page_alloc.c 213.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <linux/backing-dev.h>
50
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include <linux/page-isolation.h>
52
#include <linux/page_ext.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/migrate.h>
61
#include <linux/hugetlb.h>
62
#include <linux/sched/rt.h>
63
#include <linux/sched/mm.h>
64
#include <linux/page_owner.h>
65
#include <linux/kthread.h>
66
#include <linux/memcontrol.h>
67
#include <linux/ftrace.h>
68
#include <linux/lockdep.h>
69
#include <linux/nmi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86 87 88 89 90 91 92 93
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94
int _node_numa_mem_[MAX_NUMNODES];
95 96
#endif

97 98 99 100
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

101
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102
volatile unsigned long latent_entropy __latent_entropy;
103 104 105
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
106
/*
107
 * Array of node states.
L
Linus Torvalds 已提交
108
 */
109 110 111 112 113 114 115
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
116 117
#endif
	[N_MEMORY] = { { [0] = 1UL } },
118 119 120 121 122
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

123 124 125
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

126
unsigned long totalram_pages __read_mostly;
127
unsigned long totalreserve_pages __read_mostly;
128
unsigned long totalcma_pages __read_mostly;
129

130
int percpu_pagelist_fraction;
131
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

151 152 153 154 155 156 157 158 159
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
160 161 162 163

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
164 165
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
166 167 168 169
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
170 171
}

172
void pm_restrict_gfp_mask(void)
173 174
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
175 176
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
177
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178
}
179 180 181

bool pm_suspended_storage(void)
{
182
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 184 185
		return false;
	return true;
}
186 187
#endif /* CONFIG_PM_SLEEP */

188
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189
unsigned int pageblock_order __read_mostly;
190 191
#endif

192
static void __free_pages_ok(struct page *page, unsigned int order);
193

L
Linus Torvalds 已提交
194 195 196 197 198 199
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
200
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
201 202 203
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
204
 */
205
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206
#ifdef CONFIG_ZONE_DMA
207
	 256,
208
#endif
209
#ifdef CONFIG_ZONE_DMA32
210
	 256,
211
#endif
212
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
213
	 32,
214
#endif
M
Mel Gorman 已提交
215
	 32,
216
};
L
Linus Torvalds 已提交
217 218 219

EXPORT_SYMBOL(totalram_pages);

220
static char * const zone_names[MAX_NR_ZONES] = {
221
#ifdef CONFIG_ZONE_DMA
222
	 "DMA",
223
#endif
224
#ifdef CONFIG_ZONE_DMA32
225
	 "DMA32",
226
#endif
227
	 "Normal",
228
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
229
	 "HighMem",
230
#endif
M
Mel Gorman 已提交
231
	 "Movable",
232 233 234
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
235 236
};

237 238 239 240 241 242 243 244 245 246 247 248 249
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

250 251 252 253 254 255
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
256 257 258
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
259 260
};

L
Linus Torvalds 已提交
261
int min_free_kbytes = 1024;
262
int user_min_free_kbytes = -1;
263
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
264

265 266
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
267
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
268

T
Tejun Heo 已提交
269 270 271 272 273 274
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
276 277 278 279 280

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281

M
Miklos Szeredi 已提交
282 283
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
284
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
285
EXPORT_SYMBOL(nr_node_ids);
286
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
287 288
#endif

289 290
int page_group_by_mobility_disabled __read_mostly;

291 292 293
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	unsigned long max_initialise;
	unsigned long reserved_lowmem;

	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));

	/*
	 * Compensate the all the memblock reservations (e.g. crash kernel)
	 * from the initial estimation to make sure we will initialize enough
	 * memory to boot.
	 */
	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
			pgdat->node_start_pfn + max_initialise);
	max_initialise += reserved_lowmem;

	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
314 315 316 317
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
318
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
319
{
320 321 322
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
340
	if ((*nr_initialised > pgdat->static_init_size) &&
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
466

467
void set_pageblock_migratetype(struct page *page, int migratetype)
468
{
469 470
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
471 472
		migratetype = MIGRATE_UNMOVABLE;

473 474 475 476
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
477
#ifdef CONFIG_DEBUG_VM
478
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
479
{
480 481 482
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
483
	unsigned long sp, start_pfn;
484

485 486
	do {
		seq = zone_span_seqbegin(zone);
487 488
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
489
		if (!zone_spans_pfn(zone, pfn))
490 491 492
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

493
	if (ret)
494 495 496
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
497

498
	return ret;
499 500 501 502
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
503
	if (!pfn_valid_within(page_to_pfn(page)))
504
		return 0;
L
Linus Torvalds 已提交
505
	if (zone != page_zone(page))
506 507 508 509 510 511 512
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
513
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
514 515
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
516
		return 1;
517 518 519
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
520 521
	return 0;
}
N
Nick Piggin 已提交
522
#else
523
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
524 525 526 527 528
{
	return 0;
}
#endif

529 530
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
531
{
532 533 534 535 536 537 538 539 540 541 542 543 544 545
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
546
			pr_alert(
547
			      "BUG: Bad page state: %lu messages suppressed\n",
548 549 550 551 552 553 554 555
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

556
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
557
		current->comm, page_to_pfn(page));
558 559 560 561 562
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
563
	dump_page_owner(page);
564

565
	print_modules();
L
Linus Torvalds 已提交
566
	dump_stack();
567
out:
568
	/* Leave bad fields for debug, except PageBuddy could make trouble */
569
	page_mapcount_reset(page); /* remove PageBuddy */
570
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
571 572 573 574 575
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
576
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
577
 *
578 579
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
580
 *
581 582
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
583
 *
584
 * The first tail page's ->compound_order holds the order of allocation.
585
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
586
 */
587

588
void free_compound_page(struct page *page)
589
{
590
	__free_pages_ok(page, compound_order(page));
591 592
}

593
void prep_compound_page(struct page *page, unsigned int order)
594 595 596 597
{
	int i;
	int nr_pages = 1 << order;

598
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
599 600 601 602
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
603
		set_page_count(p, 0);
604
		p->mapping = TAIL_MAPPING;
605
		set_compound_head(p, page);
606
	}
607
	atomic_set(compound_mapcount_ptr(page), -1);
608 609
}

610 611
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
612 613
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
614
EXPORT_SYMBOL(_debug_pagealloc_enabled);
615 616
bool _debug_guardpage_enabled __read_mostly;

617 618 619 620
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
621
	return kstrtobool(buf, &_debug_pagealloc_enabled);
622 623 624
}
early_param("debug_pagealloc", early_debug_pagealloc);

625 626
static bool need_debug_guardpage(void)
{
627 628 629 630
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

631 632 633
	if (!debug_guardpage_minorder())
		return false;

634 635 636 637 638
	return true;
}

static void init_debug_guardpage(void)
{
639 640 641
	if (!debug_pagealloc_enabled())
		return;

642 643 644
	if (!debug_guardpage_minorder())
		return;

645 646 647 648 649 650 651
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
652 653 654 655 656 657

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
658
		pr_err("Bad debug_guardpage_minorder value\n");
659 660 661
		return 0;
	}
	_debug_guardpage_minorder = res;
662
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
663 664
	return 0;
}
665
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
666

667
static inline bool set_page_guard(struct zone *zone, struct page *page,
668
				unsigned int order, int migratetype)
669
{
670 671 672
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
673 674 675 676
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
677 678

	page_ext = lookup_page_ext(page);
679
	if (unlikely(!page_ext))
680
		return false;
681

682 683
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

684 685 686 687
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
688 689

	return true;
690 691
}

692 693
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
694
{
695 696 697 698 699 700
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
701 702 703
	if (unlikely(!page_ext))
		return;

704 705
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

706 707 708
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
709 710
}
#else
711
struct page_ext_operations debug_guardpage_ops;
712 713
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
714 715
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
716 717
#endif

718
static inline void set_page_order(struct page *page, unsigned int order)
719
{
H
Hugh Dickins 已提交
720
	set_page_private(page, order);
721
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
722 723 724 725
}

static inline void rmv_page_order(struct page *page)
{
726
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
727
	set_page_private(page, 0);
L
Linus Torvalds 已提交
728 729 730 731 732
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
733
 * (a) the buddy is not in a hole (check before calling!) &&
734
 * (b) the buddy is in the buddy system &&
735 736
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
737
 *
738 739 740 741
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
742
 *
743
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
744
 */
745
static inline int page_is_buddy(struct page *page, struct page *buddy,
746
							unsigned int order)
L
Linus Torvalds 已提交
747
{
748
	if (page_is_guard(buddy) && page_order(buddy) == order) {
749 750 751
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

752 753
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

754 755 756
		return 1;
	}

757
	if (PageBuddy(buddy) && page_order(buddy) == order) {
758 759 760 761 762 763 764 765
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

766 767
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

768
		return 1;
769
	}
770
	return 0;
L
Linus Torvalds 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
786 787 788
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
789
 * So when we are allocating or freeing one, we can derive the state of the
790 791
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
792
 * If a block is freed, and its buddy is also free, then this
793
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
794
 *
795
 * -- nyc
L
Linus Torvalds 已提交
796 797
 */

N
Nick Piggin 已提交
798
static inline void __free_one_page(struct page *page,
799
		unsigned long pfn,
800 801
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
802
{
803 804
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
805
	struct page *buddy;
806 807 808
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
809

810
	VM_BUG_ON(!zone_is_initialized(zone));
811
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
812

813
	VM_BUG_ON(migratetype == -1);
814
	if (likely(!is_migrate_isolate(migratetype)))
815
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
816

817
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
818
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
819

820
continue_merging:
821
	while (order < max_order - 1) {
822 823
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
824 825 826

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
827
		if (!page_is_buddy(page, buddy, order))
828
			goto done_merging;
829 830 831 832 833
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
834
			clear_page_guard(zone, buddy, order, migratetype);
835 836 837 838 839
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
840 841 842
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
843 844
		order++;
	}
845 846 847 848 849 850 851 852 853 854 855 856
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

857 858
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
859 860 861 862 863 864 865 866 867 868 869 870
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
871
	set_page_order(page, order);
872 873 874 875 876 877 878 879 880

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
881
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
882
		struct page *higher_page, *higher_buddy;
883 884 885 886
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
887 888
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
889 890 891 892 893 894 895 896
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
897 898 899
	zone->free_area[order].nr_free++;
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

922
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
923
{
924 925 926 927 928
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
929

930
	if (unlikely(atomic_read(&page->_mapcount) != -1))
931 932 933
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
934
	if (unlikely(page_ref_count(page) != 0))
935
		bad_reason = "nonzero _refcount";
936 937 938 939
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
940 941 942 943
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
944
	bad_page(page, bad_reason, bad_flags);
945 946 947 948
}

static inline int free_pages_check(struct page *page)
{
949
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
950 951 952 953
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
954
	return 1;
L
Linus Torvalds 已提交
955 956
}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1007 1008
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1009
{
1010
	int bad = 0;
1011 1012 1013

	VM_BUG_ON_PAGE(PageTail(page), page);

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1025

1026 1027
		if (compound)
			ClearPageDoubleMap(page);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1038
	if (PageMappingFlags(page))
1039
		page->mapping = NULL;
1040
	if (memcg_kmem_enabled() && PageKmemcg(page))
1041
		memcg_kmem_uncharge(page, order);
1042 1043 1044 1045
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1046

1047 1048 1049
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1050 1051 1052

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1053
					   PAGE_SIZE << order);
1054
		debug_check_no_obj_freed(page_address(page),
1055
					   PAGE_SIZE << order);
1056
	}
1057 1058 1059
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1060
	kasan_free_pages(page, order);
1061 1062 1063 1064

	return true;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1081 1082 1083 1084 1085 1086
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1087
/*
1088
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1089
 * Assumes all pages on list are in same zone, and of same order.
1090
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1098 1099
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1100
{
1101
	int migratetype = 0;
1102
	int batch_free = 0;
1103
	bool isolated_pageblocks;
1104

1105
	spin_lock(&zone->lock);
1106
	isolated_pageblocks = has_isolate_pageblock(zone);
1107

1108
	while (count) {
N
Nick Piggin 已提交
1109
		struct page *page;
1110 1111 1112
		struct list_head *list;

		/*
1113 1114 1115 1116 1117
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1118 1119
		 */
		do {
1120
			batch_free++;
1121 1122 1123 1124
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1125

1126 1127
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1128
			batch_free = count;
1129

1130
		do {
1131 1132
			int mt;	/* migratetype of the to-be-freed page */

1133
			page = list_last_entry(list, struct page, lru);
1134 1135
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1136

1137
			mt = get_pcppage_migratetype(page);
1138 1139 1140
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1141
			if (unlikely(isolated_pageblocks))
1142 1143
				mt = get_pageblock_migratetype(page);

1144 1145 1146
			if (bulkfree_pcp_prepare(page))
				continue;

1147
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1148
			trace_mm_page_pcpu_drain(page, 0, mt);
1149
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1150
	}
1151
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1152 1153
}

1154 1155
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1156
				unsigned int order,
1157
				int migratetype)
L
Linus Torvalds 已提交
1158
{
1159
	spin_lock(&zone->lock);
1160 1161 1162 1163
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1164
	__free_one_page(page, pfn, zone, order, migratetype);
1165
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1166 1167
}

1168 1169 1170
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
1171
	mm_zero_struct_page(page);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1191
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192
static void __meminit init_reserved_page(unsigned long pfn)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1217 1218 1219 1220 1221 1222
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1223
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224 1225 1226 1227
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1228 1229 1230 1231 1232
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1233 1234 1235 1236

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1237 1238 1239
			SetPageReserved(page);
		}
	}
1240 1241
}

1242 1243
static void __free_pages_ok(struct page *page, unsigned int order)
{
1244
	unsigned long flags;
M
Minchan Kim 已提交
1245
	int migratetype;
1246
	unsigned long pfn = page_to_pfn(page);
1247

1248
	if (!free_pages_prepare(page, order, true))
1249 1250
		return;

1251
	migratetype = get_pfnblock_migratetype(page, pfn);
1252 1253
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1254
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1256 1257
}

1258
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259
{
1260
	unsigned int nr_pages = 1 << order;
1261
	struct page *p = page;
1262
	unsigned int loop;
1263

1264 1265 1266
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1267 1268
		__ClearPageReserved(p);
		set_page_count(p, 0);
1269
	}
1270 1271
	__ClearPageReserved(p);
	set_page_count(p, 0);
1272

1273
	page_zone(page)->managed_pages += nr_pages;
1274 1275
	set_page_refcounted(page);
	__free_pages(page, order);
1276 1277
}

1278 1279
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280

1281 1282 1283 1284
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1285
	static DEFINE_SPINLOCK(early_pfn_lock);
1286 1287
	int nid;

1288
	spin_lock(&early_pfn_lock);
1289
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290
	if (nid < 0)
1291
		nid = first_online_node;
1292 1293 1294
	spin_unlock(&early_pfn_lock);

	return nid;
1295 1296 1297 1298
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299 1300 1301
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1323 1324 1325
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1326 1327 1328 1329 1330 1331
{
	return true;
}
#endif


1332
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333 1334 1335 1336
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1337
	return __free_pages_boot_core(page, order);
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1369 1370 1371
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1411
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412 1413
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1414
{
1415 1416
	struct page *page;
	unsigned long i;
1417

1418
	if (!nr_pages)
1419 1420
		return;

1421 1422
	page = pfn_to_page(pfn);

1423
	/* Free a large naturally-aligned chunk if possible */
1424 1425
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427
		__free_pages_boot_core(page, pageblock_order);
1428 1429 1430
		return;
	}

1431 1432 1433
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434
		__free_pages_boot_core(page, 0);
1435
	}
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*
 * Helper for deferred_init_range, free the given range, reset the counters, and
 * return number of pages freed.
 */
static inline unsigned long __init __def_free(unsigned long *nr_free,
					      unsigned long *free_base_pfn,
					      struct page **page)
{
	unsigned long nr = *nr_free;

	deferred_free_range(*free_base_pfn, nr);
	*free_base_pfn = 0;
	*nr_free = 0;
	*page = NULL;

	return nr;
}

static unsigned long __init deferred_init_range(int nid, int zid,
						unsigned long start_pfn,
						unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long free_base_pfn = 0;
	unsigned long nr_pages = 0;
	unsigned long nr_free = 0;
	struct page *page = NULL;
	unsigned long pfn;

	/*
	 * First we check if pfn is valid on architectures where it is possible
	 * to have holes within pageblock_nr_pages. On systems where it is not
	 * possible, this function is optimized out.
	 *
	 * Then, we check if a current large page is valid by only checking the
	 * validity of the head pfn.
	 *
	 * meminit_pfn_in_nid is checked on systems where pfns can interleave
	 * within a node: a pfn is between start and end of a node, but does not
	 * belong to this memory node.
	 *
	 * Finally, we minimize pfn page lookups and scheduler checks by
	 * performing it only once every pageblock_nr_pages.
	 *
	 * We do it in two loops: first we initialize struct page, than free to
	 * buddy allocator, becuse while we are freeing pages we can access
	 * pages that are ahead (computing buddy page in __free_one_page()).
	 */
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		if (!pfn_valid_within(pfn))
			continue;
		if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
			if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				if (page && (pfn & nr_pgmask))
					page++;
				else
					page = pfn_to_page(pfn);
				__init_single_page(page, pfn, zid, nid);
				cond_resched();
			}
		}
	}

	page = NULL;
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		if (!pfn_valid_within(pfn)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
		} else if (page && (pfn & nr_pgmask)) {
			page++;
			nr_free++;
		} else {
			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
			page = pfn_to_page(pfn);
			free_base_pfn = pfn;
			nr_free = 1;
			cond_resched();
		}
	}
	/* Free the last block of pages to allocator */
	nr_pages += __def_free(&nr_free, &free_base_pfn, &page);

	return nr_pages;
}

1537
/* Initialise remaining memory on a node */
1538
static int __init deferred_init_memmap(void *data)
1539
{
1540 1541
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1542 1543
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1544 1545 1546
	unsigned long spfn, epfn;
	phys_addr_t spa, epa;
	int zid;
1547 1548
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1549
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1550
	u64 i;
1551

1552
	if (first_init_pfn == ULONG_MAX) {
1553
		pgdat_init_report_one_done();
1554 1555 1556 1557 1558 1559
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1572
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1573

1574 1575 1576 1577
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1578 1579 1580 1581 1582
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1583
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1584
					jiffies_to_msecs(jiffies - start));
1585 1586

	pgdat_init_report_one_done();
1587 1588
	return 0;
}
1589
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1590 1591 1592

void __init page_alloc_init_late(void)
{
1593 1594 1595
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1596 1597
	int nid;

1598 1599
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1600 1601 1602 1603 1604
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1605
	wait_for_completion(&pgdat_init_all_done_comp);
1606 1607 1608

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1609
#endif
P
Pavel Tatashin 已提交
1610 1611 1612 1613
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1614 1615 1616

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1617 1618
}

1619
#ifdef CONFIG_CMA
1620
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1646
	adjust_managed_page_count(page, pageblock_nr_pages);
1647 1648
}
#endif
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1662
 * -- nyc
L
Linus Torvalds 已提交
1663
 */
N
Nick Piggin 已提交
1664
static inline void expand(struct zone *zone, struct page *page,
1665 1666
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1674
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1675

1676 1677 1678 1679 1680 1681 1682
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1683
			continue;
1684

1685
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1691
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1692
{
1693 1694
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1695

1696
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1697 1698 1699
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1700
	if (unlikely(page_ref_count(page) != 0))
1701
		bad_reason = "nonzero _count";
1702 1703 1704
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1705 1706 1707
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1708
	}
1709 1710 1711 1712
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1713 1714 1715 1716
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1731 1732
}

1733
static inline bool free_pages_prezeroed(void)
1734 1735
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1736
		page_poisoning_enabled();
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1786
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1787
							unsigned int alloc_flags)
1788 1789
{
	int i;
1790

1791
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1792

1793
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1794 1795
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1796 1797 1798 1799

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1800
	/*
1801
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1802 1803 1804 1805
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1806 1807 1808 1809
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1810 1811
}

1812 1813 1814 1815
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1816 1817
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1818 1819 1820
						int migratetype)
{
	unsigned int current_order;
1821
	struct free_area *area;
1822 1823 1824 1825 1826
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1827
		page = list_first_entry_or_null(&area->free_list[migratetype],
1828
							struct page, lru);
1829 1830
		if (!page)
			continue;
1831 1832 1833 1834
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1835
		set_pcppage_migratetype(page, migratetype);
1836 1837 1838 1839 1840 1841 1842
		return page;
	}

	return NULL;
}


1843 1844 1845 1846
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1847
static int fallbacks[MIGRATE_TYPES][4] = {
1848 1849 1850
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1851
#ifdef CONFIG_CMA
1852
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1853
#endif
1854
#ifdef CONFIG_MEMORY_ISOLATION
1855
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1856
#endif
1857 1858
};

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1870 1871
/*
 * Move the free pages in a range to the free lists of the requested type.
1872
 * Note that start_page and end_pages are not aligned on a pageblock
1873 1874
 * boundary. If alignment is required, use move_freepages_block()
 */
1875
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1876
			  struct page *start_page, struct page *end_page,
1877
			  int migratetype, int *num_movable)
1878 1879
{
	struct page *page;
1880
	unsigned int order;
1881
	int pages_moved = 0;
1882 1883 1884 1885 1886 1887 1888

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1889
	 * grouping pages by mobility
1890
	 */
1891
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1892 1893
#endif

1894 1895 1896
	if (num_movable)
		*num_movable = 0;

1897 1898 1899 1900 1901 1902
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1903 1904 1905
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1906
		if (!PageBuddy(page)) {
1907 1908 1909 1910 1911 1912 1913 1914 1915
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1916 1917 1918 1919 1920
			page++;
			continue;
		}

		order = page_order(page);
1921 1922
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1923
		page += 1 << order;
1924
		pages_moved += 1 << order;
1925 1926
	}

1927
	return pages_moved;
1928 1929
}

1930
int move_freepages_block(struct zone *zone, struct page *page,
1931
				int migratetype, int *num_movable)
1932 1933 1934 1935 1936
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1937
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1938
	start_page = pfn_to_page(start_pfn);
1939 1940
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1941 1942

	/* Do not cross zone boundaries */
1943
	if (!zone_spans_pfn(zone, start_pfn))
1944
		start_page = page;
1945
	if (!zone_spans_pfn(zone, end_pfn))
1946 1947
		return 0;

1948 1949
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1963
/*
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1974
 */
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
1999 2000 2001 2002
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2003 2004
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2005
					int start_type, bool whole_block)
2006
{
2007
	unsigned int current_order = page_order(page);
2008
	struct free_area *area;
2009 2010 2011 2012
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2013

2014 2015 2016 2017
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2018
	if (is_migrate_highatomic(old_block_type))
2019 2020
		goto single_page;

2021 2022 2023
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2024
		goto single_page;
2025 2026
	}

2027 2028 2029 2030
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2055
	/* moving whole block can fail due to zone boundary conditions */
2056
	if (!free_pages)
2057
		goto single_page;
2058

2059 2060 2061 2062 2063
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2064 2065
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2066 2067 2068 2069 2070 2071

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2072 2073
}

2074 2075 2076 2077 2078 2079 2080 2081
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2092
		if (fallback_mt == MIGRATE_TYPES)
2093 2094 2095 2096
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2097

2098 2099 2100
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2101 2102 2103 2104 2105
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2106
	}
2107 2108

	return -1;
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2137 2138
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2139 2140
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2141
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2153 2154 2155
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2156
 */
2157 2158
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2159 2160 2161 2162 2163 2164 2165
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2166
	bool ret;
2167 2168 2169

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2170 2171 2172 2173 2174 2175
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2176 2177 2178 2179 2180 2181
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2182 2183 2184 2185
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2186 2187 2188
				continue;

			/*
2189 2190 2191 2192 2193
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2194
			 */
2195
			if (is_migrate_highatomic_page(page)) {
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2218 2219
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2220 2221 2222 2223
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2224 2225 2226
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2227 2228

	return false;
2229 2230
}

2231 2232 2233 2234 2235
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2236 2237 2238 2239
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2240 2241
 */
static inline bool
2242
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2243
{
2244
	struct free_area *area;
2245
	int current_order;
2246
	struct page *page;
2247 2248
	int fallback_mt;
	bool can_steal;
2249

2250 2251 2252 2253 2254
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2255
	for (current_order = MAX_ORDER - 1; current_order >= order;
2256
				--current_order) {
2257 2258
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2259
				start_migratetype, false, &can_steal);
2260 2261
		if (fallback_mt == -1)
			continue;
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2274

2275 2276
		goto do_steal;
	}
2277

2278
	return false;
2279

2280 2281 2282 2283 2284 2285 2286 2287
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2288 2289
	}

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2307 2308
}

2309
/*
L
Linus Torvalds 已提交
2310 2311 2312
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2313
static struct page *__rmqueue(struct zone *zone, unsigned int order,
2314
				int migratetype)
L
Linus Torvalds 已提交
2315 2316 2317
{
	struct page *page;

2318
retry:
2319
	page = __rmqueue_smallest(zone, order, migratetype);
2320
	if (unlikely(!page)) {
2321 2322 2323
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2324 2325
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2326 2327
	}

2328
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2329
	return page;
L
Linus Torvalds 已提交
2330 2331
}

2332
/*
L
Linus Torvalds 已提交
2333 2334 2335 2336
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2337
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2338
			unsigned long count, struct list_head *list,
2339
			int migratetype, bool cold)
L
Linus Torvalds 已提交
2340
{
2341
	int i, alloced = 0;
2342

2343
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2344
	for (i = 0; i < count; ++i) {
2345
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2346
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2347
			break;
2348

2349 2350 2351
		if (unlikely(check_pcp_refill(page)))
			continue;

2352 2353 2354 2355 2356 2357 2358 2359 2360
		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
2361
		if (likely(!cold))
2362 2363 2364
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
2365
		list = &page->lru;
2366
		alloced++;
2367
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2368 2369
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2370
	}
2371 2372 2373 2374 2375 2376 2377

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2378
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2379
	spin_unlock(&zone->lock);
2380
	return alloced;
L
Linus Torvalds 已提交
2381 2382
}

2383
#ifdef CONFIG_NUMA
2384
/*
2385 2386 2387 2388
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2389 2390
 * Note that this function must be called with the thread pinned to
 * a single processor.
2391
 */
2392
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2393 2394
{
	unsigned long flags;
2395
	int to_drain, batch;
2396

2397
	local_irq_save(flags);
2398
	batch = READ_ONCE(pcp->batch);
2399
	to_drain = min(pcp->count, batch);
2400 2401 2402 2403
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2404
	local_irq_restore(flags);
2405 2406 2407
}
#endif

2408
/*
2409
 * Drain pcplists of the indicated processor and zone.
2410 2411 2412 2413 2414
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2415
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2416
{
N
Nick Piggin 已提交
2417
	unsigned long flags;
2418 2419
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2420

2421 2422
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2423

2424 2425 2426 2427 2428 2429 2430
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2445 2446 2447
	}
}

2448 2449
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2450 2451 2452
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2453
 */
2454
void drain_local_pages(struct zone *zone)
2455
{
2456 2457 2458 2459 2460 2461
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2462 2463
}

2464 2465
static void drain_local_pages_wq(struct work_struct *work)
{
2466 2467 2468 2469 2470 2471 2472 2473
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2474
	drain_local_pages(NULL);
2475
	preempt_enable();
2476 2477
}

2478
/*
2479 2480
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2481 2482
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2483
 * Note that this can be extremely slow as the draining happens in a workqueue.
2484
 */
2485
void drain_all_pages(struct zone *zone)
2486
{
2487 2488 2489 2490 2491 2492 2493 2494
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2495 2496 2497 2498 2499 2500 2501
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2502 2503 2504 2505
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2516

2517 2518 2519 2520 2521 2522 2523
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2524 2525
		struct per_cpu_pageset *pcp;
		struct zone *z;
2526
		bool has_pcps = false;
2527 2528

		if (zone) {
2529
			pcp = per_cpu_ptr(zone->pageset, cpu);
2530
			if (pcp->pcp.count)
2531
				has_pcps = true;
2532 2533 2534 2535 2536 2537 2538
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2539 2540
			}
		}
2541

2542 2543 2544 2545 2546
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2547

2548 2549 2550
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2551
		queue_work_on(cpu, mm_percpu_wq, work);
2552
	}
2553 2554 2555 2556
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2557 2558
}

2559
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2560

2561 2562 2563 2564 2565
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2566 2567
void mark_free_pages(struct zone *zone)
{
2568
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2569
	unsigned long flags;
2570
	unsigned int order, t;
2571
	struct page *page;
L
Linus Torvalds 已提交
2572

2573
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2574 2575 2576
		return;

	spin_lock_irqsave(&zone->lock, flags);
2577

2578
	max_zone_pfn = zone_end_pfn(zone);
2579 2580
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2581
			page = pfn_to_page(pfn);
2582

2583 2584 2585 2586 2587
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2588 2589 2590
			if (page_zone(page) != zone)
				continue;

2591 2592
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2593
		}
L
Linus Torvalds 已提交
2594

2595
	for_each_migratetype_order(order, t) {
2596 2597
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2598
			unsigned long i;
L
Linus Torvalds 已提交
2599

2600
			pfn = page_to_pfn(page);
2601 2602 2603 2604 2605
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2606
				swsusp_set_page_free(pfn_to_page(pfn + i));
2607
			}
2608
		}
2609
	}
L
Linus Torvalds 已提交
2610 2611
	spin_unlock_irqrestore(&zone->lock, flags);
}
2612
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2613 2614 2615

/*
 * Free a 0-order page
2616
 * cold == true ? free a cold page : free a hot page
L
Linus Torvalds 已提交
2617
 */
2618
void free_hot_cold_page(struct page *page, bool cold)
L
Linus Torvalds 已提交
2619 2620 2621
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
2622
	unsigned long flags;
2623
	unsigned long pfn = page_to_pfn(page);
2624
	int migratetype;
L
Linus Torvalds 已提交
2625

2626
	if (!free_pcp_prepare(page))
2627 2628
		return;

2629
	migratetype = get_pfnblock_migratetype(page, pfn);
2630
	set_pcppage_migratetype(page, migratetype);
2631 2632
	local_irq_save(flags);
	__count_vm_event(PGFREE);
2633

2634 2635 2636
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2637
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2638 2639 2640 2641
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2642
		if (unlikely(is_migrate_isolate(migratetype))) {
2643
			free_one_page(zone, page, pfn, 0, migratetype);
2644 2645 2646 2647 2648
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

2649
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2650
	if (!cold)
2651
		list_add(&page->lru, &pcp->lists[migratetype]);
2652 2653
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2654
	pcp->count++;
N
Nick Piggin 已提交
2655
	if (pcp->count >= pcp->high) {
2656
		unsigned long batch = READ_ONCE(pcp->batch);
2657 2658
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2659
	}
2660 2661

out:
2662
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2663 2664
}

2665 2666 2667
/*
 * Free a list of 0-order pages
 */
2668
void free_hot_cold_page_list(struct list_head *list, bool cold)
2669 2670 2671 2672
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
2673
		trace_mm_page_free_batched(page, cold);
2674 2675 2676 2677
		free_hot_cold_page(page, cold);
	}
}

N
Nick Piggin 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2690 2691
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2692

2693
	for (i = 1; i < (1 << order); i++)
2694
		set_page_refcounted(page + i);
2695
	split_page_owner(page, order);
N
Nick Piggin 已提交
2696
}
K
K. Y. Srinivasan 已提交
2697
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2698

2699
int __isolate_free_page(struct page *page, unsigned int order)
2700 2701 2702
{
	unsigned long watermark;
	struct zone *zone;
2703
	int mt;
2704 2705 2706 2707

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2708
	mt = get_pageblock_migratetype(page);
2709

2710
	if (!is_migrate_isolate(mt)) {
2711 2712 2713 2714 2715 2716 2717
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2718
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2719 2720
			return 0;

2721
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2722
	}
2723 2724 2725 2726 2727

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2728

2729 2730 2731 2732
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2733 2734
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2735 2736
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2737
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2738
			    && !is_migrate_highatomic(mt))
2739 2740 2741
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2742 2743
	}

2744

2745
	return 1UL << order;
2746 2747
}

2748 2749 2750 2751 2752
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2753
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2754 2755
{
#ifdef CONFIG_NUMA
2756
	enum numa_stat_item local_stat = NUMA_LOCAL;
2757

2758
	if (z->node != numa_node_id())
2759 2760
		local_stat = NUMA_OTHER;

2761
	if (z->node == preferred_zone->node)
2762
		__inc_numa_state(z, NUMA_HIT);
2763
	else {
2764 2765
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2766
	}
2767
	__inc_numa_state(z, local_stat);
2768 2769 2770
#endif
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
			bool cold, struct per_cpu_pages *pcp,
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				return NULL;
		}

		if (cold)
			page = list_last_entry(list, struct page, lru);
		else
			page = list_first_entry(list, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
	struct page *page;
2808
	unsigned long flags;
2809

2810
	local_irq_save(flags);
2811 2812 2813 2814 2815 2816 2817
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2818
	local_irq_restore(flags);
2819 2820 2821
	return page;
}

L
Linus Torvalds 已提交
2822
/*
2823
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2824
 */
2825
static inline
2826
struct page *rmqueue(struct zone *preferred_zone,
2827
			struct zone *zone, unsigned int order,
2828 2829
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2830 2831
{
	unsigned long flags;
2832
	struct page *page;
L
Linus Torvalds 已提交
2833

2834
	if (likely(order == 0)) {
2835 2836 2837 2838
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2839

2840 2841 2842 2843 2844 2845
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2846

2847 2848 2849 2850 2851 2852 2853
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2854
		if (!page)
2855 2856 2857 2858 2859 2860 2861
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2862

2863
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2864
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2865
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2866

2867 2868
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2869
	return page;
N
Nick Piggin 已提交
2870 2871 2872 2873

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2874 2875
}

2876 2877
#ifdef CONFIG_FAIL_PAGE_ALLOC

2878
static struct {
2879 2880
	struct fault_attr attr;

2881
	bool ignore_gfp_highmem;
2882
	bool ignore_gfp_reclaim;
2883
	u32 min_order;
2884 2885
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2886
	.ignore_gfp_reclaim = true,
2887
	.ignore_gfp_highmem = true,
2888
	.min_order = 1,
2889 2890 2891 2892 2893 2894 2895 2896
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2897
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2898
{
2899
	if (order < fail_page_alloc.min_order)
2900
		return false;
2901
	if (gfp_mask & __GFP_NOFAIL)
2902
		return false;
2903
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2904
		return false;
2905 2906
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2907
		return false;
2908 2909 2910 2911 2912 2913 2914 2915

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2916
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2917 2918
	struct dentry *dir;

2919 2920 2921 2922
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2923

2924
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2925
				&fail_page_alloc.ignore_gfp_reclaim))
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2936
	debugfs_remove_recursive(dir);
2937

2938
	return -ENOMEM;
2939 2940 2941 2942 2943 2944 2945 2946
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2947
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2948
{
2949
	return false;
2950 2951 2952 2953
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2954
/*
2955 2956 2957 2958
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2959
 */
2960 2961 2962
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2963
{
2964
	long min = mark;
L
Linus Torvalds 已提交
2965
	int o;
2966
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
2967

2968
	/* free_pages may go negative - that's OK */
2969
	free_pages -= (1 << order) - 1;
2970

R
Rohit Seth 已提交
2971
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2972
		min -= min / 2;
2973 2974 2975 2976 2977 2978

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
2979
	if (likely(!alloc_harder)) {
2980
		free_pages -= z->nr_reserved_highatomic;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

2994

2995 2996 2997
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
2998
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2999
#endif
3000

3001 3002 3003 3004 3005 3006
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3007
		return false;
L
Linus Torvalds 已提交
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
3035
	}
3036
	return false;
3037 3038
}

3039
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3040
		      int classzone_idx, unsigned int alloc_flags)
3041 3042 3043 3044 3045
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3072
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3073
			unsigned long mark, int classzone_idx)
3074 3075 3076 3077 3078 3079
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3080
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3081
								free_pages);
L
Linus Torvalds 已提交
3082 3083
}

3084
#ifdef CONFIG_NUMA
3085 3086
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3087
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3088
				RECLAIM_DISTANCE;
3089
}
3090
#else	/* CONFIG_NUMA */
3091 3092 3093 3094
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3095 3096
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3097
/*
3098
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3099 3100 3101
 * a page.
 */
static struct page *
3102 3103
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3104
{
3105
	struct zoneref *z = ac->preferred_zoneref;
3106
	struct zone *zone;
3107 3108
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3109
	/*
3110
	 * Scan zonelist, looking for a zone with enough free.
3111
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3112
	 */
3113
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3114
								ac->nodemask) {
3115
		struct page *page;
3116 3117
		unsigned long mark;

3118 3119
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3120
			!__cpuset_zone_allowed(zone, gfp_mask))
3121
				continue;
3122 3123
		/*
		 * When allocating a page cache page for writing, we
3124 3125
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3126
		 * proportional share of globally allowed dirty pages.
3127
		 * The dirty limits take into account the node's
3128 3129 3130 3131 3132
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3133
		 * exceed the per-node dirty limit in the slowpath
3134
		 * (spread_dirty_pages unset) before going into reclaim,
3135
		 * which is important when on a NUMA setup the allowed
3136
		 * nodes are together not big enough to reach the
3137
		 * global limit.  The proper fix for these situations
3138
		 * will require awareness of nodes in the
3139 3140
		 * dirty-throttling and the flusher threads.
		 */
3141 3142 3143 3144 3145 3146 3147 3148 3149
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3150

3151
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3152
		if (!zone_watermark_fast(zone, order, mark,
3153
				       ac_classzone_idx(ac), alloc_flags)) {
3154 3155
			int ret;

3156 3157 3158 3159 3160
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3161
			if (node_reclaim_mode == 0 ||
3162
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3163 3164
				continue;

3165
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3166
			switch (ret) {
3167
			case NODE_RECLAIM_NOSCAN:
3168
				/* did not scan */
3169
				continue;
3170
			case NODE_RECLAIM_FULL:
3171
				/* scanned but unreclaimable */
3172
				continue;
3173 3174
			default:
				/* did we reclaim enough */
3175
				if (zone_watermark_ok(zone, order, mark,
3176
						ac_classzone_idx(ac), alloc_flags))
3177 3178 3179
					goto try_this_zone;

				continue;
3180
			}
R
Rohit Seth 已提交
3181 3182
		}

3183
try_this_zone:
3184
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3185
				gfp_mask, alloc_flags, ac->migratetype);
3186
		if (page) {
3187
			prep_new_page(page, order, gfp_mask, alloc_flags);
3188 3189 3190 3191 3192 3193 3194 3195

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3196 3197
			return page;
		}
3198
	}
3199

3200
	return NULL;
M
Martin Hicks 已提交
3201 3202
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3217
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3218 3219
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3220
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3221

3222
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3223 3224 3225 3226 3227 3228 3229 3230
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3231
		if (tsk_is_oom_victim(current) ||
3232 3233
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3234
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3235 3236
		filter &= ~SHOW_MEM_FILTER_NODES;

3237
	show_mem(filter, nodemask);
3238 3239
}

3240
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3241 3242 3243 3244 3245 3246
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3247
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3248 3249
		return;

3250
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3251

3252 3253 3254 3255 3256
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3257

3258 3259 3260 3261 3262 3263
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3264
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3265

3266
	dump_stack();
3267
	warn_alloc_show_mem(gfp_mask, nodemask);
3268 3269
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3290 3291
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3292
	const struct alloc_context *ac, unsigned long *did_some_progress)
3293
{
3294 3295 3296
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3297
		.memcg = NULL,
3298 3299 3300
		.gfp_mask = gfp_mask,
		.order = order,
	};
3301 3302
	struct page *page;

3303 3304 3305
	*did_some_progress = 0;

	/*
3306 3307
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3308
	 */
3309
	if (!mutex_trylock(&oom_lock)) {
3310
		*did_some_progress = 1;
3311
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3312 3313
		return NULL;
	}
3314

3315 3316 3317
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3318 3319 3320
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3321
	 */
3322 3323 3324
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3325
	if (page)
3326 3327
		goto out;

3328 3329 3330 3331 3332 3333
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3334 3335 3336 3337 3338 3339 3340 3341
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3360

3361
	/* Exhausted what can be done so it's blamo time */
3362
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3363
		*did_some_progress = 1;
3364

3365 3366 3367 3368 3369 3370
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3371 3372
					ALLOC_NO_WATERMARKS, ac);
	}
3373
out:
3374
	mutex_unlock(&oom_lock);
3375 3376 3377
	return page;
}

3378 3379 3380 3381 3382 3383
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3384 3385 3386 3387
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3388
		unsigned int alloc_flags, const struct alloc_context *ac,
3389
		enum compact_priority prio, enum compact_result *compact_result)
3390
{
3391
	struct page *page;
3392
	unsigned int noreclaim_flag;
3393 3394

	if (!order)
3395 3396
		return NULL;

3397
	noreclaim_flag = memalloc_noreclaim_save();
3398
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3399
									prio);
3400
	memalloc_noreclaim_restore(noreclaim_flag);
3401

3402
	if (*compact_result <= COMPACT_INACTIVE)
3403
		return NULL;
3404

3405 3406 3407 3408 3409
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3410

3411
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3412

3413 3414
	if (page) {
		struct zone *zone = page_zone(page);
3415

3416 3417 3418 3419 3420
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3421

3422 3423 3424 3425 3426
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3427

3428
	cond_resched();
3429 3430 3431

	return NULL;
}
3432

3433 3434 3435 3436
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3437
		     int *compaction_retries)
3438 3439
{
	int max_retries = MAX_COMPACT_RETRIES;
3440
	int min_priority;
3441 3442 3443
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3444 3445 3446 3447

	if (!order)
		return false;

3448 3449 3450
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3451 3452 3453 3454 3455
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3456 3457
	if (compaction_failed(compact_result))
		goto check_priority;
3458 3459 3460 3461 3462 3463 3464

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3465 3466 3467 3468
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3469 3470

	/*
3471
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3472 3473 3474 3475 3476 3477 3478 3479
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3480 3481 3482 3483
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3484

3485 3486 3487 3488 3489
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3490 3491
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3492

3493
	if (*compact_priority > min_priority) {
3494 3495
		(*compact_priority)--;
		*compaction_retries = 0;
3496
		ret = true;
3497
	}
3498 3499 3500
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3501
}
3502 3503 3504
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3505
		unsigned int alloc_flags, const struct alloc_context *ac,
3506
		enum compact_priority prio, enum compact_result *compact_result)
3507
{
3508
	*compact_result = COMPACT_SKIPPED;
3509 3510
	return NULL;
}
3511 3512

static inline bool
3513 3514
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3515
		     enum compact_priority *compact_priority,
3516
		     int *compaction_retries)
3517
{
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3536 3537
	return false;
}
3538
#endif /* CONFIG_COMPACTION */
3539

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
#ifdef CONFIG_LOCKDEP
struct lockdep_map __fs_reclaim_map =
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_acquire(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_release(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3581 3582
/* Perform direct synchronous page reclaim */
static int
3583 3584
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3585 3586
{
	struct reclaim_state reclaim_state;
3587
	int progress;
3588
	unsigned int noreclaim_flag;
3589 3590 3591 3592 3593

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3594
	noreclaim_flag = memalloc_noreclaim_save();
3595
	fs_reclaim_acquire(gfp_mask);
3596
	reclaim_state.reclaimed_slab = 0;
3597
	current->reclaim_state = &reclaim_state;
3598

3599 3600
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3601

3602
	current->reclaim_state = NULL;
3603
	fs_reclaim_release(gfp_mask);
3604
	memalloc_noreclaim_restore(noreclaim_flag);
3605 3606 3607

	cond_resched();

3608 3609 3610 3611 3612 3613
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3614
		unsigned int alloc_flags, const struct alloc_context *ac,
3615
		unsigned long *did_some_progress)
3616 3617 3618 3619
{
	struct page *page = NULL;
	bool drained = false;

3620
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3621 3622
	if (unlikely(!(*did_some_progress)))
		return NULL;
3623

3624
retry:
3625
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3626 3627 3628

	/*
	 * If an allocation failed after direct reclaim, it could be because
3629 3630
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3631 3632
	 */
	if (!page && !drained) {
3633
		unreserve_highatomic_pageblock(ac, false);
3634
		drain_all_pages(NULL);
3635 3636 3637 3638
		drained = true;
		goto retry;
	}

3639 3640 3641
	return page;
}

3642
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3643 3644 3645
{
	struct zoneref *z;
	struct zone *zone;
3646
	pg_data_t *last_pgdat = NULL;
3647

3648
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3649 3650
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3651
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3652 3653
		last_pgdat = zone->zone_pgdat;
	}
3654 3655
}

3656
static inline unsigned int
3657 3658
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3659
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3660

3661
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3662
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3663

3664 3665 3666 3667
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3668
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3669
	 */
3670
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3671

3672
	if (gfp_mask & __GFP_ATOMIC) {
3673
		/*
3674 3675
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3676
		 */
3677
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3678
			alloc_flags |= ALLOC_HARDER;
3679
		/*
3680
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3681
		 * comment for __cpuset_node_allowed().
3682
		 */
3683
		alloc_flags &= ~ALLOC_CPUSET;
3684
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3685 3686
		alloc_flags |= ALLOC_HARDER;

3687
#ifdef CONFIG_CMA
3688
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3689 3690
		alloc_flags |= ALLOC_CMA;
#endif
3691 3692 3693
	return alloc_flags;
}

3694
static bool oom_reserves_allowed(struct task_struct *tsk)
3695
{
3696 3697 3698 3699 3700 3701 3702 3703
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3704 3705
		return false;

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3717
	if (gfp_mask & __GFP_MEMALLOC)
3718
		return ALLOC_NO_WATERMARKS;
3719
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3720 3721 3722 3723 3724 3725 3726
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3727

3728 3729 3730 3731 3732 3733
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3734 3735
}

M
Michal Hocko 已提交
3736 3737 3738
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3739 3740 3741 3742
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3743 3744 3745 3746 3747 3748
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3749
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3750 3751 3752 3753
{
	struct zone *zone;
	struct zoneref *z;

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3764 3765 3766 3767
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3768 3769
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3770
		return unreserve_highatomic_pageblock(ac, true);
3771
	}
M
Michal Hocko 已提交
3772

3773 3774 3775 3776 3777
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3778 3779 3780 3781
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3782
		unsigned long reclaimable;
3783 3784
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3785

3786 3787
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3788 3789

		/*
3790 3791
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3792
		 */
3793 3794 3795 3796 3797
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3798 3799 3800 3801 3802 3803 3804
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3805
				unsigned long write_pending;
3806

3807 3808
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3809

3810
				if (2 * write_pending > reclaimable) {
3811 3812 3813 3814
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3830 3831 3832 3833 3834 3835 3836
			return true;
		}
	}

	return false;
}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

3870 3871
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3872
						struct alloc_context *ac)
3873
{
3874
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3875
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3876
	struct page *page = NULL;
3877
	unsigned int alloc_flags;
3878
	unsigned long did_some_progress;
3879
	enum compact_priority compact_priority;
3880
	enum compact_result compact_result;
3881 3882
	int compaction_retries;
	int no_progress_loops;
3883 3884
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3885
	unsigned int cpuset_mems_cookie;
3886
	int reserve_flags;
L
Linus Torvalds 已提交
3887

3888 3889 3890 3891 3892 3893
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3894 3895
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3896
		return NULL;
3897
	}
L
Linus Torvalds 已提交
3898

3899 3900 3901 3902 3903 3904 3905 3906
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3907 3908 3909 3910 3911
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3912 3913 3914 3915 3916 3917 3918 3919

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3942 3943
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3944 3945 3946 3947 3948 3949
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3950
	 */
3951 3952 3953 3954
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3955 3956
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3957
						INIT_COMPACT_PRIORITY,
3958 3959 3960 3961
						&compact_result);
		if (page)
			goto got_pg;

3962 3963 3964 3965
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
3966
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3979 3980
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
3981
			 * using async compaction.
3982
			 */
3983
			compact_priority = INIT_COMPACT_PRIORITY;
3984 3985
		}
	}
3986

3987
retry:
3988
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3989 3990 3991
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

3992 3993 3994
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
3995

3996 3997 3998 3999 4000
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
4001
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4002 4003 4004 4005 4006
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4007
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4008
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4009 4010
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4011

4012
	/* Caller is not willing to reclaim, we can't balance anything */
4013
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4014 4015
		goto nopage;

4016 4017
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
4018
		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
4019 4020 4021
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
4022
	}
4023

4024 4025
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4026 4027
		goto nopage;

4028 4029 4030 4031 4032 4033 4034
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4035
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4036
					compact_priority, &compact_result);
4037 4038
	if (page)
		goto got_pg;
4039

4040 4041
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4042
		goto nopage;
4043

M
Michal Hocko 已提交
4044 4045
	/*
	 * Do not retry costly high order allocations unless they are
4046
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4047
	 */
4048
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4049
		goto nopage;
M
Michal Hocko 已提交
4050 4051

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4052
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4053 4054
		goto retry;

4055 4056 4057 4058 4059 4060 4061
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4062
			should_compact_retry(ac, order, alloc_flags,
4063
				compact_result, &compact_priority,
4064
				&compaction_retries))
4065 4066
		goto retry;

4067 4068 4069

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4070 4071
		goto retry_cpuset;

4072 4073 4074 4075 4076
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4077
	/* Avoid allocations with no watermarks from looping endlessly */
4078 4079
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4080
	     (gfp_mask & __GFP_NOMEMALLOC)))
4081 4082
		goto nopage;

4083
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4084 4085
	if (did_some_progress) {
		no_progress_loops = 0;
4086
		goto retry;
M
Michal Hocko 已提交
4087
	}
4088

L
Linus Torvalds 已提交
4089
nopage:
4090 4091
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4092 4093
		goto retry_cpuset;

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4131 4132 4133 4134
		cond_resched();
		goto retry;
	}
fail:
4135
	warn_alloc(gfp_mask, ac->nodemask,
4136
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4137
got_pg:
4138
	return page;
L
Linus Torvalds 已提交
4139
}
4140

4141
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4142
		int preferred_nid, nodemask_t *nodemask,
4143 4144
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4145
{
4146
	ac->high_zoneidx = gfp_zone(gfp_mask);
4147
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4148 4149
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4150

4151
	if (cpusets_enabled()) {
4152 4153 4154
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4155 4156
		else
			*alloc_flags |= ALLOC_CPUSET;
4157 4158
	}

4159 4160
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4161

4162
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4163 4164

	if (should_fail_alloc_page(gfp_mask, order))
4165
		return false;
4166

4167 4168 4169 4170 4171
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4172

4173 4174 4175 4176
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4177
	/* Dirty zone balancing only done in the fast path */
4178
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4179

4180 4181 4182 4183 4184
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4185 4186 4187 4188 4189 4190 4191 4192
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4193 4194
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4195 4196 4197
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4198
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4199 4200 4201
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4202
	alloc_mask = gfp_mask;
4203
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4204 4205 4206
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4207

4208
	/* First allocation attempt */
4209
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4210 4211
	if (likely(page))
		goto out;
4212

4213
	/*
4214 4215 4216 4217
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4218
	 */
4219
	alloc_mask = current_gfp_context(gfp_mask);
4220
	ac.spread_dirty_pages = false;
4221

4222 4223 4224 4225
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4226
	if (unlikely(ac.nodemask != nodemask))
4227
		ac.nodemask = nodemask;
4228

4229
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4230

4231
out:
4232 4233 4234 4235
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4236 4237
	}

4238 4239
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4240
	return page;
L
Linus Torvalds 已提交
4241
}
4242
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4243 4244 4245 4246

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4247
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4248
{
4249 4250 4251 4252 4253 4254 4255 4256
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4264
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4265
{
4266
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4267 4268 4269
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4270
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4271
{
N
Nick Piggin 已提交
4272
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4273
		if (order == 0)
4274
			free_hot_cold_page(page, false);
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4282
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4283 4284
{
	if (addr != 0) {
N
Nick Piggin 已提交
4285
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4286 4287 4288 4289 4290 4291
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4303 4304
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4324
void __page_frag_cache_drain(struct page *page, unsigned int count)
4325 4326 4327 4328
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4329 4330
		unsigned int order = compound_order(page);

4331 4332 4333 4334 4335 4336
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}
4337
EXPORT_SYMBOL(__page_frag_cache_drain);
4338

4339 4340
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4341 4342 4343 4344 4345 4346 4347
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4348
		page = __page_frag_cache_refill(nc, gfp_mask);
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4359
		page_ref_add(page, size - 1);
4360 4361

		/* reset page count bias and offset to start of new frag */
4362
		nc->pfmemalloc = page_is_pfmemalloc(page);
4363 4364 4365 4366 4367 4368 4369 4370
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4371
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4372 4373 4374 4375 4376 4377 4378
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4379
		set_page_count(page, size);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4391
EXPORT_SYMBOL(page_frag_alloc);
4392 4393 4394 4395

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4396
void page_frag_free(void *addr)
4397 4398 4399 4400 4401 4402
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4403
EXPORT_SYMBOL(page_frag_free);
4404

4405 4406
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4440
	return make_alloc_exact(addr, order, size);
4441 4442 4443
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4444 4445 4446
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4447
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4448 4449 4450 4451 4452 4453
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4454
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4455
{
4456
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4457 4458 4459 4460 4461 4462
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4482 4483 4484 4485 4486 4487 4488
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4489 4490
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4491
 */
4492
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4493
{
4494
	struct zoneref *z;
4495 4496
	struct zone *zone;

4497
	/* Just pick one node, since fallback list is circular */
4498
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4499

4500
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4501

4502
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4503
		unsigned long size = zone->managed_pages;
4504
		unsigned long high = high_wmark_pages(zone);
4505 4506
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4507 4508 4509 4510 4511
	}

	return sum;
}

4512 4513 4514 4515 4516
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4517
 */
4518
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4519
{
A
Al Viro 已提交
4520
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4521
}
4522
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4523

4524 4525 4526 4527 4528
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4529
 */
4530
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4531
{
M
Mel Gorman 已提交
4532
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4533
}
4534 4535

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4536
{
4537
	if (IS_ENABLED(CONFIG_NUMA))
4538
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4539 4540
}

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4551
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4552 4553 4554 4555 4556 4557 4558 4559

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4560
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4575 4576 4577
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4578 4579 4580 4581 4582 4583 4584

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4585 4586 4587
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4588
	val->sharedram = global_node_page_state(NR_SHMEM);
4589
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4601 4602
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4603 4604
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4605 4606
	pg_data_t *pgdat = NODE_DATA(nid);

4607 4608 4609
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4610
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4611
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4612
#ifdef CONFIG_HIGHMEM
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4623
#else
4624 4625
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4626
#endif
L
Linus Torvalds 已提交
4627 4628 4629 4630
	val->mem_unit = PAGE_SIZE;
}
#endif

4631
/*
4632 4633
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4634
 */
4635
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4636 4637
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4638
		return false;
4639

4640 4641 4642 4643 4644 4645 4646 4647 4648
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4649 4650
}

L
Linus Torvalds 已提交
4651 4652
#define K(x) ((x) << (PAGE_SHIFT-10))

4653 4654 4655 4656 4657
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4658 4659
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4660 4661 4662
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4663
#ifdef CONFIG_MEMORY_ISOLATION
4664
		[MIGRATE_ISOLATE]	= 'I',
4665
#endif
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4677
	printk(KERN_CONT "(%s) ", tmp);
4678 4679
}

L
Linus Torvalds 已提交
4680 4681 4682 4683
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4684 4685 4686 4687
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4688
 */
4689
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4690
{
4691
	unsigned long free_pcp = 0;
4692
	int cpu;
L
Linus Torvalds 已提交
4693
	struct zone *zone;
M
Mel Gorman 已提交
4694
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4695

4696
	for_each_populated_zone(zone) {
4697
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4698
			continue;
4699

4700 4701
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4702 4703
	}

K
KOSAKI Motohiro 已提交
4704 4705
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4706 4707
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4708
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4709
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4710 4711 4712 4713 4714 4715 4716
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4717 4718 4719
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4720 4721
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4722
		global_node_page_state(NR_FILE_MAPPED),
4723
		global_node_page_state(NR_SHMEM),
4724 4725 4726
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4727
		free_pcp,
4728
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4729

M
Mel Gorman 已提交
4730
	for_each_online_pgdat(pgdat) {
4731
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4732 4733
			continue;

M
Mel Gorman 已提交
4734 4735 4736 4737 4738 4739 4740 4741
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4742
			" mapped:%lukB"
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4763
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4764 4765
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4766
			K(node_page_state(pgdat, NR_SHMEM)),
4767 4768 4769 4770 4771 4772 4773 4774
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4775 4776
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4777 4778
	}

4779
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4780 4781
		int i;

4782
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4783
			continue;
4784 4785 4786 4787 4788

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4789
		show_node(zone);
4790 4791
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4792 4793 4794 4795
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4796 4797 4798 4799 4800
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4801
			" writepending:%lukB"
L
Linus Torvalds 已提交
4802
			" present:%lukB"
4803
			" managed:%lukB"
4804
			" mlocked:%lukB"
4805
			" kernel_stack:%lukB"
4806 4807
			" pagetables:%lukB"
			" bounce:%lukB"
4808 4809
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4810
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4811 4812
			"\n",
			zone->name,
4813
			K(zone_page_state(zone, NR_FREE_PAGES)),
4814 4815 4816
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4817 4818 4819 4820 4821
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4822
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4823
			K(zone->present_pages),
4824
			K(zone->managed_pages),
4825
			K(zone_page_state(zone, NR_MLOCK)),
4826
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4827 4828
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4829 4830
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4831
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4832 4833
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4834 4835
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4836 4837
	}

4838
	for_each_populated_zone(zone) {
4839 4840
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4841
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4842

4843
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4844
			continue;
L
Linus Torvalds 已提交
4845
		show_node(zone);
4846
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4847 4848 4849

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4850 4851 4852 4853
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4854
			total += nr[order] << order;
4855 4856 4857 4858 4859 4860

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4861 4862
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4863
		for (order = 0; order < MAX_ORDER; order++) {
4864 4865
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4866 4867 4868
			if (nr[order])
				show_migration_types(types[order]);
		}
4869
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4870 4871
	}

4872 4873
	hugetlb_show_meminfo();

4874
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4875

L
Linus Torvalds 已提交
4876 4877 4878
	show_swap_cache_info();
}

4879 4880 4881 4882 4883 4884
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4885 4886
/*
 * Builds allocation fallback zone lists.
4887 4888
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4889
 */
4890
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
4891
{
4892
	struct zone *zone;
4893
	enum zone_type zone_type = MAX_NR_ZONES;
4894
	int nr_zones = 0;
4895 4896

	do {
4897
		zone_type--;
4898
		zone = pgdat->node_zones + zone_type;
4899
		if (managed_zone(zone)) {
4900
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4901
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4902
		}
4903
	} while (zone_type);
4904

4905
	return nr_zones;
L
Linus Torvalds 已提交
4906 4907 4908
}

#ifdef CONFIG_NUMA
4909 4910 4911

static int __parse_numa_zonelist_order(char *s)
{
4912 4913 4914 4915 4916 4917 4918 4919
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4920 4921 4922 4923 4924 4925 4926
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4927 4928 4929
	if (!s)
		return 0;

4930
	return __parse_numa_zonelist_order(s);
4931 4932 4933
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

4934 4935
char numa_zonelist_order[] = "Node";

4936 4937 4938
/*
 * sysctl handler for numa_zonelist_order
 */
4939
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4940
		void __user *buffer, size_t *length,
4941 4942
		loff_t *ppos)
{
4943
	char *str;
4944 4945
	int ret;

4946 4947 4948 4949 4950
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
4951

4952 4953
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
4954
	return ret;
4955 4956 4957
}


4958
#define MAX_NODE_LOAD (nr_online_nodes)
4959 4960
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4961
/**
4962
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4975
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4976
{
4977
	int n, val;
L
Linus Torvalds 已提交
4978
	int min_val = INT_MAX;
D
David Rientjes 已提交
4979
	int best_node = NUMA_NO_NODE;
4980
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4981

4982 4983 4984 4985 4986
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4987

4988
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

4997 4998 4999
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5000
		/* Give preference to headless and unused nodes */
5001 5002
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5021 5022 5023 5024 5025 5026

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5027 5028
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5029
{
5030 5031 5032 5033 5034 5035 5036 5037 5038
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5039

5040 5041 5042 5043 5044
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5045 5046
}

5047 5048 5049 5050 5051
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5052 5053
	struct zoneref *zonerefs;
	int nr_zones;
5054

5055 5056 5057 5058 5059
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5060 5061
}

5062 5063 5064 5065 5066 5067 5068 5069 5070
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5071 5072
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5073
	nodemask_t used_mask;
5074
	int local_node, prev_node;
L
Linus Torvalds 已提交
5075 5076 5077

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5078
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5079 5080
	prev_node = local_node;
	nodes_clear(used_mask);
5081 5082

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5089 5090
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5091 5092
			node_load[node] = load;

5093
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5094 5095 5096
		prev_node = node;
		load--;
	}
5097

5098
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5099
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5100 5101
}

5102 5103 5104 5105 5106 5107 5108 5109 5110
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5111
	struct zoneref *z;
5112

5113
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5114
				   gfp_zone(GFP_KERNEL),
5115 5116
				   NULL);
	return z->zone->node;
5117 5118
}
#endif
5119

5120 5121
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5122 5123
#else	/* CONFIG_NUMA */

5124
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5125
{
5126
	int node, local_node;
5127 5128
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5129 5130 5131

	local_node = pgdat->node_id;

5132 5133 5134
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5135

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5147 5148
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5149
	}
5150 5151 5152
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5153 5154
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5155 5156
	}

5157 5158
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5159 5160 5161 5162
}

#endif	/* CONFIG_NUMA */

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5180
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5181

5182
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5183
{
5184
	int nid;
5185
	int __maybe_unused cpu;
5186
	pg_data_t *self = data;
5187 5188 5189
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5190

5191 5192 5193
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5194

5195 5196 5197 5198
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5199 5200
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5201 5202 5203
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5204

5205 5206
			build_zonelists(pgdat);
		}
5207

5208 5209 5210 5211 5212 5213 5214 5215 5216
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5217
		for_each_online_cpu(cpu)
5218
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5219
#endif
5220
	}
5221 5222

	spin_unlock(&lock);
5223 5224
}

5225 5226 5227
static noinline void __init
build_all_zonelists_init(void)
{
5228 5229
	int cpu;

5230
	__build_all_zonelists(NULL);
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5248 5249 5250 5251
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5252 5253
/*
 * unless system_state == SYSTEM_BOOTING.
5254
 *
5255
 * __ref due to call of __init annotated helper build_all_zonelists_init
5256
 * [protected by SYSTEM_BOOTING].
5257
 */
5258
void __ref build_all_zonelists(pg_data_t *pgdat)
5259 5260
{
	if (system_state == SYSTEM_BOOTING) {
5261
		build_all_zonelists_init();
5262
	} else {
5263
		__build_all_zonelists(pgdat);
5264 5265
		/* cpuset refresh routine should be here */
	}
5266
	vm_total_pages = nr_free_pagecache_pages();
5267 5268 5269 5270 5271 5272 5273
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5274
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5275 5276 5277 5278
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5279
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5280 5281 5282
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5283
#ifdef CONFIG_NUMA
5284
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5285
#endif
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291 5292
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5293
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5294
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5295
{
5296
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5297
	unsigned long end_pfn = start_pfn + size;
5298
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5299
	unsigned long pfn;
5300
	unsigned long nr_initialised = 0;
5301 5302 5303
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5304

5305 5306 5307
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5308 5309 5310 5311 5312 5313 5314
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5315
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5316
		/*
5317 5318
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5319
		 */
5320 5321 5322
		if (context != MEMMAP_EARLY)
			goto not_early;

5323 5324 5325 5326 5327 5328 5329 5330 5331
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5332
			continue;
5333
		}
5334 5335 5336 5337
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5338 5339

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5357
			}
D
Dave Hansen 已提交
5358
		}
5359
#endif
5360

5361
not_early:
5362 5363 5364 5365 5366
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5367
		 * kernel allocations are made.
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5379
			cond_resched();
5380 5381 5382
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5383 5384 5385
	}
}

5386
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5387
{
5388
	unsigned int order, t;
5389 5390
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5397
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5398 5399
#endif

5400
static int zone_batchsize(struct zone *zone)
5401
{
5402
#ifdef CONFIG_MMU
5403 5404 5405 5406
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5407
	 * size of the zone.  But no more than 1/2 of a meg.
5408 5409 5410
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5411
	batch = zone->managed_pages / 1024;
5412 5413
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5414 5415 5416 5417 5418
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5419 5420 5421
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5422
	 *
5423 5424 5425 5426
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5427
	 */
5428
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5429

5430
	return batch;
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5448 5449
}

5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5477
/* a companion to pageset_set_high() */
5478 5479
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5480
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5481 5482
}

5483
static void pageset_init(struct per_cpu_pageset *p)
5484 5485
{
	struct per_cpu_pages *pcp;
5486
	int migratetype;
5487

5488 5489
	memset(p, 0, sizeof(*p));

5490
	pcp = &p->pcp;
5491
	pcp->count = 0;
5492 5493
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5494 5495
}

5496 5497 5498 5499 5500 5501
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5502
/*
5503
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5504 5505
 * to the value high for the pageset p.
 */
5506
static void pageset_set_high(struct per_cpu_pageset *p,
5507 5508
				unsigned long high)
{
5509 5510 5511
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5512

5513
	pageset_update(&p->pcp, high, batch);
5514 5515
}

5516 5517
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5518 5519
{
	if (percpu_pagelist_fraction)
5520
		pageset_set_high(pcp,
5521 5522 5523 5524 5525 5526
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5527 5528 5529 5530 5531 5532 5533 5534
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5535
void __meminit setup_zone_pageset(struct zone *zone)
5536 5537 5538
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5539 5540
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5541 5542
}

5543
/*
5544 5545
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5546
 */
5547
void __init setup_per_cpu_pageset(void)
5548
{
5549
	struct pglist_data *pgdat;
5550
	struct zone *zone;
5551

5552 5553
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5554 5555 5556 5557

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5558 5559
}

5560
static __meminit void zone_pcp_init(struct zone *zone)
5561
{
5562 5563 5564 5565 5566 5567
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5568

5569
	if (populated_zone(zone))
5570 5571 5572
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5573 5574
}

5575
void __meminit init_currently_empty_zone(struct zone *zone,
5576
					unsigned long zone_start_pfn,
5577
					unsigned long size)
5578 5579
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5580

5581 5582 5583 5584
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5585 5586 5587 5588 5589 5590
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5591
	zone_init_free_lists(zone);
5592
	zone->initialized = 1;
5593 5594
}

T
Tejun Heo 已提交
5595
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5596
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5597

5598 5599 5600
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5601 5602
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5603
{
5604
	unsigned long start_pfn, end_pfn;
5605
	int nid;
5606

5607 5608
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5609

5610 5611
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5612 5613 5614
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5615 5616 5617
	}

	return nid;
5618 5619 5620 5621
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5622
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5623
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5624
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5625
 *
5626 5627 5628
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5629
 */
5630
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5631
{
5632 5633
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5634

5635 5636 5637
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5638

5639
		if (start_pfn < end_pfn)
5640 5641 5642
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5643 5644 5645
	}
}

5646 5647
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5648
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5649
 *
5650 5651
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5652 5653 5654
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5655 5656
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5657

5658 5659
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5660 5661 5662 5663
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5664 5665 5666
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5667 5668
 *
 * It returns the start and end page frame of a node based on information
5669
 * provided by memblock_set_node(). If called for a node
5670
 * with no available memory, a warning is printed and the start and end
5671
 * PFNs will be 0.
5672
 */
5673
void __meminit get_pfn_range_for_nid(unsigned int nid,
5674 5675
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5676
	unsigned long this_start_pfn, this_end_pfn;
5677
	int i;
5678

5679 5680 5681
	*start_pfn = -1UL;
	*end_pfn = 0;

5682 5683 5684
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5685 5686
	}

5687
	if (*start_pfn == -1UL)
5688 5689 5690
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5691 5692 5693 5694 5695
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5696
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5714
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5715 5716 5717 5718 5719 5720 5721
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5722
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5737 5738 5739 5740 5741 5742
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5743 5744 5745 5746 5747 5748
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5749 5750 5751 5752
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5753
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5754
					unsigned long zone_type,
5755 5756
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5757 5758
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5759 5760
					unsigned long *ignored)
{
5761
	/* When hotadd a new node from cpu_up(), the node should be empty */
5762 5763 5764
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5765
	/* Get the start and end of the zone */
5766 5767
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5768 5769
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5770
				zone_start_pfn, zone_end_pfn);
5771 5772

	/* Check that this node has pages within the zone's required range */
5773
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5774 5775 5776
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5777 5778
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5779 5780

	/* Return the spanned pages */
5781
	return *zone_end_pfn - *zone_start_pfn;
5782 5783 5784 5785
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5786
 * then all holes in the requested range will be accounted for.
5787
 */
5788
unsigned long __meminit __absent_pages_in_range(int nid,
5789 5790 5791
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5792 5793 5794
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5795

5796 5797 5798 5799
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5800
	}
5801
	return nr_absent;
5802 5803 5804 5805 5806 5807 5808
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5809
 * It returns the number of pages frames in memory holes within a range.
5810 5811 5812 5813 5814 5815 5816 5817
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5818
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5819
					unsigned long zone_type,
5820 5821
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5822 5823
					unsigned long *ignored)
{
5824 5825
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5826
	unsigned long zone_start_pfn, zone_end_pfn;
5827
	unsigned long nr_absent;
5828

5829
	/* When hotadd a new node from cpu_up(), the node should be empty */
5830 5831 5832
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5833 5834
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5835

M
Mel Gorman 已提交
5836 5837 5838
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5839 5840 5841 5842 5843 5844 5845
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5863 5864 5865 5866
		}
	}

	return nr_absent;
5867
}
5868

T
Tejun Heo 已提交
5869
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5870
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5871
					unsigned long zone_type,
5872 5873
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5874 5875
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5876 5877
					unsigned long *zones_size)
{
5878 5879 5880 5881 5882 5883 5884 5885
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5886 5887 5888
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5889
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5890
						unsigned long zone_type,
5891 5892
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5893 5894 5895 5896 5897 5898 5899
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5900

T
Tejun Heo 已提交
5901
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5902

5903
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5904 5905 5906 5907
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5908
{
5909
	unsigned long realtotalpages = 0, totalpages = 0;
5910 5911
	enum zone_type i;

5912 5913
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5914
		unsigned long zone_start_pfn, zone_end_pfn;
5915
		unsigned long size, real_size;
5916

5917 5918 5919
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5920 5921
						  &zone_start_pfn,
						  &zone_end_pfn,
5922 5923
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5924 5925
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5926 5927 5928 5929
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5930 5931 5932 5933 5934 5935 5936 5937
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5938 5939 5940 5941 5942
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5943 5944 5945
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5946 5947
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5948 5949 5950
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5951
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5952 5953 5954
{
	unsigned long usemapsize;

5955
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5956 5957
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5958 5959 5960 5961 5962 5963 5964
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5965 5966 5967
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5968
{
5969
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5970
	zone->pageblock_flags = NULL;
5971
	if (usemapsize)
5972 5973 5974
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
5975 5976
}
#else
5977 5978
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
5979 5980
#endif /* CONFIG_SPARSEMEM */

5981
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5982

5983
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5984
void __paginginit set_pageblock_order(void)
5985
{
5986 5987
	unsigned int order;

5988 5989 5990 5991
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

5992 5993 5994 5995 5996
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

5997 5998
	/*
	 * Assume the largest contiguous order of interest is a huge page.
5999 6000
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6001 6002 6003 6004 6005
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6006 6007
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6008 6009 6010
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6011
 */
6012
void __paginginit set_pageblock_order(void)
6013 6014
{
}
6015 6016 6017

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6028
	 * populated regions may not be naturally aligned on page boundary.
6029 6030 6031 6032 6033 6034 6035 6036 6037
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6038 6039 6040 6041 6042
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6043 6044
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6045
 */
6046
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6047
{
6048
	enum zone_type j;
6049
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6050

6051
	pgdat_resize_init(pgdat);
6052 6053 6054 6055
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6056 6057 6058 6059 6060
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6061
#endif
L
Linus Torvalds 已提交
6062
	init_waitqueue_head(&pgdat->kswapd_wait);
6063
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6064 6065 6066
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6067
	pgdat_page_ext_init(pgdat);
6068
	spin_lock_init(&pgdat->lru_lock);
6069
	lruvec_init(node_lruvec(pgdat));
6070

6071 6072
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6073 6074
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6075
		unsigned long size, realsize, freesize, memmap_pages;
6076
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6077

6078 6079
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6080

6081
		/*
6082
		 * Adjust freesize so that it accounts for how much memory
6083 6084 6085
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6086
		memmap_pages = calc_memmap_size(size, realsize);
6087 6088 6089 6090 6091 6092 6093 6094
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6095
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6096 6097
					zone_names[j], memmap_pages, freesize);
		}
6098

6099
		/* Account for reserved pages */
6100 6101
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6102
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6103
					zone_names[0], dma_reserve);
6104 6105
		}

6106
		if (!is_highmem_idx(j))
6107
			nr_kernel_pages += freesize;
6108 6109 6110
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6111
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6112

6113 6114 6115 6116 6117 6118
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6119
#ifdef CONFIG_NUMA
6120
		zone->node = nid;
6121
#endif
L
Linus Torvalds 已提交
6122
		zone->name = zone_names[j];
6123
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6124
		spin_lock_init(&zone->lock);
6125
		zone_seqlock_init(zone);
6126
		zone_pcp_init(zone);
6127

L
Linus Torvalds 已提交
6128 6129 6130
		if (!size)
			continue;

6131
		set_pageblock_order();
6132
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6133
		init_currently_empty_zone(zone, zone_start_pfn, size);
6134
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6135 6136 6137
	}
}

6138
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6139
{
6140
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6141 6142
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6143 6144 6145 6146
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6147
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6148 6149
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6150 6151
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6152
		unsigned long size, end;
A
Andy Whitcroft 已提交
6153 6154
		struct page *map;

6155 6156 6157 6158 6159
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6160
		end = pgdat_end_pfn(pgdat);
6161 6162
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6163 6164
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6165 6166
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6167
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6168
	}
6169
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6170 6171 6172
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6173
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6174
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6175
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6176
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6177
			mem_map -= offset;
T
Tejun Heo 已提交
6178
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6179
	}
L
Linus Torvalds 已提交
6180
#endif
A
Andy Whitcroft 已提交
6181
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6182 6183
}

6184 6185
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6186
{
6187
	pg_data_t *pgdat = NODE_DATA(nid);
6188 6189
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6190

6191
	/* pg_data_t should be reset to zero when it's allocated */
6192
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6193

L
Linus Torvalds 已提交
6194 6195
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6196
	pgdat->per_cpu_nodestats = NULL;
6197 6198
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6199
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6200 6201
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6202 6203
#else
	start_pfn = node_start_pfn;
6204 6205 6206
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6207 6208

	alloc_node_mem_map(pgdat);
6209 6210 6211 6212 6213
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6214

6215
	reset_deferred_meminit(pgdat);
6216
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6217 6218
}

6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
#ifdef CONFIG_HAVE_MEMBLOCK
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
#endif /* CONFIG_HAVE_MEMBLOCK */

T
Tejun Heo 已提交
6257
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6258 6259 6260 6261 6262

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6263
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6264
{
6265
	unsigned int highest;
M
Miklos Szeredi 已提交
6266

6267
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6268 6269 6270 6271
	nr_node_ids = highest + 1;
}
#endif

6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6294
	unsigned long start, end, mask;
6295
	int last_nid = -1;
6296
	int i, nid;
6297

6298
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6322
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6323
static unsigned long __init find_min_pfn_for_node(int nid)
6324
{
6325
	unsigned long min_pfn = ULONG_MAX;
6326 6327
	unsigned long start_pfn;
	int i;
6328

6329 6330
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6331

6332
	if (min_pfn == ULONG_MAX) {
6333
		pr_warn("Could not find start_pfn for node %d\n", nid);
6334 6335 6336 6337
		return 0;
	}

	return min_pfn;
6338 6339 6340 6341 6342 6343
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6344
 * memblock_set_node().
6345 6346 6347 6348 6349 6350
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6351 6352 6353
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6354
 * Populate N_MEMORY for calculating usable_nodes.
6355
 */
A
Adrian Bunk 已提交
6356
static unsigned long __init early_calculate_totalpages(void)
6357 6358
{
	unsigned long totalpages = 0;
6359 6360 6361 6362 6363
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6364

6365 6366
		totalpages += pages;
		if (pages)
6367
			node_set_state(nid, N_MEMORY);
6368
	}
6369
	return totalpages;
6370 6371
}

M
Mel Gorman 已提交
6372 6373 6374 6375 6376 6377
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6378
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6379 6380 6381 6382
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6383
	/* save the state before borrow the nodemask */
6384
	nodemask_t saved_node_state = node_states[N_MEMORY];
6385
	unsigned long totalpages = early_calculate_totalpages();
6386
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6387
	struct memblock_region *r;
6388 6389 6390 6391 6392 6393 6394 6395 6396

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6397 6398
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6399 6400
				continue;

E
Emil Medve 已提交
6401
			nid = r->nid;
6402

E
Emil Medve 已提交
6403
			usable_startpfn = PFN_DOWN(r->base);
6404 6405 6406 6407 6408 6409 6410
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6411

6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6442
	/*
6443
	 * If movablecore=nn[KMG] was specified, calculate what size of
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6459
		required_movablecore = min(totalpages, required_movablecore);
6460 6461 6462 6463 6464
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6465 6466 6467 6468 6469
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6470
		goto out;
M
Mel Gorman 已提交
6471 6472 6473 6474 6475 6476 6477

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6478
	for_each_node_state(nid, N_MEMORY) {
6479 6480
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6497
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6498 6499
			unsigned long size_pages;

6500
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6543
			 * satisfied
M
Mel Gorman 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6557
	 * satisfied
M
Mel Gorman 已提交
6558 6559 6560 6561 6562
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6563
out2:
M
Mel Gorman 已提交
6564 6565 6566 6567
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6568

6569
out:
6570
	/* restore the node_state */
6571
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6572 6573
}

6574 6575
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6576 6577 6578
{
	enum zone_type zone_type;

6579 6580 6581 6582
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6583
		struct zone *zone = &pgdat->node_zones[zone_type];
6584
		if (populated_zone(zone)) {
6585 6586 6587 6588
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6589 6590
			break;
		}
6591 6592 6593
	}
}

6594 6595
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6596
 * @max_zone_pfn: an array of max PFNs for each zone
6597 6598
 *
 * This will call free_area_init_node() for each active node in the system.
6599
 * Using the page ranges provided by memblock_set_node(), the size of each
6600 6601 6602 6603 6604 6605 6606 6607 6608
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6609 6610
	unsigned long start_pfn, end_pfn;
	int i, nid;
6611

6612 6613 6614 6615 6616
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6617 6618 6619 6620

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6621 6622
		if (i == ZONE_MOVABLE)
			continue;
6623 6624 6625 6626 6627 6628

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6629
	}
M
Mel Gorman 已提交
6630 6631 6632

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6633
	find_zone_movable_pfns_for_nodes();
6634 6635

	/* Print out the zone ranges */
6636
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6637 6638 6639
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6640
		pr_info("  %-8s ", zone_names[i]);
6641 6642
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6643
			pr_cont("empty\n");
6644
		else
6645 6646 6647 6648
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6649
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6650 6651 6652
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6653
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6654 6655
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6656 6657
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6658
	}
6659

6660
	/* Print out the early node map */
6661
	pr_info("Early memory node ranges\n");
6662
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6663 6664 6665
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6666 6667

	/* Initialise every node */
6668
	mminit_verify_pageflags_layout();
6669
	setup_nr_node_ids();
6670 6671
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6672
		free_area_init_node(nid, NULL,
6673
				find_min_pfn_for_node(nid), NULL);
6674 6675 6676

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6677 6678
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6679
	}
6680
	zero_resv_unavail();
6681
}
M
Mel Gorman 已提交
6682

6683
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6684 6685 6686 6687 6688 6689
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6690
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6691

6692
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6693 6694 6695 6696
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6697

6698 6699 6700 6701 6702 6703
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6704 6705 6706 6707 6708 6709
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6722
early_param("kernelcore", cmdline_parse_kernelcore);
6723
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6724

T
Tejun Heo 已提交
6725
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6726

6727 6728 6729 6730 6731
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6732 6733 6734 6735
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6736 6737
	spin_unlock(&managed_page_count_lock);
}
6738
EXPORT_SYMBOL(adjust_managed_page_count);
6739

6740
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6741
{
6742 6743
	void *pos;
	unsigned long pages = 0;
6744

6745 6746 6747
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6748
		if ((unsigned int)poison <= 0xFF)
6749 6750
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6751 6752 6753
	}

	if (pages && s)
6754 6755
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6756 6757 6758

	return pages;
}
6759
EXPORT_SYMBOL(free_reserved_area);
6760

6761 6762 6763 6764 6765
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6766
	page_zone(page)->managed_pages++;
6767 6768 6769 6770
	totalhigh_pages++;
}
#endif

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6793 6794 6795 6796
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6807
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6808
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6809
		", %luK highmem"
6810
#endif
J
Joe Perches 已提交
6811 6812 6813 6814 6815 6816 6817
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6818
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6819
		totalhigh_pages << (PAGE_SHIFT - 10),
6820
#endif
J
Joe Perches 已提交
6821
		str ? ", " : "", str ? str : "");
6822 6823
}

6824
/**
6825 6826
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6827
 *
6828
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6829 6830
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6831 6832 6833
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6834 6835 6836 6837 6838 6839
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6840 6841
void __init free_area_init(unsigned long *zones_size)
{
6842
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6843
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6844
	zero_resv_unavail();
L
Linus Torvalds 已提交
6845 6846
}

6847
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6848 6849
{

6850 6851
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6852

6853 6854 6855 6856 6857 6858 6859
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6860

6861 6862 6863 6864 6865 6866 6867 6868 6869
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6870 6871 6872 6873
}

void __init page_alloc_init(void)
{
6874 6875 6876 6877 6878 6879
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6880 6881
}

6882
/*
6883
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6884 6885 6886 6887 6888 6889
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6890
	enum zone_type i, j;
6891 6892

	for_each_online_pgdat(pgdat) {
6893 6894 6895

		pgdat->totalreserve_pages = 0;

6896 6897
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6898
			long max = 0;
6899 6900 6901 6902 6903 6904 6905

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6906 6907
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6908

6909 6910
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6911

6912
			pgdat->totalreserve_pages += max;
6913

6914 6915 6916 6917 6918 6919
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6920 6921
/*
 * setup_per_zone_lowmem_reserve - called whenever
6922
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6923 6924 6925 6926 6927 6928
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6929
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6930

6931
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6932 6933
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6934
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6935 6936 6937

			zone->lowmem_reserve[j] = 0;

6938 6939
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6940 6941
				struct zone *lower_zone;

6942 6943
				idx--;

L
Linus Torvalds 已提交
6944 6945 6946 6947
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6948
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6949
					sysctl_lowmem_reserve_ratio[idx];
6950
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6951 6952 6953
			}
		}
	}
6954 6955 6956

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6957 6958
}

6959
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6969
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6970 6971 6972
	}

	for_each_zone(zone) {
6973 6974
		u64 tmp;

6975
		spin_lock_irqsave(&zone->lock, flags);
6976
		tmp = (u64)pages_min * zone->managed_pages;
6977
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6978 6979
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6980 6981 6982 6983
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6984
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6985
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6986
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6987
			 */
6988
			unsigned long min_pages;
L
Linus Torvalds 已提交
6989

6990
			min_pages = zone->managed_pages / 1024;
6991
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6992
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
6993
		} else {
N
Nick Piggin 已提交
6994 6995
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
6996 6997
			 * proportionate to the zone's size.
			 */
6998
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
6999 7000
		}

7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7012

7013
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7014
	}
7015 7016 7017

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7018 7019
}

7020 7021 7022 7023 7024 7025 7026 7027 7028
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7029 7030 7031
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7032
	__setup_per_zone_wmarks();
7033
	spin_unlock(&lock);
7034 7035
}

L
Linus Torvalds 已提交
7036 7037 7038 7039 7040 7041 7042
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7043
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7060
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7061 7062
{
	unsigned long lowmem_kbytes;
7063
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7064 7065

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7078
	setup_per_zone_wmarks();
7079
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7080
	setup_per_zone_lowmem_reserve();
7081 7082 7083 7084 7085 7086

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7087 7088
	return 0;
}
7089
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7090 7091

/*
7092
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7093 7094 7095
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7096
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7097
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7098
{
7099 7100 7101 7102 7103 7104
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7105 7106
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7107
		setup_per_zone_wmarks();
7108
	}
L
Linus Torvalds 已提交
7109 7110 7111
	return 0;
}

7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7127
#ifdef CONFIG_NUMA
7128
static void setup_min_unmapped_ratio(void)
7129
{
7130
	pg_data_t *pgdat;
7131 7132
	struct zone *zone;

7133
	for_each_online_pgdat(pgdat)
7134
		pgdat->min_unmapped_pages = 0;
7135

7136
	for_each_zone(zone)
7137
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7138 7139
				sysctl_min_unmapped_ratio) / 100;
}
7140

7141 7142

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7143
	void __user *buffer, size_t *length, loff_t *ppos)
7144 7145 7146
{
	int rc;

7147
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7148 7149 7150
	if (rc)
		return rc;

7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7161 7162 7163
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7164
	for_each_zone(zone)
7165
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7166
				sysctl_min_slab_ratio) / 100;
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7180 7181
	return 0;
}
7182 7183
#endif

L
Linus Torvalds 已提交
7184 7185 7186 7187 7188 7189
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7190
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7191 7192
 * if in function of the boot time zone sizes.
 */
7193
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7194
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7195
{
7196
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7197 7198 7199 7200
	setup_per_zone_lowmem_reserve();
	return 0;
}

7201 7202
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7203 7204
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7205
 */
7206
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7207
	void __user *buffer, size_t *length, loff_t *ppos)
7208 7209
{
	struct zone *zone;
7210
	int old_percpu_pagelist_fraction;
7211 7212
	int ret;

7213 7214 7215
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7216
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7231

7232
	for_each_populated_zone(zone) {
7233 7234
		unsigned int cpu;

7235
		for_each_possible_cpu(cpu)
7236 7237
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7238
	}
7239
out:
7240
	mutex_unlock(&pcp_batch_high_lock);
7241
	return ret;
7242 7243
}

7244
#ifdef CONFIG_NUMA
7245
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7296 7297
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7298
{
7299
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7300 7301
	unsigned long log2qty, size;
	void *table = NULL;
7302
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7303 7304 7305 7306

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7307
		numentries = nr_kernel_pages;
7308
		numentries -= arch_reserved_kernel_pages();
7309 7310 7311 7312

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7313

P
Pavel Tatashin 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7324 7325 7326 7327 7328
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7329 7330

		/* Make sure we've got at least a 0-order allocation.. */
7331 7332 7333 7334 7335 7336 7337 7338
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7339
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7340
	}
7341
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7342 7343 7344 7345 7346 7347

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7348
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7349

7350 7351
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7352 7353 7354
	if (numentries > max)
		numentries = max;

7355
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7356

7357
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7358 7359
	do {
		size = bucketsize << log2qty;
7360 7361 7362 7363 7364 7365
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7366
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7367
		} else {
7368 7369
			/*
			 * If bucketsize is not a power-of-two, we may free
7370 7371
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7372
			 */
7373
			if (get_order(size) < MAX_ORDER) {
7374 7375
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7376
			}
L
Linus Torvalds 已提交
7377 7378 7379 7380 7381 7382
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7383 7384
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7385 7386 7387 7388 7389 7390 7391 7392

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7393

K
KAMEZAWA Hiroyuki 已提交
7394
/*
7395 7396 7397
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7398
 * PageLRU check without isolation or lru_lock could race so that
7399 7400 7401
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7402
 */
7403
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7404
			 int migratetype,
7405
			 bool skip_hwpoisoned_pages)
7406 7407
{
	unsigned long pfn, iter, found;
7408

7409 7410
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7411
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7412 7413
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7414
		return false;
7415

7416 7417 7418 7419 7420 7421 7422 7423 7424
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7425 7426 7427 7428
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7429
		if (!pfn_valid_within(check))
7430
			continue;
7431

7432
		page = pfn_to_page(check);
7433

7434 7435 7436
		if (PageReserved(page))
			return true;

7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7447 7448 7449 7450
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7451
		 * because their page->_refcount is zero at all time.
7452
		 */
7453
		if (!page_ref_count(page)) {
7454 7455 7456 7457
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7458

7459 7460 7461 7462 7463 7464 7465
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7466 7467 7468
		if (__PageMovable(page))
			continue;

7469 7470 7471
		if (!PageLRU(page))
			found++;
		/*
7472 7473 7474
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7485
			return true;
7486
	}
7487
	return false;
7488 7489 7490 7491
}

bool is_pageblock_removable_nolock(struct page *page)
{
7492 7493
	struct zone *zone;
	unsigned long pfn;
7494 7495 7496 7497 7498

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7499 7500
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7501
	 */
7502 7503 7504 7505 7506
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7507
	if (!zone_spans_pfn(zone, pfn))
7508 7509
		return false;

7510
	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
K
KAMEZAWA Hiroyuki 已提交
7511
}
K
KAMEZAWA Hiroyuki 已提交
7512

7513
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7528 7529
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7530 7531
{
	/* This function is based on compact_zone() from compaction.c. */
7532
	unsigned long nr_reclaimed;
7533 7534 7535 7536
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7537
	migrate_prep();
7538

7539
	while (pfn < end || !list_empty(&cc->migratepages)) {
7540 7541 7542 7543 7544
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7545 7546
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7547
			pfn = isolate_migratepages_range(cc, pfn, end);
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7558 7559 7560
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7561

7562
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7563
				    NULL, 0, cc->mode, MR_CMA);
7564
	}
7565 7566 7567 7568 7569
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7570 7571 7572 7573 7574 7575
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7576 7577 7578 7579
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7580
 * @gfp_mask:	GFP mask to use during compaction
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7593
int alloc_contig_range(unsigned long start, unsigned long end,
7594
		       unsigned migratetype, gfp_t gfp_mask)
7595 7596
{
	unsigned long outer_start, outer_end;
7597 7598
	unsigned int order;
	int ret = 0;
7599

7600 7601 7602 7603
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7604
		.mode = MIGRATE_SYNC,
7605
		.ignore_skip_hint = true,
7606
		.gfp_mask = current_gfp_context(gfp_mask),
7607 7608 7609
	};
	INIT_LIST_HEAD(&cc.migratepages);

7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7635 7636
				       pfn_max_align_up(end), migratetype,
				       false);
7637
	if (ret)
7638
		return ret;
7639

7640 7641 7642 7643
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7644
	ret = __alloc_contig_migrate_range(&cc, start, end);
7645
	if (ret && ret != -EBUSY)
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7666
	drain_all_pages(cc.zone);
7667 7668 7669 7670 7671

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7672 7673
			outer_start = start;
			break;
7674 7675 7676 7677
		}
		outer_start &= ~0UL << order;
	}

7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7691
	/* Make sure the range is really isolated. */
7692
	if (test_pages_isolated(outer_start, end, false)) {
7693
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7694
			__func__, outer_start, end);
7695 7696 7697 7698
		ret = -EBUSY;
		goto done;
	}

7699
	/* Grab isolated pages from freelists. */
7700
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7714
				pfn_max_align_up(end), migratetype);
7715 7716 7717 7718 7719
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7720 7721 7722 7723 7724 7725 7726 7727 7728
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7729 7730 7731
}
#endif

7732
#ifdef CONFIG_MEMORY_HOTPLUG
7733 7734 7735 7736
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7737 7738
void __meminit zone_pcp_update(struct zone *zone)
{
7739
	unsigned cpu;
7740
	mutex_lock(&pcp_batch_high_lock);
7741
	for_each_possible_cpu(cpu)
7742 7743
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7744
	mutex_unlock(&pcp_batch_high_lock);
7745 7746 7747
}
#endif

7748 7749 7750
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7751 7752
	int cpu;
	struct per_cpu_pageset *pset;
7753 7754 7755 7756

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7757 7758 7759 7760
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7761 7762 7763 7764 7765 7766
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7767
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7768
/*
7769 7770
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7771 7772 7773 7774 7775 7776
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7777
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7778 7779 7780 7781 7782 7783 7784 7785
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7786
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7787 7788 7789 7790 7791 7792 7793 7794 7795
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7806 7807 7808 7809
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7810 7811
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7823 7824 7825 7826 7827 7828

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7829
	unsigned int order;
7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}