page_alloc.c 213.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kmemcheck.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39 40
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
41
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
42 43
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
44
#include <linux/vmstat.h>
45
#include <linux/mempolicy.h>
46
#include <linux/memremap.h>
47
#include <linux/stop_machine.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
69

70
#include <asm/sections.h>
L
Linus Torvalds 已提交
71
#include <asm/tlbflush.h>
72
#include <asm/div64.h>
L
Linus Torvalds 已提交
73 74
#include "internal.h"

75 76
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
77
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
78

79 80 81 82 83
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

84 85 86 87 88 89 90 91 92
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93
int _node_numa_mem_[MAX_NUMNODES];
94 95
#endif

96 97 98 99
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

100
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101
volatile unsigned long latent_entropy __latent_entropy;
102 103 104
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
105
/*
106
 * Array of node states.
L
Linus Torvalds 已提交
107
 */
108 109 110 111 112 113 114
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 116
#endif
	[N_MEMORY] = { { [0] = 1UL } },
117 118 119 120 121
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

122 123 124
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

125
unsigned long totalram_pages __read_mostly;
126
unsigned long totalreserve_pages __read_mostly;
127
unsigned long totalcma_pages __read_mostly;
128

129
int percpu_pagelist_fraction;
130
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

150 151 152 153 154 155 156 157 158
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
159 160 161 162

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
163 164
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
165 166 167 168
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
169 170
}

171
void pm_restrict_gfp_mask(void)
172 173
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
174 175
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
176
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
177
}
178 179 180

bool pm_suspended_storage(void)
{
181
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 183 184
		return false;
	return true;
}
185 186
#endif /* CONFIG_PM_SLEEP */

187
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188
unsigned int pageblock_order __read_mostly;
189 190
#endif

191
static void __free_pages_ok(struct page *page, unsigned int order);
192

L
Linus Torvalds 已提交
193 194 195 196 197 198
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
199
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
200 201 202
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
203
 */
204
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
205
#ifdef CONFIG_ZONE_DMA
206
	 256,
207
#endif
208
#ifdef CONFIG_ZONE_DMA32
209
	 256,
210
#endif
211
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
212
	 32,
213
#endif
M
Mel Gorman 已提交
214
	 32,
215
};
L
Linus Torvalds 已提交
216 217 218

EXPORT_SYMBOL(totalram_pages);

219
static char * const zone_names[MAX_NR_ZONES] = {
220
#ifdef CONFIG_ZONE_DMA
221
	 "DMA",
222
#endif
223
#ifdef CONFIG_ZONE_DMA32
224
	 "DMA32",
225
#endif
226
	 "Normal",
227
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
228
	 "HighMem",
229
#endif
M
Mel Gorman 已提交
230
	 "Movable",
231 232 233
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
234 235
};

236 237 238 239 240 241 242 243 244 245 246 247 248
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

249 250 251 252 253 254
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
255 256 257
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
258 259
};

L
Linus Torvalds 已提交
260
int min_free_kbytes = 1024;
261
int user_min_free_kbytes = -1;
262
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
263

264 265
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
266
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
267

T
Tejun Heo 已提交
268 269 270 271 272 273
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
274
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
275 276 277 278 279

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
280

M
Miklos Szeredi 已提交
281 282
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
283
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
284
EXPORT_SYMBOL(nr_node_ids);
285
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
286 287
#endif

288 289
int page_group_by_mobility_disabled __read_mostly;

290 291 292
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	unsigned long max_initialise;
	unsigned long reserved_lowmem;

	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));

	/*
	 * Compensate the all the memblock reservations (e.g. crash kernel)
	 * from the initial estimation to make sure we will initialize enough
	 * memory to boot.
	 */
	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
			pgdat->node_start_pfn + max_initialise);
	max_initialise += reserved_lowmem;

	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
313 314 315 316
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
317
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318
{
319 320 321
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
339
	if ((*nr_initialised > pgdat->static_init_size) &&
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
465

466
void set_pageblock_migratetype(struct page *page, int migratetype)
467
{
468 469
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
470 471
		migratetype = MIGRATE_UNMOVABLE;

472 473 474 475
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
476
#ifdef CONFIG_DEBUG_VM
477
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
478
{
479 480 481
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
482
	unsigned long sp, start_pfn;
483

484 485
	do {
		seq = zone_span_seqbegin(zone);
486 487
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
488
		if (!zone_spans_pfn(zone, pfn))
489 490 491
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

492
	if (ret)
493 494 495
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
496

497
	return ret;
498 499 500 501
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
502
	if (!pfn_valid_within(page_to_pfn(page)))
503
		return 0;
L
Linus Torvalds 已提交
504
	if (zone != page_zone(page))
505 506 507 508 509 510 511
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
512
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
513 514
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
515
		return 1;
516 517 518
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
519 520
	return 0;
}
N
Nick Piggin 已提交
521
#else
522
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
523 524 525 526 527
{
	return 0;
}
#endif

528 529
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
530
{
531 532 533 534 535 536 537 538 539 540 541 542 543 544
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
545
			pr_alert(
546
			      "BUG: Bad page state: %lu messages suppressed\n",
547 548 549 550 551 552 553 554
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

555
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
556
		current->comm, page_to_pfn(page));
557 558 559 560 561
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
562
	dump_page_owner(page);
563

564
	print_modules();
L
Linus Torvalds 已提交
565
	dump_stack();
566
out:
567
	/* Leave bad fields for debug, except PageBuddy could make trouble */
568
	page_mapcount_reset(page); /* remove PageBuddy */
569
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
570 571 572 573 574
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
575
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
576
 *
577 578
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
579
 *
580 581
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
582
 *
583
 * The first tail page's ->compound_order holds the order of allocation.
584
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
585
 */
586

587
void free_compound_page(struct page *page)
588
{
589
	__free_pages_ok(page, compound_order(page));
590 591
}

592
void prep_compound_page(struct page *page, unsigned int order)
593 594 595 596
{
	int i;
	int nr_pages = 1 << order;

597
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
598 599 600 601
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
602
		set_page_count(p, 0);
603
		p->mapping = TAIL_MAPPING;
604
		set_compound_head(p, page);
605
	}
606
	atomic_set(compound_mapcount_ptr(page), -1);
607 608
}

609 610
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
611 612
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
613
EXPORT_SYMBOL(_debug_pagealloc_enabled);
614 615
bool _debug_guardpage_enabled __read_mostly;

616 617 618 619
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
620
	return kstrtobool(buf, &_debug_pagealloc_enabled);
621 622 623
}
early_param("debug_pagealloc", early_debug_pagealloc);

624 625
static bool need_debug_guardpage(void)
{
626 627 628 629
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

630 631 632
	if (!debug_guardpage_minorder())
		return false;

633 634 635 636 637
	return true;
}

static void init_debug_guardpage(void)
{
638 639 640
	if (!debug_pagealloc_enabled())
		return;

641 642 643
	if (!debug_guardpage_minorder())
		return;

644 645 646 647 648 649 650
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
651 652 653 654 655 656

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
657
		pr_err("Bad debug_guardpage_minorder value\n");
658 659 660
		return 0;
	}
	_debug_guardpage_minorder = res;
661
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
662 663
	return 0;
}
664
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
665

666
static inline bool set_page_guard(struct zone *zone, struct page *page,
667
				unsigned int order, int migratetype)
668
{
669 670 671
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
672 673 674 675
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
676 677

	page_ext = lookup_page_ext(page);
678
	if (unlikely(!page_ext))
679
		return false;
680

681 682
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

683 684 685 686
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
687 688

	return true;
689 690
}

691 692
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
693
{
694 695 696 697 698 699
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
700 701 702
	if (unlikely(!page_ext))
		return;

703 704
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

705 706 707
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
708 709
}
#else
710
struct page_ext_operations debug_guardpage_ops;
711 712
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
713 714
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
715 716
#endif

717
static inline void set_page_order(struct page *page, unsigned int order)
718
{
H
Hugh Dickins 已提交
719
	set_page_private(page, order);
720
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
721 722 723 724
}

static inline void rmv_page_order(struct page *page)
{
725
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
726
	set_page_private(page, 0);
L
Linus Torvalds 已提交
727 728 729 730 731
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
732
 * (a) the buddy is not in a hole (check before calling!) &&
733
 * (b) the buddy is in the buddy system &&
734 735
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
736
 *
737 738 739 740
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
741
 *
742
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
743
 */
744
static inline int page_is_buddy(struct page *page, struct page *buddy,
745
							unsigned int order)
L
Linus Torvalds 已提交
746
{
747
	if (page_is_guard(buddy) && page_order(buddy) == order) {
748 749 750
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

751 752
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

753 754 755
		return 1;
	}

756
	if (PageBuddy(buddy) && page_order(buddy) == order) {
757 758 759 760 761 762 763 764
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

765 766
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

767
		return 1;
768
	}
769
	return 0;
L
Linus Torvalds 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
785 786 787
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
788
 * So when we are allocating or freeing one, we can derive the state of the
789 790
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
791
 * If a block is freed, and its buddy is also free, then this
792
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
793
 *
794
 * -- nyc
L
Linus Torvalds 已提交
795 796
 */

N
Nick Piggin 已提交
797
static inline void __free_one_page(struct page *page,
798
		unsigned long pfn,
799 800
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
801
{
802 803
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
804
	struct page *buddy;
805 806 807
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
808

809
	VM_BUG_ON(!zone_is_initialized(zone));
810
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
811

812
	VM_BUG_ON(migratetype == -1);
813
	if (likely(!is_migrate_isolate(migratetype)))
814
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
815

816
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
817
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
818

819
continue_merging:
820
	while (order < max_order - 1) {
821 822
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
823 824 825

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
826
		if (!page_is_buddy(page, buddy, order))
827
			goto done_merging;
828 829 830 831 832
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
833
			clear_page_guard(zone, buddy, order, migratetype);
834 835 836 837 838
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
839 840 841
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
842 843
		order++;
	}
844 845 846 847 848 849 850 851 852 853 854 855
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

856 857
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
858 859 860 861 862 863 864 865 866 867 868 869
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
870
	set_page_order(page, order);
871 872 873 874 875 876 877 878 879

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
880
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
881
		struct page *higher_page, *higher_buddy;
882 883 884 885
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
886 887
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
888 889 890 891 892 893 894 895
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
896 897 898
	zone->free_area[order].nr_free++;
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

921
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
922
{
923 924 925 926 927
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
928

929
	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 931 932
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
933
	if (unlikely(page_ref_count(page) != 0))
934
		bad_reason = "nonzero _refcount";
935 936 937 938
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
939 940 941 942
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
943
	bad_page(page, bad_reason, bad_flags);
944 945 946 947
}

static inline int free_pages_check(struct page *page)
{
948
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
949 950 951 952
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
953
	return 1;
L
Linus Torvalds 已提交
954 955
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1006 1007
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1008
{
1009
	int bad = 0;
1010 1011 1012

	VM_BUG_ON_PAGE(PageTail(page), page);

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	trace_mm_page_free(page, order);
	kmemcheck_free_shadow(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1025

1026 1027
		if (compound)
			ClearPageDoubleMap(page);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1038
	if (PageMappingFlags(page))
1039
		page->mapping = NULL;
1040
	if (memcg_kmem_enabled() && PageKmemcg(page))
1041
		memcg_kmem_uncharge(page, order);
1042 1043 1044 1045
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1046

1047 1048 1049
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1050 1051 1052

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1053
					   PAGE_SIZE << order);
1054
		debug_check_no_obj_freed(page_address(page),
1055
					   PAGE_SIZE << order);
1056
	}
1057 1058 1059
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1060
	kasan_free_pages(page, order);
1061 1062 1063 1064

	return true;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1081 1082 1083 1084 1085 1086
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1087
/*
1088
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1089
 * Assumes all pages on list are in same zone, and of same order.
1090
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1098 1099
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1100
{
1101
	int migratetype = 0;
1102
	int batch_free = 0;
1103
	bool isolated_pageblocks;
1104

1105
	spin_lock(&zone->lock);
1106
	isolated_pageblocks = has_isolate_pageblock(zone);
1107

1108
	while (count) {
N
Nick Piggin 已提交
1109
		struct page *page;
1110 1111 1112
		struct list_head *list;

		/*
1113 1114 1115 1116 1117
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1118 1119
		 */
		do {
1120
			batch_free++;
1121 1122 1123 1124
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1125

1126 1127
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1128
			batch_free = count;
1129

1130
		do {
1131 1132
			int mt;	/* migratetype of the to-be-freed page */

1133
			page = list_last_entry(list, struct page, lru);
1134 1135
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1136

1137
			mt = get_pcppage_migratetype(page);
1138 1139 1140
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1141
			if (unlikely(isolated_pageblocks))
1142 1143
				mt = get_pageblock_migratetype(page);

1144 1145 1146
			if (bulkfree_pcp_prepare(page))
				continue;

1147
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1148
			trace_mm_page_pcpu_drain(page, 0, mt);
1149
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1150
	}
1151
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1152 1153
}

1154 1155
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1156
				unsigned int order,
1157
				int migratetype)
L
Linus Torvalds 已提交
1158
{
1159
	spin_lock(&zone->lock);
1160 1161 1162 1163
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1164
	__free_one_page(page, pfn, zone, order, migratetype);
1165
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1216 1217 1218 1219 1220 1221
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1222
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 1224 1225 1226
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1227 1228 1229 1230 1231
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1232 1233 1234 1235

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1236 1237 1238
			SetPageReserved(page);
		}
	}
1239 1240
}

1241 1242
static void __free_pages_ok(struct page *page, unsigned int order)
{
1243
	unsigned long flags;
M
Minchan Kim 已提交
1244
	int migratetype;
1245
	unsigned long pfn = page_to_pfn(page);
1246

1247
	if (!free_pages_prepare(page, order, true))
1248 1249
		return;

1250
	migratetype = get_pfnblock_migratetype(page, pfn);
1251 1252
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1253
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1254
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1255 1256
}

1257
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1258
{
1259
	unsigned int nr_pages = 1 << order;
1260
	struct page *p = page;
1261
	unsigned int loop;
1262

1263 1264 1265
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1266 1267
		__ClearPageReserved(p);
		set_page_count(p, 0);
1268
	}
1269 1270
	__ClearPageReserved(p);
	set_page_count(p, 0);
1271

1272
	page_zone(page)->managed_pages += nr_pages;
1273 1274
	set_page_refcounted(page);
	__free_pages(page, order);
1275 1276
}

1277 1278
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1279

1280 1281 1282 1283
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1284
	static DEFINE_SPINLOCK(early_pfn_lock);
1285 1286
	int nid;

1287
	spin_lock(&early_pfn_lock);
1288
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1289
	if (nid < 0)
1290
		nid = first_online_node;
1291 1292 1293
	spin_unlock(&early_pfn_lock);

	return nid;
1294 1295 1296 1297
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1298 1299 1300
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1322 1323 1324
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1325 1326 1327 1328 1329 1330
{
	return true;
}
#endif


1331
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 1333 1334 1335
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1336
	return __free_pages_boot_core(page, order);
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1368 1369 1370
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1410
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411
static void __init deferred_free_range(struct page *page,
1412 1413 1414 1415 1416 1417 1418 1419
					unsigned long pfn, int nr_pages)
{
	int i;

	if (!page)
		return;

	/* Free a large naturally-aligned chunk if possible */
1420 1421
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1422
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423
		__free_pages_boot_core(page, pageblock_order);
1424 1425 1426
		return;
	}

1427 1428 1429
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430
		__free_pages_boot_core(page, 0);
1431
	}
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1443

1444
/* Initialise remaining memory on a node */
1445
static int __init deferred_init_memmap(void *data)
1446
{
1447 1448
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1449 1450 1451 1452 1453 1454 1455
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
	unsigned long walk_start, walk_end;
	int i, zid;
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1456
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1457

1458
	if (first_init_pfn == ULONG_MAX) {
1459
		pgdat_init_report_one_done();
1460 1461 1462 1463 1464 1465
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}

	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
		unsigned long pfn, end_pfn;
1481
		struct page *page = NULL;
1482 1483 1484
		struct page *free_base_page = NULL;
		unsigned long free_base_pfn = 0;
		int nr_to_free = 0;
1485 1486 1487 1488 1489 1490 1491 1492 1493

		end_pfn = min(walk_end, zone_end_pfn(zone));
		pfn = first_init_pfn;
		if (pfn < walk_start)
			pfn = walk_start;
		if (pfn < zone->zone_start_pfn)
			pfn = zone->zone_start_pfn;

		for (; pfn < end_pfn; pfn++) {
1494
			if (!pfn_valid_within(pfn))
1495
				goto free_range;
1496

1497 1498
			/*
			 * Ensure pfn_valid is checked every
1499
			 * pageblock_nr_pages for memory holes
1500
			 */
1501
			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1502 1503
				if (!pfn_valid(pfn)) {
					page = NULL;
1504
					goto free_range;
1505 1506 1507 1508 1509
				}
			}

			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				page = NULL;
1510
				goto free_range;
1511 1512 1513
			}

			/* Minimise pfn page lookups and scheduler checks */
1514
			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1515 1516
				page++;
			} else {
1517 1518 1519 1520 1521 1522
				nr_pages += nr_to_free;
				deferred_free_range(free_base_page,
						free_base_pfn, nr_to_free);
				free_base_page = NULL;
				free_base_pfn = nr_to_free = 0;

1523 1524 1525
				page = pfn_to_page(pfn);
				cond_resched();
			}
1526 1527 1528

			if (page->flags) {
				VM_BUG_ON(page_zone(page) != zone);
1529
				goto free_range;
1530 1531 1532
			}

			__init_single_page(page, pfn, zid, nid);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			if (!free_base_page) {
				free_base_page = page;
				free_base_pfn = pfn;
				nr_to_free = 0;
			}
			nr_to_free++;

			/* Where possible, batch up pages for a single free */
			continue;
free_range:
			/* Free the current block of pages to allocator */
			nr_pages += nr_to_free;
			deferred_free_range(free_base_page, free_base_pfn,
								nr_to_free);
			free_base_page = NULL;
			free_base_pfn = nr_to_free = 0;
1549
		}
1550 1551 1552
		/* Free the last block of pages to allocator */
		nr_pages += nr_to_free;
		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1553

1554 1555 1556 1557 1558 1559
		first_init_pfn = max(end_pfn, first_init_pfn);
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1560
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1561
					jiffies_to_msecs(jiffies - start));
1562 1563

	pgdat_init_report_one_done();
1564 1565
	return 0;
}
1566
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1567 1568 1569

void __init page_alloc_init_late(void)
{
1570 1571 1572
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1573 1574
	int nid;

1575 1576
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1577 1578 1579 1580 1581
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1582
	wait_for_completion(&pgdat_init_all_done_comp);
1583 1584 1585

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1586
#endif
P
Pavel Tatashin 已提交
1587 1588 1589 1590
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1591 1592 1593

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1594 1595
}

1596
#ifdef CONFIG_CMA
1597
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1623
	adjust_managed_page_count(page, pageblock_nr_pages);
1624 1625
}
#endif
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1639
 * -- nyc
L
Linus Torvalds 已提交
1640
 */
N
Nick Piggin 已提交
1641
static inline void expand(struct zone *zone, struct page *page,
1642 1643
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1651
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1652

1653 1654 1655 1656 1657 1658 1659
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1660
			continue;
1661

1662
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1668
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1669
{
1670 1671
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1672

1673
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1674 1675 1676
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1677
	if (unlikely(page_ref_count(page) != 0))
1678
		bad_reason = "nonzero _count";
1679 1680 1681
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1682 1683 1684
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1685
	}
1686 1687 1688 1689
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1690 1691 1692 1693
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1708 1709
}

1710
static inline bool free_pages_prezeroed(void)
1711 1712
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1713
		page_poisoning_enabled();
1714 1715
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1763
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1764
							unsigned int alloc_flags)
1765 1766
{
	int i;
1767

1768
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1769

1770
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1771 1772
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1773 1774 1775 1776

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1777
	/*
1778
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1779 1780 1781 1782
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1783 1784 1785 1786
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1787 1788
}

1789 1790 1791 1792
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1793 1794
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1795 1796 1797
						int migratetype)
{
	unsigned int current_order;
1798
	struct free_area *area;
1799 1800 1801 1802 1803
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1804
		page = list_first_entry_or_null(&area->free_list[migratetype],
1805
							struct page, lru);
1806 1807
		if (!page)
			continue;
1808 1809 1810 1811
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1812
		set_pcppage_migratetype(page, migratetype);
1813 1814 1815 1816 1817 1818 1819
		return page;
	}

	return NULL;
}


1820 1821 1822 1823
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1824
static int fallbacks[MIGRATE_TYPES][4] = {
1825 1826 1827
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1828
#ifdef CONFIG_CMA
1829
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1830
#endif
1831
#ifdef CONFIG_MEMORY_ISOLATION
1832
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1833
#endif
1834 1835
};

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1847 1848
/*
 * Move the free pages in a range to the free lists of the requested type.
1849
 * Note that start_page and end_pages are not aligned on a pageblock
1850 1851
 * boundary. If alignment is required, use move_freepages_block()
 */
1852
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1853
			  struct page *start_page, struct page *end_page,
1854
			  int migratetype, int *num_movable)
1855 1856
{
	struct page *page;
1857
	unsigned int order;
1858
	int pages_moved = 0;
1859 1860 1861 1862 1863 1864 1865

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1866
	 * grouping pages by mobility
1867
	 */
1868
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1869 1870
#endif

1871 1872 1873
	if (num_movable)
		*num_movable = 0;

1874 1875 1876 1877 1878 1879
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1880 1881 1882
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1883
		if (!PageBuddy(page)) {
1884 1885 1886 1887 1888 1889 1890 1891 1892
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1893 1894 1895 1896 1897
			page++;
			continue;
		}

		order = page_order(page);
1898 1899
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1900
		page += 1 << order;
1901
		pages_moved += 1 << order;
1902 1903
	}

1904
	return pages_moved;
1905 1906
}

1907
int move_freepages_block(struct zone *zone, struct page *page,
1908
				int migratetype, int *num_movable)
1909 1910 1911 1912 1913
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1914
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1915
	start_page = pfn_to_page(start_pfn);
1916 1917
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1918 1919

	/* Do not cross zone boundaries */
1920
	if (!zone_spans_pfn(zone, start_pfn))
1921
		start_page = page;
1922
	if (!zone_spans_pfn(zone, end_pfn))
1923 1924
		return 0;

1925 1926
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1927 1928
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1940
/*
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1951
 */
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
1976 1977 1978 1979
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
1980 1981
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
1982
					int start_type, bool whole_block)
1983
{
1984
	unsigned int current_order = page_order(page);
1985
	struct free_area *area;
1986 1987 1988 1989
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
1990

1991 1992 1993 1994
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
1995
	if (is_migrate_highatomic(old_block_type))
1996 1997
		goto single_page;

1998 1999 2000
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2001
		goto single_page;
2002 2003
	}

2004 2005 2006 2007
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2032
	/* moving whole block can fail due to zone boundary conditions */
2033
	if (!free_pages)
2034
		goto single_page;
2035

2036 2037 2038 2039 2040
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2041 2042
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2043 2044 2045 2046 2047 2048

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2069
		if (fallback_mt == MIGRATE_TYPES)
2070 2071 2072 2073
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2074

2075 2076 2077
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2078 2079 2080 2081 2082
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2083
	}
2084 2085

	return -1;
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2114 2115
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2116 2117
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2118
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2130 2131 2132
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2133
 */
2134 2135
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2136 2137 2138 2139 2140 2141 2142
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2143
	bool ret;
2144 2145 2146

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2147 2148 2149 2150 2151 2152
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2153 2154 2155 2156 2157 2158
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2159 2160 2161 2162
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2163 2164 2165
				continue;

			/*
2166 2167 2168 2169 2170
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2171
			 */
2172
			if (is_migrate_highatomic_page(page)) {
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2195 2196
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2197 2198 2199 2200
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2201 2202 2203
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2204 2205

	return false;
2206 2207
}

2208 2209 2210 2211 2212
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2213 2214 2215 2216
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2217 2218
 */
static inline bool
2219
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2220
{
2221
	struct free_area *area;
2222
	int current_order;
2223
	struct page *page;
2224 2225
	int fallback_mt;
	bool can_steal;
2226

2227 2228 2229 2230 2231
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2232
	for (current_order = MAX_ORDER - 1; current_order >= order;
2233
				--current_order) {
2234 2235
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2236
				start_migratetype, false, &can_steal);
2237 2238
		if (fallback_mt == -1)
			continue;
2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2251

2252 2253
		goto do_steal;
	}
2254

2255
	return false;
2256

2257 2258 2259 2260 2261 2262 2263 2264
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2265 2266
	}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2284 2285
}

2286
/*
L
Linus Torvalds 已提交
2287 2288 2289
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2290
static struct page *__rmqueue(struct zone *zone, unsigned int order,
2291
				int migratetype)
L
Linus Torvalds 已提交
2292 2293 2294
{
	struct page *page;

2295
retry:
2296
	page = __rmqueue_smallest(zone, order, migratetype);
2297
	if (unlikely(!page)) {
2298 2299 2300
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2301 2302
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2303 2304
	}

2305
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2306
	return page;
L
Linus Torvalds 已提交
2307 2308
}

2309
/*
L
Linus Torvalds 已提交
2310 2311 2312 2313
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2314
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2315
			unsigned long count, struct list_head *list,
2316
			int migratetype, bool cold)
L
Linus Torvalds 已提交
2317
{
2318
	int i, alloced = 0;
2319

2320
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2321
	for (i = 0; i < count; ++i) {
2322
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2323
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2324
			break;
2325

2326 2327 2328
		if (unlikely(check_pcp_refill(page)))
			continue;

2329 2330 2331 2332 2333 2334 2335 2336 2337
		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
2338
		if (likely(!cold))
2339 2340 2341
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
2342
		list = &page->lru;
2343
		alloced++;
2344
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2345 2346
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2347
	}
2348 2349 2350 2351 2352 2353 2354

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2355
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2356
	spin_unlock(&zone->lock);
2357
	return alloced;
L
Linus Torvalds 已提交
2358 2359
}

2360
#ifdef CONFIG_NUMA
2361
/*
2362 2363 2364 2365
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2366 2367
 * Note that this function must be called with the thread pinned to
 * a single processor.
2368
 */
2369
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2370 2371
{
	unsigned long flags;
2372
	int to_drain, batch;
2373

2374
	local_irq_save(flags);
2375
	batch = READ_ONCE(pcp->batch);
2376
	to_drain = min(pcp->count, batch);
2377 2378 2379 2380
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2381
	local_irq_restore(flags);
2382 2383 2384
}
#endif

2385
/*
2386
 * Drain pcplists of the indicated processor and zone.
2387 2388 2389 2390 2391
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2392
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2393
{
N
Nick Piggin 已提交
2394
	unsigned long flags;
2395 2396
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2397

2398 2399
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2400

2401 2402 2403 2404 2405 2406 2407
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2408

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2422 2423 2424
	}
}

2425 2426
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2427 2428 2429
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2430
 */
2431
void drain_local_pages(struct zone *zone)
2432
{
2433 2434 2435 2436 2437 2438
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2439 2440
}

2441 2442
static void drain_local_pages_wq(struct work_struct *work)
{
2443 2444 2445 2446 2447 2448 2449 2450
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2451
	drain_local_pages(NULL);
2452
	preempt_enable();
2453 2454
}

2455
/*
2456 2457
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2458 2459
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2460
 * Note that this can be extremely slow as the draining happens in a workqueue.
2461
 */
2462
void drain_all_pages(struct zone *zone)
2463
{
2464 2465 2466 2467 2468 2469 2470 2471
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2472 2473 2474 2475 2476 2477 2478
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2479 2480 2481 2482
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2493

2494 2495 2496 2497 2498 2499 2500
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2501 2502
		struct per_cpu_pageset *pcp;
		struct zone *z;
2503
		bool has_pcps = false;
2504 2505

		if (zone) {
2506
			pcp = per_cpu_ptr(zone->pageset, cpu);
2507
			if (pcp->pcp.count)
2508
				has_pcps = true;
2509 2510 2511 2512 2513 2514 2515
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2516 2517
			}
		}
2518

2519 2520 2521 2522 2523
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2524

2525 2526 2527
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2528
		queue_work_on(cpu, mm_percpu_wq, work);
2529
	}
2530 2531 2532 2533
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2534 2535
}

2536
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2537 2538 2539

void mark_free_pages(struct zone *zone)
{
2540 2541
	unsigned long pfn, max_zone_pfn;
	unsigned long flags;
2542
	unsigned int order, t;
2543
	struct page *page;
L
Linus Torvalds 已提交
2544

2545
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2546 2547 2548
		return;

	spin_lock_irqsave(&zone->lock, flags);
2549

2550
	max_zone_pfn = zone_end_pfn(zone);
2551 2552
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2553
			page = pfn_to_page(pfn);
2554 2555 2556 2557

			if (page_zone(page) != zone)
				continue;

2558 2559
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2560
		}
L
Linus Torvalds 已提交
2561

2562
	for_each_migratetype_order(order, t) {
2563 2564
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2565
			unsigned long i;
L
Linus Torvalds 已提交
2566

2567
			pfn = page_to_pfn(page);
2568
			for (i = 0; i < (1UL << order); i++)
2569
				swsusp_set_page_free(pfn_to_page(pfn + i));
2570
		}
2571
	}
L
Linus Torvalds 已提交
2572 2573
	spin_unlock_irqrestore(&zone->lock, flags);
}
2574
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2575 2576 2577

/*
 * Free a 0-order page
2578
 * cold == true ? free a cold page : free a hot page
L
Linus Torvalds 已提交
2579
 */
2580
void free_hot_cold_page(struct page *page, bool cold)
L
Linus Torvalds 已提交
2581 2582 2583
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
2584
	unsigned long flags;
2585
	unsigned long pfn = page_to_pfn(page);
2586
	int migratetype;
L
Linus Torvalds 已提交
2587

2588
	if (!free_pcp_prepare(page))
2589 2590
		return;

2591
	migratetype = get_pfnblock_migratetype(page, pfn);
2592
	set_pcppage_migratetype(page, migratetype);
2593 2594
	local_irq_save(flags);
	__count_vm_event(PGFREE);
2595

2596 2597 2598
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2599
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2600 2601 2602 2603
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2604
		if (unlikely(is_migrate_isolate(migratetype))) {
2605
			free_one_page(zone, page, pfn, 0, migratetype);
2606 2607 2608 2609 2610
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

2611
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2612
	if (!cold)
2613
		list_add(&page->lru, &pcp->lists[migratetype]);
2614 2615
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2616
	pcp->count++;
N
Nick Piggin 已提交
2617
	if (pcp->count >= pcp->high) {
2618
		unsigned long batch = READ_ONCE(pcp->batch);
2619 2620
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2621
	}
2622 2623

out:
2624
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2625 2626
}

2627 2628 2629
/*
 * Free a list of 0-order pages
 */
2630
void free_hot_cold_page_list(struct list_head *list, bool cold)
2631 2632 2633 2634
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
2635
		trace_mm_page_free_batched(page, cold);
2636 2637 2638 2639
		free_hot_cold_page(page, cold);
	}
}

N
Nick Piggin 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2652 2653
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

#ifdef CONFIG_KMEMCHECK
	/*
	 * Split shadow pages too, because free(page[0]) would
	 * otherwise free the whole shadow.
	 */
	if (kmemcheck_page_is_tracked(page))
		split_page(virt_to_page(page[0].shadow), order);
#endif

2664
	for (i = 1; i < (1 << order); i++)
2665
		set_page_refcounted(page + i);
2666
	split_page_owner(page, order);
N
Nick Piggin 已提交
2667
}
K
K. Y. Srinivasan 已提交
2668
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2669

2670
int __isolate_free_page(struct page *page, unsigned int order)
2671 2672 2673
{
	unsigned long watermark;
	struct zone *zone;
2674
	int mt;
2675 2676 2677 2678

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2679
	mt = get_pageblock_migratetype(page);
2680

2681
	if (!is_migrate_isolate(mt)) {
2682 2683 2684 2685 2686 2687 2688
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2689
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2690 2691
			return 0;

2692
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2693
	}
2694 2695 2696 2697 2698

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2699

2700 2701 2702 2703
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2704 2705
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2706 2707
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2708
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2709
			    && !is_migrate_highatomic(mt))
2710 2711 2712
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2713 2714
	}

2715

2716
	return 1UL << order;
2717 2718
}

2719 2720 2721 2722 2723
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2724
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2725 2726 2727 2728
{
#ifdef CONFIG_NUMA
	enum zone_stat_item local_stat = NUMA_LOCAL;

2729
	if (z->node != numa_node_id())
2730 2731
		local_stat = NUMA_OTHER;

2732
	if (z->node == preferred_zone->node)
2733
		__inc_zone_state(z, NUMA_HIT);
2734
	else {
2735 2736 2737
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
	}
2738
	__inc_zone_state(z, local_stat);
2739 2740 2741
#endif
}

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
			bool cold, struct per_cpu_pages *pcp,
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				return NULL;
		}

		if (cold)
			page = list_last_entry(list, struct page, lru);
		else
			page = list_first_entry(list, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
	struct page *page;
2779
	unsigned long flags;
2780

2781
	local_irq_save(flags);
2782 2783 2784 2785 2786 2787 2788
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2789
	local_irq_restore(flags);
2790 2791 2792
	return page;
}

L
Linus Torvalds 已提交
2793
/*
2794
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2795
 */
2796
static inline
2797
struct page *rmqueue(struct zone *preferred_zone,
2798
			struct zone *zone, unsigned int order,
2799 2800
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2801 2802
{
	unsigned long flags;
2803
	struct page *page;
L
Linus Torvalds 已提交
2804

2805
	if (likely(order == 0)) {
2806 2807 2808 2809
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2810

2811 2812 2813 2814 2815 2816
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2817

2818 2819 2820 2821 2822 2823 2824
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2825
		if (!page)
2826 2827 2828 2829 2830 2831 2832
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2833

2834
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2835
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2836
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2837

2838 2839
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2840
	return page;
N
Nick Piggin 已提交
2841 2842 2843 2844

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2845 2846
}

2847 2848
#ifdef CONFIG_FAIL_PAGE_ALLOC

2849
static struct {
2850 2851
	struct fault_attr attr;

2852
	bool ignore_gfp_highmem;
2853
	bool ignore_gfp_reclaim;
2854
	u32 min_order;
2855 2856
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2857
	.ignore_gfp_reclaim = true,
2858
	.ignore_gfp_highmem = true,
2859
	.min_order = 1,
2860 2861 2862 2863 2864 2865 2866 2867
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2868
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2869
{
2870
	if (order < fail_page_alloc.min_order)
2871
		return false;
2872
	if (gfp_mask & __GFP_NOFAIL)
2873
		return false;
2874
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2875
		return false;
2876 2877
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2878
		return false;
2879 2880 2881 2882 2883 2884 2885 2886

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2887
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2888 2889
	struct dentry *dir;

2890 2891 2892 2893
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2894

2895
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2896
				&fail_page_alloc.ignore_gfp_reclaim))
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2907
	debugfs_remove_recursive(dir);
2908

2909
	return -ENOMEM;
2910 2911 2912 2913 2914 2915 2916 2917
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2918
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2919
{
2920
	return false;
2921 2922 2923 2924
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2925
/*
2926 2927 2928 2929
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2930
 */
2931 2932 2933
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2934
{
2935
	long min = mark;
L
Linus Torvalds 已提交
2936
	int o;
2937
	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
L
Linus Torvalds 已提交
2938

2939
	/* free_pages may go negative - that's OK */
2940
	free_pages -= (1 << order) - 1;
2941

R
Rohit Seth 已提交
2942
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2943
		min -= min / 2;
2944 2945 2946 2947 2948 2949

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
2950
	if (likely(!alloc_harder))
2951 2952
		free_pages -= z->nr_reserved_highatomic;
	else
L
Linus Torvalds 已提交
2953
		min -= min / 4;
2954

2955 2956 2957
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
2958
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2959
#endif
2960

2961 2962 2963 2964 2965 2966
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2967
		return false;
L
Linus Torvalds 已提交
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
2995
	}
2996
	return false;
2997 2998
}

2999
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3000
		      int classzone_idx, unsigned int alloc_flags)
3001 3002 3003 3004 3005
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3032
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3033
			unsigned long mark, int classzone_idx)
3034 3035 3036 3037 3038 3039
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3040
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3041
								free_pages);
L
Linus Torvalds 已提交
3042 3043
}

3044
#ifdef CONFIG_NUMA
3045 3046
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3047
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3048
				RECLAIM_DISTANCE;
3049
}
3050
#else	/* CONFIG_NUMA */
3051 3052 3053 3054
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3055 3056
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3057
/*
3058
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3059 3060 3061
 * a page.
 */
static struct page *
3062 3063
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3064
{
3065
	struct zoneref *z = ac->preferred_zoneref;
3066
	struct zone *zone;
3067 3068
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3069
	/*
3070
	 * Scan zonelist, looking for a zone with enough free.
3071
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3072
	 */
3073
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3074
								ac->nodemask) {
3075
		struct page *page;
3076 3077
		unsigned long mark;

3078 3079
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3080
			!__cpuset_zone_allowed(zone, gfp_mask))
3081
				continue;
3082 3083
		/*
		 * When allocating a page cache page for writing, we
3084 3085
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3086
		 * proportional share of globally allowed dirty pages.
3087
		 * The dirty limits take into account the node's
3088 3089 3090 3091 3092
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3093
		 * exceed the per-node dirty limit in the slowpath
3094
		 * (spread_dirty_pages unset) before going into reclaim,
3095
		 * which is important when on a NUMA setup the allowed
3096
		 * nodes are together not big enough to reach the
3097
		 * global limit.  The proper fix for these situations
3098
		 * will require awareness of nodes in the
3099 3100
		 * dirty-throttling and the flusher threads.
		 */
3101 3102 3103 3104 3105 3106 3107 3108 3109
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3110

3111
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3112
		if (!zone_watermark_fast(zone, order, mark,
3113
				       ac_classzone_idx(ac), alloc_flags)) {
3114 3115
			int ret;

3116 3117 3118 3119 3120
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3121
			if (node_reclaim_mode == 0 ||
3122
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3123 3124
				continue;

3125
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3126
			switch (ret) {
3127
			case NODE_RECLAIM_NOSCAN:
3128
				/* did not scan */
3129
				continue;
3130
			case NODE_RECLAIM_FULL:
3131
				/* scanned but unreclaimable */
3132
				continue;
3133 3134
			default:
				/* did we reclaim enough */
3135
				if (zone_watermark_ok(zone, order, mark,
3136
						ac_classzone_idx(ac), alloc_flags))
3137 3138 3139
					goto try_this_zone;

				continue;
3140
			}
R
Rohit Seth 已提交
3141 3142
		}

3143
try_this_zone:
3144
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3145
				gfp_mask, alloc_flags, ac->migratetype);
3146
		if (page) {
3147
			prep_new_page(page, order, gfp_mask, alloc_flags);
3148 3149 3150 3151 3152 3153 3154 3155

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3156 3157
			return page;
		}
3158
	}
3159

3160
	return NULL;
M
Martin Hicks 已提交
3161 3162
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3177
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3178 3179
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3180
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3181

3182
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
		if (test_thread_flag(TIF_MEMDIE) ||
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3194
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3195 3196
		filter &= ~SHOW_MEM_FILTER_NODES;

3197
	show_mem(filter, nodemask);
3198 3199
}

3200
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3201 3202 3203 3204 3205 3206
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3207
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3208 3209
		return;

3210
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3211

3212 3213 3214 3215 3216
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3217

3218 3219 3220 3221 3222 3223
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3224
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3225

3226
	dump_stack();
3227
	warn_alloc_show_mem(gfp_mask, nodemask);
3228 3229
}

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3250 3251
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3252
	const struct alloc_context *ac, unsigned long *did_some_progress)
3253
{
3254 3255 3256
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3257
		.memcg = NULL,
3258 3259 3260
		.gfp_mask = gfp_mask,
		.order = order,
	};
3261 3262
	struct page *page;

3263 3264 3265
	*did_some_progress = 0;

	/*
3266 3267
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3268
	 */
3269
	if (!mutex_trylock(&oom_lock)) {
3270
		*did_some_progress = 1;
3271
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3272 3273
		return NULL;
	}
3274

3275 3276 3277 3278 3279
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
	 * we're still under heavy pressure.
	 */
3280 3281
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3282
	if (page)
3283 3284
		goto out;

3285 3286 3287 3288 3289 3290
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3291 3292 3293 3294 3295 3296 3297 3298
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3317

3318
	/* Exhausted what can be done so it's blamo time */
3319
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3320
		*did_some_progress = 1;
3321

3322 3323 3324 3325 3326 3327
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3328 3329
					ALLOC_NO_WATERMARKS, ac);
	}
3330
out:
3331
	mutex_unlock(&oom_lock);
3332 3333 3334
	return page;
}

3335 3336 3337 3338 3339 3340
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3341 3342 3343 3344
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3345
		unsigned int alloc_flags, const struct alloc_context *ac,
3346
		enum compact_priority prio, enum compact_result *compact_result)
3347
{
3348
	struct page *page;
3349
	unsigned int noreclaim_flag;
3350 3351

	if (!order)
3352 3353
		return NULL;

3354
	noreclaim_flag = memalloc_noreclaim_save();
3355
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3356
									prio);
3357
	memalloc_noreclaim_restore(noreclaim_flag);
3358

3359
	if (*compact_result <= COMPACT_INACTIVE)
3360
		return NULL;
3361

3362 3363 3364 3365 3366
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3367

3368
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3369

3370 3371
	if (page) {
		struct zone *zone = page_zone(page);
3372

3373 3374 3375 3376 3377
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3378

3379 3380 3381 3382 3383
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3384

3385
	cond_resched();
3386 3387 3388

	return NULL;
}
3389

3390 3391 3392 3393
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3394
		     int *compaction_retries)
3395 3396
{
	int max_retries = MAX_COMPACT_RETRIES;
3397
	int min_priority;
3398 3399 3400
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3401 3402 3403 3404

	if (!order)
		return false;

3405 3406 3407
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3408 3409 3410 3411 3412
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3413 3414
	if (compaction_failed(compact_result))
		goto check_priority;
3415 3416 3417 3418 3419 3420 3421

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3422 3423 3424 3425
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3426 3427

	/*
3428
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3429 3430 3431 3432 3433 3434 3435 3436
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3437 3438 3439 3440
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3441

3442 3443 3444 3445 3446
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3447 3448
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3449

3450
	if (*compact_priority > min_priority) {
3451 3452
		(*compact_priority)--;
		*compaction_retries = 0;
3453
		ret = true;
3454
	}
3455 3456 3457
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3458
}
3459 3460 3461
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3462
		unsigned int alloc_flags, const struct alloc_context *ac,
3463
		enum compact_priority prio, enum compact_result *compact_result)
3464
{
3465
	*compact_result = COMPACT_SKIPPED;
3466 3467
	return NULL;
}
3468 3469

static inline bool
3470 3471
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3472
		     enum compact_priority *compact_priority,
3473
		     int *compaction_retries)
3474
{
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3493 3494
	return false;
}
3495
#endif /* CONFIG_COMPACTION */
3496

3497 3498
/* Perform direct synchronous page reclaim */
static int
3499 3500
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3501 3502
{
	struct reclaim_state reclaim_state;
3503
	int progress;
3504
	unsigned int noreclaim_flag;
3505 3506 3507 3508 3509

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3510
	noreclaim_flag = memalloc_noreclaim_save();
3511 3512
	lockdep_set_current_reclaim_state(gfp_mask);
	reclaim_state.reclaimed_slab = 0;
3513
	current->reclaim_state = &reclaim_state;
3514

3515 3516
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3517

3518
	current->reclaim_state = NULL;
3519
	lockdep_clear_current_reclaim_state();
3520
	memalloc_noreclaim_restore(noreclaim_flag);
3521 3522 3523

	cond_resched();

3524 3525 3526 3527 3528 3529
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3530
		unsigned int alloc_flags, const struct alloc_context *ac,
3531
		unsigned long *did_some_progress)
3532 3533 3534 3535
{
	struct page *page = NULL;
	bool drained = false;

3536
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3537 3538
	if (unlikely(!(*did_some_progress)))
		return NULL;
3539

3540
retry:
3541
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3542 3543 3544

	/*
	 * If an allocation failed after direct reclaim, it could be because
3545 3546
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3547 3548
	 */
	if (!page && !drained) {
3549
		unreserve_highatomic_pageblock(ac, false);
3550
		drain_all_pages(NULL);
3551 3552 3553 3554
		drained = true;
		goto retry;
	}

3555 3556 3557
	return page;
}

3558
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3559 3560 3561
{
	struct zoneref *z;
	struct zone *zone;
3562
	pg_data_t *last_pgdat = NULL;
3563

3564
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3565 3566
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3567
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3568 3569
		last_pgdat = zone->zone_pgdat;
	}
3570 3571
}

3572
static inline unsigned int
3573 3574
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3575
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3576

3577
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3578
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3579

3580 3581 3582 3583
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3584
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3585
	 */
3586
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3587

3588
	if (gfp_mask & __GFP_ATOMIC) {
3589
		/*
3590 3591
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3592
		 */
3593
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3594
			alloc_flags |= ALLOC_HARDER;
3595
		/*
3596
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3597
		 * comment for __cpuset_node_allowed().
3598
		 */
3599
		alloc_flags &= ~ALLOC_CPUSET;
3600
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3601 3602
		alloc_flags |= ALLOC_HARDER;

3603
#ifdef CONFIG_CMA
3604
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3605 3606
		alloc_flags |= ALLOC_CMA;
#endif
3607 3608 3609
	return alloc_flags;
}

3610 3611
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	if (gfp_mask & __GFP_MEMALLOC)
		return true;
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
		return true;
	if (!in_interrupt() &&
			((current->flags & PF_MEMALLOC) ||
			 unlikely(test_thread_flag(TIF_MEMDIE))))
		return true;

	return false;
3625 3626
}

M
Michal Hocko 已提交
3627 3628 3629
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3630 3631 3632 3633
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3634 3635 3636 3637 3638 3639
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3640
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3641 3642 3643 3644
{
	struct zone *zone;
	struct zoneref *z;

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3655 3656 3657 3658
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3659 3660
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3661
		return unreserve_highatomic_pageblock(ac, true);
3662
	}
M
Michal Hocko 已提交
3663

3664 3665 3666 3667 3668
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3669 3670 3671 3672
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3673
		unsigned long reclaimable;
3674 3675
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3676

3677 3678
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3679 3680

		/*
3681 3682
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3683
		 */
3684 3685 3686 3687 3688
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3689 3690 3691 3692 3693 3694 3695
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3696
				unsigned long write_pending;
3697

3698 3699
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3700

3701
				if (2 * write_pending > reclaimable) {
3702 3703 3704 3705
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3706

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3721 3722 3723 3724 3725 3726 3727
			return true;
		}
	}

	return false;
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

3761 3762
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3763
						struct alloc_context *ac)
3764
{
3765
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3766
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3767
	struct page *page = NULL;
3768
	unsigned int alloc_flags;
3769
	unsigned long did_some_progress;
3770
	enum compact_priority compact_priority;
3771
	enum compact_result compact_result;
3772 3773
	int compaction_retries;
	int no_progress_loops;
3774 3775
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3776
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
3777

3778 3779 3780 3781 3782 3783
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3784 3785
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3786
		return NULL;
3787
	}
L
Linus Torvalds 已提交
3788

3789 3790 3791 3792 3793 3794 3795 3796
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3797 3798 3799 3800 3801
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3802 3803 3804 3805 3806 3807 3808 3809

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3832 3833
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3834 3835 3836 3837 3838 3839
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3840
	 */
3841 3842 3843 3844
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3845 3846
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3847
						INIT_COMPACT_PRIORITY,
3848 3849 3850 3851
						&compact_result);
		if (page)
			goto got_pg;

3852 3853 3854 3855
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
3856
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3869 3870
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
3871
			 * using async compaction.
3872
			 */
3873
			compact_priority = INIT_COMPACT_PRIORITY;
3874 3875
		}
	}
3876

3877
retry:
3878
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3879 3880 3881
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

3882 3883 3884
	if (gfp_pfmemalloc_allowed(gfp_mask))
		alloc_flags = ALLOC_NO_WATERMARKS;

3885 3886 3887 3888 3889
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
3890
	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3891 3892 3893 3894 3895
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

3896
	/* Attempt with potentially adjusted zonelist and alloc_flags */
3897
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
3898 3899
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
3900

3901
	/* Caller is not willing to reclaim, we can't balance anything */
3902
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
3903 3904
		goto nopage;

3905 3906
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
3907
		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3908 3909 3910
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
3911
	}
3912

3913 3914
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
3915 3916
		goto nopage;

3917 3918 3919 3920 3921 3922 3923
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
3924
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3925
					compact_priority, &compact_result);
3926 3927
	if (page)
		goto got_pg;
3928

3929 3930
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
3931
		goto nopage;
3932

M
Michal Hocko 已提交
3933 3934
	/*
	 * Do not retry costly high order allocations unless they are
3935
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
3936
	 */
3937
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3938
		goto nopage;
M
Michal Hocko 已提交
3939 3940

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3941
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
3942 3943
		goto retry;

3944 3945 3946 3947 3948 3949 3950
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
3951
			should_compact_retry(ac, order, alloc_flags,
3952
				compact_result, &compact_priority,
3953
				&compaction_retries))
3954 3955
		goto retry;

3956 3957 3958

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3959 3960
		goto retry_cpuset;

3961 3962 3963 3964 3965
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

3966
	/* Avoid allocations with no watermarks from looping endlessly */
3967 3968 3969
	if (test_thread_flag(TIF_MEMDIE) &&
	    (alloc_flags == ALLOC_NO_WATERMARKS ||
	     (gfp_mask & __GFP_NOMEMALLOC)))
3970 3971
		goto nopage;

3972
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
3973 3974
	if (did_some_progress) {
		no_progress_loops = 0;
3975
		goto retry;
M
Michal Hocko 已提交
3976
	}
3977

L
Linus Torvalds 已提交
3978
nopage:
3979 3980
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3981 3982
		goto retry_cpuset;

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4020 4021 4022 4023
		cond_resched();
		goto retry;
	}
fail:
4024
	warn_alloc(gfp_mask, ac->nodemask,
4025
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4026
got_pg:
4027
	return page;
L
Linus Torvalds 已提交
4028
}
4029

4030
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4031
		int preferred_nid, nodemask_t *nodemask,
4032 4033
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4034
{
4035
	ac->high_zoneidx = gfp_zone(gfp_mask);
4036
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4037 4038
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4039

4040
	if (cpusets_enabled()) {
4041 4042 4043
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4044 4045
		else
			*alloc_flags |= ALLOC_CPUSET;
4046 4047
	}

4048 4049
	lockdep_trace_alloc(gfp_mask);

4050
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4051 4052

	if (should_fail_alloc_page(gfp_mask, order))
4053
		return false;
4054

4055 4056 4057 4058 4059
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4060

4061 4062 4063 4064
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4065
	/* Dirty zone balancing only done in the fast path */
4066
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4067

4068 4069 4070 4071 4072
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4073 4074 4075 4076 4077 4078 4079 4080
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4081 4082
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4083 4084 4085 4086 4087 4088 4089
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4090
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4091 4092 4093
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4094

4095
	/* First allocation attempt */
4096
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4097 4098
	if (likely(page))
		goto out;
4099

4100
	/*
4101 4102 4103 4104
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4105
	 */
4106
	alloc_mask = current_gfp_context(gfp_mask);
4107
	ac.spread_dirty_pages = false;
4108

4109 4110 4111 4112
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4113
	if (unlikely(ac.nodemask != nodemask))
4114
		ac.nodemask = nodemask;
4115

4116
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4117

4118
out:
4119 4120 4121 4122
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4123 4124
	}

4125 4126 4127 4128 4129
	if (kmemcheck_enabled && page)
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);

	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4130
	return page;
L
Linus Torvalds 已提交
4131
}
4132
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4133 4134 4135 4136

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4137
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4138
{
4139 4140 4141 4142 4143 4144 4145 4146
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4154
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4155
{
4156
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4157 4158 4159
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4160
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4161
{
N
Nick Piggin 已提交
4162
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4163
		if (order == 0)
4164
			free_hot_cold_page(page, false);
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4172
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4173 4174
{
	if (addr != 0) {
N
Nick Piggin 已提交
4175
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4193 4194
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4214
void __page_frag_cache_drain(struct page *page, unsigned int count)
4215 4216 4217 4218
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4219 4220
		unsigned int order = compound_order(page);

4221 4222 4223 4224 4225 4226
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}
4227
EXPORT_SYMBOL(__page_frag_cache_drain);
4228

4229 4230
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4231 4232 4233 4234 4235 4236 4237
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4238
		page = __page_frag_cache_refill(nc, gfp_mask);
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4249
		page_ref_add(page, size - 1);
4250 4251

		/* reset page count bias and offset to start of new frag */
4252
		nc->pfmemalloc = page_is_pfmemalloc(page);
4253 4254 4255 4256 4257 4258 4259 4260
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4261
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4262 4263 4264 4265 4266 4267 4268
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4269
		set_page_count(page, size);
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4281
EXPORT_SYMBOL(page_frag_alloc);
4282 4283 4284 4285

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4286
void page_frag_free(void *addr)
4287 4288 4289 4290 4291 4292
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4293
EXPORT_SYMBOL(page_frag_free);
4294

4295 4296
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4330
	return make_alloc_exact(addr, order, size);
4331 4332 4333
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4334 4335 4336
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4337
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4338 4339 4340 4341 4342 4343
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4344
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4345
{
4346
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4347 4348 4349 4350 4351 4352
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4372 4373 4374 4375 4376 4377 4378
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4379 4380
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4381
 */
4382
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4383
{
4384
	struct zoneref *z;
4385 4386
	struct zone *zone;

4387
	/* Just pick one node, since fallback list is circular */
4388
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4389

4390
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4391

4392
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4393
		unsigned long size = zone->managed_pages;
4394
		unsigned long high = high_wmark_pages(zone);
4395 4396
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4397 4398 4399 4400 4401
	}

	return sum;
}

4402 4403 4404 4405 4406
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4407
 */
4408
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4409
{
A
Al Viro 已提交
4410
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4411
}
4412
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4413

4414 4415 4416 4417 4418
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4419
 */
4420
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4421
{
M
Mel Gorman 已提交
4422
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4423
}
4424 4425

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4426
{
4427
	if (IS_ENABLED(CONFIG_NUMA))
4428
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4429 4430
}

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4441
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4465 4466 4467
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4468 4469 4470 4471 4472 4473 4474

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4475 4476 4477
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4478
	val->sharedram = global_node_page_state(NR_SHMEM);
4479
	val->freeram = global_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4491 4492
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4493 4494
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4495 4496
	pg_data_t *pgdat = NODE_DATA(nid);

4497 4498 4499
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4500
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4501
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4502
#ifdef CONFIG_HIGHMEM
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4513
#else
4514 4515
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4516
#endif
L
Linus Torvalds 已提交
4517 4518 4519 4520
	val->mem_unit = PAGE_SIZE;
}
#endif

4521
/*
4522 4523
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4524
 */
4525
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4526 4527
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4528
		return false;
4529

4530 4531 4532 4533 4534 4535 4536 4537 4538
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4539 4540
}

L
Linus Torvalds 已提交
4541 4542
#define K(x) ((x) << (PAGE_SHIFT-10))

4543 4544 4545 4546 4547
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4548 4549
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4550 4551 4552
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4553
#ifdef CONFIG_MEMORY_ISOLATION
4554
		[MIGRATE_ISOLATE]	= 'I',
4555
#endif
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4567
	printk(KERN_CONT "(%s) ", tmp);
4568 4569
}

L
Linus Torvalds 已提交
4570 4571 4572 4573
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4574 4575 4576 4577
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4578
 */
4579
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4580
{
4581
	unsigned long free_pcp = 0;
4582
	int cpu;
L
Linus Torvalds 已提交
4583
	struct zone *zone;
M
Mel Gorman 已提交
4584
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4585

4586
	for_each_populated_zone(zone) {
4587
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4588
			continue;
4589

4590 4591
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4592 4593
	}

K
KOSAKI Motohiro 已提交
4594 4595
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4596 4597
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4598
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4599
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4600 4601 4602 4603 4604 4605 4606
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4607 4608 4609
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4610 4611
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4612
		global_node_page_state(NR_FILE_MAPPED),
4613
		global_node_page_state(NR_SHMEM),
4614
		global_page_state(NR_PAGETABLE),
4615
		global_page_state(NR_BOUNCE),
4616 4617
		global_page_state(NR_FREE_PAGES),
		free_pcp,
4618
		global_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4619

M
Mel Gorman 已提交
4620
	for_each_online_pgdat(pgdat) {
4621
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4622 4623
			continue;

M
Mel Gorman 已提交
4624 4625 4626 4627 4628 4629 4630 4631
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4632
			" mapped:%lukB"
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4653
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4654 4655
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4656
			K(node_page_state(pgdat, NR_SHMEM)),
4657 4658 4659 4660 4661 4662 4663 4664
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4665 4666
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4667 4668
	}

4669
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4670 4671
		int i;

4672
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4673
			continue;
4674 4675 4676 4677 4678

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4679
		show_node(zone);
4680 4681
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4682 4683 4684 4685
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4686 4687 4688 4689 4690
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4691
			" writepending:%lukB"
L
Linus Torvalds 已提交
4692
			" present:%lukB"
4693
			" managed:%lukB"
4694
			" mlocked:%lukB"
4695
			" kernel_stack:%lukB"
4696 4697
			" pagetables:%lukB"
			" bounce:%lukB"
4698 4699
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4700
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4701 4702
			"\n",
			zone->name,
4703
			K(zone_page_state(zone, NR_FREE_PAGES)),
4704 4705 4706
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4707 4708 4709 4710 4711
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4712
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4713
			K(zone->present_pages),
4714
			K(zone->managed_pages),
4715
			K(zone_page_state(zone, NR_MLOCK)),
4716
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4717 4718
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4719 4720
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4721
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4722 4723
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4724 4725
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4726 4727
	}

4728
	for_each_populated_zone(zone) {
4729 4730
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4731
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4732

4733
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4734
			continue;
L
Linus Torvalds 已提交
4735
		show_node(zone);
4736
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4737 4738 4739

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4740 4741 4742 4743
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4744
			total += nr[order] << order;
4745 4746 4747 4748 4749 4750

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4751 4752
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4753
		for (order = 0; order < MAX_ORDER; order++) {
4754 4755
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4756 4757 4758
			if (nr[order])
				show_migration_types(types[order]);
		}
4759
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4760 4761
	}

4762 4763
	hugetlb_show_meminfo();

4764
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4765

L
Linus Torvalds 已提交
4766 4767 4768
	show_swap_cache_info();
}

4769 4770 4771 4772 4773 4774
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4775 4776
/*
 * Builds allocation fallback zone lists.
4777 4778
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4779
 */
4780
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4781
				int nr_zones)
L
Linus Torvalds 已提交
4782
{
4783
	struct zone *zone;
4784
	enum zone_type zone_type = MAX_NR_ZONES;
4785 4786

	do {
4787
		zone_type--;
4788
		zone = pgdat->node_zones + zone_type;
4789
		if (managed_zone(zone)) {
4790 4791
			zoneref_set_zone(zone,
				&zonelist->_zonerefs[nr_zones++]);
4792
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4793
		}
4794
	} while (zone_type);
4795

4796
	return nr_zones;
L
Linus Torvalds 已提交
4797 4798
}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819

/*
 *  zonelist_order:
 *  0 = automatic detection of better ordering.
 *  1 = order by ([node] distance, -zonetype)
 *  2 = order by (-zonetype, [node] distance)
 *
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 *  the same zonelist. So only NUMA can configure this param.
 */
#define ZONELIST_ORDER_DEFAULT  0
#define ZONELIST_ORDER_NODE     1
#define ZONELIST_ORDER_ZONE     2

/* zonelist order in the kernel.
 * set_zonelist_order() will set this to NODE or ZONE.
 */
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};


L
Linus Torvalds 已提交
4820
#ifdef CONFIG_NUMA
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN	16
char numa_zonelist_order[16] = "default";

/*
 * interface for configure zonelist ordering.
 * command line option "numa_zonelist_order"
 *	= "[dD]efault	- default, automatic configuration.
 *	= "[nN]ode 	- order by node locality, then by zone within node
 *	= "[zZ]one      - order by zone, then by locality within zone
 */

static int __parse_numa_zonelist_order(char *s)
{
	if (*s == 'd' || *s == 'D') {
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
	} else if (*s == 'n' || *s == 'N') {
		user_zonelist_order = ZONELIST_ORDER_NODE;
	} else if (*s == 'z' || *s == 'Z') {
		user_zonelist_order = ZONELIST_ORDER_ZONE;
	} else {
4844
		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4845 4846 4847 4848 4849 4850 4851
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	int ret;

	if (!s)
		return 0;

	ret = __parse_numa_zonelist_order(s);
	if (ret == 0)
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);

	return ret;
4862 4863 4864 4865 4866 4867
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

/*
 * sysctl handler for numa_zonelist_order
 */
4868
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4869
		void __user *buffer, size_t *length,
4870 4871 4872 4873
		loff_t *ppos)
{
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
	int ret;
4874
	static DEFINE_MUTEX(zl_order_mutex);
4875

4876
	mutex_lock(&zl_order_mutex);
4877 4878 4879 4880 4881 4882 4883
	if (write) {
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
			ret = -EINVAL;
			goto out;
		}
		strcpy(saved_string, (char *)table->data);
	}
4884
	ret = proc_dostring(table, write, buffer, length, ppos);
4885
	if (ret)
4886
		goto out;
4887 4888
	if (write) {
		int oldval = user_zonelist_order;
4889 4890 4891

		ret = __parse_numa_zonelist_order((char *)table->data);
		if (ret) {
4892 4893 4894
			/*
			 * bogus value.  restore saved string
			 */
4895
			strncpy((char *)table->data, saved_string,
4896 4897
				NUMA_ZONELIST_ORDER_LEN);
			user_zonelist_order = oldval;
4898
		} else if (oldval != user_zonelist_order) {
4899
			mem_hotplug_begin();
4900
			mutex_lock(&zonelists_mutex);
4901
			build_all_zonelists(NULL, NULL);
4902
			mutex_unlock(&zonelists_mutex);
4903
			mem_hotplug_done();
4904
		}
4905
	}
4906 4907 4908
out:
	mutex_unlock(&zl_order_mutex);
	return ret;
4909 4910 4911
}


4912
#define MAX_NODE_LOAD (nr_online_nodes)
4913 4914
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4915
/**
4916
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4929
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4930
{
4931
	int n, val;
L
Linus Torvalds 已提交
4932
	int min_val = INT_MAX;
D
David Rientjes 已提交
4933
	int best_node = NUMA_NO_NODE;
4934
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4935

4936 4937 4938 4939 4940
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4941

4942
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947 4948 4949 4950

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

4951 4952 4953
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
4954
		/* Give preference to headless and unused nodes */
4955 4956
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

4975 4976 4977 4978 4979 4980 4981

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
L
Linus Torvalds 已提交
4982
{
4983
	int j;
L
Linus Torvalds 已提交
4984
	struct zonelist *zonelist;
4985

4986
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4987
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4988
		;
4989
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4990 4991
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4992 4993
}

4994 4995 4996 4997 4998 4999 5000 5001
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
	int j;
	struct zonelist *zonelist;

5002
	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
5003
	j = build_zonelists_node(pgdat, zonelist, 0);
5004 5005
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
5006 5007
}

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */
static int node_order[MAX_NUMNODES];

static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
	int pos, j, node;
	int zone_type;		/* needs to be signed */
	struct zone *z;
	struct zonelist *zonelist;

5023
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5024 5025 5026 5027 5028
	pos = 0;
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
		for (j = 0; j < nr_nodes; j++) {
			node = node_order[j];
			z = &NODE_DATA(node)->node_zones[zone_type];
5029
			if (managed_zone(z)) {
5030 5031
				zoneref_set_zone(z,
					&zonelist->_zonerefs[pos++]);
5032
				check_highest_zone(zone_type);
5033 5034 5035
			}
		}
	}
5036 5037
	zonelist->_zonerefs[pos].zone = NULL;
	zonelist->_zonerefs[pos].zone_idx = 0;
5038 5039
}

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
#if defined(CONFIG_64BIT)
/*
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 * penalty to every machine in case the specialised case applies. Default
 * to Node-ordering on 64-bit NUMA machines
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_NODE;
}
#else
/*
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 * by the kernel. If processes running on node 0 deplete the low memory zone
 * then reclaim will occur more frequency increasing stalls and potentially
 * be easier to OOM if a large percentage of the zone is under writeback or
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 * Hence, default to zone ordering on 32-bit.
 */
5059 5060 5061 5062
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_ZONE;
}
5063
#endif /* CONFIG_64BIT */
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

static void set_zonelist_order(void)
{
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
		current_zonelist_order = default_zonelist_order();
	else
		current_zonelist_order = user_zonelist_order;
}

static void build_zonelists(pg_data_t *pgdat)
{
5075
	int i, node, load;
L
Linus Torvalds 已提交
5076
	nodemask_t used_mask;
5077 5078
	int local_node, prev_node;
	struct zonelist *zonelist;
5079
	unsigned int order = current_zonelist_order;
L
Linus Torvalds 已提交
5080 5081

	/* initialize zonelists */
5082
	for (i = 0; i < MAX_ZONELISTS; i++) {
L
Linus Torvalds 已提交
5083
		zonelist = pgdat->node_zonelists + i;
5084 5085
		zonelist->_zonerefs[0].zone = NULL;
		zonelist->_zonerefs[0].zone_idx = 0;
L
Linus Torvalds 已提交
5086 5087 5088 5089
	}

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5090
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5091 5092
	prev_node = local_node;
	nodes_clear(used_mask);
5093 5094

	memset(node_order, 0, sizeof(node_order));
5095
	i = 0;
5096

L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5103 5104
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5105 5106
			node_load[node] = load;

L
Linus Torvalds 已提交
5107 5108
		prev_node = node;
		load--;
5109 5110 5111
		if (order == ZONELIST_ORDER_NODE)
			build_zonelists_in_node_order(pgdat, node);
		else
5112
			node_order[i++] = node;	/* remember order */
5113
	}
L
Linus Torvalds 已提交
5114

5115 5116
	if (order == ZONELIST_ORDER_ZONE) {
		/* calculate node order -- i.e., DMA last! */
5117
		build_zonelists_in_zone_order(pgdat, i);
L
Linus Torvalds 已提交
5118
	}
5119 5120

	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5121 5122
}

5123 5124 5125 5126 5127 5128 5129 5130 5131
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5132
	struct zoneref *z;
5133

5134
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5135
				   gfp_zone(GFP_KERNEL),
5136 5137
				   NULL);
	return z->zone->node;
5138 5139
}
#endif
5140

5141 5142
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5143 5144
#else	/* CONFIG_NUMA */

5145 5146 5147 5148 5149 5150
static void set_zonelist_order(void)
{
	current_zonelist_order = ZONELIST_ORDER_ZONE;
}

static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5151
{
5152
	int node, local_node;
5153 5154
	enum zone_type j;
	struct zonelist *zonelist;
L
Linus Torvalds 已提交
5155 5156 5157

	local_node = pgdat->node_id;

5158
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5159
	j = build_zonelists_node(pgdat, zonelist, 0);
L
Linus Torvalds 已提交
5160

5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5172
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
L
Linus Torvalds 已提交
5173
	}
5174 5175 5176
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5177
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5178 5179
	}

5180 5181
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
L
Linus Torvalds 已提交
5182 5183 5184 5185
}

#endif	/* CONFIG_NUMA */

5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5203
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5204
static void setup_zone_pageset(struct zone *zone);
5205

5206 5207 5208 5209 5210 5211
/*
 * Global mutex to protect against size modification of zonelists
 * as well as to serialize pageset setup for the new populated zone.
 */
DEFINE_MUTEX(zonelists_mutex);

5212
/* return values int ....just for stop_machine() */
5213
static int __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5214
{
5215
	int nid;
5216
	int cpu;
5217
	pg_data_t *self = data;
5218

5219 5220 5221
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5222 5223 5224 5225 5226

	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
	}

5227
	for_each_online_node(nid) {
5228 5229 5230
		pg_data_t *pgdat = NODE_DATA(nid);

		build_zonelists(pgdat);
5231
	}
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
5246
	for_each_possible_cpu(cpu) {
5247 5248
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
		if (cpu_online(cpu))
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
	}

5263 5264 5265
	return 0;
}

5266 5267 5268 5269 5270 5271 5272 5273
static noinline void __init
build_all_zonelists_init(void)
{
	__build_all_zonelists(NULL);
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5274 5275 5276
/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
5277 5278 5279 5280 5281
 *
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 * [we're only called with non-NULL zone through __meminit paths] and
 * (2) call of __init annotated helper build_all_zonelists_init
 * [protected by SYSTEM_BOOTING].
5282
 */
5283
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5284
{
5285 5286
	set_zonelist_order();

5287
	if (system_state == SYSTEM_BOOTING) {
5288
		build_all_zonelists_init();
5289
	} else {
5290
#ifdef CONFIG_MEMORY_HOTPLUG
5291 5292
		if (zone)
			setup_zone_pageset(zone);
5293
#endif
5294 5295
		/* we have to stop all cpus to guarantee there is no user
		   of zonelist */
5296
		stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5297 5298
		/* cpuset refresh routine should be here */
	}
5299
	vm_total_pages = nr_free_pagecache_pages();
5300 5301 5302 5303 5304 5305 5306
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5307
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5308 5309 5310 5311
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

J
Joe Perches 已提交
5312 5313 5314 5315 5316
	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
		nr_online_nodes,
		zonelist_order_name[current_zonelist_order],
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5317
#ifdef CONFIG_NUMA
5318
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5319
#endif
L
Linus Torvalds 已提交
5320 5321 5322 5323 5324 5325 5326
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5327
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5328
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5329
{
5330
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5331
	unsigned long end_pfn = start_pfn + size;
5332
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5333
	unsigned long pfn;
5334
	unsigned long nr_initialised = 0;
5335 5336 5337
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5338

5339 5340 5341
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5342 5343 5344 5345 5346 5347 5348
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5349
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5350
		/*
5351 5352
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5353
		 */
5354 5355 5356
		if (context != MEMMAP_EARLY)
			goto not_early;

5357 5358 5359 5360 5361 5362 5363 5364 5365
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5366
			continue;
5367
		}
5368 5369 5370 5371
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5372 5373

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5391
			}
D
Dave Hansen 已提交
5392
		}
5393
#endif
5394

5395
not_early:
5396 5397 5398 5399 5400
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5401
		 * kernel allocations are made.
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5416 5417 5418
	}
}

5419
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5420
{
5421
	unsigned int order, t;
5422 5423
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5430
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5431 5432
#endif

5433
static int zone_batchsize(struct zone *zone)
5434
{
5435
#ifdef CONFIG_MMU
5436 5437 5438 5439
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5440
	 * size of the zone.  But no more than 1/2 of a meg.
5441 5442 5443
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5444
	batch = zone->managed_pages / 1024;
5445 5446
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5447 5448 5449 5450 5451
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5452 5453 5454
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5455
	 *
5456 5457 5458 5459
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5460
	 */
5461
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5462

5463
	return batch;
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5481 5482
}

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5510
/* a companion to pageset_set_high() */
5511 5512
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5513
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5514 5515
}

5516
static void pageset_init(struct per_cpu_pageset *p)
5517 5518
{
	struct per_cpu_pages *pcp;
5519
	int migratetype;
5520

5521 5522
	memset(p, 0, sizeof(*p));

5523
	pcp = &p->pcp;
5524
	pcp->count = 0;
5525 5526
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5527 5528
}

5529 5530 5531 5532 5533 5534
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5535
/*
5536
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5537 5538
 * to the value high for the pageset p.
 */
5539
static void pageset_set_high(struct per_cpu_pageset *p,
5540 5541
				unsigned long high)
{
5542 5543 5544
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5545

5546
	pageset_update(&p->pcp, high, batch);
5547 5548
}

5549 5550
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5551 5552
{
	if (percpu_pagelist_fraction)
5553
		pageset_set_high(pcp,
5554 5555 5556 5557 5558 5559
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5560 5561 5562 5563 5564 5565 5566 5567
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5568
static void __meminit setup_zone_pageset(struct zone *zone)
5569 5570 5571
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5572 5573
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5574 5575
}

5576
/*
5577 5578
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5579
 */
5580
void __init setup_per_cpu_pageset(void)
5581
{
5582
	struct pglist_data *pgdat;
5583
	struct zone *zone;
5584

5585 5586
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5587 5588 5589 5590

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5591 5592
}

5593
static __meminit void zone_pcp_init(struct zone *zone)
5594
{
5595 5596 5597 5598 5599 5600
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5601

5602
	if (populated_zone(zone))
5603 5604 5605
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5606 5607
}

5608
void __meminit init_currently_empty_zone(struct zone *zone,
5609
					unsigned long zone_start_pfn,
5610
					unsigned long size)
5611 5612
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5613

5614 5615 5616 5617
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5618 5619 5620 5621 5622 5623
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5624
	zone_init_free_lists(zone);
5625
	zone->initialized = 1;
5626 5627
}

T
Tejun Heo 已提交
5628
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5629
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5630

5631 5632 5633
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5634 5635
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5636
{
5637
	unsigned long start_pfn, end_pfn;
5638
	int nid;
5639

5640 5641
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5642

5643 5644
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5645 5646 5647
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5648 5649 5650
	}

	return nid;
5651 5652 5653 5654
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5655
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5656
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5657
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5658
 *
5659 5660 5661
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5662
 */
5663
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5664
{
5665 5666
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5667

5668 5669 5670
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5671

5672
		if (start_pfn < end_pfn)
5673 5674 5675
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5676 5677 5678
	}
}

5679 5680
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5681
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5682
 *
5683 5684
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5685 5686 5687
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5688 5689
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5690

5691 5692
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5693 5694 5695 5696
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5697 5698 5699
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5700 5701
 *
 * It returns the start and end page frame of a node based on information
5702
 * provided by memblock_set_node(). If called for a node
5703
 * with no available memory, a warning is printed and the start and end
5704
 * PFNs will be 0.
5705
 */
5706
void __meminit get_pfn_range_for_nid(unsigned int nid,
5707 5708
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5709
	unsigned long this_start_pfn, this_end_pfn;
5710
	int i;
5711

5712 5713 5714
	*start_pfn = -1UL;
	*end_pfn = 0;

5715 5716 5717
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5718 5719
	}

5720
	if (*start_pfn == -1UL)
5721 5722 5723
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5724 5725 5726 5727 5728
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5729
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5747
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5748 5749 5750 5751 5752 5753 5754
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5755
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5770 5771 5772 5773 5774 5775
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5776 5777 5778 5779 5780 5781
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5782 5783 5784 5785
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5786
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5787
					unsigned long zone_type,
5788 5789
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5790 5791
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5792 5793
					unsigned long *ignored)
{
5794
	/* When hotadd a new node from cpu_up(), the node should be empty */
5795 5796 5797
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5798
	/* Get the start and end of the zone */
5799 5800
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5801 5802
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5803
				zone_start_pfn, zone_end_pfn);
5804 5805

	/* Check that this node has pages within the zone's required range */
5806
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5807 5808 5809
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5810 5811
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5812 5813

	/* Return the spanned pages */
5814
	return *zone_end_pfn - *zone_start_pfn;
5815 5816 5817 5818
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5819
 * then all holes in the requested range will be accounted for.
5820
 */
5821
unsigned long __meminit __absent_pages_in_range(int nid,
5822 5823 5824
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5825 5826 5827
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5828

5829 5830 5831 5832
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5833
	}
5834
	return nr_absent;
5835 5836 5837 5838 5839 5840 5841
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5842
 * It returns the number of pages frames in memory holes within a range.
5843 5844 5845 5846 5847 5848 5849 5850
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5851
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5852
					unsigned long zone_type,
5853 5854
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5855 5856
					unsigned long *ignored)
{
5857 5858
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5859
	unsigned long zone_start_pfn, zone_end_pfn;
5860
	unsigned long nr_absent;
5861

5862
	/* When hotadd a new node from cpu_up(), the node should be empty */
5863 5864 5865
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5866 5867
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5868

M
Mel Gorman 已提交
5869 5870 5871
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5872 5873 5874 5875 5876 5877 5878
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5896 5897 5898 5899
		}
	}

	return nr_absent;
5900
}
5901

T
Tejun Heo 已提交
5902
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5903
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5904
					unsigned long zone_type,
5905 5906
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5907 5908
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5909 5910
					unsigned long *zones_size)
{
5911 5912 5913 5914 5915 5916 5917 5918
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5919 5920 5921
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5922
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5923
						unsigned long zone_type,
5924 5925
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5926 5927 5928 5929 5930 5931 5932
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5933

T
Tejun Heo 已提交
5934
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5935

5936
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5937 5938 5939 5940
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5941
{
5942
	unsigned long realtotalpages = 0, totalpages = 0;
5943 5944
	enum zone_type i;

5945 5946
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5947
		unsigned long zone_start_pfn, zone_end_pfn;
5948
		unsigned long size, real_size;
5949

5950 5951 5952
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5953 5954
						  &zone_start_pfn,
						  &zone_end_pfn,
5955 5956
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5957 5958
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5959 5960 5961 5962
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5963 5964 5965 5966 5967 5968 5969 5970
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5971 5972 5973 5974 5975
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5976 5977 5978
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5979 5980
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5981 5982 5983
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5984
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5985 5986 5987
{
	unsigned long usemapsize;

5988
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5989 5990
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5991 5992 5993 5994 5995 5996 5997
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5998 5999 6000
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6001
{
6002
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6003
	zone->pageblock_flags = NULL;
6004
	if (usemapsize)
6005 6006 6007
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6008 6009
}
#else
6010 6011
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6012 6013
#endif /* CONFIG_SPARSEMEM */

6014
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6015

6016
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6017
void __paginginit set_pageblock_order(void)
6018
{
6019 6020
	unsigned int order;

6021 6022 6023 6024
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6025 6026 6027 6028 6029
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6030 6031
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6032 6033
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6034 6035 6036 6037 6038
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6039 6040
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6041 6042 6043
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6044
 */
6045
void __paginginit set_pageblock_order(void)
6046 6047
{
}
6048 6049 6050

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6061
	 * populated regions may not be naturally aligned on page boundary.
6062 6063 6064 6065 6066 6067 6068 6069 6070
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6071 6072 6073 6074 6075
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6076 6077
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6078
 */
6079
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6080
{
6081
	enum zone_type j;
6082
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6083

6084
	pgdat_resize_init(pgdat);
6085 6086 6087 6088
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6089 6090 6091 6092 6093
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6094
#endif
L
Linus Torvalds 已提交
6095
	init_waitqueue_head(&pgdat->kswapd_wait);
6096
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6097 6098 6099
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6100
	pgdat_page_ext_init(pgdat);
6101
	spin_lock_init(&pgdat->lru_lock);
6102
	lruvec_init(node_lruvec(pgdat));
6103

6104 6105
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6106 6107
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6108
		unsigned long size, realsize, freesize, memmap_pages;
6109
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6110

6111 6112
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6113

6114
		/*
6115
		 * Adjust freesize so that it accounts for how much memory
6116 6117 6118
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6119
		memmap_pages = calc_memmap_size(size, realsize);
6120 6121 6122 6123 6124 6125 6126 6127
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6128
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6129 6130
					zone_names[j], memmap_pages, freesize);
		}
6131

6132
		/* Account for reserved pages */
6133 6134
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6135
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6136
					zone_names[0], dma_reserve);
6137 6138
		}

6139
		if (!is_highmem_idx(j))
6140
			nr_kernel_pages += freesize;
6141 6142 6143
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6144
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6145

6146 6147 6148 6149 6150 6151
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6152
#ifdef CONFIG_NUMA
6153
		zone->node = nid;
6154
#endif
L
Linus Torvalds 已提交
6155
		zone->name = zone_names[j];
6156
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6157
		spin_lock_init(&zone->lock);
6158
		zone_seqlock_init(zone);
6159
		zone_pcp_init(zone);
6160

L
Linus Torvalds 已提交
6161 6162 6163
		if (!size)
			continue;

6164
		set_pageblock_order();
6165
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6166
		init_currently_empty_zone(zone, zone_start_pfn, size);
6167
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6168 6169 6170
	}
}

6171
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6172
{
6173
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6174 6175
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6176 6177 6178 6179
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6180
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6181 6182
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6183 6184
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6185
		unsigned long size, end;
A
Andy Whitcroft 已提交
6186 6187
		struct page *map;

6188 6189 6190 6191 6192
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6193
		end = pgdat_end_pfn(pgdat);
6194 6195
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6196 6197
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6198 6199
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6200
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6201
	}
6202
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6203 6204 6205
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6206
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6207
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6208
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6209
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6210
			mem_map -= offset;
T
Tejun Heo 已提交
6211
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6212
	}
L
Linus Torvalds 已提交
6213
#endif
A
Andy Whitcroft 已提交
6214
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6215 6216
}

6217 6218
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6219
{
6220
	pg_data_t *pgdat = NODE_DATA(nid);
6221 6222
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6223

6224
	/* pg_data_t should be reset to zero when it's allocated */
6225
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6226

L
Linus Torvalds 已提交
6227 6228
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6229
	pgdat->per_cpu_nodestats = NULL;
6230 6231
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6232
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6233 6234
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6235 6236
#else
	start_pfn = node_start_pfn;
6237 6238 6239
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6240 6241

	alloc_node_mem_map(pgdat);
6242 6243 6244 6245 6246
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6247

6248
	reset_deferred_meminit(pgdat);
6249
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6250 6251
}

T
Tejun Heo 已提交
6252
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6253 6254 6255 6256 6257

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6258
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6259
{
6260
	unsigned int highest;
M
Miklos Szeredi 已提交
6261

6262
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6263 6264 6265 6266
	nr_node_ids = highest + 1;
}
#endif

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6289
	unsigned long start, end, mask;
6290
	int last_nid = -1;
6291
	int i, nid;
6292

6293
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6317
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6318
static unsigned long __init find_min_pfn_for_node(int nid)
6319
{
6320
	unsigned long min_pfn = ULONG_MAX;
6321 6322
	unsigned long start_pfn;
	int i;
6323

6324 6325
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6326

6327
	if (min_pfn == ULONG_MAX) {
6328
		pr_warn("Could not find start_pfn for node %d\n", nid);
6329 6330 6331 6332
		return 0;
	}

	return min_pfn;
6333 6334 6335 6336 6337 6338
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6339
 * memblock_set_node().
6340 6341 6342 6343 6344 6345
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6346 6347 6348
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6349
 * Populate N_MEMORY for calculating usable_nodes.
6350
 */
A
Adrian Bunk 已提交
6351
static unsigned long __init early_calculate_totalpages(void)
6352 6353
{
	unsigned long totalpages = 0;
6354 6355 6356 6357 6358
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6359

6360 6361
		totalpages += pages;
		if (pages)
6362
			node_set_state(nid, N_MEMORY);
6363
	}
6364
	return totalpages;
6365 6366
}

M
Mel Gorman 已提交
6367 6368 6369 6370 6371 6372
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6373
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6374 6375 6376 6377
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6378
	/* save the state before borrow the nodemask */
6379
	nodemask_t saved_node_state = node_states[N_MEMORY];
6380
	unsigned long totalpages = early_calculate_totalpages();
6381
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6382
	struct memblock_region *r;
6383 6384 6385 6386 6387 6388 6389 6390 6391

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6392 6393
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6394 6395
				continue;

E
Emil Medve 已提交
6396
			nid = r->nid;
6397

E
Emil Medve 已提交
6398
			usable_startpfn = PFN_DOWN(r->base);
6399 6400 6401 6402 6403 6404 6405
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6406

6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6437
	/*
6438
	 * If movablecore=nn[KMG] was specified, calculate what size of
6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6454
		required_movablecore = min(totalpages, required_movablecore);
6455 6456 6457 6458 6459
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6460 6461 6462 6463 6464
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6465
		goto out;
M
Mel Gorman 已提交
6466 6467 6468 6469 6470 6471 6472

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6473
	for_each_node_state(nid, N_MEMORY) {
6474 6475
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6492
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6493 6494
			unsigned long size_pages;

6495
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6538
			 * satisfied
M
Mel Gorman 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6552
	 * satisfied
M
Mel Gorman 已提交
6553 6554 6555 6556 6557
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6558
out2:
M
Mel Gorman 已提交
6559 6560 6561 6562
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6563

6564
out:
6565
	/* restore the node_state */
6566
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6567 6568
}

6569 6570
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6571 6572 6573
{
	enum zone_type zone_type;

6574 6575 6576 6577
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6578
		struct zone *zone = &pgdat->node_zones[zone_type];
6579
		if (populated_zone(zone)) {
6580 6581 6582 6583
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6584 6585
			break;
		}
6586 6587 6588
	}
}

6589 6590
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6591
 * @max_zone_pfn: an array of max PFNs for each zone
6592 6593
 *
 * This will call free_area_init_node() for each active node in the system.
6594
 * Using the page ranges provided by memblock_set_node(), the size of each
6595 6596 6597 6598 6599 6600 6601 6602 6603
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6604 6605
	unsigned long start_pfn, end_pfn;
	int i, nid;
6606

6607 6608 6609 6610 6611
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6612 6613 6614 6615

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6616 6617
		if (i == ZONE_MOVABLE)
			continue;
6618 6619 6620 6621 6622 6623

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6624
	}
M
Mel Gorman 已提交
6625 6626 6627

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6628
	find_zone_movable_pfns_for_nodes();
6629 6630

	/* Print out the zone ranges */
6631
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6632 6633 6634
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6635
		pr_info("  %-8s ", zone_names[i]);
6636 6637
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6638
			pr_cont("empty\n");
6639
		else
6640 6641 6642 6643
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6644
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6645 6646 6647
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6648
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6649 6650
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6651 6652
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6653
	}
6654

6655
	/* Print out the early node map */
6656
	pr_info("Early memory node ranges\n");
6657
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6658 6659 6660
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6661 6662

	/* Initialise every node */
6663
	mminit_verify_pageflags_layout();
6664
	setup_nr_node_ids();
6665 6666
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6667
		free_area_init_node(nid, NULL,
6668
				find_min_pfn_for_node(nid), NULL);
6669 6670 6671

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6672 6673
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6674 6675
	}
}
M
Mel Gorman 已提交
6676

6677
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6678 6679 6680 6681 6682 6683
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6684
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6685

6686
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6687 6688 6689 6690
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6691

6692 6693 6694 6695 6696 6697
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6698 6699 6700 6701 6702 6703
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6716
early_param("kernelcore", cmdline_parse_kernelcore);
6717
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6718

T
Tejun Heo 已提交
6719
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6720

6721 6722 6723 6724 6725
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6726 6727 6728 6729
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6730 6731
	spin_unlock(&managed_page_count_lock);
}
6732
EXPORT_SYMBOL(adjust_managed_page_count);
6733

6734
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6735
{
6736 6737
	void *pos;
	unsigned long pages = 0;
6738

6739 6740 6741
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6742
		if ((unsigned int)poison <= 0xFF)
6743 6744
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6745 6746 6747
	}

	if (pages && s)
6748 6749
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6750 6751 6752

	return pages;
}
6753
EXPORT_SYMBOL(free_reserved_area);
6754

6755 6756 6757 6758 6759
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6760
	page_zone(page)->managed_pages++;
6761 6762 6763 6764
	totalhigh_pages++;
}
#endif

6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6787 6788 6789 6790
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6801
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6802
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6803
		", %luK highmem"
6804
#endif
J
Joe Perches 已提交
6805 6806 6807 6808 6809 6810 6811
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6812
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6813
		totalhigh_pages << (PAGE_SHIFT - 10),
6814
#endif
J
Joe Perches 已提交
6815
		str ? ", " : "", str ? str : "");
6816 6817
}

6818
/**
6819 6820
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6821
 *
6822
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6823 6824
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6825 6826 6827
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6828 6829 6830 6831 6832 6833
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6834 6835
void __init free_area_init(unsigned long *zones_size)
{
6836
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6837 6838 6839
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

6840
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6841 6842
{

6843 6844
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6845

6846 6847 6848 6849 6850 6851 6852
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6853

6854 6855 6856 6857 6858 6859 6860 6861 6862
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6863 6864 6865 6866
}

void __init page_alloc_init(void)
{
6867 6868 6869 6870 6871 6872
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6873 6874
}

6875
/*
6876
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6877 6878 6879 6880 6881 6882
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6883
	enum zone_type i, j;
6884 6885

	for_each_online_pgdat(pgdat) {
6886 6887 6888

		pgdat->totalreserve_pages = 0;

6889 6890
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6891
			long max = 0;
6892 6893 6894 6895 6896 6897 6898

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6899 6900
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6901

6902 6903
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6904

6905
			pgdat->totalreserve_pages += max;
6906

6907 6908 6909 6910 6911 6912
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6913 6914
/*
 * setup_per_zone_lowmem_reserve - called whenever
6915
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6916 6917 6918 6919 6920 6921
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6922
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6923

6924
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6925 6926
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6927
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6928 6929 6930

			zone->lowmem_reserve[j] = 0;

6931 6932
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6933 6934
				struct zone *lower_zone;

6935 6936
				idx--;

L
Linus Torvalds 已提交
6937 6938 6939 6940
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6941
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6942
					sysctl_lowmem_reserve_ratio[idx];
6943
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6944 6945 6946
			}
		}
	}
6947 6948 6949

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6950 6951
}

6952
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6953 6954 6955 6956 6957 6958 6959 6960 6961
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6962
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6963 6964 6965
	}

	for_each_zone(zone) {
6966 6967
		u64 tmp;

6968
		spin_lock_irqsave(&zone->lock, flags);
6969
		tmp = (u64)pages_min * zone->managed_pages;
6970
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6971 6972
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6973 6974 6975 6976
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6977
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6978
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6979
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6980
			 */
6981
			unsigned long min_pages;
L
Linus Torvalds 已提交
6982

6983
			min_pages = zone->managed_pages / 1024;
6984
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6985
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
6986
		} else {
N
Nick Piggin 已提交
6987 6988
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
6989 6990
			 * proportionate to the zone's size.
			 */
6991
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
6992 6993
		}

6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7005

7006
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7007
	}
7008 7009 7010

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7011 7012
}

7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
	mutex_lock(&zonelists_mutex);
	__setup_per_zone_wmarks();
	mutex_unlock(&zonelists_mutex);
}

L
Linus Torvalds 已提交
7027 7028 7029 7030 7031 7032 7033
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7034
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7051
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7052 7053
{
	unsigned long lowmem_kbytes;
7054
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7055 7056

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7069
	setup_per_zone_wmarks();
7070
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7071
	setup_per_zone_lowmem_reserve();
7072 7073 7074 7075 7076 7077

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7078 7079
	return 0;
}
7080
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7081 7082

/*
7083
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7084 7085 7086
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7087
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7088
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7089
{
7090 7091 7092 7093 7094 7095
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7096 7097
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7098
		setup_per_zone_wmarks();
7099
	}
L
Linus Torvalds 已提交
7100 7101 7102
	return 0;
}

7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7118
#ifdef CONFIG_NUMA
7119
static void setup_min_unmapped_ratio(void)
7120
{
7121
	pg_data_t *pgdat;
7122 7123
	struct zone *zone;

7124
	for_each_online_pgdat(pgdat)
7125
		pgdat->min_unmapped_pages = 0;
7126

7127
	for_each_zone(zone)
7128
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7129 7130
				sysctl_min_unmapped_ratio) / 100;
}
7131

7132 7133

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7134
	void __user *buffer, size_t *length, loff_t *ppos)
7135 7136 7137
{
	int rc;

7138
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7139 7140 7141
	if (rc)
		return rc;

7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7152 7153 7154
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7155
	for_each_zone(zone)
7156
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7157
				sysctl_min_slab_ratio) / 100;
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7171 7172
	return 0;
}
7173 7174
#endif

L
Linus Torvalds 已提交
7175 7176 7177 7178 7179 7180
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7181
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7182 7183
 * if in function of the boot time zone sizes.
 */
7184
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7185
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7186
{
7187
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7188 7189 7190 7191
	setup_per_zone_lowmem_reserve();
	return 0;
}

7192 7193
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7194 7195
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7196
 */
7197
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7198
	void __user *buffer, size_t *length, loff_t *ppos)
7199 7200
{
	struct zone *zone;
7201
	int old_percpu_pagelist_fraction;
7202 7203
	int ret;

7204 7205 7206
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7207
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7222

7223
	for_each_populated_zone(zone) {
7224 7225
		unsigned int cpu;

7226
		for_each_possible_cpu(cpu)
7227 7228
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7229
	}
7230
out:
7231
	mutex_unlock(&pcp_batch_high_lock);
7232
	return ret;
7233 7234
}

7235
#ifdef CONFIG_NUMA
7236
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7287 7288
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7289
{
7290
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7291 7292
	unsigned long log2qty, size;
	void *table = NULL;
7293
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7294 7295 7296 7297

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7298
		numentries = nr_kernel_pages;
7299
		numentries -= arch_reserved_kernel_pages();
7300 7301 7302 7303

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7304

P
Pavel Tatashin 已提交
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7315 7316 7317 7318 7319
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7320 7321

		/* Make sure we've got at least a 0-order allocation.. */
7322 7323 7324 7325 7326 7327 7328 7329
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7330
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7331
	}
7332
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7333 7334 7335 7336 7337 7338

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7339
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7340

7341 7342
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7343 7344 7345
	if (numentries > max)
		numentries = max;

7346
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7347

7348 7349 7350 7351 7352
	/*
	 * memblock allocator returns zeroed memory already, so HASH_ZERO is
	 * currently not used when HASH_EARLY is specified.
	 */
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7353 7354 7355
	do {
		size = bucketsize << log2qty;
		if (flags & HASH_EARLY)
7356
			table = memblock_virt_alloc_nopanic(size, 0);
L
Linus Torvalds 已提交
7357
		else if (hashdist)
7358
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
L
Linus Torvalds 已提交
7359
		else {
7360 7361
			/*
			 * If bucketsize is not a power-of-two, we may free
7362 7363
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7364
			 */
7365
			if (get_order(size) < MAX_ORDER) {
7366 7367
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7368
			}
L
Linus Torvalds 已提交
7369 7370 7371 7372 7373 7374
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7375 7376
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7377 7378 7379 7380 7381 7382 7383 7384

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7385

K
KAMEZAWA Hiroyuki 已提交
7386
/*
7387 7388 7389
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7390
 * PageLRU check without isolation or lru_lock could race so that
7391 7392 7393
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7394
 */
7395 7396
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
			 bool skip_hwpoisoned_pages)
7397 7398
{
	unsigned long pfn, iter, found;
7399 7400
	int mt;

7401 7402
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7403
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7404 7405
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7406
		return false;
7407 7408
	mt = get_pageblock_migratetype(page);
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7409
		return false;
7410 7411 7412 7413 7414

	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7415
		if (!pfn_valid_within(check))
7416
			continue;
7417

7418
		page = pfn_to_page(check);
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429

		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7430 7431 7432 7433
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7434
		 * because their page->_refcount is zero at all time.
7435
		 */
7436
		if (!page_ref_count(page)) {
7437 7438 7439 7440
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7441

7442 7443 7444 7445 7446 7447 7448
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7449 7450 7451
		if (__PageMovable(page))
			continue;

7452 7453 7454
		if (!PageLRU(page))
			found++;
		/*
7455 7456 7457
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7468
			return true;
7469
	}
7470
	return false;
7471 7472 7473 7474
}

bool is_pageblock_removable_nolock(struct page *page)
{
7475 7476
	struct zone *zone;
	unsigned long pfn;
7477 7478 7479 7480 7481

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7482 7483
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7484
	 */
7485 7486 7487 7488 7489
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7490
	if (!zone_spans_pfn(zone, pfn))
7491 7492
		return false;

7493
	return !has_unmovable_pages(zone, page, 0, true);
K
KAMEZAWA Hiroyuki 已提交
7494
}
K
KAMEZAWA Hiroyuki 已提交
7495

7496
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7511 7512
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7513 7514
{
	/* This function is based on compact_zone() from compaction.c. */
7515
	unsigned long nr_reclaimed;
7516 7517 7518 7519
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7520
	migrate_prep();
7521

7522
	while (pfn < end || !list_empty(&cc->migratepages)) {
7523 7524 7525 7526 7527
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7528 7529
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7530
			pfn = isolate_migratepages_range(cc, pfn, end);
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7541 7542 7543
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7544

7545
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7546
				    NULL, 0, cc->mode, MR_CMA);
7547
	}
7548 7549 7550 7551 7552
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7553 7554 7555 7556 7557 7558
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7559 7560 7561 7562
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7563
 * @gfp_mask:	GFP mask to use during compaction
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7576
int alloc_contig_range(unsigned long start, unsigned long end,
7577
		       unsigned migratetype, gfp_t gfp_mask)
7578 7579
{
	unsigned long outer_start, outer_end;
7580 7581
	unsigned int order;
	int ret = 0;
7582

7583 7584 7585 7586
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7587
		.mode = MIGRATE_SYNC,
7588
		.ignore_skip_hint = true,
7589
		.gfp_mask = current_gfp_context(gfp_mask),
7590 7591 7592
	};
	INIT_LIST_HEAD(&cc.migratepages);

7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7618 7619
				       pfn_max_align_up(end), migratetype,
				       false);
7620
	if (ret)
7621
		return ret;
7622

7623 7624 7625 7626
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7627
	ret = __alloc_contig_migrate_range(&cc, start, end);
7628
	if (ret && ret != -EBUSY)
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7649
	drain_all_pages(cc.zone);
7650 7651 7652 7653 7654

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7655 7656
			outer_start = start;
			break;
7657 7658 7659 7660
		}
		outer_start &= ~0UL << order;
	}

7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7674
	/* Make sure the range is really isolated. */
7675
	if (test_pages_isolated(outer_start, end, false)) {
7676
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7677
			__func__, outer_start, end);
7678 7679 7680 7681
		ret = -EBUSY;
		goto done;
	}

7682
	/* Grab isolated pages from freelists. */
7683
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7697
				pfn_max_align_up(end), migratetype);
7698 7699 7700 7701 7702
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7703 7704 7705 7706 7707 7708 7709 7710 7711
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7712 7713 7714
}
#endif

7715
#ifdef CONFIG_MEMORY_HOTPLUG
7716 7717 7718 7719
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7720 7721
void __meminit zone_pcp_update(struct zone *zone)
{
7722
	unsigned cpu;
7723
	mutex_lock(&pcp_batch_high_lock);
7724
	for_each_possible_cpu(cpu)
7725 7726
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7727
	mutex_unlock(&pcp_batch_high_lock);
7728 7729 7730
}
#endif

7731 7732 7733
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7734 7735
	int cpu;
	struct per_cpu_pageset *pset;
7736 7737 7738 7739

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7740 7741 7742 7743
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7744 7745 7746 7747 7748 7749
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7750
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7751
/*
7752 7753
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7754 7755 7756 7757 7758 7759
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7760
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7761 7762 7763 7764 7765 7766 7767 7768
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7769
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7770 7771 7772 7773 7774 7775 7776 7777 7778
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7789 7790 7791 7792
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7793 7794
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7806 7807 7808 7809 7810 7811

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7812
	unsigned int order;
7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}