 5058
}

5059 5060 5061 5062 5063
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5064 5065
	struct zoneref *zonerefs;
	int nr_zones;
5066

5067 5068 5069 5070 5071
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5072 5073
}

5074 5075 5076 5077 5078 5079 5080 5081 5082
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5083 5084
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5085
	nodemask_t used_mask;
5086
	int local_node, prev_node;
L
Linus Torvalds 已提交
5087 5088 5089

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5090
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5091 5092
	prev_node = local_node;
	nodes_clear(used_mask);
5093 5094

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5101 5102
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5103 5104
			node_load[node] = load;

5105
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5106 5107 5108
		prev_node = node;
		load--;
	}
5109

5110
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5111
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5112 5113
}

5114 5115 5116 5117 5118 5119 5120 5121 5122
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5123
	struct zoneref *z;
5124

5125
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5126
				   gfp_zone(GFP_KERNEL),
5127 5128
				   NULL);
	return z->zone->node;
5129 5130
}
#endif
5131

5132 5133
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5134 5135
#else	/* CONFIG_NUMA */

5136
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5137
{
5138
	int node, local_node;
5139 5140
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5141 5142 5143

	local_node = pgdat->node_id;

5144 5145 5146
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5147

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5159 5160
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5161
	}
5162 5163 5164
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5165 5166
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5167 5168
	}

5169 5170
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5171 5172 5173 5174
}

#endif	/* CONFIG_NUMA */

5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5192
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5193

5194
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5195
{
5196
	int nid;
5197
	int __maybe_unused cpu;
5198
	pg_data_t *self = data;
5199 5200 5201
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5202

5203 5204 5205
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5206

5207 5208 5209 5210
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5211 5212
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5213 5214 5215
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5216

5217 5218
			build_zonelists(pgdat);
		}
5219

5220 5221 5222 5223 5224 5225 5226 5227 5228
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5229
		for_each_online_cpu(cpu)
5230
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5231
#endif
5232
	}
5233 5234

	spin_unlock(&lock);
5235 5236
}

5237 5238 5239
static noinline void __init
build_all_zonelists_init(void)
{
5240 5241
	int cpu;

5242
	__build_all_zonelists(NULL);
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5260 5261 5262 5263
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5264 5265
/*
 * unless system_state == SYSTEM_BOOTING.
5266
 *
5267
 * __ref due to call of __init annotated helper build_all_zonelists_init
5268
 * [protected by SYSTEM_BOOTING].
5269
 */
5270
void __ref build_all_zonelists(pg_data_t *pgdat)
5271 5272
{
	if (system_state == SYSTEM_BOOTING) {
5273
		build_all_zonelists_init();
5274
	} else {
5275
		__build_all_zonelists(pgdat);
5276 5277
		/* cpuset refresh routine should be here */
	}
5278
	vm_total_pages = nr_free_pagecache_pages();
5279 5280 5281 5282 5283 5284 5285
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5286
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5287 5288 5289 5290
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5291
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5292 5293 5294
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5295
#ifdef CONFIG_NUMA
5296
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5297
#endif
L
Linus Torvalds 已提交
5298 5299 5300 5301 5302 5303 5304
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5305
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5306
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5307
{
5308
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5309
	unsigned long end_pfn = start_pfn + size;
5310
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5311
	unsigned long pfn;
5312
	unsigned long nr_initialised = 0;
5313 5314 5315
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5316

5317 5318 5319
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5320 5321 5322 5323 5324 5325 5326
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5327
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5328
		/*
5329 5330
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5331
		 */
5332 5333 5334
		if (context != MEMMAP_EARLY)
			goto not_early;

5335 5336 5337 5338 5339 5340 5341 5342 5343
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5344
			continue;
5345
		}
5346 5347 5348 5349
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5350 5351

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5369
			}
D
Dave Hansen 已提交
5370
		}
5371
#endif
5372

5373
not_early:
5374 5375 5376 5377 5378
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5379
		 * kernel allocations are made.
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5391
			cond_resched();
5392 5393 5394
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5395 5396 5397
	}
}

5398
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5399
{
5400
	unsigned int order, t;
5401 5402
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5409
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5410 5411
#endif

5412
static int zone_batchsize(struct zone *zone)
5413
{
5414
#ifdef CONFIG_MMU
5415 5416 5417 5418
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5419
	 * size of the zone.  But no more than 1/2 of a meg.
5420 5421 5422
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5423
	batch = zone->managed_pages / 1024;
5424 5425
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5426 5427 5428 5429 5430
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5431 5432 5433
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5434
	 *
5435 5436 5437 5438
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5439
	 */
5440
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5441

5442
	return batch;
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5460 5461
}

5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5489
/* a companion to pageset_set_high() */
5490 5491
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5492
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5493 5494
}

5495
static void pageset_init(struct per_cpu_pageset *p)
5496 5497
{
	struct per_cpu_pages *pcp;
5498
	int migratetype;
5499

5500 5501
	memset(p, 0, sizeof(*p));

5502
	pcp = &p->pcp;
5503
	pcp->count = 0;
5504 5505
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5506 5507
}

5508 5509 5510 5511 5512 5513
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5514
/*
5515
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5516 5517
 * to the value high for the pageset p.
 */
5518
static void pageset_set_high(struct per_cpu_pageset *p,
5519 5520
				unsigned long high)
{
5521 5522 5523
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5524

5525
	pageset_update(&p->pcp, high, batch);
5526 5527
}

5528 5529
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5530 5531
{
	if (percpu_pagelist_fraction)
5532
		pageset_set_high(pcp,
5533 5534 5535 5536 5537 5538
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5539 5540 5541 5542 5543 5544 5545 5546
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5547
void __meminit setup_zone_pageset(struct zone *zone)
5548 5549 5550
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5551 5552
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5553 5554
}

5555
/*
5556 5557
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5558
 */
5559
void __init setup_per_cpu_pageset(void)
5560
{
5561
	struct pglist_data *pgdat;
5562
	struct zone *zone;
5563

5564 5565
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5566 5567 5568 5569

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5570 5571
}

5572
static __meminit void zone_pcp_init(struct zone *zone)
5573
{
5574 5575 5576 5577 5578 5579
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5580

5581
	if (populated_zone(zone))
5582 5583 5584
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5585 5586
}

5587
void __meminit init_currently_empty_zone(struct zone *zone,
5588
					unsigned long zone_start_pfn,
5589
					unsigned long size)
5590 5591
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5592

5593 5594 5595 5596
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5597 5598 5599 5600 5601 5602
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5603
	zone_init_free_lists(zone);
5604
	zone->initialized = 1;
5605 5606
}

T
Tejun Heo 已提交
5607
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5608
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5609

5610 5611 5612
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5613 5614
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5615
{
5616
	unsigned long start_pfn, end_pfn;
5617
	int nid;
5618

5619 5620
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5621

5622 5623
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5624 5625 5626
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5627 5628 5629
	}

	return nid;
5630 5631 5632 5633
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5634
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5635
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5636
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5637
 *
5638 5639 5640
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5641
 */
5642
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5643
{
5644 5645
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5646

5647 5648 5649
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5650

5651
		if (start_pfn < end_pfn)
5652 5653 5654
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5655 5656 5657
	}
}

5658 5659
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5660
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5661
 *
5662 5663
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5664 5665 5666
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5667 5668
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5669

5670 5671
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5672 5673 5674 5675
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5676 5677 5678
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5679 5680
 *
 * It returns the start and end page frame of a node based on information
5681
 * provided by memblock_set_node(). If called for a node
5682
 * with no available memory, a warning is printed and the start and end
5683
 * PFNs will be 0.
5684
 */
5685
void __meminit get_pfn_range_for_nid(unsigned int nid,
5686 5687
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5688
	unsigned long this_start_pfn, this_end_pfn;
5689
	int i;
5690

5691 5692 5693
	*start_pfn = -1UL;
	*end_pfn = 0;

5694 5695 5696
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5697 5698
	}

5699
	if (*start_pfn == -1UL)
5700 5701 5702
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5703 5704 5705 5706 5707
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5708
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5726
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5727 5728 5729 5730 5731 5732 5733
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5734
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5749 5750 5751 5752 5753 5754
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5755 5756 5757 5758 5759 5760
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5761 5762 5763 5764
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5765
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5766
					unsigned long zone_type,
5767 5768
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5769 5770
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5771 5772
					unsigned long *ignored)
{
5773
	/* When hotadd a new node from cpu_up(), the node should be empty */
5774 5775 5776
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5777
	/* Get the start and end of the zone */
5778 5779
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5780 5781
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5782
				zone_start_pfn, zone_end_pfn);
5783 5784

	/* Check that this node has pages within the zone's required range */
5785
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5786 5787 5788
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5789 5790
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5791 5792

	/* Return the spanned pages */
5793
	return *zone_end_pfn - *zone_start_pfn;
5794 5795 5796 5797
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5798
 * then all holes in the requested range will be accounted for.
5799
 */
5800
unsigned long __meminit __absent_pages_in_range(int nid,
5801 5802 5803
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5804 5805 5806
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5807

5808 5809 5810 5811
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5812
	}
5813
	return nr_absent;
5814 5815 5816 5817 5818 5819 5820
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5821
 * It returns the number of pages frames in memory holes within a range.
5822 5823 5824 5825 5826 5827 5828 5829
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5830
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5831
					unsigned long zone_type,
5832 5833
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5834 5835
					unsigned long *ignored)
{
5836 5837
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5838
	unsigned long zone_start_pfn, zone_end_pfn;
5839
	unsigned long nr_absent;
5840

5841
	/* When hotadd a new node from cpu_up(), the node should be empty */
5842 5843 5844
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5845 5846
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5847

M
Mel Gorman 已提交
5848 5849 5850
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5851 5852 5853 5854 5855 5856 5857
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5875 5876 5877 5878
		}
	}

	return nr_absent;
5879
}
5880

T
Tejun Heo 已提交
5881
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5882
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5883
					unsigned long zone_type,
5884 5885
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5886 5887
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5888 5889
					unsigned long *zones_size)
{
5890 5891 5892 5893 5894 5895 5896 5897
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5898 5899 5900
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5901
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5902
						unsigned long zone_type,
5903 5904
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5905 5906 5907 5908 5909 5910 5911
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5912

T
Tejun Heo 已提交
5913
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5914

5915
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5916 5917 5918 5919
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5920
{
5921
	unsigned long realtotalpages = 0, totalpages = 0;
5922 5923
	enum zone_type i;

5924 5925
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5926
		unsigned long zone_start_pfn, zone_end_pfn;
5927
		unsigned long size, real_size;
5928

5929 5930 5931
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5932 5933
						  &zone_start_pfn,
						  &zone_end_pfn,
5934 5935
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5936 5937
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5938 5939 5940 5941
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5942 5943 5944 5945 5946 5947 5948 5949
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5950 5951 5952 5953 5954
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5955 5956 5957
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5958 5959
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5960 5961 5962
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5963
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5964 5965 5966
{
	unsigned long usemapsize;

5967
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5968 5969
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5970 5971 5972 5973 5974 5975 5976
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5977 5978 5979
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5980
{
5981
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5982
	zone->pageblock_flags = NULL;
5983
	if (usemapsize)
5984 5985 5986
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
5987 5988
}
#else
5989 5990
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
5991 5992
#endif /* CONFIG_SPARSEMEM */

5993
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5994

5995
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5996
void __paginginit set_pageblock_order(void)
5997
{
5998 5999
	unsigned int order;

6000 6001 6002 6003
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6004 6005 6006 6007 6008
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6009 6010
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6011 6012
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6013 6014 6015 6016 6017
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6018 6019
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6020 6021 6022
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6023
 */
6024
void __paginginit set_pageblock_order(void)
6025 6026
{
}
6027 6028 6029

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6040
	 * populated regions may not be naturally aligned on page boundary.
6041 6042 6043 6044 6045 6046 6047 6048 6049
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6050 6051 6052 6053 6054
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6055 6056
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6057
 */
6058
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6059
{
6060
	enum zone_type j;
6061
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6062

6063
	pgdat_resize_init(pgdat);
6064 6065 6066 6067
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6068 6069 6070 6071 6072
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6073
#endif
L
Linus Torvalds 已提交
6074
	init_waitqueue_head(&pgdat->kswapd_wait);
6075
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6076 6077 6078
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6079
	pgdat_page_ext_init(pgdat);
6080
	spin_lock_init(&pgdat->lru_lock);
6081
	lruvec_init(node_lruvec(pgdat));
6082

6083 6084
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6085 6086
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6087
		unsigned long size, realsize, freesize, memmap_pages;
6088
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6089

6090 6091
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6092

6093
		/*
6094
		 * Adjust freesize so that it accounts for how much memory
6095 6096 6097
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6098
		memmap_pages = calc_memmap_size(size, realsize);
6099 6100 6101 6102 6103 6104 6105 6106
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6107
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6108 6109
					zone_names[j], memmap_pages, freesize);
		}
6110

6111
		/* Account for reserved pages */
6112 6113
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6114
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6115
					zone_names[0], dma_reserve);
6116 6117
		}

6118
		if (!is_highmem_idx(j))
6119
			nr_kernel_pages += freesize;
6120 6121 6122
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6123
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6124

6125 6126 6127 6128 6129 6130
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6131
#ifdef CONFIG_NUMA
6132
		zone->node = nid;
6133
#endif
L
Linus Torvalds 已提交
6134
		zone->name = zone_names[j];
6135
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6136
		spin_lock_init(&zone->lock);
6137
		zone_seqlock_init(zone);
6138
		zone_pcp_init(zone);
6139

L
Linus Torvalds 已提交
6140 6141 6142
		if (!size)
			continue;

6143
		set_pageblock_order();
6144
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6145
		init_currently_empty_zone(zone, zone_start_pfn, size);
6146
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6147 6148 6149
	}
}

6150
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6151
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6152
{
6153
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6154 6155
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6156 6157 6158 6159
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6160 6161
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6162 6163
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6164
		unsigned long size, end;
A
Andy Whitcroft 已提交
6165 6166
		struct page *map;

6167 6168 6169 6170 6171
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6172
		end = pgdat_end_pfn(pgdat);
6173 6174
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6175 6176
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6177 6178
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6179
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6180
	}
6181 6182 6183
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6184
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6185 6186 6187
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6188
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6189
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6190
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6191
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6192
			mem_map -= offset;
T
Tejun Heo 已提交
6193
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6194
	}
L
Linus Torvalds 已提交
6195 6196
#endif
}
6197 6198 6199
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6200

6201 6202
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6203
{
6204
	pg_data_t *pgdat = NODE_DATA(nid);
6205 6206
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6207

6208
	/* pg_data_t should be reset to zero when it's allocated */
6209
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6210

L
Linus Torvalds 已提交
6211 6212
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6213
	pgdat->per_cpu_nodestats = NULL;
6214 6215
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6216
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6217 6218
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6219 6220
#else
	start_pfn = node_start_pfn;
6221 6222 6223
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6224 6225 6226

	alloc_node_mem_map(pgdat);

6227
	reset_deferred_meminit(pgdat);
6228
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6229 6230
}

6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
#ifdef CONFIG_HAVE_MEMBLOCK
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
#endif /* CONFIG_HAVE_MEMBLOCK */

T
Tejun Heo 已提交
6269
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6270 6271 6272 6273 6274

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6275
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6276
{
6277
	unsigned int highest;
M
Miklos Szeredi 已提交
6278

6279
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6280 6281 6282 6283
	nr_node_ids = highest + 1;
}
#endif

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6306
	unsigned long start, end, mask;
6307
	int last_nid = -1;
6308
	int i, nid;
6309

6310
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6334
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6335
static unsigned long __init find_min_pfn_for_node(int nid)
6336
{
6337
	unsigned long min_pfn = ULONG_MAX;
6338 6339
	unsigned long start_pfn;
	int i;
6340

6341 6342
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6343

6344
	if (min_pfn == ULONG_MAX) {
6345
		pr_warn("Could not find start_pfn for node %d\n", nid);
6346 6347 6348 6349
		return 0;
	}

	return min_pfn;
6350 6351 6352 6353 6354 6355
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6356
 * memblock_set_node().
6357 6358 6359 6360 6361 6362
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6363 6364 6365
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6366
 * Populate N_MEMORY for calculating usable_nodes.
6367
 */
A
Adrian Bunk 已提交
6368
static unsigned long __init early_calculate_totalpages(void)
6369 6370
{
	unsigned long totalpages = 0;
6371 6372 6373 6374 6375
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6376

6377 6378
		totalpages += pages;
		if (pages)
6379
			node_set_state(nid, N_MEMORY);
6380
	}
6381
	return totalpages;
6382 6383
}

M
Mel Gorman 已提交
6384 6385 6386 6387 6388 6389
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6390
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6391 6392 6393 6394
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6395
	/* save the state before borrow the nodemask */
6396
	nodemask_t saved_node_state = node_states[N_MEMORY];
6397
	unsigned long totalpages = early_calculate_totalpages();
6398
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6399
	struct memblock_region *r;
6400 6401 6402 6403 6404 6405 6406 6407 6408

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6409 6410
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6411 6412
				continue;

E
Emil Medve 已提交
6413
			nid = r->nid;
6414

E
Emil Medve 已提交
6415
			usable_startpfn = PFN_DOWN(r->base);
6416 6417 6418 6419 6420 6421 6422
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6423

6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6454
	/*
6455
	 * If movablecore=nn[KMG] was specified, calculate what size of
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6471
		required_movablecore = min(totalpages, required_movablecore);
6472 6473 6474 6475 6476
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6477 6478 6479 6480 6481
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6482
		goto out;
M
Mel Gorman 已提交
6483 6484 6485 6486 6487 6488 6489

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6490
	for_each_node_state(nid, N_MEMORY) {
6491 6492
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6509
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6510 6511
			unsigned long size_pages;

6512
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6555
			 * satisfied
M
Mel Gorman 已提交
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6569
	 * satisfied
M
Mel Gorman 已提交
6570 6571 6572 6573 6574
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6575
out2:
M
Mel Gorman 已提交
6576 6577 6578 6579
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6580

6581
out:
6582
	/* restore the node_state */
6583
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6584 6585
}

6586 6587
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6588 6589 6590
{
	enum zone_type zone_type;

6591 6592 6593 6594
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6595
		struct zone *zone = &pgdat->node_zones[zone_type];
6596
		if (populated_zone(zone)) {
6597 6598 6599 6600
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6601 6602
			break;
		}
6603 6604 6605
	}
}

6606 6607
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6608
 * @max_zone_pfn: an array of max PFNs for each zone
6609 6610
 *
 * This will call free_area_init_node() for each active node in the system.
6611
 * Using the page ranges provided by memblock_set_node(), the size of each
6612 6613 6614 6615 6616 6617 6618 6619 6620
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6621 6622
	unsigned long start_pfn, end_pfn;
	int i, nid;
6623

6624 6625 6626 6627 6628
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6629 6630 6631 6632

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6633 6634
		if (i == ZONE_MOVABLE)
			continue;
6635 6636 6637 6638 6639 6640

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6641
	}
M
Mel Gorman 已提交
6642 6643 6644

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6645
	find_zone_movable_pfns_for_nodes();
6646 6647

	/* Print out the zone ranges */
6648
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6649 6650 6651
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6652
		pr_info("  %-8s ", zone_names[i]);
6653 6654
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6655
			pr_cont("empty\n");
6656
		else
6657 6658 6659 6660
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6661
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6662 6663 6664
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6665
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6666 6667
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6668 6669
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6670
	}
6671

6672
	/* Print out the early node map */
6673
	pr_info("Early memory node ranges\n");
6674
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6675 6676 6677
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6678 6679

	/* Initialise every node */
6680
	mminit_verify_pageflags_layout();
6681
	setup_nr_node_ids();
6682 6683
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6684
		free_area_init_node(nid, NULL,
6685
				find_min_pfn_for_node(nid), NULL);
6686 6687 6688

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6689 6690
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6691
	}
6692
	zero_resv_unavail();
6693
}
M
Mel Gorman 已提交
6694

6695
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6696 6697 6698 6699 6700 6701
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6702
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6703

6704
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6705 6706 6707 6708
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6709

6710 6711 6712 6713 6714 6715
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6716 6717 6718 6719 6720 6721
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6734
early_param("kernelcore", cmdline_parse_kernelcore);
6735
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6736

T
Tejun Heo 已提交
6737
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6738

6739 6740 6741 6742 6743
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6744 6745 6746 6747
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6748 6749
	spin_unlock(&managed_page_count_lock);
}
6750
EXPORT_SYMBOL(adjust_managed_page_count);
6751

6752
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6753
{
6754 6755
	void *pos;
	unsigned long pages = 0;
6756

6757 6758 6759
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6760
		if ((unsigned int)poison <= 0xFF)
6761 6762
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6763 6764 6765
	}

	if (pages && s)
6766 6767
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6768 6769 6770

	return pages;
}
6771
EXPORT_SYMBOL(free_reserved_area);
6772

6773 6774 6775 6776 6777
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6778
	page_zone(page)->managed_pages++;
6779 6780 6781 6782
	totalhigh_pages++;
}
#endif

6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6805 6806 6807 6808
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6819
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6820
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6821
		", %luK highmem"
6822
#endif
J
Joe Perches 已提交
6823 6824 6825 6826 6827 6828 6829
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6830
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6831
		totalhigh_pages << (PAGE_SHIFT - 10),
6832
#endif
J
Joe Perches 已提交
6833
		str ? ", " : "", str ? str : "");
6834 6835
}

6836
/**
6837 6838
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6839
 *
6840
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6841 6842
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6843 6844 6845
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6846 6847 6848 6849 6850 6851
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6852 6853
void __init free_area_init(unsigned long *zones_size)
{
6854
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6855
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6856
	zero_resv_unavail();
L
Linus Torvalds 已提交
6857 6858
}

6859
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6860 6861
{

6862 6863
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6864

6865 6866 6867 6868 6869 6870 6871
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6872

6873 6874 6875 6876 6877 6878 6879 6880 6881
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6882 6883 6884 6885
}

void __init page_alloc_init(void)
{
6886 6887 6888 6889 6890 6891
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6892 6893
}

6894
/*
6895
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6896 6897 6898 6899 6900 6901
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6902
	enum zone_type i, j;
6903 6904

	for_each_online_pgdat(pgdat) {
6905 6906 6907

		pgdat->totalreserve_pages = 0;

6908 6909
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6910
			long max = 0;
6911 6912 6913 6914 6915 6916 6917

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6918 6919
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6920

6921 6922
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6923

6924
			pgdat->totalreserve_pages += max;
6925

6926 6927 6928 6929 6930 6931
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6932 6933
/*
 * setup_per_zone_lowmem_reserve - called whenever
6934
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6935 6936 6937 6938 6939 6940
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6941
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6942

6943
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6944 6945
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6946
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6947 6948 6949

			zone->lowmem_reserve[j] = 0;

6950 6951
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6952 6953
				struct zone *lower_zone;

6954 6955
				idx--;

L
Linus Torvalds 已提交
6956 6957 6958 6959
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6960
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6961
					sysctl_lowmem_reserve_ratio[idx];
6962
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6963 6964 6965
			}
		}
	}
6966 6967 6968

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6969 6970
}

6971
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6981
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6982 6983 6984
	}

	for_each_zone(zone) {
6985 6986
		u64 tmp;

6987
		spin_lock_irqsave(&zone->lock, flags);
6988
		tmp = (u64)pages_min * zone->managed_pages;
6989
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6990 6991
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6992 6993 6994 6995
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6996
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6997
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6998
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6999
			 */
7000
			unsigned long min_pages;
L
Linus Torvalds 已提交
7001

7002
			min_pages = zone->managed_pages / 1024;
7003
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7004
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7005
		} else {
N
Nick Piggin 已提交
7006 7007
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7008 7009
			 * proportionate to the zone's size.
			 */
7010
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7011 7012
		}

7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7024

7025
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7026
	}
7027 7028 7029

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7030 7031
}

7032 7033 7034 7035 7036 7037 7038 7039 7040
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7041 7042 7043
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7044
	__setup_per_zone_wmarks();
7045
	spin_unlock(&lock);
7046 7047
}

L
Linus Torvalds 已提交
7048 7049 7050 7051 7052 7053 7054
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7055
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7072
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7073 7074
{
	unsigned long lowmem_kbytes;
7075
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7076 7077

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7090
	setup_per_zone_wmarks();
7091
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7092
	setup_per_zone_lowmem_reserve();
7093 7094 7095 7096 7097 7098

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7099 7100
	return 0;
}
7101
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7102 7103

/*
7104
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7105 7106 7107
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7108
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7109
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7110
{
7111 7112 7113 7114 7115 7116
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7117 7118
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7119
		setup_per_zone_wmarks();
7120
	}
L
Linus Torvalds 已提交
7121 7122 7123
	return 0;
}

7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7139
#ifdef CONFIG_NUMA
7140
static void setup_min_unmapped_ratio(void)
7141
{
7142
	pg_data_t *pgdat;
7143 7144
	struct zone *zone;

7145
	for_each_online_pgdat(pgdat)
7146
		pgdat->min_unmapped_pages = 0;
7147

7148
	for_each_zone(zone)
7149
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7150 7151
				sysctl_min_unmapped_ratio) / 100;
}
7152

7153 7154

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7155
	void __user *buffer, size_t *length, loff_t *ppos)
7156 7157 7158
{
	int rc;

7159
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7160 7161 7162
	if (rc)
		return rc;

7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7173 7174 7175
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7176
	for_each_zone(zone)
7177
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7178
				sysctl_min_slab_ratio) / 100;
7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7192 7193
	return 0;
}
7194 7195
#endif

L
Linus Torvalds 已提交
7196 7197 7198 7199 7200 7201
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7202
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7203 7204
 * if in function of the boot time zone sizes.
 */
7205
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7206
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7207
{
7208
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7209 7210 7211 7212
	setup_per_zone_lowmem_reserve();
	return 0;
}

7213 7214
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7215 7216
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7217
 */
7218
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7219
	void __user *buffer, size_t *length, loff_t *ppos)
7220 7221
{
	struct zone *zone;
7222
	int old_percpu_pagelist_fraction;
7223 7224
	int ret;

7225 7226 7227
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7228
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7243

7244
	for_each_populated_zone(zone) {
7245 7246
		unsigned int cpu;

7247
		for_each_possible_cpu(cpu)
7248 7249
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7250
	}
7251
out:
7252
	mutex_unlock(&pcp_batch_high_lock);
7253
	return ret;
7254 7255
}

7256
#ifdef CONFIG_NUMA
7257
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7308 7309
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7310
{
7311
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7312 7313
	unsigned long log2qty, size;
	void *table = NULL;
7314
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7315 7316 7317 7318

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7319
		numentries = nr_kernel_pages;
7320
		numentries -= arch_reserved_kernel_pages();
7321 7322 7323 7324

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7325

P
Pavel Tatashin 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7336 7337 7338 7339 7340
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7341 7342

		/* Make sure we've got at least a 0-order allocation.. */
7343 7344 7345 7346 7347 7348 7349 7350
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7351
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7352
	}
7353
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7354 7355 7356 7357 7358 7359

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7360
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7361

7362 7363
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7364 7365 7366
	if (numentries > max)
		numentries = max;

7367
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7368

7369
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7370 7371
	do {
		size = bucketsize << log2qty;
7372 7373 7374 7375 7376 7377
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7378
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7379
		} else {
7380 7381
			/*
			 * If bucketsize is not a power-of-two, we may free
7382 7383
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7384
			 */
7385
			if (get_order(size) < MAX_ORDER) {
7386 7387
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7388
			}
L
Linus Torvalds 已提交
7389 7390 7391 7392 7393 7394
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7395 7396
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7397 7398 7399 7400 7401 7402 7403 7404

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7405

K
KAMEZAWA Hiroyuki 已提交
7406
/*
7407 7408 7409
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7410
 * PageLRU check without isolation or lru_lock could race so that
7411 7412 7413
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7414
 */
7415
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7416
			 int migratetype,
7417
			 bool skip_hwpoisoned_pages)
7418 7419
{
	unsigned long pfn, iter, found;
7420

7421 7422
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7423
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7424 7425
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7426
		return false;
7427

7428 7429 7430 7431 7432 7433 7434 7435 7436
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7437 7438 7439 7440
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7441
		if (!pfn_valid_within(check))
7442
			continue;
7443

7444
		page = pfn_to_page(check);
7445

7446 7447 7448
		if (PageReserved(page))
			return true;

7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7459 7460 7461 7462
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7463
		 * because their page->_refcount is zero at all time.
7464
		 */
7465
		if (!page_ref_count(page)) {
7466 7467 7468 7469
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7470

7471 7472 7473 7474 7475 7476 7477
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7478 7479 7480
		if (__PageMovable(page))
			continue;

7481 7482 7483
		if (!PageLRU(page))
			found++;
		/*
7484 7485 7486
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7497
			return true;
7498
	}
7499
	return false;
7500 7501 7502 7503
}

bool is_pageblock_removable_nolock(struct page *page)
{
7504 7505
	struct zone *zone;
	unsigned long pfn;
7506 7507 7508 7509 7510

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7511 7512
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7513
	 */
7514 7515 7516 7517 7518
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7519
	if (!zone_spans_pfn(zone, pfn))
7520 7521
		return false;

7522
	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
K
KAMEZAWA Hiroyuki 已提交
7523
}
K
KAMEZAWA Hiroyuki 已提交
7524

7525
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7540 7541
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7542 7543
{
	/* This function is based on compact_zone() from compaction.c. */
7544
	unsigned long nr_reclaimed;
7545 7546 7547 7548
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7549
	migrate_prep();
7550

7551
	while (pfn < end || !list_empty(&cc->migratepages)) {
7552 7553 7554 7555 7556
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7557 7558
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7559
			pfn = isolate_migratepages_range(cc, pfn, end);
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7570 7571 7572
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7573

7574
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7575
				    NULL, 0, cc->mode, MR_CMA);
7576
	}
7577 7578 7579 7580 7581
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7582 7583 7584 7585 7586 7587
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7588 7589 7590 7591
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7592
 * @gfp_mask:	GFP mask to use during compaction
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7605
int alloc_contig_range(unsigned long start, unsigned long end,
7606
		       unsigned migratetype, gfp_t gfp_mask)
7607 7608
{
	unsigned long outer_start, outer_end;
7609 7610
	unsigned int order;
	int ret = 0;
7611

7612 7613 7614 7615
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7616
		.mode = MIGRATE_SYNC,
7617
		.ignore_skip_hint = true,
7618
		.no_set_skip_hint = true,
7619
		.gfp_mask = current_gfp_context(gfp_mask),
7620 7621 7622
	};
	INIT_LIST_HEAD(&cc.migratepages);

7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7648 7649
				       pfn_max_align_up(end), migratetype,
				       false);
7650
	if (ret)
7651
		return ret;
7652

7653 7654 7655 7656
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7657
	ret = __alloc_contig_migrate_range(&cc, start, end);
7658
	if (ret && ret != -EBUSY)
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7679
	drain_all_pages(cc.zone);
7680 7681 7682 7683 7684

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7685 7686
			outer_start = start;
			break;
7687 7688 7689 7690
		}
		outer_start &= ~0UL << order;
	}

7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7704
	/* Make sure the range is really isolated. */
7705
	if (test_pages_isolated(outer_start, end, false)) {
7706
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7707
			__func__, outer_start, end);
7708 7709 7710 7711
		ret = -EBUSY;
		goto done;
	}

7712
	/* Grab isolated pages from freelists. */
7713
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7727
				pfn_max_align_up(end), migratetype);
7728 7729 7730 7731 7732
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7733 7734 7735 7736 7737 7738 7739 7740 7741
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7742 7743 7744
}
#endif

7745
#ifdef CONFIG_MEMORY_HOTPLUG
7746 7747 7748 7749
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7750 7751
void __meminit zone_pcp_update(struct zone *zone)
{
7752
	unsigned cpu;
7753
	mutex_lock(&pcp_batch_high_lock);
7754
	for_each_possible_cpu(cpu)
7755 7756
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7757
	mutex_unlock(&pcp_batch_high_lock);
7758 7759 7760
}
#endif

7761 7762 7763
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7764 7765
	int cpu;
	struct per_cpu_pageset *pset;
7766 7767 7768 7769

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7770 7771 7772 7773
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7774 7775 7776 7777 7778 7779
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7780
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7781
/*
7782 7783
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7784 7785 7786 7787 7788 7789
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7790
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7791 7792 7793 7794 7795 7796 7797 7798
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7799
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7800 7801 7802 7803 7804 7805 7806 7807 7808
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7819 7820 7821 7822
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7823 7824
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7836 7837 7838 7839 7840 7841

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7842
	unsigned int order;
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}