page_alloc.c 207.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kmemcheck.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39 40
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
41
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
42 43
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
44
#include <linux/vmstat.h>
45
#include <linux/mempolicy.h>
46
#include <linux/memremap.h>
47
#include <linux/stop_machine.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
L
Linus Torvalds 已提交
68

69
#include <asm/sections.h>
L
Linus Torvalds 已提交
70
#include <asm/tlbflush.h>
71
#include <asm/div64.h>
L
Linus Torvalds 已提交
72 73
#include "internal.h"

74 75
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
76
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
77

78 79 80 81 82
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

83 84 85 86 87 88 89 90 91
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92
int _node_numa_mem_[MAX_NUMNODES];
93 94
#endif

95 96 97 98
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

99
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100
volatile unsigned long latent_entropy __latent_entropy;
101 102 103
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
104
/*
105
 * Array of node states.
L
Linus Torvalds 已提交
106
 */
107 108 109 110 111 112 113
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
114 115 116
#endif
#ifdef CONFIG_MOVABLE_NODE
	[N_MEMORY] = { { [0] = 1UL } },
117 118 119 120 121 122
#endif
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

123 124 125
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

126
unsigned long totalram_pages __read_mostly;
127
unsigned long totalreserve_pages __read_mostly;
128
unsigned long totalcma_pages __read_mostly;
129

130
int percpu_pagelist_fraction;
131
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

151 152 153 154 155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
160 161 162 163

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
164 165
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
166 167 168 169
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
170 171
}

172
void pm_restrict_gfp_mask(void)
173 174
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
175 176
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
177
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178
}
179 180 181

bool pm_suspended_storage(void)
{
182
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 184 185
		return false;
	return true;
}
186 187
#endif /* CONFIG_PM_SLEEP */

188
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189
unsigned int pageblock_order __read_mostly;
190 191
#endif

192
static void __free_pages_ok(struct page *page, unsigned int order);
193

L
Linus Torvalds 已提交
194 195 196 197 198 199
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
200
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
201 202 203
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
204
 */
205
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206
#ifdef CONFIG_ZONE_DMA
207
	 256,
208
#endif
209
#ifdef CONFIG_ZONE_DMA32
210
	 256,
211
#endif
212
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
213
	 32,
214
#endif
M
Mel Gorman 已提交
215
	 32,
216
};
L
Linus Torvalds 已提交
217 218 219

EXPORT_SYMBOL(totalram_pages);

220
static char * const zone_names[MAX_NR_ZONES] = {
221
#ifdef CONFIG_ZONE_DMA
222
	 "DMA",
223
#endif
224
#ifdef CONFIG_ZONE_DMA32
225
	 "DMA32",
226
#endif
227
	 "Normal",
228
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
229
	 "HighMem",
230
#endif
M
Mel Gorman 已提交
231
	 "Movable",
232 233 234
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
235 236
};

237 238 239 240 241 242 243 244 245 246 247 248 249
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

250 251 252 253 254 255
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
256 257 258
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
259 260
};

L
Linus Torvalds 已提交
261
int min_free_kbytes = 1024;
262
int user_min_free_kbytes = -1;
263
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
264

265 266
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
267
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
268

T
Tejun Heo 已提交
269 270 271 272 273 274
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
276 277 278 279 280

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281

M
Miklos Szeredi 已提交
282 283
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
284
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
285
EXPORT_SYMBOL(nr_node_ids);
286
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
287 288
#endif

289 290
int page_group_by_mobility_disabled __read_mostly;

291 292 293 294 295 296 297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
298
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299
{
300 301 302
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 304 305 306 307 308 309 310 311 312 313 314 315
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
316 317
	unsigned long max_initialise;

318 319 320
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
321 322 323 324 325 326
	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));
327 328

	(*nr_initialised)++;
329
	if ((*nr_initialised > max_initialise) &&
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
455

456
void set_pageblock_migratetype(struct page *page, int migratetype)
457
{
458 459
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
460 461
		migratetype = MIGRATE_UNMOVABLE;

462 463 464 465
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
466
#ifdef CONFIG_DEBUG_VM
467
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
468
{
469 470 471
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
472
	unsigned long sp, start_pfn;
473

474 475
	do {
		seq = zone_span_seqbegin(zone);
476 477
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
478
		if (!zone_spans_pfn(zone, pfn))
479 480 481
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

482
	if (ret)
483 484 485
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
486

487
	return ret;
488 489 490 491
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
492
	if (!pfn_valid_within(page_to_pfn(page)))
493
		return 0;
L
Linus Torvalds 已提交
494
	if (zone != page_zone(page))
495 496 497 498 499 500 501 502 503 504
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
static int bad_range(struct zone *zone, struct page *page)
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
505
		return 1;
506 507 508
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
509 510
	return 0;
}
N
Nick Piggin 已提交
511 512 513 514 515 516 517
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
	return 0;
}
#endif

518 519
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
520
{
521 522 523 524 525 526 527 528 529 530 531 532 533 534
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
535
			pr_alert(
536
			      "BUG: Bad page state: %lu messages suppressed\n",
537 538 539 540 541 542 543 544
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

545
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546
		current->comm, page_to_pfn(page));
547 548 549 550 551
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
552
	dump_page_owner(page);
553

554
	print_modules();
L
Linus Torvalds 已提交
555
	dump_stack();
556
out:
557
	/* Leave bad fields for debug, except PageBuddy could make trouble */
558
	page_mapcount_reset(page); /* remove PageBuddy */
559
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
560 561 562 563 564
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
565
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
566
 *
567 568
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
569
 *
570 571
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
572
 *
573
 * The first tail page's ->compound_order holds the order of allocation.
574
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
575
 */
576

577
void free_compound_page(struct page *page)
578
{
579
	__free_pages_ok(page, compound_order(page));
580 581
}

582
void prep_compound_page(struct page *page, unsigned int order)
583 584 585 586
{
	int i;
	int nr_pages = 1 << order;

587
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 589 590 591
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
592
		set_page_count(p, 0);
593
		p->mapping = TAIL_MAPPING;
594
		set_compound_head(p, page);
595
	}
596
	atomic_set(compound_mapcount_ptr(page), -1);
597 598
}

599 600
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
601 602
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603
EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 605
bool _debug_guardpage_enabled __read_mostly;

606 607 608 609
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
610
	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 612 613
}
early_param("debug_pagealloc", early_debug_pagealloc);

614 615
static bool need_debug_guardpage(void)
{
616 617 618 619
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

620 621 622
	if (!debug_guardpage_minorder())
		return false;

623 624 625 626 627
	return true;
}

static void init_debug_guardpage(void)
{
628 629 630
	if (!debug_pagealloc_enabled())
		return;

631 632 633
	if (!debug_guardpage_minorder())
		return;

634 635 636 637 638 639 640
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
641 642 643 644 645 646

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
647
		pr_err("Bad debug_guardpage_minorder value\n");
648 649 650
		return 0;
	}
	_debug_guardpage_minorder = res;
651
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 653
	return 0;
}
654
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655

656
static inline bool set_page_guard(struct zone *zone, struct page *page,
657
				unsigned int order, int migratetype)
658
{
659 660 661
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
662 663 664 665
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
666 667

	page_ext = lookup_page_ext(page);
668
	if (unlikely(!page_ext))
669
		return false;
670

671 672
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

673 674 675 676
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
677 678

	return true;
679 680
}

681 682
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
683
{
684 685 686 687 688 689
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
690 691 692
	if (unlikely(!page_ext))
		return;

693 694
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

695 696 697
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
698 699
}
#else
700
struct page_ext_operations debug_guardpage_ops;
701 702
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
703 704
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
705 706
#endif

707
static inline void set_page_order(struct page *page, unsigned int order)
708
{
H
Hugh Dickins 已提交
709
	set_page_private(page, order);
710
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
711 712 713 714
}

static inline void rmv_page_order(struct page *page)
{
715
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
716
	set_page_private(page, 0);
L
Linus Torvalds 已提交
717 718 719 720 721
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
722
 * (a) the buddy is not in a hole (check before calling!) &&
723
 * (b) the buddy is in the buddy system &&
724 725
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
726
 *
727 728 729 730
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
731
 *
732
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
733
 */
734
static inline int page_is_buddy(struct page *page, struct page *buddy,
735
							unsigned int order)
L
Linus Torvalds 已提交
736
{
737
	if (page_is_guard(buddy) && page_order(buddy) == order) {
738 739 740
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

741 742
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

743 744 745
		return 1;
	}

746
	if (PageBuddy(buddy) && page_order(buddy) == order) {
747 748 749 750 751 752 753 754
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

755 756
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

757
		return 1;
758
	}
759
	return 0;
L
Linus Torvalds 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
775 776 777
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
778
 * So when we are allocating or freeing one, we can derive the state of the
779 780
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
781
 * If a block is freed, and its buddy is also free, then this
782
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
783
 *
784
 * -- nyc
L
Linus Torvalds 已提交
785 786
 */

N
Nick Piggin 已提交
787
static inline void __free_one_page(struct page *page,
788
		unsigned long pfn,
789 790
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
791
{
792 793
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
794
	struct page *buddy;
795 796 797
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
798

799
	VM_BUG_ON(!zone_is_initialized(zone));
800
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
801

802
	VM_BUG_ON(migratetype == -1);
803
	if (likely(!is_migrate_isolate(migratetype)))
804
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
805

806
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
808

809
continue_merging:
810
	while (order < max_order - 1) {
811 812
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
813 814 815

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
816
		if (!page_is_buddy(page, buddy, order))
817
			goto done_merging;
818 819 820 821 822
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
823
			clear_page_guard(zone, buddy, order, migratetype);
824 825 826 827 828
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
829 830 831
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
832 833
		order++;
	}
834 835 836 837 838 839 840 841 842 843 844 845
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

846 847
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
848 849 850 851 852 853 854 855 856 857 858 859
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
860
	set_page_order(page, order);
861 862 863 864 865 866 867 868 869

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
870
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871
		struct page *higher_page, *higher_buddy;
872 873 874 875
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 877
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 879 880 881 882 883 884 885
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
886 887 888
	zone->free_area[order].nr_free++;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

911
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
912
{
913 914 915 916 917
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
918

919
	if (unlikely(atomic_read(&page->_mapcount) != -1))
920 921 922
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
923
	if (unlikely(page_ref_count(page) != 0))
924
		bad_reason = "nonzero _refcount";
925 926 927 928
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
929 930 931 932
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
933
	bad_page(page, bad_reason, bad_flags);
934 935 936 937
}

static inline int free_pages_check(struct page *page)
{
938
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 940 941 942
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
943
	return 1;
L
Linus Torvalds 已提交
944 945
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

996 997
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
998
{
999
	int bad = 0;
1000 1001 1002

	VM_BUG_ON_PAGE(PageTail(page), page);

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	trace_mm_page_free(page, order);
	kmemcheck_free_shadow(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1015

1016 1017
		if (compound)
			ClearPageDoubleMap(page);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1028
	if (PageMappingFlags(page))
1029
		page->mapping = NULL;
1030
	if (memcg_kmem_enabled() && PageKmemcg(page))
1031
		memcg_kmem_uncharge(page, order);
1032 1033 1034 1035
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1036

1037 1038 1039
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1040 1041 1042

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1043
					   PAGE_SIZE << order);
1044
		debug_check_no_obj_freed(page_address(page),
1045
					   PAGE_SIZE << order);
1046
	}
1047 1048 1049
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1050
	kasan_free_pages(page, order);
1051 1052 1053 1054

	return true;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1071 1072 1073 1074 1075 1076
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1077
/*
1078
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1079
 * Assumes all pages on list are in same zone, and of same order.
1080
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085 1086 1087
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1088 1089
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1090
{
1091
	int migratetype = 0;
1092
	int batch_free = 0;
1093
	unsigned long nr_scanned, flags;
1094
	bool isolated_pageblocks;
1095

1096
	spin_lock_irqsave(&zone->lock, flags);
1097
	isolated_pageblocks = has_isolate_pageblock(zone);
M
Mel Gorman 已提交
1098
	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1099
	if (nr_scanned)
M
Mel Gorman 已提交
1100
		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1101

1102
	while (count) {
N
Nick Piggin 已提交
1103
		struct page *page;
1104 1105 1106
		struct list_head *list;

		/*
1107 1108 1109 1110 1111
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1112 1113
		 */
		do {
1114
			batch_free++;
1115 1116 1117 1118
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1119

1120 1121
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1122
			batch_free = count;
1123

1124
		do {
1125 1126
			int mt;	/* migratetype of the to-be-freed page */

1127
			page = list_last_entry(list, struct page, lru);
1128 1129
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1130

1131
			mt = get_pcppage_migratetype(page);
1132 1133 1134
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1135
			if (unlikely(isolated_pageblocks))
1136 1137
				mt = get_pageblock_migratetype(page);

1138 1139 1140
			if (bulkfree_pcp_prepare(page))
				continue;

1141
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1142
			trace_mm_page_pcpu_drain(page, 0, mt);
1143
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1144
	}
1145
	spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
1146 1147
}

1148 1149
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1150
				unsigned int order,
1151
				int migratetype)
L
Linus Torvalds 已提交
1152
{
1153 1154 1155
	unsigned long nr_scanned, flags;
	spin_lock_irqsave(&zone->lock, flags);
	__count_vm_events(PGFREE, 1 << order);
M
Mel Gorman 已提交
1156
	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1157
	if (nr_scanned)
M
Mel Gorman 已提交
1158
		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1159

1160 1161 1162 1163
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1164
	__free_one_page(page, pfn, zone, order, migratetype);
1165
	spin_unlock_irqrestore(&zone->lock, flags);
N
Nick Piggin 已提交
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1216 1217 1218 1219 1220 1221
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1222
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 1224 1225 1226
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1227 1228 1229 1230 1231
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1232 1233 1234 1235

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1236 1237 1238
			SetPageReserved(page);
		}
	}
1239 1240
}

1241 1242
static void __free_pages_ok(struct page *page, unsigned int order)
{
M
Minchan Kim 已提交
1243
	int migratetype;
1244
	unsigned long pfn = page_to_pfn(page);
1245

1246
	if (!free_pages_prepare(page, order, true))
1247 1248
		return;

1249
	migratetype = get_pfnblock_migratetype(page, pfn);
1250
	free_one_page(page_zone(page), page, pfn, order, migratetype);
L
Linus Torvalds 已提交
1251 1252
}

1253
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254
{
1255
	unsigned int nr_pages = 1 << order;
1256
	struct page *p = page;
1257
	unsigned int loop;
1258

1259 1260 1261
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1262 1263
		__ClearPageReserved(p);
		set_page_count(p, 0);
1264
	}
1265 1266
	__ClearPageReserved(p);
	set_page_count(p, 0);
1267

1268
	page_zone(page)->managed_pages += nr_pages;
1269 1270
	set_page_refcounted(page);
	__free_pages(page, order);
1271 1272
}

1273 1274
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275

1276 1277 1278 1279
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1280
	static DEFINE_SPINLOCK(early_pfn_lock);
1281 1282
	int nid;

1283
	spin_lock(&early_pfn_lock);
1284
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285
	if (nid < 0)
1286
		nid = first_online_node;
1287 1288 1289
	spin_unlock(&early_pfn_lock);

	return nid;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
					struct mminit_pfnnid_cache *state)
{
	return true;
}
#endif


1325
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 1327 1328 1329
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1330
	return __free_pages_boot_core(page, order);
1331 1332
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1402
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403
static void __init deferred_free_range(struct page *page,
1404 1405 1406 1407 1408 1409 1410 1411
					unsigned long pfn, int nr_pages)
{
	int i;

	if (!page)
		return;

	/* Free a large naturally-aligned chunk if possible */
1412 1413
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1414
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415
		__free_pages_boot_core(page, pageblock_order);
1416 1417 1418
		return;
	}

1419 1420 1421
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422
		__free_pages_boot_core(page, 0);
1423
	}
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1435

1436
/* Initialise remaining memory on a node */
1437
static int __init deferred_init_memmap(void *data)
1438
{
1439 1440
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1441 1442 1443 1444 1445 1446 1447
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
	unsigned long walk_start, walk_end;
	int i, zid;
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449

1450
	if (first_init_pfn == ULONG_MAX) {
1451
		pgdat_init_report_one_done();
1452 1453 1454 1455 1456 1457
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}

	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
		unsigned long pfn, end_pfn;
1473
		struct page *page = NULL;
1474 1475 1476
		struct page *free_base_page = NULL;
		unsigned long free_base_pfn = 0;
		int nr_to_free = 0;
1477 1478 1479 1480 1481 1482 1483 1484 1485

		end_pfn = min(walk_end, zone_end_pfn(zone));
		pfn = first_init_pfn;
		if (pfn < walk_start)
			pfn = walk_start;
		if (pfn < zone->zone_start_pfn)
			pfn = zone->zone_start_pfn;

		for (; pfn < end_pfn; pfn++) {
1486
			if (!pfn_valid_within(pfn))
1487
				goto free_range;
1488

1489 1490
			/*
			 * Ensure pfn_valid is checked every
1491
			 * pageblock_nr_pages for memory holes
1492
			 */
1493
			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 1495
				if (!pfn_valid(pfn)) {
					page = NULL;
1496
					goto free_range;
1497 1498 1499 1500 1501
				}
			}

			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				page = NULL;
1502
				goto free_range;
1503 1504 1505
			}

			/* Minimise pfn page lookups and scheduler checks */
1506
			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 1508
				page++;
			} else {
1509 1510 1511 1512 1513 1514
				nr_pages += nr_to_free;
				deferred_free_range(free_base_page,
						free_base_pfn, nr_to_free);
				free_base_page = NULL;
				free_base_pfn = nr_to_free = 0;

1515 1516 1517
				page = pfn_to_page(pfn);
				cond_resched();
			}
1518 1519 1520

			if (page->flags) {
				VM_BUG_ON(page_zone(page) != zone);
1521
				goto free_range;
1522 1523 1524
			}

			__init_single_page(page, pfn, zid, nid);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
			if (!free_base_page) {
				free_base_page = page;
				free_base_pfn = pfn;
				nr_to_free = 0;
			}
			nr_to_free++;

			/* Where possible, batch up pages for a single free */
			continue;
free_range:
			/* Free the current block of pages to allocator */
			nr_pages += nr_to_free;
			deferred_free_range(free_base_page, free_base_pfn,
								nr_to_free);
			free_base_page = NULL;
			free_base_pfn = nr_to_free = 0;
1541
		}
1542 1543 1544
		/* Free the last block of pages to allocator */
		nr_pages += nr_to_free;
		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545

1546 1547 1548 1549 1550 1551
		first_init_pfn = max(end_pfn, first_init_pfn);
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1552
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553
					jiffies_to_msecs(jiffies - start));
1554 1555

	pgdat_init_report_one_done();
1556 1557
	return 0;
}
1558
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559 1560 1561

void __init page_alloc_init_late(void)
{
1562 1563 1564
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 1566
	int nid;

1567 1568
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 1570 1571 1572 1573
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1574
	wait_for_completion(&pgdat_init_all_done_comp);
1575 1576 1577

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1578 1579 1580 1581
#endif

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1582 1583
}

1584
#ifdef CONFIG_CMA
1585
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1611
	adjust_managed_page_count(page, pageblock_nr_pages);
1612 1613
}
#endif
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1627
 * -- nyc
L
Linus Torvalds 已提交
1628
 */
N
Nick Piggin 已提交
1629
static inline void expand(struct zone *zone, struct page *page,
1630 1631
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637 1638
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1639
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640

1641 1642 1643 1644 1645 1646 1647
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1648
			continue;
1649

1650
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1656
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1657
{
1658 1659
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1660

1661
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 1663 1664
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1665
	if (unlikely(page_ref_count(page) != 0))
1666
		bad_reason = "nonzero _count";
1667 1668 1669
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1670 1671 1672
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1673
	}
1674 1675 1676 1677
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1678 1679 1680 1681
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1696 1697
}

1698 1699 1700 1701 1702 1703
static inline bool free_pages_prezeroed(bool poisoned)
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
		page_poisoning_enabled() && poisoned;
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1751
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752
							unsigned int alloc_flags)
1753 1754
{
	int i;
1755
	bool poisoned = true;
1756 1757 1758

	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;
1759 1760
		if (poisoned)
			poisoned &= page_is_poisoned(p);
1761
	}
1762

1763
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1764

1765
	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 1767
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1768 1769 1770 1771

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1772
	/*
1773
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 1775 1776 1777
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1778 1779 1780 1781
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1782 1783
}

1784 1785 1786 1787
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1788 1789
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 1791 1792
						int migratetype)
{
	unsigned int current_order;
1793
	struct free_area *area;
1794 1795 1796 1797 1798
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1799
		page = list_first_entry_or_null(&area->free_list[migratetype],
1800
							struct page, lru);
1801 1802
		if (!page)
			continue;
1803 1804 1805 1806
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1807
		set_pcppage_migratetype(page, migratetype);
1808 1809 1810 1811 1812 1813 1814
		return page;
	}

	return NULL;
}


1815 1816 1817 1818
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1819
static int fallbacks[MIGRATE_TYPES][4] = {
1820 1821 1822
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823
#ifdef CONFIG_CMA
1824
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1825
#endif
1826
#ifdef CONFIG_MEMORY_ISOLATION
1827
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1828
#endif
1829 1830
};

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1842 1843
/*
 * Move the free pages in a range to the free lists of the requested type.
1844
 * Note that start_page and end_pages are not aligned on a pageblock
1845 1846
 * boundary. If alignment is required, use move_freepages_block()
 */
1847
int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1848 1849
			  struct page *start_page, struct page *end_page,
			  int migratetype)
1850 1851
{
	struct page *page;
1852
	unsigned int order;
1853
	int pages_moved = 0;
1854 1855 1856 1857 1858 1859 1860

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1861
	 * grouping pages by mobility
1862
	 */
1863
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 1865 1866 1867 1868 1869 1870 1871
#endif

	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1872 1873 1874
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1875 1876 1877 1878 1879 1880
		if (!PageBuddy(page)) {
			page++;
			continue;
		}

		order = page_order(page);
1881 1882
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1883
		page += 1 << order;
1884
		pages_moved += 1 << order;
1885 1886
	}

1887
	return pages_moved;
1888 1889
}

1890
int move_freepages_block(struct zone *zone, struct page *page,
1891
				int migratetype)
1892 1893 1894 1895 1896
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1897
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898
	start_page = pfn_to_page(start_pfn);
1899 1900
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 1902

	/* Do not cross zone boundaries */
1903
	if (!zone_spans_pfn(zone, start_pfn))
1904
		start_page = page;
1905
	if (!zone_spans_pfn(zone, end_pfn))
1906 1907 1908 1909 1910
		return 0;

	return move_freepages(zone, start_page, end_page, migratetype);
}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1922
/*
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1933
 */
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
 * pageblock and check whether half of pages are moved or not. If half of
 * pages are moved, we can change migratetype of pageblock and permanently
 * use it's pages as requested migratetype in the future.
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
							  int start_type)
1964
{
1965
	unsigned int current_order = page_order(page);
1966
	int pages;
1967 1968 1969 1970

	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
1971
		return;
1972 1973
	}

1974
	pages = move_freepages_block(zone, page, start_type);
1975

1976 1977 1978 1979 1980 1981
	/* Claim the whole block if over half of it is free */
	if (pages >= (1 << (pageblock_order-1)) ||
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
}

1982 1983 1984 1985 1986 1987 1988 1989
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2000
		if (fallback_mt == MIGRATE_TYPES)
2001 2002 2003 2004
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2005

2006 2007 2008
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2009 2010 2011 2012 2013
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2014
	}
2015 2016

	return -1;
2017 2018
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
	if (mt != MIGRATE_HIGHATOMIC &&
			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2061 2062 2063
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2064
 */
2065 2066
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2067 2068 2069 2070 2071 2072 2073
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2074
	bool ret;
2075 2076 2077

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2078 2079 2080 2081 2082 2083
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2084 2085 2086 2087 2088 2089
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2090 2091 2092 2093
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2094 2095 2096
				continue;

			/*
2097 2098 2099 2100 2101
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2102
			 */
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
			if (get_pageblock_migratetype(page) ==
							MIGRATE_HIGHATOMIC) {
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2127
			ret = move_freepages_block(zone, page, ac->migratetype);
2128 2129 2130 2131
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2132 2133 2134
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2135 2136

	return false;
2137 2138
}

2139
/* Remove an element from the buddy allocator from the fallback list */
2140
static inline struct page *
2141
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142
{
2143
	struct free_area *area;
2144
	unsigned int current_order;
2145
	struct page *page;
2146 2147
	int fallback_mt;
	bool can_steal;
2148 2149

	/* Find the largest possible block of pages in the other list */
2150 2151 2152
	for (current_order = MAX_ORDER-1;
				current_order >= order && current_order <= MAX_ORDER-1;
				--current_order) {
2153 2154
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2155
				start_migratetype, false, &can_steal);
2156 2157
		if (fallback_mt == -1)
			continue;
2158

2159
		page = list_first_entry(&area->free_list[fallback_mt],
2160
						struct page, lru);
M
Minchan Kim 已提交
2161 2162
		if (can_steal &&
			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163
			steal_suitable_fallback(zone, page, start_migratetype);
2164

2165 2166 2167 2168
		/* Remove the page from the freelists */
		area->nr_free--;
		list_del(&page->lru);
		rmv_page_order(page);
2169

2170 2171 2172
		expand(zone, page, order, current_order, area,
					start_migratetype);
		/*
2173
		 * The pcppage_migratetype may differ from pageblock's
2174
		 * migratetype depending on the decisions in
2175 2176 2177
		 * find_suitable_fallback(). This is OK as long as it does not
		 * differ for MIGRATE_CMA pageblocks. Those can be used as
		 * fallback only via special __rmqueue_cma_fallback() function
2178
		 */
2179
		set_pcppage_migratetype(page, start_migratetype);
2180

2181 2182
		trace_mm_page_alloc_extfrag(page, order, current_order,
			start_migratetype, fallback_mt);
2183

2184
		return page;
2185 2186
	}

2187
	return NULL;
2188 2189
}

2190
/*
L
Linus Torvalds 已提交
2191 2192 2193
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2194
static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195
				int migratetype)
L
Linus Torvalds 已提交
2196 2197 2198
{
	struct page *page;

2199
	page = __rmqueue_smallest(zone, order, migratetype);
2200
	if (unlikely(!page)) {
2201 2202 2203 2204 2205
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

		if (!page)
			page = __rmqueue_fallback(zone, order, migratetype);
2206 2207
	}

2208
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209
	return page;
L
Linus Torvalds 已提交
2210 2211
}

2212
/*
L
Linus Torvalds 已提交
2213 2214 2215 2216
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2217
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218
			unsigned long count, struct list_head *list,
2219
			int migratetype, bool cold)
L
Linus Torvalds 已提交
2220
{
2221
	int i, alloced = 0;
2222
	unsigned long flags;
2223

2224
	spin_lock_irqsave(&zone->lock, flags);
L
Linus Torvalds 已提交
2225
	for (i = 0; i < count; ++i) {
2226
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2227
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2228
			break;
2229

2230 2231 2232
		if (unlikely(check_pcp_refill(page)))
			continue;

2233 2234 2235 2236 2237 2238 2239 2240 2241
		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
2242
		if (likely(!cold))
2243 2244 2245
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
2246
		list = &page->lru;
2247
		alloced++;
2248
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2249 2250
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2251
	}
2252 2253 2254 2255 2256 2257 2258

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2259
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2260
	spin_unlock_irqrestore(&zone->lock, flags);
2261
	return alloced;
L
Linus Torvalds 已提交
2262 2263
}

2264
#ifdef CONFIG_NUMA
2265
/*
2266 2267 2268 2269
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2270 2271
 * Note that this function must be called with the thread pinned to
 * a single processor.
2272
 */
2273
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2274 2275
{
	unsigned long flags;
2276
	int to_drain, batch;
2277

2278
	local_irq_save(flags);
2279
	batch = READ_ONCE(pcp->batch);
2280
	to_drain = min(pcp->count, batch);
2281 2282 2283 2284
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2285
	local_irq_restore(flags);
2286 2287 2288
}
#endif

2289
/*
2290
 * Drain pcplists of the indicated processor and zone.
2291 2292 2293 2294 2295
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2296
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2297
{
N
Nick Piggin 已提交
2298
	unsigned long flags;
2299 2300
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2301

2302 2303
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2304

2305 2306 2307 2308 2309 2310 2311
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2326 2327 2328
	}
}

2329 2330
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2331 2332 2333
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2334
 */
2335
void drain_local_pages(struct zone *zone)
2336
{
2337 2338 2339 2340 2341 2342
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2343 2344
}

2345 2346
static void drain_local_pages_wq(struct work_struct *work)
{
2347 2348 2349 2350 2351 2352 2353 2354
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2355
	drain_local_pages(NULL);
2356
	preempt_enable();
2357 2358
}

2359
/*
2360 2361
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2362 2363
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2364
 * Note that this can be extremely slow as the draining happens in a workqueue.
2365
 */
2366
void drain_all_pages(struct zone *zone)
2367
{
2368 2369 2370 2371 2372 2373 2374 2375
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2376 2377 2378 2379 2380 2381 2382
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2383 2384 2385 2386
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2397

2398 2399 2400 2401 2402 2403 2404
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2405 2406
		struct per_cpu_pageset *pcp;
		struct zone *z;
2407
		bool has_pcps = false;
2408 2409

		if (zone) {
2410
			pcp = per_cpu_ptr(zone->pageset, cpu);
2411
			if (pcp->pcp.count)
2412
				has_pcps = true;
2413 2414 2415 2416 2417 2418 2419
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2420 2421
			}
		}
2422

2423 2424 2425 2426 2427
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2428

2429 2430 2431
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2432
		queue_work_on(cpu, mm_percpu_wq, work);
2433
	}
2434 2435 2436 2437
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2438 2439
}

2440
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2441 2442 2443

void mark_free_pages(struct zone *zone)
{
2444 2445
	unsigned long pfn, max_zone_pfn;
	unsigned long flags;
2446
	unsigned int order, t;
2447
	struct page *page;
L
Linus Torvalds 已提交
2448

2449
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2450 2451 2452
		return;

	spin_lock_irqsave(&zone->lock, flags);
2453

2454
	max_zone_pfn = zone_end_pfn(zone);
2455 2456
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2457
			page = pfn_to_page(pfn);
2458 2459 2460 2461

			if (page_zone(page) != zone)
				continue;

2462 2463
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2464
		}
L
Linus Torvalds 已提交
2465

2466
	for_each_migratetype_order(order, t) {
2467 2468
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2469
			unsigned long i;
L
Linus Torvalds 已提交
2470

2471
			pfn = page_to_pfn(page);
2472
			for (i = 0; i < (1UL << order); i++)
2473
				swsusp_set_page_free(pfn_to_page(pfn + i));
2474
		}
2475
	}
L
Linus Torvalds 已提交
2476 2477
	spin_unlock_irqrestore(&zone->lock, flags);
}
2478
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2479 2480 2481

/*
 * Free a 0-order page
2482
 * cold == true ? free a cold page : free a hot page
L
Linus Torvalds 已提交
2483
 */
2484
void free_hot_cold_page(struct page *page, bool cold)
L
Linus Torvalds 已提交
2485 2486 2487
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
2488
	unsigned long pfn = page_to_pfn(page);
2489
	int migratetype;
L
Linus Torvalds 已提交
2490

2491 2492 2493 2494 2495
	if (in_interrupt()) {
		__free_pages_ok(page, 0);
		return;
	}

2496
	if (!free_pcp_prepare(page))
2497 2498
		return;

2499
	migratetype = get_pfnblock_migratetype(page, pfn);
2500
	set_pcppage_migratetype(page, migratetype);
2501
	preempt_disable();
2502

2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
	 * offlined but treat RESERVE as movable pages so we can get those
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2511
		if (unlikely(is_migrate_isolate(migratetype))) {
2512
			free_one_page(zone, page, pfn, 0, migratetype);
2513 2514 2515 2516 2517
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

2518
	__count_vm_event(PGFREE);
2519
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2520
	if (!cold)
2521
		list_add(&page->lru, &pcp->lists[migratetype]);
2522 2523
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2524
	pcp->count++;
N
Nick Piggin 已提交
2525
	if (pcp->count >= pcp->high) {
2526
		unsigned long batch = READ_ONCE(pcp->batch);
2527 2528
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2529
	}
2530 2531

out:
2532
	preempt_enable();
L
Linus Torvalds 已提交
2533 2534
}

2535 2536 2537
/*
 * Free a list of 0-order pages
 */
2538
void free_hot_cold_page_list(struct list_head *list, bool cold)
2539 2540 2541 2542
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
2543
		trace_mm_page_free_batched(page, cold);
2544 2545 2546 2547
		free_hot_cold_page(page, cold);
	}
}

N
Nick Piggin 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2560 2561
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

#ifdef CONFIG_KMEMCHECK
	/*
	 * Split shadow pages too, because free(page[0]) would
	 * otherwise free the whole shadow.
	 */
	if (kmemcheck_page_is_tracked(page))
		split_page(virt_to_page(page[0].shadow), order);
#endif

2572
	for (i = 1; i < (1 << order); i++)
2573
		set_page_refcounted(page + i);
2574
	split_page_owner(page, order);
N
Nick Piggin 已提交
2575
}
K
K. Y. Srinivasan 已提交
2576
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2577

2578
int __isolate_free_page(struct page *page, unsigned int order)
2579 2580 2581
{
	unsigned long watermark;
	struct zone *zone;
2582
	int mt;
2583 2584 2585 2586

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2587
	mt = get_pageblock_migratetype(page);
2588

2589
	if (!is_migrate_isolate(mt)) {
2590 2591 2592 2593 2594 2595 2596
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2597
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2598 2599
			return 0;

2600
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2601
	}
2602 2603 2604 2605 2606

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2607

2608 2609 2610 2611
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2612 2613
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2614 2615
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2616 2617
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
				&& mt != MIGRATE_HIGHATOMIC)
2618 2619 2620
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2621 2622
	}

2623

2624
	return 1UL << order;
2625 2626
}

2627 2628 2629 2630 2631
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2632
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2633 2634 2635 2636
{
#ifdef CONFIG_NUMA
	enum zone_stat_item local_stat = NUMA_LOCAL;

2637
	if (z->node != numa_node_id())
2638 2639
		local_stat = NUMA_OTHER;

2640
	if (z->node == preferred_zone->node)
2641
		__inc_zone_state(z, NUMA_HIT);
2642
	else {
2643 2644 2645
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
	}
2646
	__inc_zone_state(z, local_stat);
2647 2648 2649
#endif
}

2650 2651 2652 2653 2654 2655 2656
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
			bool cold, struct per_cpu_pages *pcp,
			struct list_head *list)
{
	struct page *page;

2657 2658
	VM_BUG_ON(in_interrupt());

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				return NULL;
		}

		if (cold)
			page = list_last_entry(list, struct page, lru);
		else
			page = list_first_entry(list, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
	struct page *page;

2690
	preempt_disable();
2691 2692 2693 2694 2695 2696 2697
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2698
	preempt_enable();
2699 2700 2701
	return page;
}

L
Linus Torvalds 已提交
2702
/*
2703
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2704
 */
2705
static inline
2706
struct page *rmqueue(struct zone *preferred_zone,
2707
			struct zone *zone, unsigned int order,
2708 2709
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2710 2711
{
	unsigned long flags;
2712
	struct page *page;
L
Linus Torvalds 已提交
2713

2714
	if (likely(order == 0) && !in_interrupt()) {
2715 2716 2717 2718
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2719

2720 2721 2722 2723 2724 2725
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2726

2727 2728 2729 2730 2731 2732 2733
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2734
		if (!page)
2735 2736 2737 2738 2739 2740 2741
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2742

2743
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2744
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2745
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2746

2747 2748
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2749
	return page;
N
Nick Piggin 已提交
2750 2751 2752 2753

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2754 2755
}

2756 2757
#ifdef CONFIG_FAIL_PAGE_ALLOC

2758
static struct {
2759 2760
	struct fault_attr attr;

2761
	bool ignore_gfp_highmem;
2762
	bool ignore_gfp_reclaim;
2763
	u32 min_order;
2764 2765
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2766
	.ignore_gfp_reclaim = true,
2767
	.ignore_gfp_highmem = true,
2768
	.min_order = 1,
2769 2770 2771 2772 2773 2774 2775 2776
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2777
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2778
{
2779
	if (order < fail_page_alloc.min_order)
2780
		return false;
2781
	if (gfp_mask & __GFP_NOFAIL)
2782
		return false;
2783
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2784
		return false;
2785 2786
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2787
		return false;
2788 2789 2790 2791 2792 2793 2794 2795

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2796
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2797 2798
	struct dentry *dir;

2799 2800 2801 2802
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2803

2804
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2805
				&fail_page_alloc.ignore_gfp_reclaim))
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2816
	debugfs_remove_recursive(dir);
2817

2818
	return -ENOMEM;
2819 2820 2821 2822 2823 2824 2825 2826
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2827
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2828
{
2829
	return false;
2830 2831 2832 2833
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2834
/*
2835 2836 2837 2838
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2839
 */
2840 2841 2842
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2843
{
2844
	long min = mark;
L
Linus Torvalds 已提交
2845
	int o;
2846
	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
L
Linus Torvalds 已提交
2847

2848
	/* free_pages may go negative - that's OK */
2849
	free_pages -= (1 << order) - 1;
2850

R
Rohit Seth 已提交
2851
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2852
		min -= min / 2;
2853 2854 2855 2856 2857 2858

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
2859
	if (likely(!alloc_harder))
2860 2861
		free_pages -= z->nr_reserved_highatomic;
	else
L
Linus Torvalds 已提交
2862
		min -= min / 4;
2863

2864 2865 2866
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
2867
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2868
#endif
2869

2870 2871 2872 2873 2874 2875
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2876
		return false;
L
Linus Torvalds 已提交
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
2904
	}
2905
	return false;
2906 2907
}

2908
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2909
		      int classzone_idx, unsigned int alloc_flags)
2910 2911 2912 2913 2914
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

2941
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2942
			unsigned long mark, int classzone_idx)
2943 2944 2945 2946 2947 2948
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

2949
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2950
								free_pages);
L
Linus Torvalds 已提交
2951 2952
}

2953
#ifdef CONFIG_NUMA
2954 2955
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
2956
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2957
				RECLAIM_DISTANCE;
2958
}
2959
#else	/* CONFIG_NUMA */
2960 2961 2962 2963
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
2964 2965
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
2966
/*
2967
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
2968 2969 2970
 * a page.
 */
static struct page *
2971 2972
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
2973
{
2974
	struct zoneref *z = ac->preferred_zoneref;
2975
	struct zone *zone;
2976 2977
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
2978
	/*
2979
	 * Scan zonelist, looking for a zone with enough free.
2980
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
2981
	 */
2982
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2983
								ac->nodemask) {
2984
		struct page *page;
2985 2986
		unsigned long mark;

2987 2988
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
2989
			!__cpuset_zone_allowed(zone, gfp_mask))
2990
				continue;
2991 2992
		/*
		 * When allocating a page cache page for writing, we
2993 2994
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
2995
		 * proportional share of globally allowed dirty pages.
2996
		 * The dirty limits take into account the node's
2997 2998 2999 3000 3001
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3002
		 * exceed the per-node dirty limit in the slowpath
3003
		 * (spread_dirty_pages unset) before going into reclaim,
3004
		 * which is important when on a NUMA setup the allowed
3005
		 * nodes are together not big enough to reach the
3006
		 * global limit.  The proper fix for these situations
3007
		 * will require awareness of nodes in the
3008 3009
		 * dirty-throttling and the flusher threads.
		 */
3010 3011 3012 3013 3014 3015 3016 3017 3018
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3019

3020
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3021
		if (!zone_watermark_fast(zone, order, mark,
3022
				       ac_classzone_idx(ac), alloc_flags)) {
3023 3024
			int ret;

3025 3026 3027 3028 3029
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3030
			if (node_reclaim_mode == 0 ||
3031
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3032 3033
				continue;

3034
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3035
			switch (ret) {
3036
			case NODE_RECLAIM_NOSCAN:
3037
				/* did not scan */
3038
				continue;
3039
			case NODE_RECLAIM_FULL:
3040
				/* scanned but unreclaimable */
3041
				continue;
3042 3043
			default:
				/* did we reclaim enough */
3044
				if (zone_watermark_ok(zone, order, mark,
3045
						ac_classzone_idx(ac), alloc_flags))
3046 3047 3048
					goto try_this_zone;

				continue;
3049
			}
R
Rohit Seth 已提交
3050 3051
		}

3052
try_this_zone:
3053
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3054
				gfp_mask, alloc_flags, ac->migratetype);
3055
		if (page) {
3056
			prep_new_page(page, order, gfp_mask, alloc_flags);
3057 3058 3059 3060 3061 3062 3063 3064

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3065 3066
			return page;
		}
3067
	}
3068

3069
	return NULL;
M
Martin Hicks 已提交
3070 3071
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3086
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3087 3088
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3089
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3090

3091
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
		if (test_thread_flag(TIF_MEMDIE) ||
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3103
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3104 3105
		filter &= ~SHOW_MEM_FILTER_NODES;

3106
	show_mem(filter, nodemask);
3107 3108
}

3109
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
	    debug_guardpage_minorder() > 0)
		return;

3120
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3121

3122 3123 3124 3125 3126
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3127

3128 3129 3130 3131 3132 3133
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3134
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3135

3136
	dump_stack();
3137
	warn_alloc_show_mem(gfp_mask, nodemask);
3138 3139
}

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3160 3161
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3162
	const struct alloc_context *ac, unsigned long *did_some_progress)
3163
{
3164 3165 3166
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3167
		.memcg = NULL,
3168 3169 3170
		.gfp_mask = gfp_mask,
		.order = order,
	};
3171 3172
	struct page *page;

3173 3174 3175
	*did_some_progress = 0;

	/*
3176 3177
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3178
	 */
3179
	if (!mutex_trylock(&oom_lock)) {
3180
		*did_some_progress = 1;
3181
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3182 3183
		return NULL;
	}
3184

3185 3186 3187 3188 3189
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
	 * we're still under heavy pressure.
	 */
3190 3191
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3192
	if (page)
3193 3194
		goto out;

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3219

3220
	/* Exhausted what can be done so it's blamo time */
3221
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3222
		*did_some_progress = 1;
3223

3224 3225 3226 3227 3228 3229
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3230 3231
					ALLOC_NO_WATERMARKS, ac);
	}
3232
out:
3233
	mutex_unlock(&oom_lock);
3234 3235 3236
	return page;
}

3237 3238 3239 3240 3241 3242
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3243 3244 3245 3246
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3247
		unsigned int alloc_flags, const struct alloc_context *ac,
3248
		enum compact_priority prio, enum compact_result *compact_result)
3249
{
3250
	struct page *page;
3251 3252

	if (!order)
3253 3254
		return NULL;

3255
	current->flags |= PF_MEMALLOC;
3256
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3257
									prio);
3258
	current->flags &= ~PF_MEMALLOC;
3259

3260
	if (*compact_result <= COMPACT_INACTIVE)
3261
		return NULL;
3262

3263 3264 3265 3266 3267
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3268

3269
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3270

3271 3272
	if (page) {
		struct zone *zone = page_zone(page);
3273

3274 3275 3276 3277 3278
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3279

3280 3281 3282 3283 3284
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3285

3286
	cond_resched();
3287 3288 3289

	return NULL;
}
3290

3291 3292 3293 3294
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3295
		     int *compaction_retries)
3296 3297
{
	int max_retries = MAX_COMPACT_RETRIES;
3298
	int min_priority;
3299 3300 3301
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3302 3303 3304 3305

	if (!order)
		return false;

3306 3307 3308
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3309 3310 3311 3312 3313
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3314 3315
	if (compaction_failed(compact_result))
		goto check_priority;
3316 3317 3318 3319 3320 3321 3322

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3323 3324 3325 3326
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

	/*
	 * !costly requests are much more important than __GFP_REPEAT
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3338 3339 3340 3341
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3342

3343 3344 3345 3346 3347
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3348 3349
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3350

3351
	if (*compact_priority > min_priority) {
3352 3353
		(*compact_priority)--;
		*compaction_retries = 0;
3354
		ret = true;
3355
	}
3356 3357 3358
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3359
}
3360 3361 3362
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3363
		unsigned int alloc_flags, const struct alloc_context *ac,
3364
		enum compact_priority prio, enum compact_result *compact_result)
3365
{
3366
	*compact_result = COMPACT_SKIPPED;
3367 3368
	return NULL;
}
3369 3370

static inline bool
3371 3372
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3373
		     enum compact_priority *compact_priority,
3374
		     int *compaction_retries)
3375
{
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3394 3395
	return false;
}
3396
#endif /* CONFIG_COMPACTION */
3397

3398 3399
/* Perform direct synchronous page reclaim */
static int
3400 3401
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3402 3403
{
	struct reclaim_state reclaim_state;
3404
	int progress;
3405 3406 3407 3408 3409

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3410
	current->flags |= PF_MEMALLOC;
3411 3412
	lockdep_set_current_reclaim_state(gfp_mask);
	reclaim_state.reclaimed_slab = 0;
3413
	current->reclaim_state = &reclaim_state;
3414

3415 3416
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3417

3418
	current->reclaim_state = NULL;
3419
	lockdep_clear_current_reclaim_state();
3420
	current->flags &= ~PF_MEMALLOC;
3421 3422 3423

	cond_resched();

3424 3425 3426 3427 3428 3429
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3430
		unsigned int alloc_flags, const struct alloc_context *ac,
3431
		unsigned long *did_some_progress)
3432 3433 3434 3435
{
	struct page *page = NULL;
	bool drained = false;

3436
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3437 3438
	if (unlikely(!(*did_some_progress)))
		return NULL;
3439

3440
retry:
3441
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3442 3443 3444

	/*
	 * If an allocation failed after direct reclaim, it could be because
3445 3446
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3447 3448
	 */
	if (!page && !drained) {
3449
		unreserve_highatomic_pageblock(ac, false);
3450
		drain_all_pages(NULL);
3451 3452 3453 3454
		drained = true;
		goto retry;
	}

3455 3456 3457
	return page;
}

3458
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3459 3460 3461
{
	struct zoneref *z;
	struct zone *zone;
3462
	pg_data_t *last_pgdat = NULL;
3463

3464
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3465 3466
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3467
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3468 3469
		last_pgdat = zone->zone_pgdat;
	}
3470 3471
}

3472
static inline unsigned int
3473 3474
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3475
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3476

3477
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3478
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3479

3480 3481 3482 3483
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3484
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3485
	 */
3486
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3487

3488
	if (gfp_mask & __GFP_ATOMIC) {
3489
		/*
3490 3491
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3492
		 */
3493
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3494
			alloc_flags |= ALLOC_HARDER;
3495
		/*
3496
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3497
		 * comment for __cpuset_node_allowed().
3498
		 */
3499
		alloc_flags &= ~ALLOC_CPUSET;
3500
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3501 3502
		alloc_flags |= ALLOC_HARDER;

3503
#ifdef CONFIG_CMA
3504
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3505 3506
		alloc_flags |= ALLOC_CMA;
#endif
3507 3508 3509
	return alloc_flags;
}

3510 3511
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	if (gfp_mask & __GFP_MEMALLOC)
		return true;
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
		return true;
	if (!in_interrupt() &&
			((current->flags & PF_MEMALLOC) ||
			 unlikely(test_thread_flag(TIF_MEMDIE))))
		return true;

	return false;
3525 3526
}

M
Michal Hocko 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
/*
 * Maximum number of reclaim retries without any progress before OOM killer
 * is consider as the only way to move forward.
 */
#define MAX_RECLAIM_RETRIES 16

/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
 * The reclaim feedback represented by did_some_progress (any progress during
3537 3538 3539 3540
 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
 * any progress in a row) is considered as well as the reclaimable pages on the
 * applicable zone list (with a backoff mechanism which is a function of
 * no_progress_loops).
M
Michal Hocko 已提交
3541 3542 3543 3544 3545 3546
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3547
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3548 3549 3550 3551
{
	struct zone *zone;
	struct zoneref *z;

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3562 3563 3564 3565
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3566 3567
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3568
		return unreserve_highatomic_pageblock(ac, true);
3569
	}
M
Michal Hocko 已提交
3570

3571 3572 3573 3574 3575
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3576 3577 3578 3579
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3580
		unsigned long reclaimable;
3581 3582
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3583

3584
		available = reclaimable = zone_reclaimable_pages(zone);
3585
		available -= DIV_ROUND_UP((*no_progress_loops) * available,
M
Michal Hocko 已提交
3586
					  MAX_RECLAIM_RETRIES);
3587
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3588 3589 3590

		/*
		 * Would the allocation succeed if we reclaimed the whole
3591
		 * available?
M
Michal Hocko 已提交
3592
		 */
3593 3594 3595 3596 3597
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3598 3599 3600 3601 3602 3603 3604
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3605
				unsigned long write_pending;
3606

3607 3608
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3609

3610
				if (2 * write_pending > reclaimable) {
3611 3612 3613 3614
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3615

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3630 3631 3632 3633 3634 3635 3636
			return true;
		}
	}

	return false;
}

3637 3638
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3639
						struct alloc_context *ac)
3640
{
3641
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3642
	struct page *page = NULL;
3643
	unsigned int alloc_flags;
3644
	unsigned long did_some_progress;
3645
	enum compact_priority compact_priority;
3646
	enum compact_result compact_result;
3647 3648
	int compaction_retries;
	int no_progress_loops;
3649 3650
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3651
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
3652

3653 3654 3655 3656 3657 3658
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3659 3660
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3661
		return NULL;
3662
	}
L
Linus Torvalds 已提交
3663

3664 3665 3666 3667 3668 3669 3670 3671
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3672 3673 3674 3675 3676
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3677 3678 3679 3680 3681 3682 3683 3684

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	/*
	 * For costly allocations, try direct compaction first, as it's likely
	 * that we have enough base pages and don't need to reclaim. Don't try
	 * that for allocations that are allowed to ignore watermarks, as the
	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
	 */
	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
		!gfp_pfmemalloc_allowed(gfp_mask)) {
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3717
						INIT_COMPACT_PRIORITY,
3718 3719 3720 3721
						&compact_result);
		if (page)
			goto got_pg;

3722 3723 3724 3725 3726
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
		if (gfp_mask & __GFP_NORETRY) {
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3739 3740
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
3741
			 * using async compaction.
3742
			 */
3743
			compact_priority = INIT_COMPACT_PRIORITY;
3744 3745
		}
	}
3746

3747
retry:
3748
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3749 3750 3751
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

3752 3753 3754
	if (gfp_pfmemalloc_allowed(gfp_mask))
		alloc_flags = ALLOC_NO_WATERMARKS;

3755 3756 3757 3758 3759
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
3760
	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3761 3762 3763 3764 3765
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

3766
	/* Attempt with potentially adjusted zonelist and alloc_flags */
3767
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
3768 3769
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
3770

3771
	/* Caller is not willing to reclaim, we can't balance anything */
3772
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
3773 3774
		goto nopage;

3775 3776 3777 3778 3779 3780
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
		warn_alloc(gfp_mask, ac->nodemask,
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
3781
	}
3782

3783 3784
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
3785 3786
		goto nopage;

3787 3788 3789 3790 3791 3792 3793
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
3794
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3795
					compact_priority, &compact_result);
3796 3797
	if (page)
		goto got_pg;
3798

3799 3800
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
3801
		goto nopage;
3802

M
Michal Hocko 已提交
3803 3804 3805 3806 3807
	/*
	 * Do not retry costly high order allocations unless they are
	 * __GFP_REPEAT
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3808
		goto nopage;
M
Michal Hocko 已提交
3809 3810

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3811
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
3812 3813
		goto retry;

3814 3815 3816 3817 3818 3819 3820
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
3821
			should_compact_retry(ac, order, alloc_flags,
3822
				compact_result, &compact_priority,
3823
				&compaction_retries))
3824 3825
		goto retry;

3826 3827 3828 3829 3830 3831 3832
	/*
	 * It's possible we raced with cpuset update so the OOM would be
	 * premature (see below the nopage: label for full explanation).
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3833 3834 3835 3836 3837
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

3838 3839 3840 3841
	/* Avoid allocations with no watermarks from looping endlessly */
	if (test_thread_flag(TIF_MEMDIE))
		goto nopage;

3842
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
3843 3844
	if (did_some_progress) {
		no_progress_loops = 0;
3845
		goto retry;
M
Michal Hocko 已提交
3846
	}
3847

L
Linus Torvalds 已提交
3848
nopage:
3849
	/*
3850 3851 3852 3853 3854
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
3855 3856 3857 3858
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		goto retry_cpuset;

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

3896 3897 3898 3899
		cond_resched();
		goto retry;
	}
fail:
3900
	warn_alloc(gfp_mask, ac->nodemask,
3901
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
3902
got_pg:
3903
	return page;
L
Linus Torvalds 已提交
3904
}
3905

3906 3907 3908 3909
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
		struct zonelist *zonelist, nodemask_t *nodemask,
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
3910
{
3911 3912 3913 3914
	ac->high_zoneidx = gfp_zone(gfp_mask);
	ac->zonelist = zonelist;
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3915

3916
	if (cpusets_enabled()) {
3917 3918 3919
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
3920 3921
		else
			*alloc_flags |= ALLOC_CPUSET;
3922 3923
	}

3924 3925
	lockdep_trace_alloc(gfp_mask);

3926
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3927 3928

	if (should_fail_alloc_page(gfp_mask, order))
3929
		return false;
3930

3931 3932 3933 3934 3935
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
3936

3937 3938 3939 3940
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
3941
	/* Dirty zone balancing only done in the fast path */
3942
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3943

3944 3945 3946 3947 3948
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
			struct zonelist *zonelist, nodemask_t *nodemask)
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
3970

3971
	/* First allocation attempt */
3972
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3973 3974
	if (likely(page))
		goto out;
3975

3976 3977 3978 3979 3980 3981
	/*
	 * Runtime PM, block IO and its error handling path can deadlock
	 * because I/O on the device might not complete.
	 */
	alloc_mask = memalloc_noio_flags(gfp_mask);
	ac.spread_dirty_pages = false;
3982

3983 3984 3985 3986
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
3987
	if (unlikely(ac.nodemask != nodemask))
3988
		ac.nodemask = nodemask;
3989

3990
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3991

3992
out:
3993 3994 3995 3996
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
3997 3998
	}

3999 4000 4001 4002 4003
	if (kmemcheck_enabled && page)
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);

	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4004
	return page;
L
Linus Torvalds 已提交
4005
}
4006
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4007 4008 4009 4010

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4011
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4012
{
4013 4014 4015 4016 4017 4018 4019 4020
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4021 4022 4023 4024 4025 4026 4027
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4028
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4029
{
4030
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4031 4032 4033
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4034
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4035
{
N
Nick Piggin 已提交
4036
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4037
		if (order == 0)
4038
			free_hot_cold_page(page, false);
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4046
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4047 4048
{
	if (addr != 0) {
N
Nick Piggin 已提交
4049
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4050 4051 4052 4053 4054 4055
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4067 4068
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4088
void __page_frag_cache_drain(struct page *page, unsigned int count)
4089 4090 4091 4092
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4093 4094
		unsigned int order = compound_order(page);

4095 4096 4097 4098 4099 4100
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}
4101
EXPORT_SYMBOL(__page_frag_cache_drain);
4102

4103 4104
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4105 4106 4107 4108 4109 4110 4111
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4112
		page = __page_frag_cache_refill(nc, gfp_mask);
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4123
		page_ref_add(page, size - 1);
4124 4125

		/* reset page count bias and offset to start of new frag */
4126
		nc->pfmemalloc = page_is_pfmemalloc(page);
4127 4128 4129 4130 4131 4132 4133 4134
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4135
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4136 4137 4138 4139 4140 4141 4142
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4143
		set_page_count(page, size);
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4155
EXPORT_SYMBOL(page_frag_alloc);
4156 4157 4158 4159

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4160
void page_frag_free(void *addr)
4161 4162 4163 4164 4165 4166
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4167
EXPORT_SYMBOL(page_frag_free);
4168

4169 4170
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4204
	return make_alloc_exact(addr, order, size);
4205 4206 4207
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4208 4209 4210
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4211
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4212 4213 4214 4215 4216 4217
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4218
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4219
{
4220
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4221 4222 4223 4224 4225 4226
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4246 4247 4248 4249 4250 4251 4252
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4253
 *     managed_pages - high_pages
4254
 */
4255
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4256
{
4257
	struct zoneref *z;
4258 4259
	struct zone *zone;

4260
	/* Just pick one node, since fallback list is circular */
4261
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4262

4263
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4264

4265
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4266
		unsigned long size = zone->managed_pages;
4267
		unsigned long high = high_wmark_pages(zone);
4268 4269
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274
	}

	return sum;
}

4275 4276 4277 4278 4279
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4280
 */
4281
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4282
{
A
Al Viro 已提交
4283
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4284
}
4285
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4286

4287 4288 4289 4290 4291
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4292
 */
4293
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4294
{
M
Mel Gorman 已提交
4295
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4296
}
4297 4298

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4299
{
4300
	if (IS_ENABLED(CONFIG_NUMA))
4301
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4302 4303
}

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4314
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
	available += global_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4347 4348 4349
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4350
	val->sharedram = global_node_page_state(NR_SHMEM);
4351
	val->freeram = global_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4363 4364
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4365 4366
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4367 4368
	pg_data_t *pgdat = NODE_DATA(nid);

4369 4370 4371
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4372
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4373
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4374
#ifdef CONFIG_HIGHMEM
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4385
#else
4386 4387
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4388
#endif
L
Linus Torvalds 已提交
4389 4390 4391 4392
	val->mem_unit = PAGE_SIZE;
}
#endif

4393
/*
4394 4395
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4396
 */
4397
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4398 4399
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4400
		return false;
4401

4402 4403 4404 4405 4406 4407 4408 4409 4410
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4411 4412
}

L
Linus Torvalds 已提交
4413 4414
#define K(x) ((x) << (PAGE_SHIFT-10))

4415 4416 4417 4418 4419
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4420 4421
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4422 4423 4424
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4425
#ifdef CONFIG_MEMORY_ISOLATION
4426
		[MIGRATE_ISOLATE]	= 'I',
4427
#endif
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4439
	printk(KERN_CONT "(%s) ", tmp);
4440 4441
}

L
Linus Torvalds 已提交
4442 4443 4444 4445
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4446 4447 4448 4449
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4450
 */
4451
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4452
{
4453
	unsigned long free_pcp = 0;
4454
	int cpu;
L
Linus Torvalds 已提交
4455
	struct zone *zone;
M
Mel Gorman 已提交
4456
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4457

4458
	for_each_populated_zone(zone) {
4459
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4460
			continue;
4461

4462 4463
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4464 4465
	}

K
KOSAKI Motohiro 已提交
4466 4467
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4468 4469
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4470
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4471
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4472 4473 4474 4475 4476 4477 4478
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4479 4480 4481
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4482 4483
		global_page_state(NR_SLAB_RECLAIMABLE),
		global_page_state(NR_SLAB_UNRECLAIMABLE),
4484
		global_node_page_state(NR_FILE_MAPPED),
4485
		global_node_page_state(NR_SHMEM),
4486
		global_page_state(NR_PAGETABLE),
4487
		global_page_state(NR_BOUNCE),
4488 4489
		global_page_state(NR_FREE_PAGES),
		free_pcp,
4490
		global_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4491

M
Mel Gorman 已提交
4492
	for_each_online_pgdat(pgdat) {
4493
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4494 4495
			continue;

M
Mel Gorman 已提交
4496 4497 4498 4499 4500 4501 4502 4503
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4504
			" mapped:%lukB"
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
4515
			" pages_scanned:%lu"
M
Mel Gorman 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4526
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4527 4528
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4529
			K(node_page_state(pgdat, NR_SHMEM)),
4530 4531 4532 4533 4534 4535 4536 4537
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4538
			node_page_state(pgdat, NR_PAGES_SCANNED),
M
Mel Gorman 已提交
4539 4540 4541
			!pgdat_reclaimable(pgdat) ? "yes" : "no");
	}

4542
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4543 4544
		int i;

4545
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4546
			continue;
4547 4548 4549 4550 4551

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4552
		show_node(zone);
4553 4554
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4555 4556 4557 4558
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4559 4560 4561 4562 4563
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4564
			" writepending:%lukB"
L
Linus Torvalds 已提交
4565
			" present:%lukB"
4566
			" managed:%lukB"
4567 4568 4569
			" mlocked:%lukB"
			" slab_reclaimable:%lukB"
			" slab_unreclaimable:%lukB"
4570
			" kernel_stack:%lukB"
4571 4572
			" pagetables:%lukB"
			" bounce:%lukB"
4573 4574
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4575
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4576 4577
			"\n",
			zone->name,
4578
			K(zone_page_state(zone, NR_FREE_PAGES)),
4579 4580 4581
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4582 4583 4584 4585 4586
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4587
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4588
			K(zone->present_pages),
4589
			K(zone->managed_pages),
4590 4591 4592
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4593
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4594 4595
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4596 4597
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4598
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4599 4600
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4601 4602
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4603 4604
	}

4605
	for_each_populated_zone(zone) {
4606 4607
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4608
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4609

4610
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4611
			continue;
L
Linus Torvalds 已提交
4612
		show_node(zone);
4613
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4614 4615 4616

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4617 4618 4619 4620
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4621
			total += nr[order] << order;
4622 4623 4624 4625 4626 4627

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4628 4629
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4630
		for (order = 0; order < MAX_ORDER; order++) {
4631 4632
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4633 4634 4635
			if (nr[order])
				show_migration_types(types[order]);
		}
4636
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4637 4638
	}

4639 4640
	hugetlb_show_meminfo();

4641
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4642

L
Linus Torvalds 已提交
4643 4644 4645
	show_swap_cache_info();
}

4646 4647 4648 4649 4650 4651
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4652 4653
/*
 * Builds allocation fallback zone lists.
4654 4655
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4656
 */
4657
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4658
				int nr_zones)
L
Linus Torvalds 已提交
4659
{
4660
	struct zone *zone;
4661
	enum zone_type zone_type = MAX_NR_ZONES;
4662 4663

	do {
4664
		zone_type--;
4665
		zone = pgdat->node_zones + zone_type;
4666
		if (managed_zone(zone)) {
4667 4668
			zoneref_set_zone(zone,
				&zonelist->_zonerefs[nr_zones++]);
4669
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4670
		}
4671
	} while (zone_type);
4672

4673
	return nr_zones;
L
Linus Torvalds 已提交
4674 4675
}

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696

/*
 *  zonelist_order:
 *  0 = automatic detection of better ordering.
 *  1 = order by ([node] distance, -zonetype)
 *  2 = order by (-zonetype, [node] distance)
 *
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 *  the same zonelist. So only NUMA can configure this param.
 */
#define ZONELIST_ORDER_DEFAULT  0
#define ZONELIST_ORDER_NODE     1
#define ZONELIST_ORDER_ZONE     2

/* zonelist order in the kernel.
 * set_zonelist_order() will set this to NODE or ZONE.
 */
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};


L
Linus Torvalds 已提交
4697
#ifdef CONFIG_NUMA
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN	16
char numa_zonelist_order[16] = "default";

/*
 * interface for configure zonelist ordering.
 * command line option "numa_zonelist_order"
 *	= "[dD]efault	- default, automatic configuration.
 *	= "[nN]ode 	- order by node locality, then by zone within node
 *	= "[zZ]one      - order by zone, then by locality within zone
 */

static int __parse_numa_zonelist_order(char *s)
{
	if (*s == 'd' || *s == 'D') {
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
	} else if (*s == 'n' || *s == 'N') {
		user_zonelist_order = ZONELIST_ORDER_NODE;
	} else if (*s == 'z' || *s == 'Z') {
		user_zonelist_order = ZONELIST_ORDER_ZONE;
	} else {
4721
		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4722 4723 4724 4725 4726 4727 4728
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
	int ret;

	if (!s)
		return 0;

	ret = __parse_numa_zonelist_order(s);
	if (ret == 0)
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);

	return ret;
4739 4740 4741 4742 4743 4744
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

/*
 * sysctl handler for numa_zonelist_order
 */
4745
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4746
		void __user *buffer, size_t *length,
4747 4748 4749 4750
		loff_t *ppos)
{
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
	int ret;
4751
	static DEFINE_MUTEX(zl_order_mutex);
4752

4753
	mutex_lock(&zl_order_mutex);
4754 4755 4756 4757 4758 4759 4760
	if (write) {
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
			ret = -EINVAL;
			goto out;
		}
		strcpy(saved_string, (char *)table->data);
	}
4761
	ret = proc_dostring(table, write, buffer, length, ppos);
4762
	if (ret)
4763
		goto out;
4764 4765
	if (write) {
		int oldval = user_zonelist_order;
4766 4767 4768

		ret = __parse_numa_zonelist_order((char *)table->data);
		if (ret) {
4769 4770 4771
			/*
			 * bogus value.  restore saved string
			 */
4772
			strncpy((char *)table->data, saved_string,
4773 4774
				NUMA_ZONELIST_ORDER_LEN);
			user_zonelist_order = oldval;
4775 4776
		} else if (oldval != user_zonelist_order) {
			mutex_lock(&zonelists_mutex);
4777
			build_all_zonelists(NULL, NULL);
4778 4779
			mutex_unlock(&zonelists_mutex);
		}
4780
	}
4781 4782 4783
out:
	mutex_unlock(&zl_order_mutex);
	return ret;
4784 4785 4786
}


4787
#define MAX_NODE_LOAD (nr_online_nodes)
4788 4789
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4790
/**
4791
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4804
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4805
{
4806
	int n, val;
L
Linus Torvalds 已提交
4807
	int min_val = INT_MAX;
D
David Rientjes 已提交
4808
	int best_node = NUMA_NO_NODE;
4809
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4810

4811 4812 4813 4814 4815
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4816

4817
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
4818 4819 4820 4821 4822 4823 4824 4825

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

4826 4827 4828
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
4829
		/* Give preference to headless and unused nodes */
4830 4831
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

4850 4851 4852 4853 4854 4855 4856

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
L
Linus Torvalds 已提交
4857
{
4858
	int j;
L
Linus Torvalds 已提交
4859
	struct zonelist *zonelist;
4860

4861
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4862
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4863
		;
4864
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4865 4866
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4867 4868
}

4869 4870 4871 4872 4873 4874 4875 4876
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
	int j;
	struct zonelist *zonelist;

4877
	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4878
	j = build_zonelists_node(pgdat, zonelist, 0);
4879 4880
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4881 4882
}

4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */
static int node_order[MAX_NUMNODES];

static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
	int pos, j, node;
	int zone_type;		/* needs to be signed */
	struct zone *z;
	struct zonelist *zonelist;

4898
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4899 4900 4901 4902 4903
	pos = 0;
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
		for (j = 0; j < nr_nodes; j++) {
			node = node_order[j];
			z = &NODE_DATA(node)->node_zones[zone_type];
4904
			if (managed_zone(z)) {
4905 4906
				zoneref_set_zone(z,
					&zonelist->_zonerefs[pos++]);
4907
				check_highest_zone(zone_type);
4908 4909 4910
			}
		}
	}
4911 4912
	zonelist->_zonerefs[pos].zone = NULL;
	zonelist->_zonerefs[pos].zone_idx = 0;
4913 4914
}

4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
#if defined(CONFIG_64BIT)
/*
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 * penalty to every machine in case the specialised case applies. Default
 * to Node-ordering on 64-bit NUMA machines
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_NODE;
}
#else
/*
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 * by the kernel. If processes running on node 0 deplete the low memory zone
 * then reclaim will occur more frequency increasing stalls and potentially
 * be easier to OOM if a large percentage of the zone is under writeback or
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 * Hence, default to zone ordering on 32-bit.
 */
4934 4935 4936 4937
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_ZONE;
}
4938
#endif /* CONFIG_64BIT */
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949

static void set_zonelist_order(void)
{
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
		current_zonelist_order = default_zonelist_order();
	else
		current_zonelist_order = user_zonelist_order;
}

static void build_zonelists(pg_data_t *pgdat)
{
4950
	int i, node, load;
L
Linus Torvalds 已提交
4951
	nodemask_t used_mask;
4952 4953
	int local_node, prev_node;
	struct zonelist *zonelist;
4954
	unsigned int order = current_zonelist_order;
L
Linus Torvalds 已提交
4955 4956

	/* initialize zonelists */
4957
	for (i = 0; i < MAX_ZONELISTS; i++) {
L
Linus Torvalds 已提交
4958
		zonelist = pgdat->node_zonelists + i;
4959 4960
		zonelist->_zonerefs[0].zone = NULL;
		zonelist->_zonerefs[0].zone_idx = 0;
L
Linus Torvalds 已提交
4961 4962 4963 4964
	}

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
4965
	load = nr_online_nodes;
L
Linus Torvalds 已提交
4966 4967
	prev_node = local_node;
	nodes_clear(used_mask);
4968 4969

	memset(node_order, 0, sizeof(node_order));
4970
	i = 0;
4971

L
Linus Torvalds 已提交
4972 4973 4974 4975 4976 4977
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
4978 4979
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
4980 4981
			node_load[node] = load;

L
Linus Torvalds 已提交
4982 4983
		prev_node = node;
		load--;
4984 4985 4986
		if (order == ZONELIST_ORDER_NODE)
			build_zonelists_in_node_order(pgdat, node);
		else
4987
			node_order[i++] = node;	/* remember order */
4988
	}
L
Linus Torvalds 已提交
4989

4990 4991
	if (order == ZONELIST_ORDER_ZONE) {
		/* calculate node order -- i.e., DMA last! */
4992
		build_zonelists_in_zone_order(pgdat, i);
L
Linus Torvalds 已提交
4993
	}
4994 4995

	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
4996 4997
}

4998 4999 5000 5001 5002 5003 5004 5005 5006
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5007
	struct zoneref *z;
5008

5009
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5010
				   gfp_zone(GFP_KERNEL),
5011 5012
				   NULL);
	return z->zone->node;
5013 5014
}
#endif
5015

5016 5017
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5018 5019
#else	/* CONFIG_NUMA */

5020 5021 5022 5023 5024 5025
static void set_zonelist_order(void)
{
	current_zonelist_order = ZONELIST_ORDER_ZONE;
}

static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5026
{
5027
	int node, local_node;
5028 5029
	enum zone_type j;
	struct zonelist *zonelist;
L
Linus Torvalds 已提交
5030 5031 5032

	local_node = pgdat->node_id;

5033
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5034
	j = build_zonelists_node(pgdat, zonelist, 0);
L
Linus Torvalds 已提交
5035

5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5047
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
L
Linus Torvalds 已提交
5048
	}
5049 5050 5051
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5052
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5053 5054
	}

5055 5056
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
L
Linus Torvalds 已提交
5057 5058 5059 5060
}

#endif	/* CONFIG_NUMA */

5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5078
static void setup_zone_pageset(struct zone *zone);
5079

5080 5081 5082 5083 5084 5085
/*
 * Global mutex to protect against size modification of zonelists
 * as well as to serialize pageset setup for the new populated zone.
 */
DEFINE_MUTEX(zonelists_mutex);

5086
/* return values int ....just for stop_machine() */
5087
static int __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5088
{
5089
	int nid;
5090
	int cpu;
5091
	pg_data_t *self = data;
5092

5093 5094 5095
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5096 5097 5098 5099 5100

	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
	}

5101
	for_each_online_node(nid) {
5102 5103 5104
		pg_data_t *pgdat = NODE_DATA(nid);

		build_zonelists(pgdat);
5105
	}
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
5120
	for_each_possible_cpu(cpu) {
5121 5122
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
		if (cpu_online(cpu))
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
	}

5137 5138 5139
	return 0;
}

5140 5141 5142 5143 5144 5145 5146 5147
static noinline void __init
build_all_zonelists_init(void)
{
	__build_all_zonelists(NULL);
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5148 5149 5150
/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
5151 5152 5153 5154 5155
 *
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 * [we're only called with non-NULL zone through __meminit paths] and
 * (2) call of __init annotated helper build_all_zonelists_init
 * [protected by SYSTEM_BOOTING].
5156
 */
5157
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5158
{
5159 5160
	set_zonelist_order();

5161
	if (system_state == SYSTEM_BOOTING) {
5162
		build_all_zonelists_init();
5163
	} else {
5164
#ifdef CONFIG_MEMORY_HOTPLUG
5165 5166
		if (zone)
			setup_zone_pageset(zone);
5167
#endif
5168 5169
		/* we have to stop all cpus to guarantee there is no user
		   of zonelist */
5170
		stop_machine(__build_all_zonelists, pgdat, NULL);
5171 5172
		/* cpuset refresh routine should be here */
	}
5173
	vm_total_pages = nr_free_pagecache_pages();
5174 5175 5176 5177 5178 5179 5180
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5181
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5182 5183 5184 5185
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

J
Joe Perches 已提交
5186 5187 5188 5189 5190
	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
		nr_online_nodes,
		zonelist_order_name[current_zonelist_order],
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5191
#ifdef CONFIG_NUMA
5192
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5193
#endif
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198 5199 5200
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5201
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5202
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5203
{
5204
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5205
	unsigned long end_pfn = start_pfn + size;
5206
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5207
	unsigned long pfn;
5208
	unsigned long nr_initialised = 0;
5209 5210 5211
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5212

5213 5214 5215
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5216 5217 5218 5219 5220 5221 5222
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5223
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5224
		/*
5225 5226
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5227
		 */
5228 5229 5230
		if (context != MEMMAP_EARLY)
			goto not_early;

5231 5232 5233 5234 5235 5236 5237 5238 5239
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5240
			continue;
5241
		}
5242 5243 5244 5245
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5246 5247

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5265
			}
D
Dave Hansen 已提交
5266
		}
5267
#endif
5268

5269
not_early:
5270 5271 5272 5273 5274
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5275
		 * kernel allocations are made.
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5290 5291 5292
	}
}

5293
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5294
{
5295
	unsigned int order, t;
5296 5297
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5298 5299 5300 5301 5302 5303
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5304
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5305 5306
#endif

5307
static int zone_batchsize(struct zone *zone)
5308
{
5309
#ifdef CONFIG_MMU
5310 5311 5312 5313
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5314
	 * size of the zone.  But no more than 1/2 of a meg.
5315 5316 5317
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5318
	batch = zone->managed_pages / 1024;
5319 5320
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5321 5322 5323 5324 5325
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5326 5327 5328
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5329
	 *
5330 5331 5332 5333
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5334
	 */
5335
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5336

5337
	return batch;
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5355 5356
}

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5384
/* a companion to pageset_set_high() */
5385 5386
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5387
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5388 5389
}

5390
static void pageset_init(struct per_cpu_pageset *p)
5391 5392
{
	struct per_cpu_pages *pcp;
5393
	int migratetype;
5394

5395 5396
	memset(p, 0, sizeof(*p));

5397
	pcp = &p->pcp;
5398
	pcp->count = 0;
5399 5400
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5401 5402
}

5403 5404 5405 5406 5407 5408
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5409
/*
5410
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5411 5412
 * to the value high for the pageset p.
 */
5413
static void pageset_set_high(struct per_cpu_pageset *p,
5414 5415
				unsigned long high)
{
5416 5417 5418
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5419

5420
	pageset_update(&p->pcp, high, batch);
5421 5422
}

5423 5424
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5425 5426
{
	if (percpu_pagelist_fraction)
5427
		pageset_set_high(pcp,
5428 5429 5430 5431 5432 5433
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5434 5435 5436 5437 5438 5439 5440 5441
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5442
static void __meminit setup_zone_pageset(struct zone *zone)
5443 5444 5445
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5446 5447
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5448 5449
}

5450
/*
5451 5452
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5453
 */
5454
void __init setup_per_cpu_pageset(void)
5455
{
5456
	struct pglist_data *pgdat;
5457
	struct zone *zone;
5458

5459 5460
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5461 5462 5463 5464

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5465 5466
}

5467
static __meminit void zone_pcp_init(struct zone *zone)
5468
{
5469 5470 5471 5472 5473 5474
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5475

5476
	if (populated_zone(zone))
5477 5478 5479
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5480 5481
}

5482
int __meminit init_currently_empty_zone(struct zone *zone,
5483
					unsigned long zone_start_pfn,
5484
					unsigned long size)
5485 5486
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5487

5488 5489 5490 5491
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5492 5493 5494 5495 5496 5497
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5498
	zone_init_free_lists(zone);
5499
	zone->initialized = 1;
5500 5501

	return 0;
5502 5503
}

T
Tejun Heo 已提交
5504
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5505
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5506

5507 5508 5509
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5510 5511
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5512
{
5513
	unsigned long start_pfn, end_pfn;
5514
	int nid;
5515

5516 5517
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5518

5519 5520
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5521 5522 5523
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5524 5525 5526
	}

	return nid;
5527 5528 5529 5530
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5531
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5532
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5533
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5534
 *
5535 5536 5537
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5538
 */
5539
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5540
{
5541 5542
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5543

5544 5545 5546
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5547

5548
		if (start_pfn < end_pfn)
5549 5550 5551
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5552 5553 5554
	}
}

5555 5556
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5557
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5558
 *
5559 5560
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5561 5562 5563
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5564 5565
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5566

5567 5568
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5569 5570 5571 5572
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5573 5574 5575
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5576 5577
 *
 * It returns the start and end page frame of a node based on information
5578
 * provided by memblock_set_node(). If called for a node
5579
 * with no available memory, a warning is printed and the start and end
5580
 * PFNs will be 0.
5581
 */
5582
void __meminit get_pfn_range_for_nid(unsigned int nid,
5583 5584
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5585
	unsigned long this_start_pfn, this_end_pfn;
5586
	int i;
5587

5588 5589 5590
	*start_pfn = -1UL;
	*end_pfn = 0;

5591 5592 5593
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5594 5595
	}

5596
	if (*start_pfn == -1UL)
5597 5598 5599
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5600 5601 5602 5603 5604
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5605
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5623
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5624 5625 5626 5627 5628 5629 5630
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5631
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5646 5647 5648 5649 5650 5651
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5652 5653 5654 5655 5656 5657
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5658 5659 5660 5661
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5662
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5663
					unsigned long zone_type,
5664 5665
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5666 5667
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5668 5669
					unsigned long *ignored)
{
5670
	/* When hotadd a new node from cpu_up(), the node should be empty */
5671 5672 5673
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5674
	/* Get the start and end of the zone */
5675 5676
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5677 5678
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5679
				zone_start_pfn, zone_end_pfn);
5680 5681

	/* Check that this node has pages within the zone's required range */
5682
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5683 5684 5685
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5686 5687
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5688 5689

	/* Return the spanned pages */
5690
	return *zone_end_pfn - *zone_start_pfn;
5691 5692 5693 5694
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5695
 * then all holes in the requested range will be accounted for.
5696
 */
5697
unsigned long __meminit __absent_pages_in_range(int nid,
5698 5699 5700
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5701 5702 5703
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5704

5705 5706 5707 5708
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5709
	}
5710
	return nr_absent;
5711 5712 5713 5714 5715 5716 5717
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5718
 * It returns the number of pages frames in memory holes within a range.
5719 5720 5721 5722 5723 5724 5725 5726
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5727
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5728
					unsigned long zone_type,
5729 5730
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5731 5732
					unsigned long *ignored)
{
5733 5734
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5735
	unsigned long zone_start_pfn, zone_end_pfn;
5736
	unsigned long nr_absent;
5737

5738
	/* When hotadd a new node from cpu_up(), the node should be empty */
5739 5740 5741
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5742 5743
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5744

M
Mel Gorman 已提交
5745 5746 5747
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5748 5749 5750 5751 5752 5753 5754
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5772 5773 5774 5775
		}
	}

	return nr_absent;
5776
}
5777

T
Tejun Heo 已提交
5778
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5779
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5780
					unsigned long zone_type,
5781 5782
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5783 5784
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5785 5786
					unsigned long *zones_size)
{
5787 5788 5789 5790 5791 5792 5793 5794
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5795 5796 5797
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5798
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5799
						unsigned long zone_type,
5800 5801
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5802 5803 5804 5805 5806 5807 5808
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5809

T
Tejun Heo 已提交
5810
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5811

5812
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5813 5814 5815 5816
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5817
{
5818
	unsigned long realtotalpages = 0, totalpages = 0;
5819 5820
	enum zone_type i;

5821 5822
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5823
		unsigned long zone_start_pfn, zone_end_pfn;
5824
		unsigned long size, real_size;
5825

5826 5827 5828
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5829 5830
						  &zone_start_pfn,
						  &zone_end_pfn,
5831 5832
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5833 5834
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5835 5836 5837 5838
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5839 5840 5841 5842 5843 5844 5845 5846
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5847 5848 5849 5850 5851
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5852 5853 5854
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5855 5856
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5857 5858 5859
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5860
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5861 5862 5863
{
	unsigned long usemapsize;

5864
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5865 5866
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5867 5868 5869 5870 5871 5872 5873
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5874 5875 5876
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5877
{
5878
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5879
	zone->pageblock_flags = NULL;
5880
	if (usemapsize)
5881 5882 5883
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
5884 5885
}
#else
5886 5887
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
5888 5889
#endif /* CONFIG_SPARSEMEM */

5890
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5891

5892
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5893
void __paginginit set_pageblock_order(void)
5894
{
5895 5896
	unsigned int order;

5897 5898 5899 5900
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

5901 5902 5903 5904 5905
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

5906 5907
	/*
	 * Assume the largest contiguous order of interest is a huge page.
5908 5909
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
5910 5911 5912 5913 5914
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5915 5916
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5917 5918 5919
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
5920
 */
5921
void __paginginit set_pageblock_order(void)
5922 5923
{
}
5924 5925 5926

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
5937
	 * populated regions may not be naturally aligned on page boundary.
5938 5939 5940 5941 5942 5943 5944 5945 5946
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
5947 5948 5949 5950 5951
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
5952 5953
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
5954
 */
5955
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
5956
{
5957
	enum zone_type j;
5958
	int nid = pgdat->node_id;
5959
	int ret;
L
Linus Torvalds 已提交
5960

5961
	pgdat_resize_init(pgdat);
5962 5963 5964 5965
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
5966 5967 5968 5969 5970
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
5971
#endif
L
Linus Torvalds 已提交
5972
	init_waitqueue_head(&pgdat->kswapd_wait);
5973
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5974 5975 5976
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
5977
	pgdat_page_ext_init(pgdat);
5978
	spin_lock_init(&pgdat->lru_lock);
5979
	lruvec_init(node_lruvec(pgdat));
5980

L
Linus Torvalds 已提交
5981 5982
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
5983
		unsigned long size, realsize, freesize, memmap_pages;
5984
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
5985

5986 5987
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
5988

5989
		/*
5990
		 * Adjust freesize so that it accounts for how much memory
5991 5992 5993
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
5994
		memmap_pages = calc_memmap_size(size, realsize);
5995 5996 5997 5998 5999 6000 6001 6002
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6003
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6004 6005
					zone_names[j], memmap_pages, freesize);
		}
6006

6007
		/* Account for reserved pages */
6008 6009
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6010
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6011
					zone_names[0], dma_reserve);
6012 6013
		}

6014
		if (!is_highmem_idx(j))
6015
			nr_kernel_pages += freesize;
6016 6017 6018
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6019
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6020

6021 6022 6023 6024 6025 6026
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6027
#ifdef CONFIG_NUMA
6028
		zone->node = nid;
6029
#endif
L
Linus Torvalds 已提交
6030
		zone->name = zone_names[j];
6031
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6032
		spin_lock_init(&zone->lock);
6033
		zone_seqlock_init(zone);
6034
		zone_pcp_init(zone);
6035

L
Linus Torvalds 已提交
6036 6037 6038
		if (!size)
			continue;

6039
		set_pageblock_order();
6040
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6041
		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6042
		BUG_ON(ret);
6043
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6044 6045 6046
	}
}

6047
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6048
{
6049
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6050 6051
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6052 6053 6054 6055
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6056
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6057 6058
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6059 6060
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6061
		unsigned long size, end;
A
Andy Whitcroft 已提交
6062 6063
		struct page *map;

6064 6065 6066 6067 6068
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6069
		end = pgdat_end_pfn(pgdat);
6070 6071
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6072 6073
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6074 6075
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6076
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6077
	}
6078
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6079 6080 6081
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6082
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6083
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6084
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6085
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6086
			mem_map -= offset;
T
Tejun Heo 已提交
6087
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6088
	}
L
Linus Torvalds 已提交
6089
#endif
A
Andy Whitcroft 已提交
6090
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6091 6092
}

6093 6094
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6095
{
6096
	pg_data_t *pgdat = NODE_DATA(nid);
6097 6098
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6099

6100
	/* pg_data_t should be reset to zero when it's allocated */
6101
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6102

6103
	reset_deferred_meminit(pgdat);
L
Linus Torvalds 已提交
6104 6105
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6106
	pgdat->per_cpu_nodestats = NULL;
6107 6108
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6109
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6110 6111
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6112 6113
#else
	start_pfn = node_start_pfn;
6114 6115 6116
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6117 6118

	alloc_node_mem_map(pgdat);
6119 6120 6121 6122 6123
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6124

6125
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6126 6127
}

T
Tejun Heo 已提交
6128
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6129 6130 6131 6132 6133

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6134
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6135
{
6136
	unsigned int highest;
M
Miklos Szeredi 已提交
6137

6138
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6139 6140 6141 6142
	nr_node_ids = highest + 1;
}
#endif

6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6165
	unsigned long start, end, mask;
6166
	int last_nid = -1;
6167
	int i, nid;
6168

6169
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6193
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6194
static unsigned long __init find_min_pfn_for_node(int nid)
6195
{
6196
	unsigned long min_pfn = ULONG_MAX;
6197 6198
	unsigned long start_pfn;
	int i;
6199

6200 6201
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6202

6203
	if (min_pfn == ULONG_MAX) {
6204
		pr_warn("Could not find start_pfn for node %d\n", nid);
6205 6206 6207 6208
		return 0;
	}

	return min_pfn;
6209 6210 6211 6212 6213 6214
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6215
 * memblock_set_node().
6216 6217 6218 6219 6220 6221
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6222 6223 6224
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6225
 * Populate N_MEMORY for calculating usable_nodes.
6226
 */
A
Adrian Bunk 已提交
6227
static unsigned long __init early_calculate_totalpages(void)
6228 6229
{
	unsigned long totalpages = 0;
6230 6231 6232 6233 6234
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6235

6236 6237
		totalpages += pages;
		if (pages)
6238
			node_set_state(nid, N_MEMORY);
6239
	}
6240
	return totalpages;
6241 6242
}

M
Mel Gorman 已提交
6243 6244 6245 6246 6247 6248
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6249
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6250 6251 6252 6253
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6254
	/* save the state before borrow the nodemask */
6255
	nodemask_t saved_node_state = node_states[N_MEMORY];
6256
	unsigned long totalpages = early_calculate_totalpages();
6257
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6258
	struct memblock_region *r;
6259 6260 6261 6262 6263 6264 6265 6266 6267

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6268 6269
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6270 6271
				continue;

E
Emil Medve 已提交
6272
			nid = r->nid;
6273

E
Emil Medve 已提交
6274
			usable_startpfn = PFN_DOWN(r->base);
6275 6276 6277 6278 6279 6280 6281
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6282

6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6313
	/*
6314
	 * If movablecore=nn[KMG] was specified, calculate what size of
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6330
		required_movablecore = min(totalpages, required_movablecore);
6331 6332 6333 6334 6335
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6336 6337 6338 6339 6340
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6341
		goto out;
M
Mel Gorman 已提交
6342 6343 6344 6345 6346 6347 6348

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6349
	for_each_node_state(nid, N_MEMORY) {
6350 6351
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6368
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6369 6370
			unsigned long size_pages;

6371
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6414
			 * satisfied
M
Mel Gorman 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6428
	 * satisfied
M
Mel Gorman 已提交
6429 6430 6431 6432 6433
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6434
out2:
M
Mel Gorman 已提交
6435 6436 6437 6438
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6439

6440
out:
6441
	/* restore the node_state */
6442
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6443 6444
}

6445 6446
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6447 6448 6449
{
	enum zone_type zone_type;

6450 6451 6452 6453
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6454
		struct zone *zone = &pgdat->node_zones[zone_type];
6455
		if (populated_zone(zone)) {
6456 6457 6458 6459
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6460 6461
			break;
		}
6462 6463 6464
	}
}

6465 6466
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6467
 * @max_zone_pfn: an array of max PFNs for each zone
6468 6469
 *
 * This will call free_area_init_node() for each active node in the system.
6470
 * Using the page ranges provided by memblock_set_node(), the size of each
6471 6472 6473 6474 6475 6476 6477 6478 6479
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6480 6481
	unsigned long start_pfn, end_pfn;
	int i, nid;
6482

6483 6484 6485 6486 6487
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6488 6489 6490 6491

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6492 6493
		if (i == ZONE_MOVABLE)
			continue;
6494 6495 6496 6497 6498 6499

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6500
	}
M
Mel Gorman 已提交
6501 6502 6503

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6504
	find_zone_movable_pfns_for_nodes();
6505 6506

	/* Print out the zone ranges */
6507
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6508 6509 6510
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6511
		pr_info("  %-8s ", zone_names[i]);
6512 6513
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6514
			pr_cont("empty\n");
6515
		else
6516 6517 6518 6519
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6520
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6521 6522 6523
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6524
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6525 6526
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6527 6528
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6529
	}
6530

6531
	/* Print out the early node map */
6532
	pr_info("Early memory node ranges\n");
6533
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6534 6535 6536
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6537 6538

	/* Initialise every node */
6539
	mminit_verify_pageflags_layout();
6540
	setup_nr_node_ids();
6541 6542
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6543
		free_area_init_node(nid, NULL,
6544
				find_min_pfn_for_node(nid), NULL);
6545 6546 6547

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6548 6549
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6550 6551
	}
}
M
Mel Gorman 已提交
6552

6553
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6554 6555 6556 6557 6558 6559
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6560
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6561

6562
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6563 6564 6565 6566
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6567

6568 6569 6570 6571 6572 6573
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6574 6575 6576 6577 6578 6579
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6592
early_param("kernelcore", cmdline_parse_kernelcore);
6593
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6594

T
Tejun Heo 已提交
6595
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6596

6597 6598 6599 6600 6601
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6602 6603 6604 6605
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6606 6607
	spin_unlock(&managed_page_count_lock);
}
6608
EXPORT_SYMBOL(adjust_managed_page_count);
6609

6610
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6611
{
6612 6613
	void *pos;
	unsigned long pages = 0;
6614

6615 6616 6617
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6618
		if ((unsigned int)poison <= 0xFF)
6619 6620
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6621 6622 6623
	}

	if (pages && s)
6624 6625
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6626 6627 6628

	return pages;
}
6629
EXPORT_SYMBOL(free_reserved_area);
6630

6631 6632 6633 6634 6635
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6636
	page_zone(page)->managed_pages++;
6637 6638 6639 6640
	totalhigh_pages++;
}
#endif

6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6663 6664 6665 6666
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6677
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6678
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6679
		", %luK highmem"
6680
#endif
J
Joe Perches 已提交
6681 6682 6683 6684 6685 6686 6687
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6688
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6689
		totalhigh_pages << (PAGE_SHIFT - 10),
6690
#endif
J
Joe Perches 已提交
6691
		str ? ", " : "", str ? str : "");
6692 6693
}

6694
/**
6695 6696
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6697
 *
6698
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6699 6700
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6701 6702 6703
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6704 6705 6706 6707 6708 6709
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6710 6711
void __init free_area_init(unsigned long *zones_size)
{
6712
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6713 6714 6715
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

6716
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6717 6718
{

6719 6720
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6721

6722 6723 6724 6725 6726 6727 6728
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6729

6730 6731 6732 6733 6734 6735 6736 6737 6738
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6739 6740 6741 6742
}

void __init page_alloc_init(void)
{
6743 6744 6745 6746 6747 6748
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6749 6750
}

6751
/*
6752
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6753 6754 6755 6756 6757 6758
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6759
	enum zone_type i, j;
6760 6761

	for_each_online_pgdat(pgdat) {
6762 6763 6764

		pgdat->totalreserve_pages = 0;

6765 6766
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6767
			long max = 0;
6768 6769 6770 6771 6772 6773 6774

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6775 6776
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6777

6778 6779
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6780

6781
			pgdat->totalreserve_pages += max;
6782

6783 6784 6785 6786 6787 6788
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6789 6790
/*
 * setup_per_zone_lowmem_reserve - called whenever
6791
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6792 6793 6794 6795 6796 6797
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6798
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6799

6800
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6801 6802
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6803
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6804 6805 6806

			zone->lowmem_reserve[j] = 0;

6807 6808
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6809 6810
				struct zone *lower_zone;

6811 6812
				idx--;

L
Linus Torvalds 已提交
6813 6814 6815 6816
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6817
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6818
					sysctl_lowmem_reserve_ratio[idx];
6819
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6820 6821 6822
			}
		}
	}
6823 6824 6825

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6826 6827
}

6828
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6838
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6839 6840 6841
	}

	for_each_zone(zone) {
6842 6843
		u64 tmp;

6844
		spin_lock_irqsave(&zone->lock, flags);
6845
		tmp = (u64)pages_min * zone->managed_pages;
6846
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6847 6848
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6849 6850 6851 6852
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6853
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6854
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6855
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6856
			 */
6857
			unsigned long min_pages;
L
Linus Torvalds 已提交
6858

6859
			min_pages = zone->managed_pages / 1024;
6860
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6861
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
6862
		} else {
N
Nick Piggin 已提交
6863 6864
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
6865 6866
			 * proportionate to the zone's size.
			 */
6867
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
6868 6869
		}

6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6881

6882
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
6883
	}
6884 6885 6886

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6887 6888
}

6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
	mutex_lock(&zonelists_mutex);
	__setup_per_zone_wmarks();
	mutex_unlock(&zonelists_mutex);
}

L
Linus Torvalds 已提交
6903 6904 6905 6906 6907 6908 6909
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
6910
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
6927
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
6928 6929
{
	unsigned long lowmem_kbytes;
6930
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
6931 6932

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
6945
	setup_per_zone_wmarks();
6946
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
6947
	setup_per_zone_lowmem_reserve();
6948 6949 6950 6951 6952 6953

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
6954 6955
	return 0;
}
6956
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
6957 6958

/*
6959
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
6960 6961 6962
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
6963
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6964
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
6965
{
6966 6967 6968 6969 6970 6971
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

6972 6973
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
6974
		setup_per_zone_wmarks();
6975
	}
L
Linus Torvalds 已提交
6976 6977 6978
	return 0;
}

6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

6994
#ifdef CONFIG_NUMA
6995
static void setup_min_unmapped_ratio(void)
6996
{
6997
	pg_data_t *pgdat;
6998 6999
	struct zone *zone;

7000
	for_each_online_pgdat(pgdat)
7001
		pgdat->min_unmapped_pages = 0;
7002

7003
	for_each_zone(zone)
7004
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7005 7006
				sysctl_min_unmapped_ratio) / 100;
}
7007

7008 7009

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7010
	void __user *buffer, size_t *length, loff_t *ppos)
7011 7012 7013
{
	int rc;

7014
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7015 7016 7017
	if (rc)
		return rc;

7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7028 7029 7030
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7031
	for_each_zone(zone)
7032
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7033
				sysctl_min_slab_ratio) / 100;
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7047 7048
	return 0;
}
7049 7050
#endif

L
Linus Torvalds 已提交
7051 7052 7053 7054 7055 7056
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7057
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7058 7059
 * if in function of the boot time zone sizes.
 */
7060
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7061
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7062
{
7063
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7064 7065 7066 7067
	setup_per_zone_lowmem_reserve();
	return 0;
}

7068 7069
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7070 7071
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7072
 */
7073
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7074
	void __user *buffer, size_t *length, loff_t *ppos)
7075 7076
{
	struct zone *zone;
7077
	int old_percpu_pagelist_fraction;
7078 7079
	int ret;

7080 7081 7082
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7083
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7098

7099
	for_each_populated_zone(zone) {
7100 7101
		unsigned int cpu;

7102
		for_each_possible_cpu(cpu)
7103 7104
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7105
	}
7106
out:
7107
	mutex_unlock(&pcp_batch_high_lock);
7108
	return ret;
7109 7110
}

7111
#ifdef CONFIG_NUMA
7112
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

L
Linus Torvalds 已提交
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7148 7149
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7150
{
7151
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7152 7153 7154 7155 7156 7157
	unsigned long log2qty, size;
	void *table = NULL;

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7158
		numentries = nr_kernel_pages;
7159
		numentries -= arch_reserved_kernel_pages();
7160 7161 7162 7163

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7164 7165 7166 7167 7168 7169

		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7170 7171

		/* Make sure we've got at least a 0-order allocation.. */
7172 7173 7174 7175 7176 7177 7178 7179
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7180
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7181
	}
7182
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7183 7184 7185 7186 7187 7188

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7189
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7190

7191 7192
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7193 7194 7195
	if (numentries > max)
		numentries = max;

7196
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7197 7198 7199 7200

	do {
		size = bucketsize << log2qty;
		if (flags & HASH_EARLY)
7201
			table = memblock_virt_alloc_nopanic(size, 0);
L
Linus Torvalds 已提交
7202 7203 7204
		else if (hashdist)
			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
		else {
7205 7206
			/*
			 * If bucketsize is not a power-of-two, we may free
7207 7208
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7209
			 */
7210
			if (get_order(size) < MAX_ORDER) {
7211
				table = alloc_pages_exact(size, GFP_ATOMIC);
7212 7213
				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
			}
L
Linus Torvalds 已提交
7214 7215 7216 7217 7218 7219
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7220 7221
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7222 7223 7224 7225 7226 7227 7228 7229

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7230

K
KAMEZAWA Hiroyuki 已提交
7231
/*
7232 7233 7234
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7235
 * PageLRU check without isolation or lru_lock could race so that
7236 7237 7238
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7239
 */
7240 7241
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
			 bool skip_hwpoisoned_pages)
7242 7243
{
	unsigned long pfn, iter, found;
7244 7245
	int mt;

7246 7247
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7248
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7249 7250
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7251
		return false;
7252 7253
	mt = get_pageblock_migratetype(page);
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7254
		return false;
7255 7256 7257 7258 7259

	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7260
		if (!pfn_valid_within(check))
7261
			continue;
7262

7263
		page = pfn_to_page(check);
7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274

		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7275 7276 7277 7278
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7279
		 * because their page->_refcount is zero at all time.
7280
		 */
7281
		if (!page_ref_count(page)) {
7282 7283 7284 7285
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7286

7287 7288 7289 7290 7291 7292 7293
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7294 7295 7296
		if (__PageMovable(page))
			continue;

7297 7298 7299
		if (!PageLRU(page))
			found++;
		/*
7300 7301 7302
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7313
			return true;
7314
	}
7315
	return false;
7316 7317 7318 7319
}

bool is_pageblock_removable_nolock(struct page *page)
{
7320 7321
	struct zone *zone;
	unsigned long pfn;
7322 7323 7324 7325 7326

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7327 7328
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7329
	 */
7330 7331 7332 7333 7334
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7335
	if (!zone_spans_pfn(zone, pfn))
7336 7337
		return false;

7338
	return !has_unmovable_pages(zone, page, 0, true);
K
KAMEZAWA Hiroyuki 已提交
7339
}
K
KAMEZAWA Hiroyuki 已提交
7340

7341
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7356 7357
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7358 7359
{
	/* This function is based on compact_zone() from compaction.c. */
7360
	unsigned long nr_reclaimed;
7361 7362 7363 7364
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7365
	migrate_prep();
7366

7367
	while (pfn < end || !list_empty(&cc->migratepages)) {
7368 7369 7370 7371 7372
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7373 7374
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7375
			pfn = isolate_migratepages_range(cc, pfn, end);
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7386 7387 7388
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7389

7390
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7391
				    NULL, 0, cc->mode, MR_CMA);
7392
	}
7393 7394 7395 7396 7397
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7398 7399 7400 7401 7402 7403
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7404 7405 7406 7407
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7408
 * @gfp_mask:	GFP mask to use during compaction
7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7421
int alloc_contig_range(unsigned long start, unsigned long end,
7422
		       unsigned migratetype, gfp_t gfp_mask)
7423 7424
{
	unsigned long outer_start, outer_end;
7425 7426
	unsigned int order;
	int ret = 0;
7427

7428 7429 7430 7431
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7432
		.mode = MIGRATE_SYNC,
7433
		.ignore_skip_hint = true,
7434
		.gfp_mask = memalloc_noio_flags(gfp_mask),
7435 7436 7437
	};
	INIT_LIST_HEAD(&cc.migratepages);

7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7463 7464
				       pfn_max_align_up(end), migratetype,
				       false);
7465
	if (ret)
7466
		return ret;
7467

7468 7469 7470 7471
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7472
	ret = __alloc_contig_migrate_range(&cc, start, end);
7473
	if (ret && ret != -EBUSY)
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7494
	drain_all_pages(cc.zone);
7495 7496 7497 7498 7499

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7500 7501
			outer_start = start;
			break;
7502 7503 7504 7505
		}
		outer_start &= ~0UL << order;
	}

7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7519
	/* Make sure the range is really isolated. */
7520
	if (test_pages_isolated(outer_start, end, false)) {
7521 7522
		pr_info("%s: [%lx, %lx) PFNs busy\n",
			__func__, outer_start, end);
7523 7524 7525 7526
		ret = -EBUSY;
		goto done;
	}

7527
	/* Grab isolated pages from freelists. */
7528
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7542
				pfn_max_align_up(end), migratetype);
7543 7544 7545 7546 7547
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7548 7549 7550 7551 7552 7553 7554 7555 7556
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7557 7558 7559
}
#endif

7560
#ifdef CONFIG_MEMORY_HOTPLUG
7561 7562 7563 7564
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7565 7566
void __meminit zone_pcp_update(struct zone *zone)
{
7567
	unsigned cpu;
7568
	mutex_lock(&pcp_batch_high_lock);
7569
	for_each_possible_cpu(cpu)
7570 7571
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7572
	mutex_unlock(&pcp_batch_high_lock);
7573 7574 7575
}
#endif

7576 7577 7578
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7579 7580
	int cpu;
	struct per_cpu_pageset *pset;
7581 7582 7583 7584

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7585 7586 7587 7588
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7589 7590 7591 7592 7593 7594
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7595
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7596
/*
7597 7598
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7599 7600 7601 7602 7603 7604
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7605
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7633 7634 7635 7636
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7637 7638
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7650 7651 7652 7653 7654 7655

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7656
	unsigned int order;
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}