page_alloc.c 220.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <linux/backing-dev.h>
50
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include <linux/page-isolation.h>
52
#include <linux/page_ext.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126 127
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

128
unsigned long totalram_pages __read_mostly;
129
unsigned long totalreserve_pages __read_mostly;
130
unsigned long totalcma_pages __read_mostly;
131

132
int percpu_pagelist_fraction;
133
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

153 154 155 156 157
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
158 159 160 161
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
162
 */
163 164 165 166

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
167
{
168
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 170 171 172
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
173 174
}

175
void pm_restrict_gfp_mask(void)
176
{
177
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 179
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
180
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181
}
182 183 184

bool pm_suspended_storage(void)
{
185
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 187 188
		return false;
	return true;
}
189 190
#endif /* CONFIG_PM_SLEEP */

191
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192
unsigned int pageblock_order __read_mostly;
193 194
#endif

195
static void __free_pages_ok(struct page *page, unsigned int order);
196

L
Linus Torvalds 已提交
197 198 199 200 201 202
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
203
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
204 205 206
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
207
 */
208
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209
#ifdef CONFIG_ZONE_DMA
210
	[ZONE_DMA] = 256,
211
#endif
212
#ifdef CONFIG_ZONE_DMA32
213
	[ZONE_DMA32] = 256,
214
#endif
215
	[ZONE_NORMAL] = 32,
216
#ifdef CONFIG_HIGHMEM
217
	[ZONE_HIGHMEM] = 0,
218
#endif
219
	[ZONE_MOVABLE] = 0,
220
};
L
Linus Torvalds 已提交
221 222 223

EXPORT_SYMBOL(totalram_pages);

224
static char * const zone_names[MAX_NR_ZONES] = {
225
#ifdef CONFIG_ZONE_DMA
226
	 "DMA",
227
#endif
228
#ifdef CONFIG_ZONE_DMA32
229
	 "DMA32",
230
#endif
231
	 "Normal",
232
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
233
	 "HighMem",
234
#endif
M
Mel Gorman 已提交
235
	 "Movable",
236 237 238
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
239 240
};

241 242 243 244 245 246 247 248 249 250 251 252 253
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

254 255 256 257 258 259
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
260 261 262
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
263 264
};

L
Linus Torvalds 已提交
265
int min_free_kbytes = 1024;
266
int user_min_free_kbytes = -1;
267
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
268

269 270 271
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
272

T
Tejun Heo 已提交
273
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 275 276
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
277
static unsigned long required_kernelcore_percent __initdata;
278
static unsigned long required_movablecore __initdata;
279
static unsigned long required_movablecore_percent __initdata;
280 281
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
282 283 284 285 286

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287

M
Miklos Szeredi 已提交
288 289
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
290
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
291
EXPORT_SYMBOL(nr_node_ids);
292
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
293 294
#endif

295 296
int page_group_by_mobility_disabled __read_mostly;

297 298
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
299
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300
{
301 302 303
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 305 306 307 308 309 310 311 312 313 314 315 316
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
317
	/* Always populate low zones for address-constrained allocations */
318 319 320
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
321
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
443

444
void set_pageblock_migratetype(struct page *page, int migratetype)
445
{
446 447
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
448 449
		migratetype = MIGRATE_UNMOVABLE;

450 451 452 453
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
454
#ifdef CONFIG_DEBUG_VM
455
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
456
{
457 458 459
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
460
	unsigned long sp, start_pfn;
461

462 463
	do {
		seq = zone_span_seqbegin(zone);
464 465
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
466
		if (!zone_spans_pfn(zone, pfn))
467 468 469
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

470
	if (ret)
471 472 473
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
474

475
	return ret;
476 477 478 479
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
480
	if (!pfn_valid_within(page_to_pfn(page)))
481
		return 0;
L
Linus Torvalds 已提交
482
	if (zone != page_zone(page))
483 484 485 486 487 488 489
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
490
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
491 492
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
493
		return 1;
494 495 496
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
497 498
	return 0;
}
N
Nick Piggin 已提交
499
#else
500
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
501 502 503 504 505
{
	return 0;
}
#endif

506 507
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
508
{
509 510 511 512 513 514 515 516 517 518 519 520 521 522
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
523
			pr_alert(
524
			      "BUG: Bad page state: %lu messages suppressed\n",
525 526 527 528 529 530 531 532
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

533
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
534
		current->comm, page_to_pfn(page));
535 536 537 538 539
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
540
	dump_page_owner(page);
541

542
	print_modules();
L
Linus Torvalds 已提交
543
	dump_stack();
544
out:
545
	/* Leave bad fields for debug, except PageBuddy could make trouble */
546
	page_mapcount_reset(page); /* remove PageBuddy */
547
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
548 549 550 551 552
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
553
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
554
 *
555 556
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
557
 *
558 559
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
560
 *
561
 * The first tail page's ->compound_order holds the order of allocation.
562
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
563
 */
564

565
void free_compound_page(struct page *page)
566
{
567
	__free_pages_ok(page, compound_order(page));
568 569
}

570
void prep_compound_page(struct page *page, unsigned int order)
571 572 573 574
{
	int i;
	int nr_pages = 1 << order;

575
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
576 577 578 579
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
580
		set_page_count(p, 0);
581
		p->mapping = TAIL_MAPPING;
582
		set_compound_head(p, page);
583
	}
584
	atomic_set(compound_mapcount_ptr(page), -1);
585 586
}

587 588
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
589 590
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
591
EXPORT_SYMBOL(_debug_pagealloc_enabled);
592 593
bool _debug_guardpage_enabled __read_mostly;

594 595 596 597
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
598
	return kstrtobool(buf, &_debug_pagealloc_enabled);
599 600 601
}
early_param("debug_pagealloc", early_debug_pagealloc);

602 603
static bool need_debug_guardpage(void)
{
604 605 606 607
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

608 609 610
	if (!debug_guardpage_minorder())
		return false;

611 612 613 614 615
	return true;
}

static void init_debug_guardpage(void)
{
616 617 618
	if (!debug_pagealloc_enabled())
		return;

619 620 621
	if (!debug_guardpage_minorder())
		return;

622 623 624 625 626 627 628
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
629 630 631 632 633 634

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
635
		pr_err("Bad debug_guardpage_minorder value\n");
636 637 638
		return 0;
	}
	_debug_guardpage_minorder = res;
639
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
640 641
	return 0;
}
642
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
643

644
static inline bool set_page_guard(struct zone *zone, struct page *page,
645
				unsigned int order, int migratetype)
646
{
647 648 649
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
650 651 652 653
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
654 655

	page_ext = lookup_page_ext(page);
656
	if (unlikely(!page_ext))
657
		return false;
658

659 660
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

661 662 663 664
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
665 666

	return true;
667 668
}

669 670
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
671
{
672 673 674 675 676 677
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
678 679 680
	if (unlikely(!page_ext))
		return;

681 682
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

683 684 685
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
686 687
}
#else
688
struct page_ext_operations debug_guardpage_ops;
689 690
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
691 692
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
693 694
#endif

695
static inline void set_page_order(struct page *page, unsigned int order)
696
{
H
Hugh Dickins 已提交
697
	set_page_private(page, order);
698
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
699 700 701 702
}

static inline void rmv_page_order(struct page *page)
{
703
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
704
	set_page_private(page, 0);
L
Linus Torvalds 已提交
705 706 707 708
}

/*
 * This function checks whether a page is free && is the buddy
709
 * we can coalesce a page and its buddy if
710
 * (a) the buddy is not in a hole (check before calling!) &&
711
 * (b) the buddy is in the buddy system &&
712 713
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
714
 *
715 716
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
717
 *
718
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
719
 */
720
static inline int page_is_buddy(struct page *page, struct page *buddy,
721
							unsigned int order)
L
Linus Torvalds 已提交
722
{
723
	if (page_is_guard(buddy) && page_order(buddy) == order) {
724 725 726
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

727 728
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

729 730 731
		return 1;
	}

732
	if (PageBuddy(buddy) && page_order(buddy) == order) {
733 734 735 736 737 738 739 740
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

741 742
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

743
		return 1;
744
	}
745
	return 0;
L
Linus Torvalds 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
761 762
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
763
 * So when we are allocating or freeing one, we can derive the state of the
764 765
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
766
 * If a block is freed, and its buddy is also free, then this
767
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
768
 *
769
 * -- nyc
L
Linus Torvalds 已提交
770 771
 */

N
Nick Piggin 已提交
772
static inline void __free_one_page(struct page *page,
773
		unsigned long pfn,
774 775
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
776
{
777 778
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
779
	struct page *buddy;
780 781 782
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
783

784
	VM_BUG_ON(!zone_is_initialized(zone));
785
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
786

787
	VM_BUG_ON(migratetype == -1);
788
	if (likely(!is_migrate_isolate(migratetype)))
789
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
790

791
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
792
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
793

794
continue_merging:
795
	while (order < max_order - 1) {
796 797
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
798 799 800

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
801
		if (!page_is_buddy(page, buddy, order))
802
			goto done_merging;
803 804 805 806 807
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
808
			clear_page_guard(zone, buddy, order, migratetype);
809 810 811 812 813
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
814 815 816
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
817 818
		order++;
	}
819 820 821 822 823 824 825 826 827 828 829 830
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

831 832
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
833 834 835 836 837 838 839 840 841 842 843 844
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
845
	set_page_order(page, order);
846 847 848 849 850 851 852 853 854

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
855
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
856
		struct page *higher_page, *higher_buddy;
857 858 859 860
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
861 862
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
863 864 865 866 867 868 869 870
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
871 872 873
	zone->free_area[order].nr_free++;
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

896
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
897
{
898 899 900 901 902
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
903

904
	if (unlikely(atomic_read(&page->_mapcount) != -1))
905 906 907
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
908
	if (unlikely(page_ref_count(page) != 0))
909
		bad_reason = "nonzero _refcount";
910 911 912 913
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
914 915 916 917
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
918
	bad_page(page, bad_reason, bad_flags);
919 920 921 922
}

static inline int free_pages_check(struct page *page)
{
923
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
924 925 926 927
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
928
	return 1;
L
Linus Torvalds 已提交
929 930
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
947
		/* the first tail page: ->mapping may be compound_mapcount() */
948 949 950 951 952 953 954 955
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
956
		 * deferred_list.next -- ignore value.
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

981 982
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
983
{
984
	int bad = 0;
985 986 987

	VM_BUG_ON_PAGE(PageTail(page), page);

988 989 990 991 992 993 994 995 996 997 998
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
999

1000 1001
		if (compound)
			ClearPageDoubleMap(page);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1012
	if (PageMappingFlags(page))
1013
		page->mapping = NULL;
1014
	if (memcg_kmem_enabled() && PageKmemcg(page))
1015
		memcg_kmem_uncharge(page, order);
1016 1017 1018 1019
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1020

1021 1022 1023
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1024 1025 1026

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1027
					   PAGE_SIZE << order);
1028
		debug_check_no_obj_freed(page_address(page),
1029
					   PAGE_SIZE << order);
1030
	}
1031 1032 1033
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1034
	kasan_free_pages(page, order);
1035 1036 1037 1038

	return true;
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1055 1056 1057 1058 1059 1060
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1061 1062 1063 1064 1065 1066 1067 1068 1069
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1070
/*
1071
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1072
 * Assumes all pages on list are in same zone, and of same order.
1073
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1074 1075 1076 1077 1078 1079 1080
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1081 1082
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1083
{
1084
	int migratetype = 0;
1085
	int batch_free = 0;
1086
	int prefetch_nr = 0;
1087
	bool isolated_pageblocks;
1088 1089
	struct page *page, *tmp;
	LIST_HEAD(head);
1090

1091
	while (count) {
1092 1093 1094
		struct list_head *list;

		/*
1095 1096 1097 1098 1099
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1100 1101
		 */
		do {
1102
			batch_free++;
1103 1104 1105 1106
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1107

1108 1109
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1110
			batch_free = count;
1111

1112
		do {
1113
			page = list_last_entry(list, struct page, lru);
1114
			/* must delete to avoid corrupting pcp list */
1115
			list_del(&page->lru);
1116
			pcp->count--;
1117

1118 1119 1120
			if (bulkfree_pcp_prepare(page))
				continue;

1121
			list_add_tail(&page->lru, &head);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1134
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1135
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1155
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1156 1157
}

1158 1159
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1160
				unsigned int order,
1161
				int migratetype)
L
Linus Torvalds 已提交
1162
{
1163
	spin_lock(&zone->lock);
1164 1165 1166 1167
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1168
	__free_one_page(page, pfn, zone, order, migratetype);
1169
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1170 1171
}

1172
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1173
				unsigned long zone, int nid)
1174
{
1175
	mm_zero_struct_page(page);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1189
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190
static void __meminit init_reserved_page(unsigned long pfn)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1207
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1208 1209 1210 1211 1212 1213 1214
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1215 1216 1217 1218 1219 1220
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1221
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 1223 1224 1225
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1226 1227 1228 1229 1230
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1231 1232 1233 1234

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1235 1236 1237
			SetPageReserved(page);
		}
	}
1238 1239
}

1240 1241
static void __free_pages_ok(struct page *page, unsigned int order)
{
1242
	unsigned long flags;
M
Minchan Kim 已提交
1243
	int migratetype;
1244
	unsigned long pfn = page_to_pfn(page);
1245

1246
	if (!free_pages_prepare(page, order, true))
1247 1248
		return;

1249
	migratetype = get_pfnblock_migratetype(page, pfn);
1250 1251
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1252
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1253
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1254 1255
}

1256
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1257
{
1258
	unsigned int nr_pages = 1 << order;
1259
	struct page *p = page;
1260
	unsigned int loop;
1261

1262 1263 1264
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1265 1266
		__ClearPageReserved(p);
		set_page_count(p, 0);
1267
	}
1268 1269
	__ClearPageReserved(p);
	set_page_count(p, 0);
1270

1271
	page_zone(page)->managed_pages += nr_pages;
1272 1273
	set_page_refcounted(page);
	__free_pages(page, order);
1274 1275
}

1276 1277
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278

1279 1280 1281 1282
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1283
	static DEFINE_SPINLOCK(early_pfn_lock);
1284 1285
	int nid;

1286
	spin_lock(&early_pfn_lock);
1287
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1288
	if (nid < 0)
1289
		nid = first_online_node;
1290 1291 1292
	spin_unlock(&early_pfn_lock);

	return nid;
1293 1294 1295 1296
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1297 1298 1299
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1321 1322 1323
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1324 1325 1326 1327 1328 1329
{
	return true;
}
#endif


1330
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1331 1332 1333 1334
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1335
	return __free_pages_boot_core(page, order);
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1367 1368 1369
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1409
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410 1411
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1412
{
1413 1414
	struct page *page;
	unsigned long i;
1415

1416
	if (!nr_pages)
1417 1418
		return;

1419 1420
	page = pfn_to_page(pfn);

1421
	/* Free a large naturally-aligned chunk if possible */
1422 1423
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1424
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425
		__free_pages_boot_core(page, pageblock_order);
1426 1427 1428
		return;
	}

1429 1430 1431
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1432
		__free_pages_boot_core(page, 0);
1433
	}
1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1445

1446
/*
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1459
 */
1460 1461 1462
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1463
{
1464 1465 1466 1467 1468 1469 1470 1471
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1483

1484 1485 1486 1487 1488 1489 1490
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1491
			touch_nmi_watchdog();
1492 1493 1494 1495 1496 1497
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1508 1509 1510 1511 1512 1513
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1514 1515 1516
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1517
			continue;
1518
		} else if (!page || !(pfn & nr_pgmask)) {
1519
			page = pfn_to_page(pfn);
1520
			touch_nmi_watchdog();
1521 1522
		} else {
			page++;
1523
		}
1524
		__init_single_page(page, pfn, zid, nid);
1525
		nr_pages++;
1526
	}
1527
	return (nr_pages);
1528 1529
}

1530
/* Initialise remaining memory on a node */
1531
static int __init deferred_init_memmap(void *data)
1532
{
1533 1534
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1535 1536
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1537
	unsigned long spfn, epfn, first_init_pfn, flags;
1538 1539
	phys_addr_t spa, epa;
	int zid;
1540
	struct zone *zone;
1541
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1542
	u64 i;
1543

1544 1545 1546 1547 1548 1549
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1550
	if (first_init_pfn == ULONG_MAX) {
1551
		pgdat_resize_unlock(pgdat, &flags);
1552
		pgdat_init_report_one_done();
1553 1554 1555
		return 0;
	}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1567
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1580 1581 1582
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1583
		deferred_free_pages(nid, zid, spfn, epfn);
1584
	}
1585
	pgdat_resize_unlock(pgdat, &flags);
1586 1587 1588 1589

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1590
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1591
					jiffies_to_msecs(jiffies - start));
1592 1593

	pgdat_init_report_one_done();
1594 1595
	return 0;
}
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1707
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1708 1709 1710

void __init page_alloc_init_late(void)
{
1711 1712 1713
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1714 1715
	int nid;

1716 1717
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1718 1719 1720 1721 1722
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1723
	wait_for_completion(&pgdat_init_all_done_comp);
1724

1725 1726 1727 1728 1729 1730
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1731 1732
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1733
#endif
P
Pavel Tatashin 已提交
1734 1735 1736 1737
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1738 1739 1740

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1741 1742
}

1743
#ifdef CONFIG_CMA
1744
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1745 1746 1747 1748 1749 1750 1751 1752
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1753
	} while (++p, --i);
1754 1755

	set_pageblock_migratetype(page, MIGRATE_CMA);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1770
	adjust_managed_page_count(page, pageblock_nr_pages);
1771 1772
}
#endif
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1786
 * -- nyc
L
Linus Torvalds 已提交
1787
 */
N
Nick Piggin 已提交
1788
static inline void expand(struct zone *zone, struct page *page,
1789 1790
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796 1797
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1798
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1799

1800 1801 1802 1803 1804 1805 1806
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1807
			continue;
1808

1809
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1815
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1816
{
1817 1818
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1819

1820
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1821 1822 1823
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1824
	if (unlikely(page_ref_count(page) != 0))
1825
		bad_reason = "nonzero _count";
1826 1827 1828
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1829 1830 1831
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1832
	}
1833 1834 1835 1836
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1837 1838 1839 1840
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1855 1856
}

1857
static inline bool free_pages_prezeroed(void)
1858 1859
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1860
		page_poisoning_enabled();
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1910
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1911
							unsigned int alloc_flags)
1912 1913
{
	int i;
1914

1915
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1916

1917
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1918 1919
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1920 1921 1922 1923

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1924
	/*
1925
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1926 1927 1928 1929
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1930 1931 1932 1933
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1934 1935
}

1936 1937 1938 1939
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1940
static __always_inline
1941
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1942 1943 1944
						int migratetype)
{
	unsigned int current_order;
1945
	struct free_area *area;
1946 1947 1948 1949 1950
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1951
		page = list_first_entry_or_null(&area->free_list[migratetype],
1952
							struct page, lru);
1953 1954
		if (!page)
			continue;
1955 1956 1957 1958
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1959
		set_pcppage_migratetype(page, migratetype);
1960 1961 1962 1963 1964 1965 1966
		return page;
	}

	return NULL;
}


1967 1968 1969 1970
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1971
static int fallbacks[MIGRATE_TYPES][4] = {
1972 1973 1974
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1975
#ifdef CONFIG_CMA
1976
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1977
#endif
1978
#ifdef CONFIG_MEMORY_ISOLATION
1979
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1980
#endif
1981 1982
};

1983
#ifdef CONFIG_CMA
1984
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1985 1986 1987 1988 1989 1990 1991 1992 1993
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1994 1995
/*
 * Move the free pages in a range to the free lists of the requested type.
1996
 * Note that start_page and end_pages are not aligned on a pageblock
1997 1998
 * boundary. If alignment is required, use move_freepages_block()
 */
1999
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2000
			  struct page *start_page, struct page *end_page,
2001
			  int migratetype, int *num_movable)
2002 2003
{
	struct page *page;
2004
	unsigned int order;
2005
	int pages_moved = 0;
2006 2007 2008 2009 2010 2011 2012

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2013
	 * grouping pages by mobility
2014
	 */
2015 2016 2017
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2018 2019
#endif

2020 2021 2022
	if (num_movable)
		*num_movable = 0;

2023 2024 2025 2026 2027 2028
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2029 2030 2031
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2032
		if (!PageBuddy(page)) {
2033 2034 2035 2036 2037 2038 2039 2040 2041
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2042 2043 2044 2045 2046
			page++;
			continue;
		}

		order = page_order(page);
2047 2048
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2049
		page += 1 << order;
2050
		pages_moved += 1 << order;
2051 2052
	}

2053
	return pages_moved;
2054 2055
}

2056
int move_freepages_block(struct zone *zone, struct page *page,
2057
				int migratetype, int *num_movable)
2058 2059 2060 2061 2062
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2063
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2064
	start_page = pfn_to_page(start_pfn);
2065 2066
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2067 2068

	/* Do not cross zone boundaries */
2069
	if (!zone_spans_pfn(zone, start_pfn))
2070
		start_page = page;
2071
	if (!zone_spans_pfn(zone, end_pfn))
2072 2073
		return 0;

2074 2075
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2076 2077
}

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2089
/*
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2100
 */
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2125 2126 2127 2128
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2129 2130
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2131
					int start_type, bool whole_block)
2132
{
2133
	unsigned int current_order = page_order(page);
2134
	struct free_area *area;
2135 2136 2137 2138
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2139

2140 2141 2142 2143
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2144
	if (is_migrate_highatomic(old_block_type))
2145 2146
		goto single_page;

2147 2148 2149
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2150
		goto single_page;
2151 2152
	}

2153 2154 2155 2156
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2181
	/* moving whole block can fail due to zone boundary conditions */
2182
	if (!free_pages)
2183
		goto single_page;
2184

2185 2186 2187 2188 2189
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2190 2191
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2192 2193 2194 2195 2196 2197

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2198 2199
}

2200 2201 2202 2203 2204 2205 2206 2207
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2218
		if (fallback_mt == MIGRATE_TYPES)
2219 2220 2221 2222
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2223

2224 2225 2226
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2227 2228 2229 2230 2231
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2232
	}
2233 2234

	return -1;
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2263 2264
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2265 2266
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2267
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2279 2280 2281
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2282
 */
2283 2284
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2285 2286 2287 2288 2289 2290 2291
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2292
	bool ret;
2293 2294 2295

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2296 2297 2298 2299 2300 2301
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2302 2303 2304 2305 2306 2307
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2308 2309 2310 2311
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2312 2313 2314
				continue;

			/*
2315 2316 2317 2318 2319
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2320
			 */
2321
			if (is_migrate_highatomic_page(page)) {
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2344 2345
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2346 2347 2348 2349
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2350 2351 2352
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2353 2354

	return false;
2355 2356
}

2357 2358 2359 2360 2361
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2362 2363 2364 2365
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2366
 */
2367
static __always_inline bool
2368
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2369
{
2370
	struct free_area *area;
2371
	int current_order;
2372
	struct page *page;
2373 2374
	int fallback_mt;
	bool can_steal;
2375

2376 2377 2378 2379 2380
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2381
	for (current_order = MAX_ORDER - 1; current_order >= order;
2382
				--current_order) {
2383 2384
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2385
				start_migratetype, false, &can_steal);
2386 2387
		if (fallback_mt == -1)
			continue;
2388

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2400

2401 2402
		goto do_steal;
	}
2403

2404
	return false;
2405

2406 2407 2408 2409 2410 2411 2412 2413
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2414 2415
	}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2433 2434
}

2435
/*
L
Linus Torvalds 已提交
2436 2437 2438
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2439 2440
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2441 2442 2443
{
	struct page *page;

2444
retry:
2445
	page = __rmqueue_smallest(zone, order, migratetype);
2446
	if (unlikely(!page)) {
2447 2448 2449
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2450 2451
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2452 2453
	}

2454
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2455
	return page;
L
Linus Torvalds 已提交
2456 2457
}

2458
/*
L
Linus Torvalds 已提交
2459 2460 2461 2462
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2463
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2464
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2465
			int migratetype)
L
Linus Torvalds 已提交
2466
{
2467
	int i, alloced = 0;
2468

2469
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2470
	for (i = 0; i < count; ++i) {
2471
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2472
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2473
			break;
2474

2475 2476 2477
		if (unlikely(check_pcp_refill(page)))
			continue;

2478
		/*
2479 2480 2481 2482 2483 2484 2485 2486
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2487
		 */
2488
		list_add_tail(&page->lru, list);
2489
		alloced++;
2490
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2491 2492
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2493
	}
2494 2495 2496 2497 2498 2499 2500

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2501
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2502
	spin_unlock(&zone->lock);
2503
	return alloced;
L
Linus Torvalds 已提交
2504 2505
}

2506
#ifdef CONFIG_NUMA
2507
/*
2508 2509 2510 2511
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2512 2513
 * Note that this function must be called with the thread pinned to
 * a single processor.
2514
 */
2515
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2516 2517
{
	unsigned long flags;
2518
	int to_drain, batch;
2519

2520
	local_irq_save(flags);
2521
	batch = READ_ONCE(pcp->batch);
2522
	to_drain = min(pcp->count, batch);
2523
	if (to_drain > 0)
2524
		free_pcppages_bulk(zone, to_drain, pcp);
2525
	local_irq_restore(flags);
2526 2527 2528
}
#endif

2529
/*
2530
 * Drain pcplists of the indicated processor and zone.
2531 2532 2533 2534 2535
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2536
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2537
{
N
Nick Piggin 已提交
2538
	unsigned long flags;
2539 2540
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2541

2542 2543
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2544

2545
	pcp = &pset->pcp;
2546
	if (pcp->count)
2547 2548 2549
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2564 2565 2566
	}
}

2567 2568
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2569 2570 2571
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2572
 */
2573
void drain_local_pages(struct zone *zone)
2574
{
2575 2576 2577 2578 2579 2580
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2581 2582
}

2583 2584
static void drain_local_pages_wq(struct work_struct *work)
{
2585 2586 2587 2588 2589 2590 2591 2592
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2593
	drain_local_pages(NULL);
2594
	preempt_enable();
2595 2596
}

2597
/*
2598 2599
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2600 2601
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2602
 * Note that this can be extremely slow as the draining happens in a workqueue.
2603
 */
2604
void drain_all_pages(struct zone *zone)
2605
{
2606 2607 2608 2609 2610 2611 2612 2613
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2614 2615 2616 2617 2618 2619 2620
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2631

2632 2633 2634 2635 2636 2637 2638
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2639 2640
		struct per_cpu_pageset *pcp;
		struct zone *z;
2641
		bool has_pcps = false;
2642 2643

		if (zone) {
2644
			pcp = per_cpu_ptr(zone->pageset, cpu);
2645
			if (pcp->pcp.count)
2646
				has_pcps = true;
2647 2648 2649 2650 2651 2652 2653
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2654 2655
			}
		}
2656

2657 2658 2659 2660 2661
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2662

2663 2664 2665
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2666
		queue_work_on(cpu, mm_percpu_wq, work);
2667
	}
2668 2669 2670 2671
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2672 2673
}

2674
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2675

2676 2677 2678 2679 2680
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2681 2682
void mark_free_pages(struct zone *zone)
{
2683
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2684
	unsigned long flags;
2685
	unsigned int order, t;
2686
	struct page *page;
L
Linus Torvalds 已提交
2687

2688
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2689 2690 2691
		return;

	spin_lock_irqsave(&zone->lock, flags);
2692

2693
	max_zone_pfn = zone_end_pfn(zone);
2694 2695
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2696
			page = pfn_to_page(pfn);
2697

2698 2699 2700 2701 2702
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2703 2704 2705
			if (page_zone(page) != zone)
				continue;

2706 2707
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2708
		}
L
Linus Torvalds 已提交
2709

2710
	for_each_migratetype_order(order, t) {
2711 2712
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2713
			unsigned long i;
L
Linus Torvalds 已提交
2714

2715
			pfn = page_to_pfn(page);
2716 2717 2718 2719 2720
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2721
				swsusp_set_page_free(pfn_to_page(pfn + i));
2722
			}
2723
		}
2724
	}
L
Linus Torvalds 已提交
2725 2726
	spin_unlock_irqrestore(&zone->lock, flags);
}
2727
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2728

2729
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2730
{
2731
	int migratetype;
L
Linus Torvalds 已提交
2732

2733
	if (!free_pcp_prepare(page))
2734
		return false;
2735

2736
	migratetype = get_pfnblock_migratetype(page, pfn);
2737
	set_pcppage_migratetype(page, migratetype);
2738 2739 2740
	return true;
}

2741
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2742 2743 2744 2745 2746 2747
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2748
	__count_vm_event(PGFREE);
2749

2750 2751 2752
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2753
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2754 2755 2756 2757
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2758
		if (unlikely(is_migrate_isolate(migratetype))) {
2759
			free_one_page(zone, page, pfn, 0, migratetype);
2760
			return;
2761 2762 2763 2764
		}
		migratetype = MIGRATE_MOVABLE;
	}

2765
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2766
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2767
	pcp->count++;
N
Nick Piggin 已提交
2768
	if (pcp->count >= pcp->high) {
2769
		unsigned long batch = READ_ONCE(pcp->batch);
2770
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2771
	}
2772
}
2773

2774 2775 2776
/*
 * Free a 0-order page
 */
2777
void free_unref_page(struct page *page)
2778 2779 2780 2781
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2782
	if (!free_unref_page_prepare(page, pfn))
2783 2784 2785
		return;

	local_irq_save(flags);
2786
	free_unref_page_commit(page, pfn);
2787
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2788 2789
}

2790 2791 2792
/*
 * Free a list of 0-order pages
 */
2793
void free_unref_page_list(struct list_head *list)
2794 2795
{
	struct page *page, *next;
2796
	unsigned long flags, pfn;
2797
	int batch_count = 0;
2798 2799 2800 2801

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2802
		if (!free_unref_page_prepare(page, pfn))
2803 2804 2805
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2806

2807
	local_irq_save(flags);
2808
	list_for_each_entry_safe(page, next, list, lru) {
2809 2810 2811
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2812 2813
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2824
	}
2825
	local_irq_restore(flags);
2826 2827
}

N
Nick Piggin 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2840 2841
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2842

2843
	for (i = 1; i < (1 << order); i++)
2844
		set_page_refcounted(page + i);
2845
	split_page_owner(page, order);
N
Nick Piggin 已提交
2846
}
K
K. Y. Srinivasan 已提交
2847
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2848

2849
int __isolate_free_page(struct page *page, unsigned int order)
2850 2851 2852
{
	unsigned long watermark;
	struct zone *zone;
2853
	int mt;
2854 2855 2856 2857

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2858
	mt = get_pageblock_migratetype(page);
2859

2860
	if (!is_migrate_isolate(mt)) {
2861 2862 2863 2864 2865 2866 2867
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2868
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2869 2870
			return 0;

2871
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2872
	}
2873 2874 2875 2876 2877

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2878

2879 2880 2881 2882
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2883 2884
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2885 2886
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2887
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2888
			    && !is_migrate_highatomic(mt))
2889 2890 2891
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2892 2893
	}

2894

2895
	return 1UL << order;
2896 2897
}

2898 2899 2900 2901 2902
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2903
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2904 2905
{
#ifdef CONFIG_NUMA
2906
	enum numa_stat_item local_stat = NUMA_LOCAL;
2907

2908 2909 2910 2911
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2912
	if (z->node != numa_node_id())
2913 2914
		local_stat = NUMA_OTHER;

2915
	if (z->node == preferred_zone->node)
2916
		__inc_numa_state(z, NUMA_HIT);
2917
	else {
2918 2919
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2920
	}
2921
	__inc_numa_state(z, local_stat);
2922 2923 2924
#endif
}

2925 2926
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2927
			struct per_cpu_pages *pcp,
2928 2929 2930 2931 2932 2933 2934 2935
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2936
					migratetype);
2937 2938 2939 2940
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2941
		page = list_first_entry(list, struct page, lru);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2957
	unsigned long flags;
2958

2959
	local_irq_save(flags);
2960 2961
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2962
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2963 2964 2965 2966
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2967
	local_irq_restore(flags);
2968 2969 2970
	return page;
}

L
Linus Torvalds 已提交
2971
/*
2972
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2973
 */
2974
static inline
2975
struct page *rmqueue(struct zone *preferred_zone,
2976
			struct zone *zone, unsigned int order,
2977 2978
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2979 2980
{
	unsigned long flags;
2981
	struct page *page;
L
Linus Torvalds 已提交
2982

2983
	if (likely(order == 0)) {
2984 2985 2986 2987
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2988

2989 2990 2991 2992 2993 2994
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2995

2996 2997 2998 2999 3000 3001 3002
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3003
		if (!page)
3004 3005 3006 3007 3008 3009 3010
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3011

3012
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3013
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3014
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3015

3016 3017
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3018
	return page;
N
Nick Piggin 已提交
3019 3020 3021 3022

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3023 3024
}

3025 3026
#ifdef CONFIG_FAIL_PAGE_ALLOC

3027
static struct {
3028 3029
	struct fault_attr attr;

3030
	bool ignore_gfp_highmem;
3031
	bool ignore_gfp_reclaim;
3032
	u32 min_order;
3033 3034
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3035
	.ignore_gfp_reclaim = true,
3036
	.ignore_gfp_highmem = true,
3037
	.min_order = 1,
3038 3039 3040 3041 3042 3043 3044 3045
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3046
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3047
{
3048
	if (order < fail_page_alloc.min_order)
3049
		return false;
3050
	if (gfp_mask & __GFP_NOFAIL)
3051
		return false;
3052
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3053
		return false;
3054 3055
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3056
		return false;
3057 3058 3059 3060 3061 3062 3063 3064

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3065
	umode_t mode = S_IFREG | 0600;
3066 3067
	struct dentry *dir;

3068 3069 3070 3071
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3072

3073
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3074
				&fail_page_alloc.ignore_gfp_reclaim))
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3085
	debugfs_remove_recursive(dir);
3086

3087
	return -ENOMEM;
3088 3089 3090 3091 3092 3093 3094 3095
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3096
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3097
{
3098
	return false;
3099 3100 3101 3102
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3103
/*
3104 3105 3106 3107
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3108
 */
3109 3110 3111
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3112
{
3113
	long min = mark;
L
Linus Torvalds 已提交
3114
	int o;
3115
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3116

3117
	/* free_pages may go negative - that's OK */
3118
	free_pages -= (1 << order) - 1;
3119

R
Rohit Seth 已提交
3120
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3121
		min -= min / 2;
3122 3123 3124 3125 3126 3127

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3128
	if (likely(!alloc_harder)) {
3129
		free_pages -= z->nr_reserved_highatomic;
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3143

3144 3145 3146 3147 3148 3149
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3150 3151 3152 3153 3154 3155
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3156
		return false;
L
Linus Torvalds 已提交
3157

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
3176 3177
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3178
			return true;
3179
		}
3180
#endif
3181 3182 3183
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3184
	}
3185
	return false;
3186 3187
}

3188
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3189
		      int classzone_idx, unsigned int alloc_flags)
3190 3191 3192 3193 3194
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3195 3196 3197 3198
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3199 3200 3201 3202 3203 3204 3205
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3206 3207 3208 3209 3210 3211 3212 3213

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3214
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3215 3216 3217 3218 3219 3220
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3221
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3222
			unsigned long mark, int classzone_idx)
3223 3224 3225 3226 3227 3228
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3229
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3230
								free_pages);
L
Linus Torvalds 已提交
3231 3232
}

3233
#ifdef CONFIG_NUMA
3234 3235
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3236
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3237
				RECLAIM_DISTANCE;
3238
}
3239
#else	/* CONFIG_NUMA */
3240 3241 3242 3243
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3244 3245
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3246
/*
3247
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3248 3249 3250
 * a page.
 */
static struct page *
3251 3252
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3253
{
3254
	struct zoneref *z = ac->preferred_zoneref;
3255
	struct zone *zone;
3256 3257
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3258
	/*
3259
	 * Scan zonelist, looking for a zone with enough free.
3260
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3261
	 */
3262
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3263
								ac->nodemask) {
3264
		struct page *page;
3265 3266
		unsigned long mark;

3267 3268
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3269
			!__cpuset_zone_allowed(zone, gfp_mask))
3270
				continue;
3271 3272
		/*
		 * When allocating a page cache page for writing, we
3273 3274
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3275
		 * proportional share of globally allowed dirty pages.
3276
		 * The dirty limits take into account the node's
3277 3278 3279 3280 3281
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3282
		 * exceed the per-node dirty limit in the slowpath
3283
		 * (spread_dirty_pages unset) before going into reclaim,
3284
		 * which is important when on a NUMA setup the allowed
3285
		 * nodes are together not big enough to reach the
3286
		 * global limit.  The proper fix for these situations
3287
		 * will require awareness of nodes in the
3288 3289
		 * dirty-throttling and the flusher threads.
		 */
3290 3291 3292 3293 3294 3295 3296 3297 3298
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3299

3300
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3301
		if (!zone_watermark_fast(zone, order, mark,
3302
				       ac_classzone_idx(ac), alloc_flags)) {
3303 3304
			int ret;

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3315 3316 3317 3318 3319
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3320
			if (node_reclaim_mode == 0 ||
3321
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3322 3323
				continue;

3324
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3325
			switch (ret) {
3326
			case NODE_RECLAIM_NOSCAN:
3327
				/* did not scan */
3328
				continue;
3329
			case NODE_RECLAIM_FULL:
3330
				/* scanned but unreclaimable */
3331
				continue;
3332 3333
			default:
				/* did we reclaim enough */
3334
				if (zone_watermark_ok(zone, order, mark,
3335
						ac_classzone_idx(ac), alloc_flags))
3336 3337 3338
					goto try_this_zone;

				continue;
3339
			}
R
Rohit Seth 已提交
3340 3341
		}

3342
try_this_zone:
3343
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3344
				gfp_mask, alloc_flags, ac->migratetype);
3345
		if (page) {
3346
			prep_new_page(page, order, gfp_mask, alloc_flags);
3347 3348 3349 3350 3351 3352 3353 3354

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3355
			return page;
3356 3357 3358 3359 3360 3361 3362 3363
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3364
		}
3365
	}
3366

3367
	return NULL;
M
Martin Hicks 已提交
3368 3369
}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3384
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3385 3386
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3387
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3388

3389
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3390 3391 3392 3393 3394 3395 3396 3397
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3398
		if (tsk_is_oom_victim(current) ||
3399 3400
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3401
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3402 3403
		filter &= ~SHOW_MEM_FILTER_NODES;

3404
	show_mem(filter, nodemask);
3405 3406
}

3407
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3408 3409 3410 3411 3412 3413
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3414
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3415 3416
		return;

3417 3418 3419
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3420 3421 3422
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3423
	va_end(args);
J
Joe Perches 已提交
3424

3425
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3426

3427
	dump_stack();
3428
	warn_alloc_show_mem(gfp_mask, nodemask);
3429 3430
}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3451 3452
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3453
	const struct alloc_context *ac, unsigned long *did_some_progress)
3454
{
3455 3456 3457
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3458
		.memcg = NULL,
3459 3460 3461
		.gfp_mask = gfp_mask,
		.order = order,
	};
3462 3463
	struct page *page;

3464 3465 3466
	*did_some_progress = 0;

	/*
3467 3468
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3469
	 */
3470
	if (!mutex_trylock(&oom_lock)) {
3471
		*did_some_progress = 1;
3472
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3473 3474
		return NULL;
	}
3475

3476 3477 3478
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3479 3480 3481
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3482
	 */
3483 3484 3485
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3486
	if (page)
3487 3488
		goto out;

3489 3490 3491 3492 3493 3494
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3495 3496 3497 3498 3499 3500 3501 3502
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3521

3522
	/* Exhausted what can be done so it's blame time */
3523
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3524
		*did_some_progress = 1;
3525

3526 3527 3528 3529 3530 3531
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3532 3533
					ALLOC_NO_WATERMARKS, ac);
	}
3534
out:
3535
	mutex_unlock(&oom_lock);
3536 3537 3538
	return page;
}

3539 3540 3541 3542 3543 3544
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3545 3546 3547 3548
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3549
		unsigned int alloc_flags, const struct alloc_context *ac,
3550
		enum compact_priority prio, enum compact_result *compact_result)
3551
{
3552
	struct page *page;
3553
	unsigned int noreclaim_flag;
3554 3555

	if (!order)
3556 3557
		return NULL;

3558
	noreclaim_flag = memalloc_noreclaim_save();
3559
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3560
									prio);
3561
	memalloc_noreclaim_restore(noreclaim_flag);
3562

3563
	if (*compact_result <= COMPACT_INACTIVE)
3564
		return NULL;
3565

3566 3567 3568 3569 3570
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3571

3572
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3573

3574 3575
	if (page) {
		struct zone *zone = page_zone(page);
3576

3577 3578 3579 3580 3581
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3582

3583 3584 3585 3586 3587
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3588

3589
	cond_resched();
3590 3591 3592

	return NULL;
}
3593

3594 3595 3596 3597
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3598
		     int *compaction_retries)
3599 3600
{
	int max_retries = MAX_COMPACT_RETRIES;
3601
	int min_priority;
3602 3603 3604
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3605 3606 3607 3608

	if (!order)
		return false;

3609 3610 3611
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3612 3613 3614 3615 3616
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3617 3618
	if (compaction_failed(compact_result))
		goto check_priority;
3619 3620 3621 3622 3623 3624 3625

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3626 3627 3628 3629
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3630 3631

	/*
3632
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3633 3634 3635 3636 3637 3638 3639 3640
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3641 3642 3643 3644
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3645

3646 3647 3648 3649 3650
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3651 3652
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3653

3654
	if (*compact_priority > min_priority) {
3655 3656
		(*compact_priority)--;
		*compaction_retries = 0;
3657
		ret = true;
3658
	}
3659 3660 3661
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3662
}
3663 3664 3665
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3666
		unsigned int alloc_flags, const struct alloc_context *ac,
3667
		enum compact_priority prio, enum compact_result *compact_result)
3668
{
3669
	*compact_result = COMPACT_SKIPPED;
3670 3671
	return NULL;
}
3672 3673

static inline bool
3674 3675
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3676
		     enum compact_priority *compact_priority,
3677
		     int *compaction_retries)
3678
{
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3697 3698
	return false;
}
3699
#endif /* CONFIG_COMPACTION */
3700

3701
#ifdef CONFIG_LOCKDEP
3702
static struct lockdep_map __fs_reclaim_map =
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3714
	if (current->flags & PF_MEMALLOC)
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3737 3738 3739
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3740
		__fs_reclaim_acquire();
3741 3742 3743 3744 3745 3746
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3747
		__fs_reclaim_release();
3748 3749 3750 3751
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3752 3753
/* Perform direct synchronous page reclaim */
static int
3754 3755
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3756 3757
{
	struct reclaim_state reclaim_state;
3758
	int progress;
3759
	unsigned int noreclaim_flag;
3760 3761 3762 3763 3764

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3765
	fs_reclaim_acquire(gfp_mask);
3766
	noreclaim_flag = memalloc_noreclaim_save();
3767
	reclaim_state.reclaimed_slab = 0;
3768
	current->reclaim_state = &reclaim_state;
3769

3770 3771
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3772

3773
	current->reclaim_state = NULL;
3774
	memalloc_noreclaim_restore(noreclaim_flag);
3775
	fs_reclaim_release(gfp_mask);
3776 3777 3778

	cond_resched();

3779 3780 3781 3782 3783 3784
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3785
		unsigned int alloc_flags, const struct alloc_context *ac,
3786
		unsigned long *did_some_progress)
3787 3788 3789 3790
{
	struct page *page = NULL;
	bool drained = false;

3791
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3792 3793
	if (unlikely(!(*did_some_progress)))
		return NULL;
3794

3795
retry:
3796
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3797 3798 3799

	/*
	 * If an allocation failed after direct reclaim, it could be because
3800 3801
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3802 3803
	 */
	if (!page && !drained) {
3804
		unreserve_highatomic_pageblock(ac, false);
3805
		drain_all_pages(NULL);
3806 3807 3808 3809
		drained = true;
		goto retry;
	}

3810 3811 3812
	return page;
}

3813 3814
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3815 3816 3817
{
	struct zoneref *z;
	struct zone *zone;
3818
	pg_data_t *last_pgdat = NULL;
3819
	enum zone_type high_zoneidx = ac->high_zoneidx;
3820

3821 3822
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3823
		if (last_pgdat != zone->zone_pgdat)
3824
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3825 3826
		last_pgdat = zone->zone_pgdat;
	}
3827 3828
}

3829
static inline unsigned int
3830 3831
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3832
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3833

3834
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3835
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3836

3837 3838 3839 3840
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3841
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3842
	 */
3843
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3844

3845
	if (gfp_mask & __GFP_ATOMIC) {
3846
		/*
3847 3848
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3849
		 */
3850
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3851
			alloc_flags |= ALLOC_HARDER;
3852
		/*
3853
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3854
		 * comment for __cpuset_node_allowed().
3855
		 */
3856
		alloc_flags &= ~ALLOC_CPUSET;
3857
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3858 3859
		alloc_flags |= ALLOC_HARDER;

3860 3861 3862 3863
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3864 3865 3866
	return alloc_flags;
}

3867
static bool oom_reserves_allowed(struct task_struct *tsk)
3868
{
3869 3870 3871 3872 3873 3874 3875 3876
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3877 3878
		return false;

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3890
	if (gfp_mask & __GFP_MEMALLOC)
3891
		return ALLOC_NO_WATERMARKS;
3892
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3893 3894 3895 3896 3897 3898 3899
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3900

3901 3902 3903 3904 3905 3906
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3907 3908
}

M
Michal Hocko 已提交
3909 3910 3911
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3912 3913 3914 3915
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3916 3917 3918 3919 3920 3921
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3922
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3923 3924 3925 3926
{
	struct zone *zone;
	struct zoneref *z;

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3937 3938 3939 3940
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3941 3942
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3943
		return unreserve_highatomic_pageblock(ac, true);
3944
	}
M
Michal Hocko 已提交
3945

3946 3947 3948 3949 3950
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3951 3952 3953 3954
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3955
		unsigned long reclaimable;
3956 3957
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3958

3959 3960
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3961 3962

		/*
3963 3964
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3965
		 */
3966 3967 3968 3969 3970
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3971 3972 3973 3974 3975 3976 3977
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3978
				unsigned long write_pending;
3979

3980 3981
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3982

3983
				if (2 * write_pending > reclaimable) {
3984 3985 3986 3987
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3988

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4003 4004 4005 4006 4007 4008 4009
			return true;
		}
	}

	return false;
}

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4043 4044
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4045
						struct alloc_context *ac)
4046
{
4047
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4048
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4049
	struct page *page = NULL;
4050
	unsigned int alloc_flags;
4051
	unsigned long did_some_progress;
4052
	enum compact_priority compact_priority;
4053
	enum compact_result compact_result;
4054 4055 4056
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4057
	int reserve_flags;
L
Linus Torvalds 已提交
4058

4059 4060 4061 4062 4063 4064
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
4065 4066
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4067
		return NULL;
4068
	}
L
Linus Torvalds 已提交
4069

4070 4071 4072 4073 4074 4075 4076 4077
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4078 4079 4080 4081 4082
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4083 4084 4085 4086 4087 4088 4089 4090

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4102
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4103
		wake_all_kswapds(order, gfp_mask, ac);
4104 4105 4106 4107 4108 4109 4110 4111 4112

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4113 4114
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4115 4116 4117 4118 4119 4120
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4121
	 */
4122 4123 4124 4125
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4126 4127
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4128
						INIT_COMPACT_PRIORITY,
4129 4130 4131 4132
						&compact_result);
		if (page)
			goto got_pg;

4133 4134 4135 4136
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4137
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4150 4151
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4152
			 * using async compaction.
4153
			 */
4154
			compact_priority = INIT_COMPACT_PRIORITY;
4155 4156
		}
	}
4157

4158
retry:
4159
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4160
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4161
		wake_all_kswapds(order, gfp_mask, ac);
4162

4163 4164 4165
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4166

4167
	/*
4168 4169 4170
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4171
	 */
4172
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4173
		ac->nodemask = NULL;
4174 4175 4176 4177
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4178
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4179
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4180 4181
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4182

4183
	/* Caller is not willing to reclaim, we can't balance anything */
4184
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4185 4186
		goto nopage;

4187 4188
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4189 4190
		goto nopage;

4191 4192 4193 4194 4195 4196 4197
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4198
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4199
					compact_priority, &compact_result);
4200 4201
	if (page)
		goto got_pg;
4202

4203 4204
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4205
		goto nopage;
4206

M
Michal Hocko 已提交
4207 4208
	/*
	 * Do not retry costly high order allocations unless they are
4209
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4210
	 */
4211
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4212
		goto nopage;
M
Michal Hocko 已提交
4213 4214

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4215
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4216 4217
		goto retry;

4218 4219 4220 4221 4222 4223 4224
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4225
			should_compact_retry(ac, order, alloc_flags,
4226
				compact_result, &compact_priority,
4227
				&compaction_retries))
4228 4229
		goto retry;

4230 4231 4232

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4233 4234
		goto retry_cpuset;

4235 4236 4237 4238 4239
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4240
	/* Avoid allocations with no watermarks from looping endlessly */
4241 4242
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4243
	     (gfp_mask & __GFP_NOMEMALLOC)))
4244 4245
		goto nopage;

4246
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4247 4248
	if (did_some_progress) {
		no_progress_loops = 0;
4249
		goto retry;
M
Michal Hocko 已提交
4250
	}
4251

L
Linus Torvalds 已提交
4252
nopage:
4253 4254
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4255 4256
		goto retry_cpuset;

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4294 4295 4296 4297
		cond_resched();
		goto retry;
	}
fail:
4298
	warn_alloc(gfp_mask, ac->nodemask,
4299
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4300
got_pg:
4301
	return page;
L
Linus Torvalds 已提交
4302
}
4303

4304
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4305
		int preferred_nid, nodemask_t *nodemask,
4306 4307
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4308
{
4309
	ac->high_zoneidx = gfp_zone(gfp_mask);
4310
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4311 4312
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4313

4314
	if (cpusets_enabled()) {
4315 4316 4317
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4318 4319
		else
			*alloc_flags |= ALLOC_CPUSET;
4320 4321
	}

4322 4323
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4324

4325
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4326 4327

	if (should_fail_alloc_page(gfp_mask, order))
4328
		return false;
4329

4330 4331 4332
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4333 4334
	return true;
}
4335

4336
/* Determine whether to spread dirty pages and what the first usable zone */
4337
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4338
{
4339
	/* Dirty zone balancing only done in the fast path */
4340
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4341

4342 4343 4344 4345 4346
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4347 4348 4349 4350 4351 4352 4353 4354
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4355 4356
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4357 4358 4359
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4360
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4361 4362 4363
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4364
	alloc_mask = gfp_mask;
4365
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4366 4367
		return NULL;

4368
	finalise_ac(gfp_mask, &ac);
4369

4370
	/* First allocation attempt */
4371
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4372 4373
	if (likely(page))
		goto out;
4374

4375
	/*
4376 4377 4378 4379
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4380
	 */
4381
	alloc_mask = current_gfp_context(gfp_mask);
4382
	ac.spread_dirty_pages = false;
4383

4384 4385 4386 4387
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4388
	if (unlikely(ac.nodemask != nodemask))
4389
		ac.nodemask = nodemask;
4390

4391
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4392

4393
out:
4394 4395 4396 4397
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4398 4399
	}

4400 4401
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4402
	return page;
L
Linus Torvalds 已提交
4403
}
4404
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4405 4406

/*
4407 4408 4409
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4410
 */
H
Harvey Harrison 已提交
4411
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4412
{
4413 4414
	struct page *page;

4415
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420 4421
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4422
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4423
{
4424
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4425 4426 4427
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4428
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4429
{
N
Nick Piggin 已提交
4430
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4431
		if (order == 0)
4432
			free_unref_page(page);
L
Linus Torvalds 已提交
4433 4434 4435 4436 4437 4438 4439
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4440
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4441 4442
{
	if (addr != 0) {
N
Nick Piggin 已提交
4443
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4461 4462
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4482
void __page_frag_cache_drain(struct page *page, unsigned int count)
4483 4484 4485 4486
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4487 4488
		unsigned int order = compound_order(page);

4489
		if (order == 0)
4490
			free_unref_page(page);
4491 4492 4493 4494
		else
			__free_pages_ok(page, order);
	}
}
4495
EXPORT_SYMBOL(__page_frag_cache_drain);
4496

4497 4498
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4499 4500 4501 4502 4503 4504 4505
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4506
		page = __page_frag_cache_refill(nc, gfp_mask);
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4517
		page_ref_add(page, size - 1);
4518 4519

		/* reset page count bias and offset to start of new frag */
4520
		nc->pfmemalloc = page_is_pfmemalloc(page);
4521 4522 4523 4524 4525 4526 4527 4528
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4529
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4530 4531 4532 4533 4534 4535 4536
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4537
		set_page_count(page, size);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4549
EXPORT_SYMBOL(page_frag_alloc);
4550 4551 4552 4553

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4554
void page_frag_free(void *addr)
4555 4556 4557 4558 4559 4560
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4561
EXPORT_SYMBOL(page_frag_free);
4562

4563 4564
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4598
	return make_alloc_exact(addr, order, size);
4599 4600 4601
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4602 4603 4604
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4605
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4606 4607 4608 4609 4610 4611
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4612
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4613
{
4614
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4615 4616 4617 4618 4619 4620
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4640 4641 4642 4643 4644 4645 4646
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4647 4648
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4649
 */
4650
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4651
{
4652
	struct zoneref *z;
4653 4654
	struct zone *zone;

4655
	/* Just pick one node, since fallback list is circular */
4656
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4657

4658
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4659

4660
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4661
		unsigned long size = zone->managed_pages;
4662
		unsigned long high = high_wmark_pages(zone);
4663 4664
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669
	}

	return sum;
}

4670 4671 4672 4673 4674
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4675
 */
4676
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4677
{
A
Al Viro 已提交
4678
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4679
}
4680
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4681

4682 4683 4684 4685 4686
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4687
 */
4688
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4689
{
M
Mel Gorman 已提交
4690
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4691
}
4692 4693

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4694
{
4695
	if (IS_ENABLED(CONFIG_NUMA))
4696
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4697 4698
}

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4709
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4710 4711 4712 4713 4714 4715 4716 4717

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4718
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4733 4734 4735
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4736

4737 4738 4739 4740 4741 4742 4743
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

4744 4745 4746 4747 4748 4749
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4750 4751 4752
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4753
	val->sharedram = global_node_page_state(NR_SHMEM);
4754
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4766 4767
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4768 4769
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4770 4771
	pg_data_t *pgdat = NODE_DATA(nid);

4772 4773 4774
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4775
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4776
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4777
#ifdef CONFIG_HIGHMEM
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4788
#else
4789 4790
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4791
#endif
L
Linus Torvalds 已提交
4792 4793 4794 4795
	val->mem_unit = PAGE_SIZE;
}
#endif

4796
/*
4797 4798
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4799
 */
4800
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4801 4802
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4803
		return false;
4804

4805 4806 4807 4808 4809 4810 4811 4812 4813
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4814 4815
}

L
Linus Torvalds 已提交
4816 4817
#define K(x) ((x) << (PAGE_SHIFT-10))

4818 4819 4820 4821 4822
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4823 4824
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4825 4826 4827
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4828
#ifdef CONFIG_MEMORY_ISOLATION
4829
		[MIGRATE_ISOLATE]	= 'I',
4830
#endif
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4842
	printk(KERN_CONT "(%s) ", tmp);
4843 4844
}

L
Linus Torvalds 已提交
4845 4846 4847 4848
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4849 4850 4851 4852
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4853
 */
4854
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4855
{
4856
	unsigned long free_pcp = 0;
4857
	int cpu;
L
Linus Torvalds 已提交
4858
	struct zone *zone;
M
Mel Gorman 已提交
4859
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4860

4861
	for_each_populated_zone(zone) {
4862
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4863
			continue;
4864

4865 4866
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4867 4868
	}

K
KOSAKI Motohiro 已提交
4869 4870
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4871 4872
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4873
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4874
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4875 4876 4877 4878 4879 4880 4881
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4882 4883 4884
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4885 4886
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4887
		global_node_page_state(NR_FILE_MAPPED),
4888
		global_node_page_state(NR_SHMEM),
4889 4890 4891
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4892
		free_pcp,
4893
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4894

M
Mel Gorman 已提交
4895
	for_each_online_pgdat(pgdat) {
4896
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4897 4898
			continue;

M
Mel Gorman 已提交
4899 4900 4901 4902 4903 4904 4905 4906
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4907
			" mapped:%lukB"
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4928
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4929 4930
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4931
			K(node_page_state(pgdat, NR_SHMEM)),
4932 4933 4934 4935 4936 4937 4938 4939
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4940 4941
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4942 4943
	}

4944
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4945 4946
		int i;

4947
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4948
			continue;
4949 4950 4951 4952 4953

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4954
		show_node(zone);
4955 4956
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4957 4958 4959 4960
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4961 4962 4963 4964 4965
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4966
			" writepending:%lukB"
L
Linus Torvalds 已提交
4967
			" present:%lukB"
4968
			" managed:%lukB"
4969
			" mlocked:%lukB"
4970
			" kernel_stack:%lukB"
4971 4972
			" pagetables:%lukB"
			" bounce:%lukB"
4973 4974
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4975
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4976 4977
			"\n",
			zone->name,
4978
			K(zone_page_state(zone, NR_FREE_PAGES)),
4979 4980 4981
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4982 4983 4984 4985 4986
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4987
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4988
			K(zone->present_pages),
4989
			K(zone->managed_pages),
4990
			K(zone_page_state(zone, NR_MLOCK)),
4991
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4992 4993
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4994 4995
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4996
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4997 4998
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4999 5000
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5001 5002
	}

5003
	for_each_populated_zone(zone) {
5004 5005
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5006
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5007

5008
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5009
			continue;
L
Linus Torvalds 已提交
5010
		show_node(zone);
5011
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5012 5013 5014

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5015 5016 5017 5018
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5019
			total += nr[order] << order;
5020 5021 5022 5023 5024 5025

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5026 5027
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5028
		for (order = 0; order < MAX_ORDER; order++) {
5029 5030
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5031 5032 5033
			if (nr[order])
				show_migration_types(types[order]);
		}
5034
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5035 5036
	}

5037 5038
	hugetlb_show_meminfo();

5039
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5040

L
Linus Torvalds 已提交
5041 5042 5043
	show_swap_cache_info();
}

5044 5045 5046 5047 5048 5049
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5050 5051
/*
 * Builds allocation fallback zone lists.
5052 5053
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5054
 */
5055
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5056
{
5057
	struct zone *zone;
5058
	enum zone_type zone_type = MAX_NR_ZONES;
5059
	int nr_zones = 0;
5060 5061

	do {
5062
		zone_type--;
5063
		zone = pgdat->node_zones + zone_type;
5064
		if (managed_zone(zone)) {
5065
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5066
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5067
		}
5068
	} while (zone_type);
5069

5070
	return nr_zones;
L
Linus Torvalds 已提交
5071 5072 5073
}

#ifdef CONFIG_NUMA
5074 5075 5076

static int __parse_numa_zonelist_order(char *s)
{
5077 5078 5079 5080 5081 5082 5083 5084
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5085 5086 5087 5088 5089 5090 5091
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5092 5093 5094
	if (!s)
		return 0;

5095
	return __parse_numa_zonelist_order(s);
5096 5097 5098
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5099 5100
char numa_zonelist_order[] = "Node";

5101 5102 5103
/*
 * sysctl handler for numa_zonelist_order
 */
5104
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5105
		void __user *buffer, size_t *length,
5106 5107
		loff_t *ppos)
{
5108
	char *str;
5109 5110
	int ret;

5111 5112 5113 5114 5115
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5116

5117 5118
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5119
	return ret;
5120 5121 5122
}


5123
#define MAX_NODE_LOAD (nr_online_nodes)
5124 5125
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5126
/**
5127
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5140
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5141
{
5142
	int n, val;
L
Linus Torvalds 已提交
5143
	int min_val = INT_MAX;
D
David Rientjes 已提交
5144
	int best_node = NUMA_NO_NODE;
5145
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5146

5147 5148 5149 5150 5151
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5152

5153
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158 5159 5160 5161

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5162 5163 5164
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5165
		/* Give preference to headless and unused nodes */
5166 5167
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5186 5187 5188 5189 5190 5191

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5192 5193
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5194
{
5195 5196 5197 5198 5199 5200 5201 5202 5203
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5204

5205 5206 5207 5208 5209
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5210 5211
}

5212 5213 5214 5215 5216
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5217 5218
	struct zoneref *zonerefs;
	int nr_zones;
5219

5220 5221 5222 5223 5224
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5225 5226
}

5227 5228 5229 5230 5231 5232 5233 5234 5235
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5236 5237
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5238
	nodemask_t used_mask;
5239
	int local_node, prev_node;
L
Linus Torvalds 已提交
5240 5241 5242

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5243
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5244 5245
	prev_node = local_node;
	nodes_clear(used_mask);
5246 5247

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5248 5249 5250 5251 5252 5253
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5254 5255
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5256 5257
			node_load[node] = load;

5258
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5259 5260 5261
		prev_node = node;
		load--;
	}
5262

5263
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5264
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5265 5266
}

5267 5268 5269 5270 5271 5272 5273 5274 5275
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5276
	struct zoneref *z;
5277

5278
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5279
				   gfp_zone(GFP_KERNEL),
5280 5281
				   NULL);
	return z->zone->node;
5282 5283
}
#endif
5284

5285 5286
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5287 5288
#else	/* CONFIG_NUMA */

5289
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5290
{
5291
	int node, local_node;
5292 5293
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5294 5295 5296

	local_node = pgdat->node_id;

5297 5298 5299
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5300

5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5312 5313
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5314
	}
5315 5316 5317
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5318 5319
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5320 5321
	}

5322 5323
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5324 5325 5326 5327
}

#endif	/* CONFIG_NUMA */

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5345
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5346

5347
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5348
{
5349
	int nid;
5350
	int __maybe_unused cpu;
5351
	pg_data_t *self = data;
5352 5353 5354
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5355

5356 5357 5358
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5359

5360 5361 5362 5363
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5364 5365
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5366 5367 5368
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5369

5370 5371
			build_zonelists(pgdat);
		}
5372

5373 5374 5375 5376 5377 5378 5379 5380 5381
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5382
		for_each_online_cpu(cpu)
5383
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5384
#endif
5385
	}
5386 5387

	spin_unlock(&lock);
5388 5389
}

5390 5391 5392
static noinline void __init
build_all_zonelists_init(void)
{
5393 5394
	int cpu;

5395
	__build_all_zonelists(NULL);
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5413 5414 5415 5416
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5417 5418
/*
 * unless system_state == SYSTEM_BOOTING.
5419
 *
5420
 * __ref due to call of __init annotated helper build_all_zonelists_init
5421
 * [protected by SYSTEM_BOOTING].
5422
 */
5423
void __ref build_all_zonelists(pg_data_t *pgdat)
5424 5425
{
	if (system_state == SYSTEM_BOOTING) {
5426
		build_all_zonelists_init();
5427
	} else {
5428
		__build_all_zonelists(pgdat);
5429 5430
		/* cpuset refresh routine should be here */
	}
5431
	vm_total_pages = nr_free_pagecache_pages();
5432 5433 5434 5435 5436 5437 5438
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5439
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5440 5441 5442 5443
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5444
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5445 5446 5447
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5448
#ifdef CONFIG_NUMA
5449
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5450
#endif
L
Linus Torvalds 已提交
5451 5452 5453 5454 5455 5456 5457
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5458
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5459 5460
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5461
{
A
Andy Whitcroft 已提交
5462
	unsigned long end_pfn = start_pfn + size;
5463
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5464
	unsigned long pfn;
5465
	unsigned long nr_initialised = 0;
5466
	struct page *page;
5467 5468 5469
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5470

5471 5472 5473
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5474 5475 5476 5477 5478 5479 5480
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5481
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5482
		/*
5483 5484
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5485
		 */
5486 5487 5488
		if (context != MEMMAP_EARLY)
			goto not_early;

5489
		if (!early_pfn_valid(pfn))
5490 5491 5492 5493 5494
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5495 5496

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5514
			}
D
Dave Hansen 已提交
5515
		}
5516
#endif
5517

5518
not_early:
5519 5520 5521 5522 5523
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5524 5525 5526 5527 5528
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5529
		 * kernel allocations are made.
5530 5531 5532 5533 5534
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5535 5536 5537
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5538 5539 5540
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5541
			cond_resched();
5542
		}
L
Linus Torvalds 已提交
5543 5544 5545
	}
}

5546
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5547
{
5548
	unsigned int order, t;
5549 5550
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5551 5552 5553 5554 5555 5556
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5557
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5558 5559
#endif

5560
static int zone_batchsize(struct zone *zone)
5561
{
5562
#ifdef CONFIG_MMU
5563 5564 5565 5566
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5567
	 * size of the zone.  But no more than 1/2 of a meg.
5568 5569 5570
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5571
	batch = zone->managed_pages / 1024;
5572 5573
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5574 5575 5576 5577 5578
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5579 5580 5581
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5582
	 *
5583 5584 5585 5586
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5587
	 */
5588
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5589

5590
	return batch;
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5608 5609
}

5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5637
/* a companion to pageset_set_high() */
5638 5639
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5640
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5641 5642
}

5643
static void pageset_init(struct per_cpu_pageset *p)
5644 5645
{
	struct per_cpu_pages *pcp;
5646
	int migratetype;
5647

5648 5649
	memset(p, 0, sizeof(*p));

5650
	pcp = &p->pcp;
5651
	pcp->count = 0;
5652 5653
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5654 5655
}

5656 5657 5658 5659 5660 5661
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5662
/*
5663
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5664 5665
 * to the value high for the pageset p.
 */
5666
static void pageset_set_high(struct per_cpu_pageset *p,
5667 5668
				unsigned long high)
{
5669 5670 5671
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5672

5673
	pageset_update(&p->pcp, high, batch);
5674 5675
}

5676 5677
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5678 5679
{
	if (percpu_pagelist_fraction)
5680
		pageset_set_high(pcp,
5681 5682 5683 5684 5685 5686
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5687 5688 5689 5690 5691 5692 5693 5694
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5695
void __meminit setup_zone_pageset(struct zone *zone)
5696 5697 5698
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5699 5700
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5701 5702
}

5703
/*
5704 5705
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5706
 */
5707
void __init setup_per_cpu_pageset(void)
5708
{
5709
	struct pglist_data *pgdat;
5710
	struct zone *zone;
5711

5712 5713
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5714 5715 5716 5717

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5718 5719
}

5720
static __meminit void zone_pcp_init(struct zone *zone)
5721
{
5722 5723 5724 5725 5726 5727
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5728

5729
	if (populated_zone(zone))
5730 5731 5732
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5733 5734
}

5735
void __meminit init_currently_empty_zone(struct zone *zone,
5736
					unsigned long zone_start_pfn,
5737
					unsigned long size)
5738 5739
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5740

5741 5742 5743 5744
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5745 5746 5747 5748 5749 5750
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5751
	zone_init_free_lists(zone);
5752
	zone->initialized = 1;
5753 5754
}

T
Tejun Heo 已提交
5755
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5756
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5757

5758 5759 5760
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5761 5762
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5763
{
5764
	unsigned long start_pfn, end_pfn;
5765
	int nid;
5766

5767 5768
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5769

5770 5771
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5772 5773 5774
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5775 5776 5777
	}

	return nid;
5778 5779 5780 5781
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5782
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5783
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5784
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5785
 *
5786 5787 5788
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5789
 */
5790
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5791
{
5792 5793
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5794

5795 5796 5797
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5798

5799
		if (start_pfn < end_pfn)
5800 5801 5802
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5803 5804 5805
	}
}

5806 5807
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5808
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5809
 *
5810 5811
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5812 5813 5814
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5815 5816
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5817

5818 5819
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5820 5821 5822 5823
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5824 5825 5826
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5827 5828
 *
 * It returns the start and end page frame of a node based on information
5829
 * provided by memblock_set_node(). If called for a node
5830
 * with no available memory, a warning is printed and the start and end
5831
 * PFNs will be 0.
5832
 */
5833
void __meminit get_pfn_range_for_nid(unsigned int nid,
5834 5835
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5836
	unsigned long this_start_pfn, this_end_pfn;
5837
	int i;
5838

5839 5840 5841
	*start_pfn = -1UL;
	*end_pfn = 0;

5842 5843 5844
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5845 5846
	}

5847
	if (*start_pfn == -1UL)
5848 5849 5850
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5851 5852 5853 5854 5855
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5856
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5874
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5875 5876 5877 5878 5879 5880 5881
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5882
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5897 5898 5899 5900 5901 5902
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5903 5904 5905 5906 5907 5908
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5909 5910 5911 5912
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5913
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5914
					unsigned long zone_type,
5915 5916
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5917 5918
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5919 5920
					unsigned long *ignored)
{
5921
	/* When hotadd a new node from cpu_up(), the node should be empty */
5922 5923 5924
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5925
	/* Get the start and end of the zone */
5926 5927
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5928 5929
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5930
				zone_start_pfn, zone_end_pfn);
5931 5932

	/* Check that this node has pages within the zone's required range */
5933
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5934 5935 5936
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5937 5938
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5939 5940

	/* Return the spanned pages */
5941
	return *zone_end_pfn - *zone_start_pfn;
5942 5943 5944 5945
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5946
 * then all holes in the requested range will be accounted for.
5947
 */
5948
unsigned long __meminit __absent_pages_in_range(int nid,
5949 5950 5951
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5952 5953 5954
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5955

5956 5957 5958 5959
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5960
	}
5961
	return nr_absent;
5962 5963 5964 5965 5966 5967 5968
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5969
 * It returns the number of pages frames in memory holes within a range.
5970 5971 5972 5973 5974 5975 5976 5977
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5978
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5979
					unsigned long zone_type,
5980 5981
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5982 5983
					unsigned long *ignored)
{
5984 5985
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5986
	unsigned long zone_start_pfn, zone_end_pfn;
5987
	unsigned long nr_absent;
5988

5989
	/* When hotadd a new node from cpu_up(), the node should be empty */
5990 5991 5992
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5993 5994
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5995

M
Mel Gorman 已提交
5996 5997 5998
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5999 6000 6001 6002 6003 6004 6005
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6023 6024 6025 6026
		}
	}

	return nr_absent;
6027
}
6028

T
Tejun Heo 已提交
6029
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6030
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6031
					unsigned long zone_type,
6032 6033
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6034 6035
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6036 6037
					unsigned long *zones_size)
{
6038 6039 6040 6041 6042 6043 6044 6045
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6046 6047 6048
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6049
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6050
						unsigned long zone_type,
6051 6052
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6053 6054 6055 6056 6057 6058 6059
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6060

T
Tejun Heo 已提交
6061
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6062

6063
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6064 6065 6066 6067
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6068
{
6069
	unsigned long realtotalpages = 0, totalpages = 0;
6070 6071
	enum zone_type i;

6072 6073
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6074
		unsigned long zone_start_pfn, zone_end_pfn;
6075
		unsigned long size, real_size;
6076

6077 6078 6079
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6080 6081
						  &zone_start_pfn,
						  &zone_end_pfn,
6082 6083
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6084 6085
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6086 6087 6088 6089
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6090 6091 6092 6093 6094 6095 6096 6097
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6098 6099 6100 6101 6102
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6103 6104 6105
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6106 6107
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6108 6109 6110
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6111
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6112 6113 6114
{
	unsigned long usemapsize;

6115
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6116 6117
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6118 6119 6120 6121 6122 6123 6124
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
6125 6126 6127
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6128
{
6129
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6130
	zone->pageblock_flags = NULL;
6131
	if (usemapsize)
6132 6133 6134
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6135 6136
}
#else
6137 6138
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6139 6140
#endif /* CONFIG_SPARSEMEM */

6141
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6142

6143
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6144
void __paginginit set_pageblock_order(void)
6145
{
6146 6147
	unsigned int order;

6148 6149 6150 6151
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6152 6153 6154 6155 6156
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6157 6158
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6159 6160
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6161 6162 6163 6164 6165
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6166 6167
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6168 6169 6170
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6171
 */
6172
void __paginginit set_pageblock_order(void)
6173 6174
{
}
6175 6176 6177

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6188
	 * populated regions may not be naturally aligned on page boundary.
6189 6190 6191 6192 6193 6194 6195 6196 6197
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6198 6199 6200 6201 6202
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6203 6204
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6205
 */
6206
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6207
{
6208
	enum zone_type j;
6209
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6210

6211
	pgdat_resize_init(pgdat);
6212 6213 6214 6215
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6216 6217 6218 6219 6220
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6221
#endif
L
Linus Torvalds 已提交
6222
	init_waitqueue_head(&pgdat->kswapd_wait);
6223
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6224 6225 6226
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6227
	pgdat_page_ext_init(pgdat);
6228
	spin_lock_init(&pgdat->lru_lock);
6229
	lruvec_init(node_lruvec(pgdat));
6230

6231 6232
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6233 6234
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6235
		unsigned long size, freesize, memmap_pages;
6236
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6237

6238
		size = zone->spanned_pages;
6239
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6240

6241
		/*
6242
		 * Adjust freesize so that it accounts for how much memory
6243 6244 6245
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6246
		memmap_pages = calc_memmap_size(size, freesize);
6247 6248 6249 6250 6251 6252 6253 6254
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6255
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6256 6257
					zone_names[j], memmap_pages, freesize);
		}
6258

6259
		/* Account for reserved pages */
6260 6261
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6262
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6263
					zone_names[0], dma_reserve);
6264 6265
		}

6266
		if (!is_highmem_idx(j))
6267
			nr_kernel_pages += freesize;
6268 6269 6270
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6271
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6272

6273 6274 6275 6276 6277
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6278
		zone->managed_pages = freesize;
6279
#ifdef CONFIG_NUMA
6280
		zone->node = nid;
6281
#endif
L
Linus Torvalds 已提交
6282
		zone->name = zone_names[j];
6283
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6284
		spin_lock_init(&zone->lock);
6285
		zone_seqlock_init(zone);
6286
		zone_pcp_init(zone);
6287

6288
		if (!size)
L
Linus Torvalds 已提交
6289 6290
			continue;

6291
		set_pageblock_order();
6292 6293
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6294
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6295 6296 6297
	}
}

6298
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6299
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6300
{
6301
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6302 6303
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6304 6305 6306 6307
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6308 6309
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6310 6311
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6312
		unsigned long size, end;
A
Andy Whitcroft 已提交
6313 6314
		struct page *map;

6315 6316 6317 6318 6319
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6320
		end = pgdat_end_pfn(pgdat);
6321 6322
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6323
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6324
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6325
	}
6326 6327 6328
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6329
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6330 6331 6332
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6333
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6334
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6335
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6336
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6337
			mem_map -= offset;
T
Tejun Heo 已提交
6338
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6339
	}
L
Linus Torvalds 已提交
6340 6341
#endif
}
6342 6343 6344
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6345

6346 6347
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6348
{
6349
	pg_data_t *pgdat = NODE_DATA(nid);
6350 6351
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6352

6353
	/* pg_data_t should be reset to zero when it's allocated */
6354
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6355

L
Linus Torvalds 已提交
6356 6357
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6358
	pgdat->per_cpu_nodestats = NULL;
6359 6360
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6361
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6362 6363
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6364 6365
#else
	start_pfn = node_start_pfn;
6366 6367 6368
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6369 6370 6371

	alloc_node_mem_map(pgdat);

6372 6373 6374 6375 6376 6377 6378 6379 6380
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
					 pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
#endif
6381
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6382 6383
}

6384
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6405 6406 6407
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
				pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
					+ pageblock_nr_pages - 1;
6408
				continue;
6409
			}
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
6425
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6426

T
Tejun Heo 已提交
6427
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6428 6429 6430 6431 6432

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6433
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6434
{
6435
	unsigned int highest;
M
Miklos Szeredi 已提交
6436

6437
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6438 6439 6440 6441
	nr_node_ids = highest + 1;
}
#endif

6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6464
	unsigned long start, end, mask;
6465
	int last_nid = -1;
6466
	int i, nid;
6467

6468
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6492
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6493
static unsigned long __init find_min_pfn_for_node(int nid)
6494
{
6495
	unsigned long min_pfn = ULONG_MAX;
6496 6497
	unsigned long start_pfn;
	int i;
6498

6499 6500
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6501

6502
	if (min_pfn == ULONG_MAX) {
6503
		pr_warn("Could not find start_pfn for node %d\n", nid);
6504 6505 6506 6507
		return 0;
	}

	return min_pfn;
6508 6509 6510 6511 6512 6513
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6514
 * memblock_set_node().
6515 6516 6517 6518 6519 6520
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6521 6522 6523
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6524
 * Populate N_MEMORY for calculating usable_nodes.
6525
 */
A
Adrian Bunk 已提交
6526
static unsigned long __init early_calculate_totalpages(void)
6527 6528
{
	unsigned long totalpages = 0;
6529 6530 6531 6532 6533
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6534

6535 6536
		totalpages += pages;
		if (pages)
6537
			node_set_state(nid, N_MEMORY);
6538
	}
6539
	return totalpages;
6540 6541
}

M
Mel Gorman 已提交
6542 6543 6544 6545 6546 6547
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6548
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6549 6550 6551 6552
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6553
	/* save the state before borrow the nodemask */
6554
	nodemask_t saved_node_state = node_states[N_MEMORY];
6555
	unsigned long totalpages = early_calculate_totalpages();
6556
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6557
	struct memblock_region *r;
6558 6559 6560 6561 6562 6563 6564 6565 6566

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6567 6568
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6569 6570
				continue;

E
Emil Medve 已提交
6571
			nid = r->nid;
6572

E
Emil Medve 已提交
6573
			usable_startpfn = PFN_DOWN(r->base);
6574 6575 6576 6577 6578 6579 6580
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6581

6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6612
	/*
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6640
		required_movablecore = min(totalpages, required_movablecore);
6641 6642 6643 6644 6645
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6646 6647 6648 6649 6650
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6651
		goto out;
M
Mel Gorman 已提交
6652 6653 6654 6655 6656 6657 6658

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6659
	for_each_node_state(nid, N_MEMORY) {
6660 6661
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6678
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6679 6680
			unsigned long size_pages;

6681
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6724
			 * satisfied
M
Mel Gorman 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6738
	 * satisfied
M
Mel Gorman 已提交
6739 6740 6741 6742 6743
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6744
out2:
M
Mel Gorman 已提交
6745 6746 6747 6748
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6749

6750
out:
6751
	/* restore the node_state */
6752
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6753 6754
}

6755 6756
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6757 6758 6759
{
	enum zone_type zone_type;

6760 6761 6762 6763
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6764
		struct zone *zone = &pgdat->node_zones[zone_type];
6765
		if (populated_zone(zone)) {
6766 6767 6768 6769
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6770 6771
			break;
		}
6772 6773 6774
	}
}

6775 6776
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6777
 * @max_zone_pfn: an array of max PFNs for each zone
6778 6779
 *
 * This will call free_area_init_node() for each active node in the system.
6780
 * Using the page ranges provided by memblock_set_node(), the size of each
6781 6782 6783 6784 6785 6786 6787 6788 6789
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6790 6791
	unsigned long start_pfn, end_pfn;
	int i, nid;
6792

6793 6794 6795 6796 6797
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6798 6799 6800 6801

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6802 6803
		if (i == ZONE_MOVABLE)
			continue;
6804 6805 6806 6807 6808 6809

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6810
	}
M
Mel Gorman 已提交
6811 6812 6813

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6814
	find_zone_movable_pfns_for_nodes();
6815 6816

	/* Print out the zone ranges */
6817
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6818 6819 6820
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6821
		pr_info("  %-8s ", zone_names[i]);
6822 6823
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6824
			pr_cont("empty\n");
6825
		else
6826 6827 6828 6829
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6830
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6831 6832 6833
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6834
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6835 6836
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6837 6838
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6839
	}
6840

6841
	/* Print out the early node map */
6842
	pr_info("Early memory node ranges\n");
6843
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6844 6845 6846
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6847 6848

	/* Initialise every node */
6849
	mminit_verify_pageflags_layout();
6850
	setup_nr_node_ids();
6851
	zero_resv_unavail();
6852 6853
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6854
		free_area_init_node(nid, NULL,
6855
				find_min_pfn_for_node(nid), NULL);
6856 6857 6858

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6859 6860
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6861 6862
	}
}
M
Mel Gorman 已提交
6863

6864 6865
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
6866 6867
{
	unsigned long long coremem;
6868 6869
	char *endptr;

M
Mel Gorman 已提交
6870 6871 6872
	if (!p)
		return -EINVAL;

6873 6874 6875 6876 6877
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
6878

6879 6880 6881 6882 6883
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
6884

6885 6886 6887
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
6888 6889
	return 0;
}
M
Mel Gorman 已提交
6890

6891 6892 6893 6894 6895 6896
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6897 6898 6899 6900 6901 6902
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6903 6904
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
6905 6906 6907 6908 6909 6910 6911 6912
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
6913 6914
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
6915 6916
}

M
Mel Gorman 已提交
6917
early_param("kernelcore", cmdline_parse_kernelcore);
6918
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6919

T
Tejun Heo 已提交
6920
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6921

6922 6923 6924 6925 6926
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6927 6928 6929 6930
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6931 6932
	spin_unlock(&managed_page_count_lock);
}
6933
EXPORT_SYMBOL(adjust_managed_page_count);
6934

6935
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6936
{
6937 6938
	void *pos;
	unsigned long pages = 0;
6939

6940 6941 6942
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
6954
		if ((unsigned int)poison <= 0xFF)
6955 6956 6957
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
6958 6959 6960
	}

	if (pages && s)
6961 6962
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6963 6964 6965

	return pages;
}
6966
EXPORT_SYMBOL(free_reserved_area);
6967

6968 6969 6970 6971 6972
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6973
	page_zone(page)->managed_pages++;
6974 6975 6976 6977
	totalhigh_pages++;
}
#endif

6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7000 7001 7002 7003
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7014
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7015
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7016
		", %luK highmem"
7017
#endif
J
Joe Perches 已提交
7018 7019 7020 7021 7022 7023 7024
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7025
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7026
		totalhigh_pages << (PAGE_SHIFT - 10),
7027
#endif
J
Joe Perches 已提交
7028
		str ? ", " : "", str ? str : "");
7029 7030
}

7031
/**
7032 7033
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7034
 *
7035
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7036 7037
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7038 7039 7040
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7041 7042 7043 7044 7045 7046
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7047 7048
void __init free_area_init(unsigned long *zones_size)
{
7049
	zero_resv_unavail();
7050
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7051 7052 7053
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7054
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7055 7056
{

7057 7058
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7059

7060 7061 7062 7063 7064 7065 7066
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7067

7068 7069 7070 7071 7072 7073 7074 7075 7076
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7077 7078 7079 7080
}

void __init page_alloc_init(void)
{
7081 7082 7083 7084 7085 7086
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7087 7088
}

7089
/*
7090
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7091 7092 7093 7094 7095 7096
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7097
	enum zone_type i, j;
7098 7099

	for_each_online_pgdat(pgdat) {
7100 7101 7102

		pgdat->totalreserve_pages = 0;

7103 7104
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7105
			long max = 0;
7106 7107 7108 7109 7110 7111 7112

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7113 7114
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7115

7116 7117
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7118

7119
			pgdat->totalreserve_pages += max;
7120

7121 7122 7123 7124 7125 7126
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7127 7128
/*
 * setup_per_zone_lowmem_reserve - called whenever
7129
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7130 7131 7132 7133 7134 7135
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7136
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7137

7138
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7139 7140
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7141
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7142 7143 7144

			zone->lowmem_reserve[j] = 0;

7145 7146
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7147 7148
				struct zone *lower_zone;

7149
				idx--;
L
Linus Torvalds 已提交
7150
				lower_zone = pgdat->node_zones + idx;
7151 7152 7153 7154 7155 7156 7157 7158

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7159
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7160 7161 7162
			}
		}
	}
7163 7164 7165

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7166 7167
}

7168
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7169 7170 7171 7172 7173 7174 7175 7176 7177
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7178
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7179 7180 7181
	}

	for_each_zone(zone) {
7182 7183
		u64 tmp;

7184
		spin_lock_irqsave(&zone->lock, flags);
7185
		tmp = (u64)pages_min * zone->managed_pages;
7186
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7187 7188
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7189 7190 7191 7192
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7193
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7194
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7195
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7196
			 */
7197
			unsigned long min_pages;
L
Linus Torvalds 已提交
7198

7199
			min_pages = zone->managed_pages / 1024;
7200
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7201
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7202
		} else {
N
Nick Piggin 已提交
7203 7204
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7205 7206
			 * proportionate to the zone's size.
			 */
7207
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7208 7209
		}

7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7221

7222
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7223
	}
7224 7225 7226

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7227 7228
}

7229 7230 7231 7232 7233 7234 7235 7236 7237
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7238 7239 7240
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7241
	__setup_per_zone_wmarks();
7242
	spin_unlock(&lock);
7243 7244
}

L
Linus Torvalds 已提交
7245 7246 7247 7248 7249 7250 7251
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7252
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7269
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7270 7271
{
	unsigned long lowmem_kbytes;
7272
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7273 7274

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7287
	setup_per_zone_wmarks();
7288
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7289
	setup_per_zone_lowmem_reserve();
7290 7291 7292 7293 7294 7295

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7296 7297
	return 0;
}
7298
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7299 7300

/*
7301
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7302 7303 7304
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7305
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7306
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7307
{
7308 7309 7310 7311 7312 7313
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7314 7315
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7316
		setup_per_zone_wmarks();
7317
	}
L
Linus Torvalds 已提交
7318 7319 7320
	return 0;
}

7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7336
#ifdef CONFIG_NUMA
7337
static void setup_min_unmapped_ratio(void)
7338
{
7339
	pg_data_t *pgdat;
7340 7341
	struct zone *zone;

7342
	for_each_online_pgdat(pgdat)
7343
		pgdat->min_unmapped_pages = 0;
7344

7345
	for_each_zone(zone)
7346
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7347 7348
				sysctl_min_unmapped_ratio) / 100;
}
7349

7350 7351

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7352
	void __user *buffer, size_t *length, loff_t *ppos)
7353 7354 7355
{
	int rc;

7356
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7357 7358 7359
	if (rc)
		return rc;

7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7370 7371 7372
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7373
	for_each_zone(zone)
7374
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7375
				sysctl_min_slab_ratio) / 100;
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7389 7390
	return 0;
}
7391 7392
#endif

L
Linus Torvalds 已提交
7393 7394 7395 7396 7397 7398
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7399
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7400 7401
 * if in function of the boot time zone sizes.
 */
7402
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7403
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7404
{
7405
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7406 7407 7408 7409
	setup_per_zone_lowmem_reserve();
	return 0;
}

7410 7411
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7412 7413
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7414
 */
7415
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7416
	void __user *buffer, size_t *length, loff_t *ppos)
7417 7418
{
	struct zone *zone;
7419
	int old_percpu_pagelist_fraction;
7420 7421
	int ret;

7422 7423 7424
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7425
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7440

7441
	for_each_populated_zone(zone) {
7442 7443
		unsigned int cpu;

7444
		for_each_possible_cpu(cpu)
7445 7446
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7447
	}
7448
out:
7449
	mutex_unlock(&pcp_batch_high_lock);
7450
	return ret;
7451 7452
}

7453
#ifdef CONFIG_NUMA
7454
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7505 7506
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7507
{
7508
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7509 7510
	unsigned long log2qty, size;
	void *table = NULL;
7511
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7512 7513 7514 7515

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7516
		numentries = nr_kernel_pages;
7517
		numentries -= arch_reserved_kernel_pages();
7518 7519 7520 7521

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7522

P
Pavel Tatashin 已提交
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7533 7534 7535 7536 7537
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7538 7539

		/* Make sure we've got at least a 0-order allocation.. */
7540 7541 7542 7543 7544 7545 7546 7547
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7548
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7549
	}
7550
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7551 7552 7553 7554 7555 7556

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7557
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7558

7559 7560
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7561 7562 7563
	if (numentries > max)
		numentries = max;

7564
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7565

7566
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7567 7568
	do {
		size = bucketsize << log2qty;
7569 7570 7571 7572 7573 7574
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7575
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7576
		} else {
7577 7578
			/*
			 * If bucketsize is not a power-of-two, we may free
7579 7580
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7581
			 */
7582
			if (get_order(size) < MAX_ORDER) {
7583 7584
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7585
			}
L
Linus Torvalds 已提交
7586 7587 7588 7589 7590 7591
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7592 7593
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7594 7595 7596 7597 7598 7599 7600 7601

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7602

K
KAMEZAWA Hiroyuki 已提交
7603
/*
7604 7605 7606
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7607
 * PageLRU check without isolation or lru_lock could race so that
7608 7609 7610
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7611
 */
7612
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7613
			 int migratetype,
7614
			 bool skip_hwpoisoned_pages)
7615 7616
{
	unsigned long pfn, iter, found;
7617

7618
	/*
7619 7620 7621 7622 7623
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7624 7625
	 */

7626 7627 7628 7629 7630 7631 7632 7633 7634
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7635 7636 7637 7638
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7639
		if (!pfn_valid_within(check))
7640
			continue;
7641

7642
		page = pfn_to_page(check);
7643

7644
		if (PageReserved(page))
7645
			goto unmovable;
7646

7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7657 7658 7659 7660
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7661
		 * because their page->_refcount is zero at all time.
7662
		 */
7663
		if (!page_ref_count(page)) {
7664 7665 7666 7667
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7668

7669 7670 7671 7672 7673 7674 7675
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7676 7677 7678
		if (__PageMovable(page))
			continue;

7679 7680 7681
		if (!PageLRU(page))
			found++;
		/*
7682 7683 7684
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7695
			goto unmovable;
7696
	}
7697
	return false;
7698 7699 7700
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
7701 7702
}

7703
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7718 7719
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7720 7721
{
	/* This function is based on compact_zone() from compaction.c. */
7722
	unsigned long nr_reclaimed;
7723 7724 7725 7726
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7727
	migrate_prep();
7728

7729
	while (pfn < end || !list_empty(&cc->migratepages)) {
7730 7731 7732 7733 7734
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7735 7736
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7737
			pfn = isolate_migratepages_range(cc, pfn, end);
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7748 7749 7750
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7751

7752
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7753
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7754
	}
7755 7756 7757 7758 7759
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7760 7761 7762 7763 7764 7765
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7766 7767 7768 7769
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7770
 * @gfp_mask:	GFP mask to use during compaction
7771 7772
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7773
 * aligned.  The PFN range must belong to a single zone.
7774
 *
7775 7776 7777
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7778 7779 7780 7781 7782
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7783
int alloc_contig_range(unsigned long start, unsigned long end,
7784
		       unsigned migratetype, gfp_t gfp_mask)
7785 7786
{
	unsigned long outer_start, outer_end;
7787 7788
	unsigned int order;
	int ret = 0;
7789

7790 7791 7792 7793
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7794
		.mode = MIGRATE_SYNC,
7795
		.ignore_skip_hint = true,
7796
		.no_set_skip_hint = true,
7797
		.gfp_mask = current_gfp_context(gfp_mask),
7798 7799 7800
	};
	INIT_LIST_HEAD(&cc.migratepages);

7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7826 7827
				       pfn_max_align_up(end), migratetype,
				       false);
7828
	if (ret)
7829
		return ret;
7830

7831 7832
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7833 7834 7835 7836 7837 7838 7839
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7840
	 */
7841
	ret = __alloc_contig_migrate_range(&cc, start, end);
7842
	if (ret && ret != -EBUSY)
7843
		goto done;
7844
	ret =0;
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7864
	drain_all_pages(cc.zone);
7865 7866 7867 7868 7869

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7870 7871
			outer_start = start;
			break;
7872 7873 7874 7875
		}
		outer_start &= ~0UL << order;
	}

7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7889
	/* Make sure the range is really isolated. */
7890
	if (test_pages_isolated(outer_start, end, false)) {
7891
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7892
			__func__, outer_start, end);
7893 7894 7895 7896
		ret = -EBUSY;
		goto done;
	}

7897
	/* Grab isolated pages from freelists. */
7898
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7912
				pfn_max_align_up(end), migratetype);
7913 7914 7915 7916 7917
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7918 7919 7920 7921 7922 7923 7924 7925 7926
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7927 7928 7929
}
#endif

7930
#ifdef CONFIG_MEMORY_HOTPLUG
7931 7932 7933 7934
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7935 7936
void __meminit zone_pcp_update(struct zone *zone)
{
7937
	unsigned cpu;
7938
	mutex_lock(&pcp_batch_high_lock);
7939
	for_each_possible_cpu(cpu)
7940 7941
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7942
	mutex_unlock(&pcp_batch_high_lock);
7943 7944 7945
}
#endif

7946 7947 7948
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7949 7950
	int cpu;
	struct per_cpu_pageset *pset;
7951 7952 7953 7954

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7955 7956 7957 7958
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7959 7960 7961 7962 7963 7964
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7965
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7966
/*
7967 7968
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7969 7970 7971 7972 7973 7974
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7975
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7976 7977 7978 7979 7980 7981 7982 7983
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7984
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7985 7986 7987 7988 7989 7990 7991 7992 7993
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8004 8005 8006 8007
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8008 8009
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8021 8022 8023 8024 8025 8026

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8027
	unsigned int order;
8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}