page_alloc.c 218.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <xen/xen.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
69
#include <linux/lockdep.h>
70
#include <linux/nmi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75 76
#include "internal.h"

77 78
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
79
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
80

81 82 83 84 85
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

86 87
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

88 89 90 91 92 93 94 95 96
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97
int _node_numa_mem_[MAX_NUMNODES];
98 99
#endif

100 101 102 103
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

104
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105
volatile unsigned long latent_entropy __latent_entropy;
106 107 108
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
109
/*
110
 * Array of node states.
L
Linus Torvalds 已提交
111
 */
112 113 114 115 116 117 118
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 120
#endif
	[N_MEMORY] = { { [0] = 1UL } },
121 122 123 124 125
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

126 127 128
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

129
unsigned long totalram_pages __read_mostly;
130
unsigned long totalreserve_pages __read_mostly;
131
unsigned long totalcma_pages __read_mostly;
132

133
int percpu_pagelist_fraction;
134
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

154 155 156 157 158 159 160 161 162
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
163 164 165 166

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
167 168
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
169 170 171 172
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
173 174
}

175
void pm_restrict_gfp_mask(void)
176 177
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
178 179
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
180
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181
}
182 183 184

bool pm_suspended_storage(void)
{
185
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 187 188
		return false;
	return true;
}
189 190
#endif /* CONFIG_PM_SLEEP */

191
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192
unsigned int pageblock_order __read_mostly;
193 194
#endif

195
static void __free_pages_ok(struct page *page, unsigned int order);
196

L
Linus Torvalds 已提交
197 198 199 200 201 202
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
203
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
204 205 206
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
207
 */
208
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209
#ifdef CONFIG_ZONE_DMA
210
	 256,
211
#endif
212
#ifdef CONFIG_ZONE_DMA32
213
	 256,
214
#endif
215
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
216
	 32,
217
#endif
M
Mel Gorman 已提交
218
	 32,
219
};
L
Linus Torvalds 已提交
220 221 222

EXPORT_SYMBOL(totalram_pages);

223
static char * const zone_names[MAX_NR_ZONES] = {
224
#ifdef CONFIG_ZONE_DMA
225
	 "DMA",
226
#endif
227
#ifdef CONFIG_ZONE_DMA32
228
	 "DMA32",
229
#endif
230
	 "Normal",
231
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
232
	 "HighMem",
233
#endif
M
Mel Gorman 已提交
234
	 "Movable",
235 236 237
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
238 239
};

240 241 242 243 244 245 246 247 248 249 250 251 252
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

253 254 255 256 257 258
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
262 263
};

L
Linus Torvalds 已提交
264
int min_free_kbytes = 1024;
265
int user_min_free_kbytes = -1;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
270
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272 273 274 275 276 277
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
279 280 281 282 283

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284

M
Miklos Szeredi 已提交
285 286
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
287
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
288
EXPORT_SYMBOL(nr_node_ids);
289
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
290 291
#endif

292 293
int page_group_by_mobility_disabled __read_mostly;

294 295
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/* Returns true if the struct page for the pfn is uninitialised */
296
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
297
{
298 299 300
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
301 302 303 304 305 306 307 308 309 310 311 312 313
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
314
	/* Always populate low zones for address-constrained allocations */
315 316
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
317 318 319
	/* Xen PV domains need page structures early */
	if (xen_pv_domain())
		return true;
320
	(*nr_initialised)++;
321
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
443

444
void set_pageblock_migratetype(struct page *page, int migratetype)
445
{
446 447
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
448 449
		migratetype = MIGRATE_UNMOVABLE;

450 451 452 453
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
454
#ifdef CONFIG_DEBUG_VM
455
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
456
{
457 458 459
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
460
	unsigned long sp, start_pfn;
461

462 463
	do {
		seq = zone_span_seqbegin(zone);
464 465
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
466
		if (!zone_spans_pfn(zone, pfn))
467 468 469
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

470
	if (ret)
471 472 473
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
474

475
	return ret;
476 477 478 479
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
480
	if (!pfn_valid_within(page_to_pfn(page)))
481
		return 0;
L
Linus Torvalds 已提交
482
	if (zone != page_zone(page))
483 484 485 486 487 488 489
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
490
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
491 492
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
493
		return 1;
494 495 496
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
497 498
	return 0;
}
N
Nick Piggin 已提交
499
#else
500
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
501 502 503 504 505
{
	return 0;
}
#endif

506 507
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
508
{
509 510 511 512 513 514 515 516 517 518 519 520 521 522
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
523
			pr_alert(
524
			      "BUG: Bad page state: %lu messages suppressed\n",
525 526 527 528 529 530 531 532
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

533
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
534
		current->comm, page_to_pfn(page));
535 536 537 538 539
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
540
	dump_page_owner(page);
541

542
	print_modules();
L
Linus Torvalds 已提交
543
	dump_stack();
544
out:
545
	/* Leave bad fields for debug, except PageBuddy could make trouble */
546
	page_mapcount_reset(page); /* remove PageBuddy */
547
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
548 549 550 551 552
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
553
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
554
 *
555 556
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
557
 *
558 559
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
560
 *
561
 * The first tail page's ->compound_order holds the order of allocation.
562
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
563
 */
564

565
void free_compound_page(struct page *page)
566
{
567
	__free_pages_ok(page, compound_order(page));
568 569
}

570
void prep_compound_page(struct page *page, unsigned int order)
571 572 573 574
{
	int i;
	int nr_pages = 1 << order;

575
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
576 577 578 579
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
580
		set_page_count(p, 0);
581
		p->mapping = TAIL_MAPPING;
582
		set_compound_head(p, page);
583
	}
584
	atomic_set(compound_mapcount_ptr(page), -1);
585 586
}

587 588
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
589 590
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
591
EXPORT_SYMBOL(_debug_pagealloc_enabled);
592 593
bool _debug_guardpage_enabled __read_mostly;

594 595 596 597
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
598
	return kstrtobool(buf, &_debug_pagealloc_enabled);
599 600 601
}
early_param("debug_pagealloc", early_debug_pagealloc);

602 603
static bool need_debug_guardpage(void)
{
604 605 606 607
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

608 609 610
	if (!debug_guardpage_minorder())
		return false;

611 612 613 614 615
	return true;
}

static void init_debug_guardpage(void)
{
616 617 618
	if (!debug_pagealloc_enabled())
		return;

619 620 621
	if (!debug_guardpage_minorder())
		return;

622 623 624 625 626 627 628
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
629 630 631 632 633 634

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
635
		pr_err("Bad debug_guardpage_minorder value\n");
636 637 638
		return 0;
	}
	_debug_guardpage_minorder = res;
639
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
640 641
	return 0;
}
642
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
643

644
static inline bool set_page_guard(struct zone *zone, struct page *page,
645
				unsigned int order, int migratetype)
646
{
647 648 649
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
650 651 652 653
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
654 655

	page_ext = lookup_page_ext(page);
656
	if (unlikely(!page_ext))
657
		return false;
658

659 660
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

661 662 663 664
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
665 666

	return true;
667 668
}

669 670
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
671
{
672 673 674 675 676 677
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
678 679 680
	if (unlikely(!page_ext))
		return;

681 682
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

683 684 685
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
686 687
}
#else
688
struct page_ext_operations debug_guardpage_ops;
689 690
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
691 692
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
693 694
#endif

695
static inline void set_page_order(struct page *page, unsigned int order)
696
{
H
Hugh Dickins 已提交
697
	set_page_private(page, order);
698
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
699 700 701 702
}

static inline void rmv_page_order(struct page *page)
{
703
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
704
	set_page_private(page, 0);
L
Linus Torvalds 已提交
705 706 707 708 709
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
710
 * (a) the buddy is not in a hole (check before calling!) &&
711
 * (b) the buddy is in the buddy system &&
712 713
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
714
 *
715 716 717 718
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
719
 *
720
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
721
 */
722
static inline int page_is_buddy(struct page *page, struct page *buddy,
723
							unsigned int order)
L
Linus Torvalds 已提交
724
{
725
	if (page_is_guard(buddy) && page_order(buddy) == order) {
726 727 728
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

729 730
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

731 732 733
		return 1;
	}

734
	if (PageBuddy(buddy) && page_order(buddy) == order) {
735 736 737 738 739 740 741 742
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

743 744
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

745
		return 1;
746
	}
747
	return 0;
L
Linus Torvalds 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
763 764 765
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
766
 * So when we are allocating or freeing one, we can derive the state of the
767 768
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
769
 * If a block is freed, and its buddy is also free, then this
770
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
771
 *
772
 * -- nyc
L
Linus Torvalds 已提交
773 774
 */

N
Nick Piggin 已提交
775
static inline void __free_one_page(struct page *page,
776
		unsigned long pfn,
777 778
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
779
{
780 781
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
782
	struct page *buddy;
783 784 785
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
786

787
	VM_BUG_ON(!zone_is_initialized(zone));
788
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
789

790
	VM_BUG_ON(migratetype == -1);
791
	if (likely(!is_migrate_isolate(migratetype)))
792
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
793

794
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
795
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
796

797
continue_merging:
798
	while (order < max_order - 1) {
799 800
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
801 802 803

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
804
		if (!page_is_buddy(page, buddy, order))
805
			goto done_merging;
806 807 808 809 810
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
811
			clear_page_guard(zone, buddy, order, migratetype);
812 813 814 815 816
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
817 818 819
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
820 821
		order++;
	}
822 823 824 825 826 827 828 829 830 831 832 833
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

834 835
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
836 837 838 839 840 841 842 843 844 845 846 847
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
848
	set_page_order(page, order);
849 850 851 852 853 854 855 856 857

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
858
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
859
		struct page *higher_page, *higher_buddy;
860 861 862 863
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
864 865
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
866 867 868 869 870 871 872 873
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
874 875 876
	zone->free_area[order].nr_free++;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

899
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
900
{
901 902 903 904 905
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
906

907
	if (unlikely(atomic_read(&page->_mapcount) != -1))
908 909 910
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
911
	if (unlikely(page_ref_count(page) != 0))
912
		bad_reason = "nonzero _refcount";
913 914 915 916
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
917 918 919 920
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
921
	bad_page(page, bad_reason, bad_flags);
922 923 924 925
}

static inline int free_pages_check(struct page *page)
{
926
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
927 928 929 930
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
931
	return 1;
L
Linus Torvalds 已提交
932 933
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

984 985
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
986
{
987
	int bad = 0;
988 989 990

	VM_BUG_ON_PAGE(PageTail(page), page);

991 992 993 994 995 996 997 998 999 1000 1001
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1002

1003 1004
		if (compound)
			ClearPageDoubleMap(page);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1015
	if (PageMappingFlags(page))
1016
		page->mapping = NULL;
1017
	if (memcg_kmem_enabled() && PageKmemcg(page))
1018
		memcg_kmem_uncharge(page, order);
1019 1020 1021 1022
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1023

1024 1025 1026
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1027 1028 1029

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1030
					   PAGE_SIZE << order);
1031
		debug_check_no_obj_freed(page_address(page),
1032
					   PAGE_SIZE << order);
1033
	}
1034 1035 1036
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1037
	kasan_free_pages(page, order);
1038 1039 1040 1041

	return true;
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1058 1059 1060 1061 1062 1063
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1064
/*
1065
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1066
 * Assumes all pages on list are in same zone, and of same order.
1067
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1068 1069 1070 1071 1072 1073 1074
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1075 1076
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1077
{
1078
	int migratetype = 0;
1079
	int batch_free = 0;
1080
	bool isolated_pageblocks;
1081

1082
	spin_lock(&zone->lock);
1083
	isolated_pageblocks = has_isolate_pageblock(zone);
1084

1085
	while (count) {
N
Nick Piggin 已提交
1086
		struct page *page;
1087 1088 1089
		struct list_head *list;

		/*
1090 1091 1092 1093 1094
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1095 1096
		 */
		do {
1097
			batch_free++;
1098 1099 1100 1101
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1102

1103 1104
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1105
			batch_free = count;
1106

1107
		do {
1108 1109
			int mt;	/* migratetype of the to-be-freed page */

1110
			page = list_last_entry(list, struct page, lru);
1111 1112
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1113

1114
			mt = get_pcppage_migratetype(page);
1115 1116 1117
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1118
			if (unlikely(isolated_pageblocks))
1119 1120
				mt = get_pageblock_migratetype(page);

1121 1122 1123
			if (bulkfree_pcp_prepare(page))
				continue;

1124
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1125
			trace_mm_page_pcpu_drain(page, 0, mt);
1126
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1127
	}
1128
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1129 1130
}

1131 1132
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1133
				unsigned int order,
1134
				int migratetype)
L
Linus Torvalds 已提交
1135
{
1136
	spin_lock(&zone->lock);
1137 1138 1139 1140
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1141
	__free_one_page(page, pfn, zone, order, migratetype);
1142
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1143 1144
}

1145
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1146
				unsigned long zone, int nid)
1147
{
1148
	mm_zero_struct_page(page);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1162
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1163
static void __meminit init_reserved_page(unsigned long pfn)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1180
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1181 1182 1183 1184 1185 1186 1187
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1188 1189 1190 1191 1192 1193
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1194
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1195 1196 1197 1198
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1199 1200 1201 1202 1203
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1204 1205 1206 1207

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1208 1209 1210
			SetPageReserved(page);
		}
	}
1211 1212
}

1213 1214
static void __free_pages_ok(struct page *page, unsigned int order)
{
1215
	unsigned long flags;
M
Minchan Kim 已提交
1216
	int migratetype;
1217
	unsigned long pfn = page_to_pfn(page);
1218

1219
	if (!free_pages_prepare(page, order, true))
1220 1221
		return;

1222
	migratetype = get_pfnblock_migratetype(page, pfn);
1223 1224
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1225
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1226
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1227 1228
}

1229
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1230
{
1231
	unsigned int nr_pages = 1 << order;
1232
	struct page *p = page;
1233
	unsigned int loop;
1234

1235 1236 1237
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1238 1239
		__ClearPageReserved(p);
		set_page_count(p, 0);
1240
	}
1241 1242
	__ClearPageReserved(p);
	set_page_count(p, 0);
1243

1244
	page_zone(page)->managed_pages += nr_pages;
1245 1246
	set_page_refcounted(page);
	__free_pages(page, order);
1247 1248
}

1249 1250
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1251

1252 1253 1254 1255
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1256
	static DEFINE_SPINLOCK(early_pfn_lock);
1257 1258
	int nid;

1259
	spin_lock(&early_pfn_lock);
1260
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1261
	if (nid < 0)
1262
		nid = first_online_node;
1263 1264 1265
	spin_unlock(&early_pfn_lock);

	return nid;
1266 1267 1268 1269
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1270 1271 1272
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1294 1295 1296
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1297 1298 1299 1300 1301 1302
{
	return true;
}
#endif


1303
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1304 1305 1306 1307
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1308
	return __free_pages_boot_core(page, order);
1309 1310
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1340 1341 1342
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1382
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1383 1384
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1385
{
1386 1387
	struct page *page;
	unsigned long i;
1388

1389
	if (!nr_pages)
1390 1391
		return;

1392 1393
	page = pfn_to_page(pfn);

1394
	/* Free a large naturally-aligned chunk if possible */
1395 1396
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1397
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1398
		__free_pages_boot_core(page, pageblock_order);
1399 1400 1401
		return;
	}

1402 1403 1404
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1405
		__free_pages_boot_core(page, 0);
1406
	}
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416 1417
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1418

1419
/*
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1432
 */
1433 1434 1435
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1436
{
1437 1438 1439 1440 1441 1442 1443 1444
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1456

1457 1458 1459 1460 1461 1462 1463
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1464
			touch_nmi_watchdog();
1465 1466 1467 1468 1469 1470
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1471 1472
}

1473 1474 1475 1476 1477 1478 1479 1480
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1481 1482 1483 1484 1485 1486
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1487 1488 1489
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1490
			continue;
1491
		} else if (!page || !(pfn & nr_pgmask)) {
1492
			page = pfn_to_page(pfn);
1493
			touch_nmi_watchdog();
1494 1495
		} else {
			page++;
1496
		}
1497
		__init_single_page(page, pfn, zid, nid);
1498
		nr_pages++;
1499
	}
1500
	return (nr_pages);
1501 1502
}

1503
/* Initialise remaining memory on a node */
1504
static int __init deferred_init_memmap(void *data)
1505
{
1506 1507
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1508 1509
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1510
	unsigned long spfn, epfn, first_init_pfn, flags;
1511 1512
	phys_addr_t spa, epa;
	int zid;
1513
	struct zone *zone;
1514
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1515
	u64 i;
1516

1517 1518 1519 1520 1521 1522
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1523
	if (first_init_pfn == ULONG_MAX) {
1524
		pgdat_resize_unlock(pgdat, &flags);
1525
		pgdat_init_report_one_done();
1526 1527 1528
		return 0;
	}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1540
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1553 1554 1555
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1556
		deferred_free_pages(nid, zid, spfn, epfn);
1557
	}
1558
	pgdat_resize_unlock(pgdat, &flags);
1559 1560 1561 1562

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1563
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1564
					jiffies_to_msecs(jiffies - start));
1565 1566

	pgdat_init_report_one_done();
1567 1568
	return 0;
}
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
	unsigned long nr_pages = 0;
	unsigned long first_init_pfn, spfn, epfn, t, flags;
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
	phys_addr_t spa, epa;
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);

	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
		pgdat_resize_unlock(pgdat, &flags);
		return false;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));

		while (spfn < epfn && nr_pages < nr_pages_needed) {
			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
			first_deferred_pfn = min(t, epfn);
			nr_pages += deferred_init_pages(nid, zid, spfn,
							first_deferred_pfn);
			spfn = first_deferred_pfn;
		}

		if (nr_pages >= nr_pages_needed)
			break;
	}

	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
		deferred_free_pages(nid, zid, spfn, epfn);

		if (first_deferred_pfn == epfn)
			break;
	}
	pgdat->first_deferred_pfn = first_deferred_pfn;
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1680
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1681 1682 1683

void __init page_alloc_init_late(void)
{
1684 1685 1686
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1687 1688
	int nid;

1689 1690
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1691 1692 1693 1694 1695
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1696
	wait_for_completion(&pgdat_init_all_done_comp);
1697

1698 1699 1700 1701 1702 1703
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1704 1705
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1706
#endif
P
Pavel Tatashin 已提交
1707 1708 1709 1710
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1711 1712 1713

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1714 1715
}

1716
#ifdef CONFIG_CMA
1717
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1743
	adjust_managed_page_count(page, pageblock_nr_pages);
1744 1745
}
#endif
L
Linus Torvalds 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1759
 * -- nyc
L
Linus Torvalds 已提交
1760
 */
N
Nick Piggin 已提交
1761
static inline void expand(struct zone *zone, struct page *page,
1762 1763
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769 1770
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1771
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1772

1773 1774 1775 1776 1777 1778 1779
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1780
			continue;
1781

1782
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1788
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1789
{
1790 1791
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1792

1793
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1794 1795 1796
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1797
	if (unlikely(page_ref_count(page) != 0))
1798
		bad_reason = "nonzero _count";
1799 1800 1801
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1802 1803 1804
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1805
	}
1806 1807 1808 1809
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1810 1811 1812 1813
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1828 1829
}

1830
static inline bool free_pages_prezeroed(void)
1831 1832
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1833
		page_poisoning_enabled();
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1883
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1884
							unsigned int alloc_flags)
1885 1886
{
	int i;
1887

1888
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1889

1890
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1891 1892
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1893 1894 1895 1896

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1897
	/*
1898
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1899 1900 1901 1902
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1903 1904 1905 1906
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1907 1908
}

1909 1910 1911 1912
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1913
static __always_inline
1914
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1915 1916 1917
						int migratetype)
{
	unsigned int current_order;
1918
	struct free_area *area;
1919 1920 1921 1922 1923
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1924
		page = list_first_entry_or_null(&area->free_list[migratetype],
1925
							struct page, lru);
1926 1927
		if (!page)
			continue;
1928 1929 1930 1931
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1932
		set_pcppage_migratetype(page, migratetype);
1933 1934 1935 1936 1937 1938 1939
		return page;
	}

	return NULL;
}


1940 1941 1942 1943
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1944
static int fallbacks[MIGRATE_TYPES][4] = {
1945 1946 1947
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1948
#ifdef CONFIG_CMA
1949
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1950
#endif
1951
#ifdef CONFIG_MEMORY_ISOLATION
1952
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1953
#endif
1954 1955
};

1956
#ifdef CONFIG_CMA
1957
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1958 1959 1960 1961 1962 1963 1964 1965 1966
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1967 1968
/*
 * Move the free pages in a range to the free lists of the requested type.
1969
 * Note that start_page and end_pages are not aligned on a pageblock
1970 1971
 * boundary. If alignment is required, use move_freepages_block()
 */
1972
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1973
			  struct page *start_page, struct page *end_page,
1974
			  int migratetype, int *num_movable)
1975 1976
{
	struct page *page;
1977
	unsigned int order;
1978
	int pages_moved = 0;
1979 1980 1981 1982 1983 1984 1985

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1986
	 * grouping pages by mobility
1987
	 */
1988 1989 1990
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
1991 1992
#endif

1993 1994 1995
	if (num_movable)
		*num_movable = 0;

1996 1997 1998 1999 2000 2001
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2002 2003 2004
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2005
		if (!PageBuddy(page)) {
2006 2007 2008 2009 2010 2011 2012 2013 2014
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2015 2016 2017 2018 2019
			page++;
			continue;
		}

		order = page_order(page);
2020 2021
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
2022
		page += 1 << order;
2023
		pages_moved += 1 << order;
2024 2025
	}

2026
	return pages_moved;
2027 2028
}

2029
int move_freepages_block(struct zone *zone, struct page *page,
2030
				int migratetype, int *num_movable)
2031 2032 2033 2034 2035
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2036
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2037
	start_page = pfn_to_page(start_pfn);
2038 2039
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2040 2041

	/* Do not cross zone boundaries */
2042
	if (!zone_spans_pfn(zone, start_pfn))
2043
		start_page = page;
2044
	if (!zone_spans_pfn(zone, end_pfn))
2045 2046
		return 0;

2047 2048
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2062
/*
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2073
 */
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2098 2099 2100 2101
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2102 2103
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2104
					int start_type, bool whole_block)
2105
{
2106
	unsigned int current_order = page_order(page);
2107
	struct free_area *area;
2108 2109 2110 2111
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2112

2113 2114 2115 2116
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2117
	if (is_migrate_highatomic(old_block_type))
2118 2119
		goto single_page;

2120 2121 2122
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2123
		goto single_page;
2124 2125
	}

2126 2127 2128 2129
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2154
	/* moving whole block can fail due to zone boundary conditions */
2155
	if (!free_pages)
2156
		goto single_page;
2157

2158 2159 2160 2161 2162
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2163 2164
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2165 2166 2167 2168 2169 2170

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2191
		if (fallback_mt == MIGRATE_TYPES)
2192 2193 2194 2195
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2196

2197 2198 2199
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2200 2201 2202 2203 2204
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2205
	}
2206 2207

	return -1;
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2236 2237
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2238 2239
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2240
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2252 2253 2254
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2255
 */
2256 2257
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2258 2259 2260 2261 2262 2263 2264
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2265
	bool ret;
2266 2267 2268

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2269 2270 2271 2272 2273 2274
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2275 2276 2277 2278 2279 2280
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2281 2282 2283 2284
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2285 2286 2287
				continue;

			/*
2288 2289 2290 2291 2292
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2293
			 */
2294
			if (is_migrate_highatomic_page(page)) {
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2317 2318
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2319 2320 2321 2322
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2323 2324 2325
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2326 2327

	return false;
2328 2329
}

2330 2331 2332 2333 2334
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2335 2336 2337 2338
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2339
 */
2340
static __always_inline bool
2341
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2342
{
2343
	struct free_area *area;
2344
	int current_order;
2345
	struct page *page;
2346 2347
	int fallback_mt;
	bool can_steal;
2348

2349 2350 2351 2352 2353
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2354
	for (current_order = MAX_ORDER - 1; current_order >= order;
2355
				--current_order) {
2356 2357
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2358
				start_migratetype, false, &can_steal);
2359 2360
		if (fallback_mt == -1)
			continue;
2361

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2373

2374 2375
		goto do_steal;
	}
2376

2377
	return false;
2378

2379 2380 2381 2382 2383 2384 2385 2386
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2387 2388
	}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2406 2407
}

2408
/*
L
Linus Torvalds 已提交
2409 2410 2411
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2412 2413
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2414 2415 2416
{
	struct page *page;

2417
retry:
2418
	page = __rmqueue_smallest(zone, order, migratetype);
2419
	if (unlikely(!page)) {
2420 2421 2422
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2423 2424
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2425 2426
	}

2427
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2428
	return page;
L
Linus Torvalds 已提交
2429 2430
}

2431
/*
L
Linus Torvalds 已提交
2432 2433 2434 2435
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2436
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2437
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2438
			int migratetype)
L
Linus Torvalds 已提交
2439
{
2440
	int i, alloced = 0;
2441

2442
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2443
	for (i = 0; i < count; ++i) {
2444
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2445
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2446
			break;
2447

2448 2449 2450
		if (unlikely(check_pcp_refill(page)))
			continue;

2451
		/*
2452 2453 2454 2455 2456 2457 2458 2459
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2460
		 */
2461
		list_add_tail(&page->lru, list);
2462
		alloced++;
2463
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2464 2465
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2466
	}
2467 2468 2469 2470 2471 2472 2473

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2474
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2475
	spin_unlock(&zone->lock);
2476
	return alloced;
L
Linus Torvalds 已提交
2477 2478
}

2479
#ifdef CONFIG_NUMA
2480
/*
2481 2482 2483 2484
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2485 2486
 * Note that this function must be called with the thread pinned to
 * a single processor.
2487
 */
2488
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2489 2490
{
	unsigned long flags;
2491
	int to_drain, batch;
2492

2493
	local_irq_save(flags);
2494
	batch = READ_ONCE(pcp->batch);
2495
	to_drain = min(pcp->count, batch);
2496 2497 2498 2499
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2500
	local_irq_restore(flags);
2501 2502 2503
}
#endif

2504
/*
2505
 * Drain pcplists of the indicated processor and zone.
2506 2507 2508 2509 2510
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2511
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2512
{
N
Nick Piggin 已提交
2513
	unsigned long flags;
2514 2515
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2516

2517 2518
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2519

2520 2521 2522 2523 2524 2525 2526
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2527

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2541 2542 2543
	}
}

2544 2545
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2546 2547 2548
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2549
 */
2550
void drain_local_pages(struct zone *zone)
2551
{
2552 2553 2554 2555 2556 2557
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2558 2559
}

2560 2561
static void drain_local_pages_wq(struct work_struct *work)
{
2562 2563 2564 2565 2566 2567 2568 2569
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2570
	drain_local_pages(NULL);
2571
	preempt_enable();
2572 2573
}

2574
/*
2575 2576
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2577 2578
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2579
 * Note that this can be extremely slow as the draining happens in a workqueue.
2580
 */
2581
void drain_all_pages(struct zone *zone)
2582
{
2583 2584 2585 2586 2587 2588 2589 2590
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2591 2592 2593 2594 2595 2596 2597
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2608

2609 2610 2611 2612 2613 2614 2615
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2616 2617
		struct per_cpu_pageset *pcp;
		struct zone *z;
2618
		bool has_pcps = false;
2619 2620

		if (zone) {
2621
			pcp = per_cpu_ptr(zone->pageset, cpu);
2622
			if (pcp->pcp.count)
2623
				has_pcps = true;
2624 2625 2626 2627 2628 2629 2630
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2631 2632
			}
		}
2633

2634 2635 2636 2637 2638
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2639

2640 2641 2642
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2643
		queue_work_on(cpu, mm_percpu_wq, work);
2644
	}
2645 2646 2647 2648
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2649 2650
}

2651
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2652

2653 2654 2655 2656 2657
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2658 2659
void mark_free_pages(struct zone *zone)
{
2660
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2661
	unsigned long flags;
2662
	unsigned int order, t;
2663
	struct page *page;
L
Linus Torvalds 已提交
2664

2665
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2666 2667 2668
		return;

	spin_lock_irqsave(&zone->lock, flags);
2669

2670
	max_zone_pfn = zone_end_pfn(zone);
2671 2672
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2673
			page = pfn_to_page(pfn);
2674

2675 2676 2677 2678 2679
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2680 2681 2682
			if (page_zone(page) != zone)
				continue;

2683 2684
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2685
		}
L
Linus Torvalds 已提交
2686

2687
	for_each_migratetype_order(order, t) {
2688 2689
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2690
			unsigned long i;
L
Linus Torvalds 已提交
2691

2692
			pfn = page_to_pfn(page);
2693 2694 2695 2696 2697
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2698
				swsusp_set_page_free(pfn_to_page(pfn + i));
2699
			}
2700
		}
2701
	}
L
Linus Torvalds 已提交
2702 2703
	spin_unlock_irqrestore(&zone->lock, flags);
}
2704
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2705

2706
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2707
{
2708
	int migratetype;
L
Linus Torvalds 已提交
2709

2710
	if (!free_pcp_prepare(page))
2711
		return false;
2712

2713
	migratetype = get_pfnblock_migratetype(page, pfn);
2714
	set_pcppage_migratetype(page, migratetype);
2715 2716 2717
	return true;
}

2718
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2719 2720 2721 2722 2723 2724
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2725
	__count_vm_event(PGFREE);
2726

2727 2728 2729
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2730
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2731 2732 2733 2734
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2735
		if (unlikely(is_migrate_isolate(migratetype))) {
2736
			free_one_page(zone, page, pfn, 0, migratetype);
2737
			return;
2738 2739 2740 2741
		}
		migratetype = MIGRATE_MOVABLE;
	}

2742
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2743
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2744
	pcp->count++;
N
Nick Piggin 已提交
2745
	if (pcp->count >= pcp->high) {
2746
		unsigned long batch = READ_ONCE(pcp->batch);
2747 2748
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2749
	}
2750
}
2751

2752 2753 2754
/*
 * Free a 0-order page
 */
2755
void free_unref_page(struct page *page)
2756 2757 2758 2759
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2760
	if (!free_unref_page_prepare(page, pfn))
2761 2762 2763
		return;

	local_irq_save(flags);
2764
	free_unref_page_commit(page, pfn);
2765
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2766 2767
}

2768 2769 2770
/*
 * Free a list of 0-order pages
 */
2771
void free_unref_page_list(struct list_head *list)
2772 2773
{
	struct page *page, *next;
2774
	unsigned long flags, pfn;
2775
	int batch_count = 0;
2776 2777 2778 2779

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2780
		if (!free_unref_page_prepare(page, pfn))
2781 2782 2783
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2784

2785
	local_irq_save(flags);
2786
	list_for_each_entry_safe(page, next, list, lru) {
2787 2788 2789
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2790 2791
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2802
	}
2803
	local_irq_restore(flags);
2804 2805
}

N
Nick Piggin 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2818 2819
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2820

2821
	for (i = 1; i < (1 << order); i++)
2822
		set_page_refcounted(page + i);
2823
	split_page_owner(page, order);
N
Nick Piggin 已提交
2824
}
K
K. Y. Srinivasan 已提交
2825
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2826

2827
int __isolate_free_page(struct page *page, unsigned int order)
2828 2829 2830
{
	unsigned long watermark;
	struct zone *zone;
2831
	int mt;
2832 2833 2834 2835

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2836
	mt = get_pageblock_migratetype(page);
2837

2838
	if (!is_migrate_isolate(mt)) {
2839 2840 2841 2842 2843 2844 2845
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2846
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2847 2848
			return 0;

2849
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2850
	}
2851 2852 2853 2854 2855

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2856

2857 2858 2859 2860
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2861 2862
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2863 2864
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2865
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2866
			    && !is_migrate_highatomic(mt))
2867 2868 2869
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2870 2871
	}

2872

2873
	return 1UL << order;
2874 2875
}

2876 2877 2878 2879 2880
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2881
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2882 2883
{
#ifdef CONFIG_NUMA
2884
	enum numa_stat_item local_stat = NUMA_LOCAL;
2885

2886 2887 2888 2889
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2890
	if (z->node != numa_node_id())
2891 2892
		local_stat = NUMA_OTHER;

2893
	if (z->node == preferred_zone->node)
2894
		__inc_numa_state(z, NUMA_HIT);
2895
	else {
2896 2897
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2898
	}
2899
	__inc_numa_state(z, local_stat);
2900 2901 2902
#endif
}

2903 2904
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2905
			struct per_cpu_pages *pcp,
2906 2907 2908 2909 2910 2911 2912 2913
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2914
					migratetype);
2915 2916 2917 2918
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2919
		page = list_first_entry(list, struct page, lru);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2935
	unsigned long flags;
2936

2937
	local_irq_save(flags);
2938 2939
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2940
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2941 2942 2943 2944
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2945
	local_irq_restore(flags);
2946 2947 2948
	return page;
}

L
Linus Torvalds 已提交
2949
/*
2950
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2951
 */
2952
static inline
2953
struct page *rmqueue(struct zone *preferred_zone,
2954
			struct zone *zone, unsigned int order,
2955 2956
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2957 2958
{
	unsigned long flags;
2959
	struct page *page;
L
Linus Torvalds 已提交
2960

2961
	if (likely(order == 0)) {
2962 2963 2964 2965
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2966

2967 2968 2969 2970 2971 2972
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2973

2974 2975 2976 2977 2978 2979 2980
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2981
		if (!page)
2982 2983 2984 2985 2986 2987 2988
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2989

2990
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2991
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2992
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2993

2994 2995
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2996
	return page;
N
Nick Piggin 已提交
2997 2998 2999 3000

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3001 3002
}

3003 3004
#ifdef CONFIG_FAIL_PAGE_ALLOC

3005
static struct {
3006 3007
	struct fault_attr attr;

3008
	bool ignore_gfp_highmem;
3009
	bool ignore_gfp_reclaim;
3010
	u32 min_order;
3011 3012
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3013
	.ignore_gfp_reclaim = true,
3014
	.ignore_gfp_highmem = true,
3015
	.min_order = 1,
3016 3017 3018 3019 3020 3021 3022 3023
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3024
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3025
{
3026
	if (order < fail_page_alloc.min_order)
3027
		return false;
3028
	if (gfp_mask & __GFP_NOFAIL)
3029
		return false;
3030
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3031
		return false;
3032 3033
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3034
		return false;
3035 3036 3037 3038 3039 3040 3041 3042

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
3043
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3044 3045
	struct dentry *dir;

3046 3047 3048 3049
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3050

3051
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3052
				&fail_page_alloc.ignore_gfp_reclaim))
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3063
	debugfs_remove_recursive(dir);
3064

3065
	return -ENOMEM;
3066 3067 3068 3069 3070 3071 3072 3073
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3074
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3075
{
3076
	return false;
3077 3078 3079 3080
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3081
/*
3082 3083 3084 3085
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3086
 */
3087 3088 3089
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3090
{
3091
	long min = mark;
L
Linus Torvalds 已提交
3092
	int o;
3093
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3094

3095
	/* free_pages may go negative - that's OK */
3096
	free_pages -= (1 << order) - 1;
3097

R
Rohit Seth 已提交
3098
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3099
		min -= min / 2;
3100 3101 3102 3103 3104 3105

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3106
	if (likely(!alloc_harder)) {
3107
		free_pages -= z->nr_reserved_highatomic;
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3121

3122 3123 3124
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
3125
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3126
#endif
3127

3128 3129 3130 3131 3132 3133
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3134
		return false;
L
Linus Torvalds 已提交
3135

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
3159 3160 3161
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3162
	}
3163
	return false;
3164 3165
}

3166
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3167
		      int classzone_idx, unsigned int alloc_flags)
3168 3169 3170 3171 3172
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3199
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3200
			unsigned long mark, int classzone_idx)
3201 3202 3203 3204 3205 3206
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3207
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3208
								free_pages);
L
Linus Torvalds 已提交
3209 3210
}

3211
#ifdef CONFIG_NUMA
3212 3213
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3214
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3215
				RECLAIM_DISTANCE;
3216
}
3217
#else	/* CONFIG_NUMA */
3218 3219 3220 3221
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3222 3223
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3224
/*
3225
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3226 3227 3228
 * a page.
 */
static struct page *
3229 3230
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3231
{
3232
	struct zoneref *z = ac->preferred_zoneref;
3233
	struct zone *zone;
3234 3235
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3236
	/*
3237
	 * Scan zonelist, looking for a zone with enough free.
3238
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3239
	 */
3240
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3241
								ac->nodemask) {
3242
		struct page *page;
3243 3244
		unsigned long mark;

3245 3246
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3247
			!__cpuset_zone_allowed(zone, gfp_mask))
3248
				continue;
3249 3250
		/*
		 * When allocating a page cache page for writing, we
3251 3252
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3253
		 * proportional share of globally allowed dirty pages.
3254
		 * The dirty limits take into account the node's
3255 3256 3257 3258 3259
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3260
		 * exceed the per-node dirty limit in the slowpath
3261
		 * (spread_dirty_pages unset) before going into reclaim,
3262
		 * which is important when on a NUMA setup the allowed
3263
		 * nodes are together not big enough to reach the
3264
		 * global limit.  The proper fix for these situations
3265
		 * will require awareness of nodes in the
3266 3267
		 * dirty-throttling and the flusher threads.
		 */
3268 3269 3270 3271 3272 3273 3274 3275 3276
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3277

3278
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3279
		if (!zone_watermark_fast(zone, order, mark,
3280
				       ac_classzone_idx(ac), alloc_flags)) {
3281 3282
			int ret;

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3293 3294 3295 3296 3297
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3298
			if (node_reclaim_mode == 0 ||
3299
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3300 3301
				continue;

3302
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3303
			switch (ret) {
3304
			case NODE_RECLAIM_NOSCAN:
3305
				/* did not scan */
3306
				continue;
3307
			case NODE_RECLAIM_FULL:
3308
				/* scanned but unreclaimable */
3309
				continue;
3310 3311
			default:
				/* did we reclaim enough */
3312
				if (zone_watermark_ok(zone, order, mark,
3313
						ac_classzone_idx(ac), alloc_flags))
3314 3315 3316
					goto try_this_zone;

				continue;
3317
			}
R
Rohit Seth 已提交
3318 3319
		}

3320
try_this_zone:
3321
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3322
				gfp_mask, alloc_flags, ac->migratetype);
3323
		if (page) {
3324
			prep_new_page(page, order, gfp_mask, alloc_flags);
3325 3326 3327 3328 3329 3330 3331 3332

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3333
			return page;
3334 3335 3336 3337 3338 3339 3340 3341
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3342
		}
3343
	}
3344

3345
	return NULL;
M
Martin Hicks 已提交
3346 3347
}

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3362
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3363 3364
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3365
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3366

3367
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3368 3369 3370 3371 3372 3373 3374 3375
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3376
		if (tsk_is_oom_victim(current) ||
3377 3378
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3379
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3380 3381
		filter &= ~SHOW_MEM_FILTER_NODES;

3382
	show_mem(filter, nodemask);
3383 3384
}

3385
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3386 3387 3388 3389 3390 3391
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3392
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3393 3394
		return;

3395 3396 3397
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3398 3399 3400
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3401
	va_end(args);
J
Joe Perches 已提交
3402

3403
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3404

3405
	dump_stack();
3406
	warn_alloc_show_mem(gfp_mask, nodemask);
3407 3408
}

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3429 3430
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3431
	const struct alloc_context *ac, unsigned long *did_some_progress)
3432
{
3433 3434 3435
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3436
		.memcg = NULL,
3437 3438 3439
		.gfp_mask = gfp_mask,
		.order = order,
	};
3440 3441
	struct page *page;

3442 3443 3444
	*did_some_progress = 0;

	/*
3445 3446
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3447
	 */
3448
	if (!mutex_trylock(&oom_lock)) {
3449
		*did_some_progress = 1;
3450
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3451 3452
		return NULL;
	}
3453

3454 3455 3456
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3457 3458 3459
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3460
	 */
3461 3462 3463
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3464
	if (page)
3465 3466
		goto out;

3467 3468 3469 3470 3471 3472
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3473 3474 3475 3476 3477 3478 3479 3480
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3499

3500
	/* Exhausted what can be done so it's blame time */
3501
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3502
		*did_some_progress = 1;
3503

3504 3505 3506 3507 3508 3509
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3510 3511
					ALLOC_NO_WATERMARKS, ac);
	}
3512
out:
3513
	mutex_unlock(&oom_lock);
3514 3515 3516
	return page;
}

3517 3518 3519 3520 3521 3522
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3523 3524 3525 3526
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3527
		unsigned int alloc_flags, const struct alloc_context *ac,
3528
		enum compact_priority prio, enum compact_result *compact_result)
3529
{
3530
	struct page *page;
3531
	unsigned int noreclaim_flag;
3532 3533

	if (!order)
3534 3535
		return NULL;

3536
	noreclaim_flag = memalloc_noreclaim_save();
3537
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3538
									prio);
3539
	memalloc_noreclaim_restore(noreclaim_flag);
3540

3541
	if (*compact_result <= COMPACT_INACTIVE)
3542
		return NULL;
3543

3544 3545 3546 3547 3548
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3549

3550
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3551

3552 3553
	if (page) {
		struct zone *zone = page_zone(page);
3554

3555 3556 3557 3558 3559
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3560

3561 3562 3563 3564 3565
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3566

3567
	cond_resched();
3568 3569 3570

	return NULL;
}
3571

3572 3573 3574 3575
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3576
		     int *compaction_retries)
3577 3578
{
	int max_retries = MAX_COMPACT_RETRIES;
3579
	int min_priority;
3580 3581 3582
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3583 3584 3585 3586

	if (!order)
		return false;

3587 3588 3589
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3590 3591 3592 3593 3594
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3595 3596
	if (compaction_failed(compact_result))
		goto check_priority;
3597 3598 3599 3600 3601 3602 3603

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3604 3605 3606 3607
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3608 3609

	/*
3610
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3611 3612 3613 3614 3615 3616 3617 3618
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3619 3620 3621 3622
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3623

3624 3625 3626 3627 3628
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3629 3630
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3631

3632
	if (*compact_priority > min_priority) {
3633 3634
		(*compact_priority)--;
		*compaction_retries = 0;
3635
		ret = true;
3636
	}
3637 3638 3639
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3640
}
3641 3642 3643
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3644
		unsigned int alloc_flags, const struct alloc_context *ac,
3645
		enum compact_priority prio, enum compact_result *compact_result)
3646
{
3647
	*compact_result = COMPACT_SKIPPED;
3648 3649
	return NULL;
}
3650 3651

static inline bool
3652 3653
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3654
		     enum compact_priority *compact_priority,
3655
		     int *compaction_retries)
3656
{
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3675 3676
	return false;
}
3677
#endif /* CONFIG_COMPACTION */
3678

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
#ifdef CONFIG_LOCKDEP
struct lockdep_map __fs_reclaim_map =
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3692
	if (current->flags & PF_MEMALLOC)
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_acquire(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_release(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3720 3721
/* Perform direct synchronous page reclaim */
static int
3722 3723
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3724 3725
{
	struct reclaim_state reclaim_state;
3726
	int progress;
3727
	unsigned int noreclaim_flag;
3728 3729 3730 3731 3732

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3733
	noreclaim_flag = memalloc_noreclaim_save();
3734
	fs_reclaim_acquire(gfp_mask);
3735
	reclaim_state.reclaimed_slab = 0;
3736
	current->reclaim_state = &reclaim_state;
3737

3738 3739
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3740

3741
	current->reclaim_state = NULL;
3742
	fs_reclaim_release(gfp_mask);
3743
	memalloc_noreclaim_restore(noreclaim_flag);
3744 3745 3746

	cond_resched();

3747 3748 3749 3750 3751 3752
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3753
		unsigned int alloc_flags, const struct alloc_context *ac,
3754
		unsigned long *did_some_progress)
3755 3756 3757 3758
{
	struct page *page = NULL;
	bool drained = false;

3759
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3760 3761
	if (unlikely(!(*did_some_progress)))
		return NULL;
3762

3763
retry:
3764
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3765 3766 3767

	/*
	 * If an allocation failed after direct reclaim, it could be because
3768 3769
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3770 3771
	 */
	if (!page && !drained) {
3772
		unreserve_highatomic_pageblock(ac, false);
3773
		drain_all_pages(NULL);
3774 3775 3776 3777
		drained = true;
		goto retry;
	}

3778 3779 3780
	return page;
}

3781
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3782 3783 3784
{
	struct zoneref *z;
	struct zone *zone;
3785
	pg_data_t *last_pgdat = NULL;
3786

3787
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3788 3789
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3790
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3791 3792
		last_pgdat = zone->zone_pgdat;
	}
3793 3794
}

3795
static inline unsigned int
3796 3797
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3798
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3799

3800
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3801
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3802

3803 3804 3805 3806
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3807
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3808
	 */
3809
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3810

3811
	if (gfp_mask & __GFP_ATOMIC) {
3812
		/*
3813 3814
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3815
		 */
3816
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3817
			alloc_flags |= ALLOC_HARDER;
3818
		/*
3819
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3820
		 * comment for __cpuset_node_allowed().
3821
		 */
3822
		alloc_flags &= ~ALLOC_CPUSET;
3823
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3824 3825
		alloc_flags |= ALLOC_HARDER;

3826
#ifdef CONFIG_CMA
3827
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3828 3829
		alloc_flags |= ALLOC_CMA;
#endif
3830 3831 3832
	return alloc_flags;
}

3833
static bool oom_reserves_allowed(struct task_struct *tsk)
3834
{
3835 3836 3837 3838 3839 3840 3841 3842
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3843 3844
		return false;

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3856
	if (gfp_mask & __GFP_MEMALLOC)
3857
		return ALLOC_NO_WATERMARKS;
3858
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3859 3860 3861 3862 3863 3864 3865
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3866

3867 3868 3869 3870 3871 3872
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3873 3874
}

M
Michal Hocko 已提交
3875 3876 3877
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3878 3879 3880 3881
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3882 3883 3884 3885 3886 3887
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3888
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3889 3890 3891 3892
{
	struct zone *zone;
	struct zoneref *z;

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3903 3904 3905 3906
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3907 3908
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3909
		return unreserve_highatomic_pageblock(ac, true);
3910
	}
M
Michal Hocko 已提交
3911

3912 3913 3914 3915 3916
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3917 3918 3919 3920
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3921
		unsigned long reclaimable;
3922 3923
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3924

3925 3926
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3927 3928

		/*
3929 3930
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3931
		 */
3932 3933 3934 3935 3936
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3937 3938 3939 3940 3941 3942 3943
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3944
				unsigned long write_pending;
3945

3946 3947
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3948

3949
				if (2 * write_pending > reclaimable) {
3950 3951 3952 3953
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3954

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3969 3970 3971 3972 3973 3974 3975
			return true;
		}
	}

	return false;
}

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4009 4010
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4011
						struct alloc_context *ac)
4012
{
4013
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4014
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4015
	struct page *page = NULL;
4016
	unsigned int alloc_flags;
4017
	unsigned long did_some_progress;
4018
	enum compact_priority compact_priority;
4019
	enum compact_result compact_result;
4020 4021 4022
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4023
	int reserve_flags;
L
Linus Torvalds 已提交
4024

4025 4026 4027 4028 4029 4030
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
4031 4032
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4033
		return NULL;
4034
	}
L
Linus Torvalds 已提交
4035

4036 4037 4038 4039 4040 4041 4042 4043
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4044 4045 4046 4047 4048
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4049 4050 4051 4052 4053 4054 4055 4056

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4079 4080
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4081 4082 4083 4084 4085 4086
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4087
	 */
4088 4089 4090 4091
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4092 4093
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4094
						INIT_COMPACT_PRIORITY,
4095 4096 4097 4098
						&compact_result);
		if (page)
			goto got_pg;

4099 4100 4101 4102
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4103
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4116 4117
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4118
			 * using async compaction.
4119
			 */
4120
			compact_priority = INIT_COMPACT_PRIORITY;
4121 4122
		}
	}
4123

4124
retry:
4125
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4126 4127 4128
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

4129 4130 4131
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4132

4133 4134 4135 4136 4137
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
4138
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4139 4140 4141 4142 4143
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4144
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4145
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4146 4147
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4148

4149
	/* Caller is not willing to reclaim, we can't balance anything */
4150
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4151 4152
		goto nopage;

4153 4154
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4155 4156
		goto nopage;

4157 4158 4159 4160 4161 4162 4163
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4164
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4165
					compact_priority, &compact_result);
4166 4167
	if (page)
		goto got_pg;
4168

4169 4170
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4171
		goto nopage;
4172

M
Michal Hocko 已提交
4173 4174
	/*
	 * Do not retry costly high order allocations unless they are
4175
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4176
	 */
4177
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4178
		goto nopage;
M
Michal Hocko 已提交
4179 4180

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4181
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4182 4183
		goto retry;

4184 4185 4186 4187 4188 4189 4190
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4191
			should_compact_retry(ac, order, alloc_flags,
4192
				compact_result, &compact_priority,
4193
				&compaction_retries))
4194 4195
		goto retry;

4196 4197 4198

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4199 4200
		goto retry_cpuset;

4201 4202 4203 4204 4205
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4206
	/* Avoid allocations with no watermarks from looping endlessly */
4207 4208
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4209
	     (gfp_mask & __GFP_NOMEMALLOC)))
4210 4211
		goto nopage;

4212
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4213 4214
	if (did_some_progress) {
		no_progress_loops = 0;
4215
		goto retry;
M
Michal Hocko 已提交
4216
	}
4217

L
Linus Torvalds 已提交
4218
nopage:
4219 4220
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4221 4222
		goto retry_cpuset;

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4260 4261 4262 4263
		cond_resched();
		goto retry;
	}
fail:
4264
	warn_alloc(gfp_mask, ac->nodemask,
4265
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4266
got_pg:
4267
	return page;
L
Linus Torvalds 已提交
4268
}
4269

4270
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4271
		int preferred_nid, nodemask_t *nodemask,
4272 4273
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4274
{
4275
	ac->high_zoneidx = gfp_zone(gfp_mask);
4276
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4277 4278
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4279

4280
	if (cpusets_enabled()) {
4281 4282 4283
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4284 4285
		else
			*alloc_flags |= ALLOC_CPUSET;
4286 4287
	}

4288 4289
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4290

4291
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4292 4293

	if (should_fail_alloc_page(gfp_mask, order))
4294
		return false;
4295

4296 4297 4298 4299 4300
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4301

4302 4303 4304 4305
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4306
	/* Dirty zone balancing only done in the fast path */
4307
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4308

4309 4310 4311 4312 4313
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4314 4315 4316 4317 4318 4319 4320 4321
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4322 4323
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4324 4325 4326
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4327
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4328 4329 4330
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4331
	alloc_mask = gfp_mask;
4332
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4333 4334 4335
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4336

4337
	/* First allocation attempt */
4338
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4339 4340
	if (likely(page))
		goto out;
4341

4342
	/*
4343 4344 4345 4346
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4347
	 */
4348
	alloc_mask = current_gfp_context(gfp_mask);
4349
	ac.spread_dirty_pages = false;
4350

4351 4352 4353 4354
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4355
	if (unlikely(ac.nodemask != nodemask))
4356
		ac.nodemask = nodemask;
4357

4358
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4359

4360
out:
4361 4362 4363 4364
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4365 4366
	}

4367 4368
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4369
	return page;
L
Linus Torvalds 已提交
4370
}
4371
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4372 4373 4374 4375

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4376
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4377
{
4378 4379 4380
	struct page *page;

	/*
4381
	 * __get_free_pages() returns a virtual address, which cannot represent
4382 4383 4384 4385
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391 4392
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4393
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4394
{
4395
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4396 4397 4398
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4399
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4400
{
N
Nick Piggin 已提交
4401
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4402
		if (order == 0)
4403
			free_unref_page(page);
L
Linus Torvalds 已提交
4404 4405 4406 4407 4408 4409 4410
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4411
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4412 4413
{
	if (addr != 0) {
N
Nick Piggin 已提交
4414
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4432 4433
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4453
void __page_frag_cache_drain(struct page *page, unsigned int count)
4454 4455 4456 4457
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4458 4459
		unsigned int order = compound_order(page);

4460
		if (order == 0)
4461
			free_unref_page(page);
4462 4463 4464 4465
		else
			__free_pages_ok(page, order);
	}
}
4466
EXPORT_SYMBOL(__page_frag_cache_drain);
4467

4468 4469
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4470 4471 4472 4473 4474 4475 4476
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4477
		page = __page_frag_cache_refill(nc, gfp_mask);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4488
		page_ref_add(page, size - 1);
4489 4490

		/* reset page count bias and offset to start of new frag */
4491
		nc->pfmemalloc = page_is_pfmemalloc(page);
4492 4493 4494 4495 4496 4497 4498 4499
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4500
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4501 4502 4503 4504 4505 4506 4507
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4508
		set_page_count(page, size);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4520
EXPORT_SYMBOL(page_frag_alloc);
4521 4522 4523 4524

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4525
void page_frag_free(void *addr)
4526 4527 4528 4529 4530 4531
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4532
EXPORT_SYMBOL(page_frag_free);
4533

4534 4535
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4569
	return make_alloc_exact(addr, order, size);
4570 4571 4572
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4573 4574 4575
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4576
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4577 4578 4579 4580 4581 4582
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4583
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4584
{
4585
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4586 4587 4588 4589 4590 4591
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4611 4612 4613 4614 4615 4616 4617
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4618 4619
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4620
 */
4621
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4622
{
4623
	struct zoneref *z;
4624 4625
	struct zone *zone;

4626
	/* Just pick one node, since fallback list is circular */
4627
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4628

4629
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4630

4631
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4632
		unsigned long size = zone->managed_pages;
4633
		unsigned long high = high_wmark_pages(zone);
4634 4635
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640
	}

	return sum;
}

4641 4642 4643 4644 4645
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4646
 */
4647
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4648
{
A
Al Viro 已提交
4649
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4650
}
4651
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4652

4653 4654 4655 4656 4657
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4658
 */
4659
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4660
{
M
Mel Gorman 已提交
4661
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4662
}
4663 4664

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4665
{
4666
	if (IS_ENABLED(CONFIG_NUMA))
4667
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4668 4669
}

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4680
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4681 4682 4683 4684 4685 4686 4687 4688

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4689
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4704 4705 4706
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4707 4708 4709 4710 4711 4712 4713

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4714 4715 4716
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4717
	val->sharedram = global_node_page_state(NR_SHMEM);
4718
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4730 4731
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4732 4733
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4734 4735
	pg_data_t *pgdat = NODE_DATA(nid);

4736 4737 4738
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4739
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4740
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4741
#ifdef CONFIG_HIGHMEM
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4752
#else
4753 4754
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4755
#endif
L
Linus Torvalds 已提交
4756 4757 4758 4759
	val->mem_unit = PAGE_SIZE;
}
#endif

4760
/*
4761 4762
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4763
 */
4764
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4765 4766
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4767
		return false;
4768

4769 4770 4771 4772 4773 4774 4775 4776 4777
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4778 4779
}

L
Linus Torvalds 已提交
4780 4781
#define K(x) ((x) << (PAGE_SHIFT-10))

4782 4783 4784 4785 4786
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4787 4788
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4789 4790 4791
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4792
#ifdef CONFIG_MEMORY_ISOLATION
4793
		[MIGRATE_ISOLATE]	= 'I',
4794
#endif
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4806
	printk(KERN_CONT "(%s) ", tmp);
4807 4808
}

L
Linus Torvalds 已提交
4809 4810 4811 4812
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4813 4814 4815 4816
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4817
 */
4818
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4819
{
4820
	unsigned long free_pcp = 0;
4821
	int cpu;
L
Linus Torvalds 已提交
4822
	struct zone *zone;
M
Mel Gorman 已提交
4823
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4824

4825
	for_each_populated_zone(zone) {
4826
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4827
			continue;
4828

4829 4830
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4831 4832
	}

K
KOSAKI Motohiro 已提交
4833 4834
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4835 4836
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4837
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4838
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4839 4840 4841 4842 4843 4844 4845
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4846 4847 4848
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4849 4850
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4851
		global_node_page_state(NR_FILE_MAPPED),
4852
		global_node_page_state(NR_SHMEM),
4853 4854 4855
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4856
		free_pcp,
4857
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4858

M
Mel Gorman 已提交
4859
	for_each_online_pgdat(pgdat) {
4860
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4861 4862
			continue;

M
Mel Gorman 已提交
4863 4864 4865 4866 4867 4868 4869 4870
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4871
			" mapped:%lukB"
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4892
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4893 4894
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4895
			K(node_page_state(pgdat, NR_SHMEM)),
4896 4897 4898 4899 4900 4901 4902 4903
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4904 4905
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4906 4907
	}

4908
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4909 4910
		int i;

4911
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4912
			continue;
4913 4914 4915 4916 4917

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4918
		show_node(zone);
4919 4920
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4921 4922 4923 4924
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4925 4926 4927 4928 4929
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4930
			" writepending:%lukB"
L
Linus Torvalds 已提交
4931
			" present:%lukB"
4932
			" managed:%lukB"
4933
			" mlocked:%lukB"
4934
			" kernel_stack:%lukB"
4935 4936
			" pagetables:%lukB"
			" bounce:%lukB"
4937 4938
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4939
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4940 4941
			"\n",
			zone->name,
4942
			K(zone_page_state(zone, NR_FREE_PAGES)),
4943 4944 4945
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4946 4947 4948 4949 4950
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4951
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4952
			K(zone->present_pages),
4953
			K(zone->managed_pages),
4954
			K(zone_page_state(zone, NR_MLOCK)),
4955
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4956 4957
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4958 4959
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4960
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4961 4962
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4963 4964
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4965 4966
	}

4967
	for_each_populated_zone(zone) {
4968 4969
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4970
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4971

4972
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4973
			continue;
L
Linus Torvalds 已提交
4974
		show_node(zone);
4975
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4976 4977 4978

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4979 4980 4981 4982
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4983
			total += nr[order] << order;
4984 4985 4986 4987 4988 4989

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4990 4991
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4992
		for (order = 0; order < MAX_ORDER; order++) {
4993 4994
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4995 4996 4997
			if (nr[order])
				show_migration_types(types[order]);
		}
4998
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4999 5000
	}

5001 5002
	hugetlb_show_meminfo();

5003
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5004

L
Linus Torvalds 已提交
5005 5006 5007
	show_swap_cache_info();
}

5008 5009 5010 5011 5012 5013
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5014 5015
/*
 * Builds allocation fallback zone lists.
5016 5017
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5018
 */
5019
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5020
{
5021
	struct zone *zone;
5022
	enum zone_type zone_type = MAX_NR_ZONES;
5023
	int nr_zones = 0;
5024 5025

	do {
5026
		zone_type--;
5027
		zone = pgdat->node_zones + zone_type;
5028
		if (managed_zone(zone)) {
5029
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5030
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5031
		}
5032
	} while (zone_type);
5033

5034
	return nr_zones;
L
Linus Torvalds 已提交
5035 5036 5037
}

#ifdef CONFIG_NUMA
5038 5039 5040

static int __parse_numa_zonelist_order(char *s)
{
5041 5042 5043 5044 5045 5046 5047 5048
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5049 5050 5051 5052 5053 5054 5055
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5056 5057 5058
	if (!s)
		return 0;

5059
	return __parse_numa_zonelist_order(s);
5060 5061 5062
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5063 5064
char numa_zonelist_order[] = "Node";

5065 5066 5067
/*
 * sysctl handler for numa_zonelist_order
 */
5068
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5069
		void __user *buffer, size_t *length,
5070 5071
		loff_t *ppos)
{
5072
	char *str;
5073 5074
	int ret;

5075 5076 5077 5078 5079
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5080

5081 5082
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5083
	return ret;
5084 5085 5086
}


5087
#define MAX_NODE_LOAD (nr_online_nodes)
5088 5089
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5090
/**
5091
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5104
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5105
{
5106
	int n, val;
L
Linus Torvalds 已提交
5107
	int min_val = INT_MAX;
D
David Rientjes 已提交
5108
	int best_node = NUMA_NO_NODE;
5109
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5110

5111 5112 5113 5114 5115
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5116

5117
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5118 5119 5120 5121 5122 5123 5124 5125

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5126 5127 5128
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5129
		/* Give preference to headless and unused nodes */
5130 5131
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5150 5151 5152 5153 5154 5155

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5156 5157
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5158
{
5159 5160 5161 5162 5163 5164 5165 5166 5167
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5168

5169 5170 5171 5172 5173
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5174 5175
}

5176 5177 5178 5179 5180
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5181 5182
	struct zoneref *zonerefs;
	int nr_zones;
5183

5184 5185 5186 5187 5188
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5189 5190
}

5191 5192 5193 5194 5195 5196 5197 5198 5199
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5200 5201
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5202
	nodemask_t used_mask;
5203
	int local_node, prev_node;
L
Linus Torvalds 已提交
5204 5205 5206

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5207
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5208 5209
	prev_node = local_node;
	nodes_clear(used_mask);
5210 5211

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5218 5219
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5220 5221
			node_load[node] = load;

5222
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5223 5224 5225
		prev_node = node;
		load--;
	}
5226

5227
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5228
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5229 5230
}

5231 5232 5233 5234 5235 5236 5237 5238 5239
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5240
	struct zoneref *z;
5241

5242
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5243
				   gfp_zone(GFP_KERNEL),
5244 5245
				   NULL);
	return z->zone->node;
5246 5247
}
#endif
5248

5249 5250
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5251 5252
#else	/* CONFIG_NUMA */

5253
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5254
{
5255
	int node, local_node;
5256 5257
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5258 5259 5260

	local_node = pgdat->node_id;

5261 5262 5263
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5264

5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5276 5277
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5278
	}
5279 5280 5281
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5282 5283
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5284 5285
	}

5286 5287
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5288 5289 5290 5291
}

#endif	/* CONFIG_NUMA */

5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5309
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5310

5311
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5312
{
5313
	int nid;
5314
	int __maybe_unused cpu;
5315
	pg_data_t *self = data;
5316 5317 5318
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5319

5320 5321 5322
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5323

5324 5325 5326 5327
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5328 5329
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5330 5331 5332
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5333

5334 5335
			build_zonelists(pgdat);
		}
5336

5337 5338 5339 5340 5341 5342 5343 5344 5345
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5346
		for_each_online_cpu(cpu)
5347
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5348
#endif
5349
	}
5350 5351

	spin_unlock(&lock);
5352 5353
}

5354 5355 5356
static noinline void __init
build_all_zonelists_init(void)
{
5357 5358
	int cpu;

5359
	__build_all_zonelists(NULL);
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5377 5378 5379 5380
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5381 5382
/*
 * unless system_state == SYSTEM_BOOTING.
5383
 *
5384
 * __ref due to call of __init annotated helper build_all_zonelists_init
5385
 * [protected by SYSTEM_BOOTING].
5386
 */
5387
void __ref build_all_zonelists(pg_data_t *pgdat)
5388 5389
{
	if (system_state == SYSTEM_BOOTING) {
5390
		build_all_zonelists_init();
5391
	} else {
5392
		__build_all_zonelists(pgdat);
5393 5394
		/* cpuset refresh routine should be here */
	}
5395
	vm_total_pages = nr_free_pagecache_pages();
5396 5397 5398 5399 5400 5401 5402
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5403
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5404 5405 5406 5407
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5408
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5409 5410 5411
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5412
#ifdef CONFIG_NUMA
5413
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5414
#endif
L
Linus Torvalds 已提交
5415 5416 5417 5418 5419 5420 5421
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5422
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5423 5424
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5425
{
A
Andy Whitcroft 已提交
5426
	unsigned long end_pfn = start_pfn + size;
5427
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5428
	unsigned long pfn;
5429
	unsigned long nr_initialised = 0;
5430
	struct page *page;
5431 5432 5433
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5434

5435 5436 5437
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5438 5439 5440 5441 5442 5443 5444
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5445
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5446
		/*
5447 5448
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5449
		 */
5450 5451 5452
		if (context != MEMMAP_EARLY)
			goto not_early;

5453
		if (!early_pfn_valid(pfn))
5454 5455 5456 5457 5458
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5459 5460

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5478
			}
D
Dave Hansen 已提交
5479
		}
5480
#endif
5481

5482
not_early:
5483 5484 5485 5486 5487
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5488 5489 5490 5491 5492
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5493
		 * kernel allocations are made.
5494 5495 5496 5497 5498
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5499 5500 5501
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5502 5503 5504
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5505
			cond_resched();
5506
		}
L
Linus Torvalds 已提交
5507 5508 5509
	}
}

5510
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5511
{
5512
	unsigned int order, t;
5513 5514
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5515 5516 5517 5518 5519 5520
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5521
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5522 5523
#endif

5524
static int zone_batchsize(struct zone *zone)
5525
{
5526
#ifdef CONFIG_MMU
5527 5528 5529 5530
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5531
	 * size of the zone.  But no more than 1/2 of a meg.
5532 5533 5534
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5535
	batch = zone->managed_pages / 1024;
5536 5537
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5538 5539 5540 5541 5542
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5543 5544 5545
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5546
	 *
5547 5548 5549 5550
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5551
	 */
5552
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5553

5554
	return batch;
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5572 5573
}

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5601
/* a companion to pageset_set_high() */
5602 5603
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5604
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5605 5606
}

5607
static void pageset_init(struct per_cpu_pageset *p)
5608 5609
{
	struct per_cpu_pages *pcp;
5610
	int migratetype;
5611

5612 5613
	memset(p, 0, sizeof(*p));

5614
	pcp = &p->pcp;
5615
	pcp->count = 0;
5616 5617
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5618 5619
}

5620 5621 5622 5623 5624 5625
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5626
/*
5627
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5628 5629
 * to the value high for the pageset p.
 */
5630
static void pageset_set_high(struct per_cpu_pageset *p,
5631 5632
				unsigned long high)
{
5633 5634 5635
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5636

5637
	pageset_update(&p->pcp, high, batch);
5638 5639
}

5640 5641
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5642 5643
{
	if (percpu_pagelist_fraction)
5644
		pageset_set_high(pcp,
5645 5646 5647 5648 5649 5650
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5651 5652 5653 5654 5655 5656 5657 5658
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5659
void __meminit setup_zone_pageset(struct zone *zone)
5660 5661 5662
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5663 5664
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5665 5666
}

5667
/*
5668 5669
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5670
 */
5671
void __init setup_per_cpu_pageset(void)
5672
{
5673
	struct pglist_data *pgdat;
5674
	struct zone *zone;
5675

5676 5677
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5678 5679 5680 5681

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5682 5683
}

5684
static __meminit void zone_pcp_init(struct zone *zone)
5685
{
5686 5687 5688 5689 5690 5691
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5692

5693
	if (populated_zone(zone))
5694 5695 5696
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5697 5698
}

5699
void __meminit init_currently_empty_zone(struct zone *zone,
5700
					unsigned long zone_start_pfn,
5701
					unsigned long size)
5702 5703
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5704

5705 5706 5707 5708
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5709 5710 5711 5712 5713 5714
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5715
	zone_init_free_lists(zone);
5716
	zone->initialized = 1;
5717 5718
}

T
Tejun Heo 已提交
5719
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5720
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5721

5722 5723 5724
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5725 5726
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5727
{
5728
	unsigned long start_pfn, end_pfn;
5729
	int nid;
5730

5731 5732
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5733

5734 5735
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5736 5737 5738
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5739 5740 5741
	}

	return nid;
5742 5743 5744 5745
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5746
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5747
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5748
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5749
 *
5750 5751 5752
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5753
 */
5754
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5755
{
5756 5757
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5758

5759 5760 5761
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5762

5763
		if (start_pfn < end_pfn)
5764 5765 5766
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5767 5768 5769
	}
}

5770 5771
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5772
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5773
 *
5774 5775
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5776 5777 5778
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5779 5780
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5781

5782 5783
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5784 5785 5786 5787
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5788 5789 5790
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5791 5792
 *
 * It returns the start and end page frame of a node based on information
5793
 * provided by memblock_set_node(). If called for a node
5794
 * with no available memory, a warning is printed and the start and end
5795
 * PFNs will be 0.
5796
 */
5797
void __meminit get_pfn_range_for_nid(unsigned int nid,
5798 5799
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5800
	unsigned long this_start_pfn, this_end_pfn;
5801
	int i;
5802

5803 5804 5805
	*start_pfn = -1UL;
	*end_pfn = 0;

5806 5807 5808
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5809 5810
	}

5811
	if (*start_pfn == -1UL)
5812 5813 5814
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5815 5816 5817 5818 5819
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5820
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5838
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5839 5840 5841 5842 5843 5844 5845
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5846
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5861 5862 5863 5864 5865 5866
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5867 5868 5869 5870 5871 5872
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5873 5874 5875 5876
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5877
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5878
					unsigned long zone_type,
5879 5880
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5881 5882
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5883 5884
					unsigned long *ignored)
{
5885
	/* When hotadd a new node from cpu_up(), the node should be empty */
5886 5887 5888
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5889
	/* Get the start and end of the zone */
5890 5891
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5892 5893
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5894
				zone_start_pfn, zone_end_pfn);
5895 5896

	/* Check that this node has pages within the zone's required range */
5897
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5898 5899 5900
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5901 5902
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5903 5904

	/* Return the spanned pages */
5905
	return *zone_end_pfn - *zone_start_pfn;
5906 5907 5908 5909
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5910
 * then all holes in the requested range will be accounted for.
5911
 */
5912
unsigned long __meminit __absent_pages_in_range(int nid,
5913 5914 5915
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5916 5917 5918
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5919

5920 5921 5922 5923
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5924
	}
5925
	return nr_absent;
5926 5927 5928 5929 5930 5931 5932
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5933
 * It returns the number of pages frames in memory holes within a range.
5934 5935 5936 5937 5938 5939 5940 5941
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5942
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5943
					unsigned long zone_type,
5944 5945
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5946 5947
					unsigned long *ignored)
{
5948 5949
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5950
	unsigned long zone_start_pfn, zone_end_pfn;
5951
	unsigned long nr_absent;
5952

5953
	/* When hotadd a new node from cpu_up(), the node should be empty */
5954 5955 5956
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5957 5958
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5959

M
Mel Gorman 已提交
5960 5961 5962
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5963 5964 5965 5966 5967 5968 5969
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5987 5988 5989 5990
		}
	}

	return nr_absent;
5991
}
5992

T
Tejun Heo 已提交
5993
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5994
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5995
					unsigned long zone_type,
5996 5997
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5998 5999
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6000 6001
					unsigned long *zones_size)
{
6002 6003 6004 6005 6006 6007 6008 6009
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6010 6011 6012
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6013
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6014
						unsigned long zone_type,
6015 6016
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6017 6018 6019 6020 6021 6022 6023
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6024

T
Tejun Heo 已提交
6025
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6026

6027
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6028 6029 6030 6031
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6032
{
6033
	unsigned long realtotalpages = 0, totalpages = 0;
6034 6035
	enum zone_type i;

6036 6037
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6038
		unsigned long zone_start_pfn, zone_end_pfn;
6039
		unsigned long size, real_size;
6040

6041 6042 6043
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6044 6045
						  &zone_start_pfn,
						  &zone_end_pfn,
6046 6047
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6048 6049
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6050 6051 6052 6053
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6054 6055 6056 6057 6058 6059 6060 6061
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6062 6063 6064 6065 6066
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6067 6068 6069
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6070 6071
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6072 6073 6074
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6075
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6076 6077 6078
{
	unsigned long usemapsize;

6079
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6080 6081
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6082 6083 6084 6085 6086 6087 6088
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
6089 6090 6091
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6092
{
6093
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6094
	zone->pageblock_flags = NULL;
6095
	if (usemapsize)
6096 6097 6098
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6099 6100
}
#else
6101 6102
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6103 6104
#endif /* CONFIG_SPARSEMEM */

6105
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6106

6107
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6108
void __paginginit set_pageblock_order(void)
6109
{
6110 6111
	unsigned int order;

6112 6113 6114 6115
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6116 6117 6118 6119 6120
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6121 6122
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6123 6124
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6125 6126 6127 6128 6129
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6130 6131
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6132 6133 6134
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6135
 */
6136
void __paginginit set_pageblock_order(void)
6137 6138
{
}
6139 6140 6141

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6152
	 * populated regions may not be naturally aligned on page boundary.
6153 6154 6155 6156 6157 6158 6159 6160 6161
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6162 6163 6164 6165 6166
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6167 6168
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6169
 */
6170
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6171
{
6172
	enum zone_type j;
6173
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6174

6175
	pgdat_resize_init(pgdat);
6176 6177 6178 6179
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6180 6181 6182 6183 6184
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6185
#endif
L
Linus Torvalds 已提交
6186
	init_waitqueue_head(&pgdat->kswapd_wait);
6187
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6188 6189 6190
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6191
	pgdat_page_ext_init(pgdat);
6192
	spin_lock_init(&pgdat->lru_lock);
6193
	lruvec_init(node_lruvec(pgdat));
6194

6195 6196
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6197 6198
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6199
		unsigned long size, realsize, freesize, memmap_pages;
6200
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6201

6202 6203
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6204

6205
		/*
6206
		 * Adjust freesize so that it accounts for how much memory
6207 6208 6209
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6210
		memmap_pages = calc_memmap_size(size, realsize);
6211 6212 6213 6214 6215 6216 6217 6218
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6219
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6220 6221
					zone_names[j], memmap_pages, freesize);
		}
6222

6223
		/* Account for reserved pages */
6224 6225
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6226
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6227
					zone_names[0], dma_reserve);
6228 6229
		}

6230
		if (!is_highmem_idx(j))
6231
			nr_kernel_pages += freesize;
6232 6233 6234
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6235
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6236

6237 6238 6239 6240 6241 6242
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6243
#ifdef CONFIG_NUMA
6244
		zone->node = nid;
6245
#endif
L
Linus Torvalds 已提交
6246
		zone->name = zone_names[j];
6247
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6248
		spin_lock_init(&zone->lock);
6249
		zone_seqlock_init(zone);
6250
		zone_pcp_init(zone);
6251

L
Linus Torvalds 已提交
6252 6253 6254
		if (!size)
			continue;

6255
		set_pageblock_order();
6256
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6257
		init_currently_empty_zone(zone, zone_start_pfn, size);
6258
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6259 6260 6261
	}
}

6262
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6263
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6264
{
6265
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6266 6267
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6268 6269 6270 6271
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6272 6273
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6274 6275
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6276
		unsigned long size, end;
A
Andy Whitcroft 已提交
6277 6278
		struct page *map;

6279 6280 6281 6282 6283
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6284
		end = pgdat_end_pfn(pgdat);
6285 6286
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6287
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6288
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6289
	}
6290 6291 6292
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6293
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6294 6295 6296
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6297
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6298
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6299
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6300
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6301
			mem_map -= offset;
T
Tejun Heo 已提交
6302
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6303
	}
L
Linus Torvalds 已提交
6304 6305
#endif
}
6306 6307 6308
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6309

6310 6311
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6312
{
6313
	pg_data_t *pgdat = NODE_DATA(nid);
6314 6315
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6316

6317
	/* pg_data_t should be reset to zero when it's allocated */
6318
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6319

L
Linus Torvalds 已提交
6320 6321
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6322
	pgdat->per_cpu_nodestats = NULL;
6323 6324
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6325
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6326 6327
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6328 6329
#else
	start_pfn = node_start_pfn;
6330 6331 6332
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6333 6334 6335

	alloc_node_mem_map(pgdat);

6336 6337 6338 6339 6340 6341 6342 6343 6344
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
					 pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
#endif
6345
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6346 6347
}

6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
#ifdef CONFIG_HAVE_MEMBLOCK
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6369 6370
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
				continue;
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
#endif /* CONFIG_HAVE_MEMBLOCK */

T
Tejun Heo 已提交
6388
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6389 6390 6391 6392 6393

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6394
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6395
{
6396
	unsigned int highest;
M
Miklos Szeredi 已提交
6397

6398
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6399 6400 6401 6402
	nr_node_ids = highest + 1;
}
#endif

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6425
	unsigned long start, end, mask;
6426
	int last_nid = -1;
6427
	int i, nid;
6428

6429
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6453
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6454
static unsigned long __init find_min_pfn_for_node(int nid)
6455
{
6456
	unsigned long min_pfn = ULONG_MAX;
6457 6458
	unsigned long start_pfn;
	int i;
6459

6460 6461
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6462

6463
	if (min_pfn == ULONG_MAX) {
6464
		pr_warn("Could not find start_pfn for node %d\n", nid);
6465 6466 6467 6468
		return 0;
	}

	return min_pfn;
6469 6470 6471 6472 6473 6474
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6475
 * memblock_set_node().
6476 6477 6478 6479 6480 6481
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6482 6483 6484
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6485
 * Populate N_MEMORY for calculating usable_nodes.
6486
 */
A
Adrian Bunk 已提交
6487
static unsigned long __init early_calculate_totalpages(void)
6488 6489
{
	unsigned long totalpages = 0;
6490 6491 6492 6493 6494
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6495

6496 6497
		totalpages += pages;
		if (pages)
6498
			node_set_state(nid, N_MEMORY);
6499
	}
6500
	return totalpages;
6501 6502
}

M
Mel Gorman 已提交
6503 6504 6505 6506 6507 6508
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6509
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6510 6511 6512 6513
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6514
	/* save the state before borrow the nodemask */
6515
	nodemask_t saved_node_state = node_states[N_MEMORY];
6516
	unsigned long totalpages = early_calculate_totalpages();
6517
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6518
	struct memblock_region *r;
6519 6520 6521 6522 6523 6524 6525 6526 6527

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6528 6529
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6530 6531
				continue;

E
Emil Medve 已提交
6532
			nid = r->nid;
6533

E
Emil Medve 已提交
6534
			usable_startpfn = PFN_DOWN(r->base);
6535 6536 6537 6538 6539 6540 6541
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6542

6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6573
	/*
6574
	 * If movablecore=nn[KMG] was specified, calculate what size of
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6590
		required_movablecore = min(totalpages, required_movablecore);
6591 6592 6593 6594 6595
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6596 6597 6598 6599 6600
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6601
		goto out;
M
Mel Gorman 已提交
6602 6603 6604 6605 6606 6607 6608

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6609
	for_each_node_state(nid, N_MEMORY) {
6610 6611
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6628
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6629 6630
			unsigned long size_pages;

6631
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6674
			 * satisfied
M
Mel Gorman 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6688
	 * satisfied
M
Mel Gorman 已提交
6689 6690 6691 6692 6693
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6694
out2:
M
Mel Gorman 已提交
6695 6696 6697 6698
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6699

6700
out:
6701
	/* restore the node_state */
6702
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6703 6704
}

6705 6706
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6707 6708 6709
{
	enum zone_type zone_type;

6710 6711 6712 6713
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6714
		struct zone *zone = &pgdat->node_zones[zone_type];
6715
		if (populated_zone(zone)) {
6716 6717 6718 6719
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6720 6721
			break;
		}
6722 6723 6724
	}
}

6725 6726
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6727
 * @max_zone_pfn: an array of max PFNs for each zone
6728 6729
 *
 * This will call free_area_init_node() for each active node in the system.
6730
 * Using the page ranges provided by memblock_set_node(), the size of each
6731 6732 6733 6734 6735 6736 6737 6738 6739
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6740 6741
	unsigned long start_pfn, end_pfn;
	int i, nid;
6742

6743 6744 6745 6746 6747
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6748 6749 6750 6751

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6752 6753
		if (i == ZONE_MOVABLE)
			continue;
6754 6755 6756 6757 6758 6759

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6760
	}
M
Mel Gorman 已提交
6761 6762 6763

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6764
	find_zone_movable_pfns_for_nodes();
6765 6766

	/* Print out the zone ranges */
6767
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6768 6769 6770
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6771
		pr_info("  %-8s ", zone_names[i]);
6772 6773
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6774
			pr_cont("empty\n");
6775
		else
6776 6777 6778 6779
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6780
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6781 6782 6783
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6784
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6785 6786
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6787 6788
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6789
	}
6790

6791
	/* Print out the early node map */
6792
	pr_info("Early memory node ranges\n");
6793
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6794 6795 6796
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6797 6798

	/* Initialise every node */
6799
	mminit_verify_pageflags_layout();
6800
	setup_nr_node_ids();
6801 6802
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6803
		free_area_init_node(nid, NULL,
6804
				find_min_pfn_for_node(nid), NULL);
6805 6806 6807

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6808 6809
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6810
	}
6811
	zero_resv_unavail();
6812
}
M
Mel Gorman 已提交
6813

6814
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6815 6816 6817 6818 6819 6820
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6821
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6822

6823
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6824 6825 6826 6827
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6828

6829 6830 6831 6832 6833 6834
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6835 6836 6837 6838 6839 6840
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6853
early_param("kernelcore", cmdline_parse_kernelcore);
6854
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6855

T
Tejun Heo 已提交
6856
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6857

6858 6859 6860 6861 6862
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6863 6864 6865 6866
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6867 6868
	spin_unlock(&managed_page_count_lock);
}
6869
EXPORT_SYMBOL(adjust_managed_page_count);
6870

6871
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6872
{
6873 6874
	void *pos;
	unsigned long pages = 0;
6875

6876 6877 6878
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6879
		if ((unsigned int)poison <= 0xFF)
6880 6881
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6882 6883 6884
	}

	if (pages && s)
6885 6886
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6887 6888 6889

	return pages;
}
6890
EXPORT_SYMBOL(free_reserved_area);
6891

6892 6893 6894 6895 6896
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6897
	page_zone(page)->managed_pages++;
6898 6899 6900 6901
	totalhigh_pages++;
}
#endif

6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6924 6925 6926 6927
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6938
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6939
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6940
		", %luK highmem"
6941
#endif
J
Joe Perches 已提交
6942 6943 6944 6945 6946 6947 6948
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6949
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6950
		totalhigh_pages << (PAGE_SHIFT - 10),
6951
#endif
J
Joe Perches 已提交
6952
		str ? ", " : "", str ? str : "");
6953 6954
}

6955
/**
6956 6957
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6958
 *
6959
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6960 6961
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6962 6963 6964
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6965 6966 6967 6968 6969 6970
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6971 6972
void __init free_area_init(unsigned long *zones_size)
{
6973
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6974
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6975
	zero_resv_unavail();
L
Linus Torvalds 已提交
6976 6977
}

6978
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6979 6980
{

6981 6982
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6983

6984 6985 6986 6987 6988 6989 6990
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6991

6992 6993 6994 6995 6996 6997 6998 6999 7000
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7001 7002 7003 7004
}

void __init page_alloc_init(void)
{
7005 7006 7007 7008 7009 7010
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7011 7012
}

7013
/*
7014
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7015 7016 7017 7018 7019 7020
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7021
	enum zone_type i, j;
7022 7023

	for_each_online_pgdat(pgdat) {
7024 7025 7026

		pgdat->totalreserve_pages = 0;

7027 7028
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7029
			long max = 0;
7030 7031 7032 7033 7034 7035 7036

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7037 7038
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7039

7040 7041
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7042

7043
			pgdat->totalreserve_pages += max;
7044

7045 7046 7047 7048 7049 7050
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7051 7052
/*
 * setup_per_zone_lowmem_reserve - called whenever
7053
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7054 7055 7056 7057 7058 7059
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7060
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7061

7062
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7063 7064
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7065
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7066 7067 7068

			zone->lowmem_reserve[j] = 0;

7069 7070
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7071 7072
				struct zone *lower_zone;

7073 7074
				idx--;

L
Linus Torvalds 已提交
7075 7076 7077 7078
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
7079
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
7080
					sysctl_lowmem_reserve_ratio[idx];
7081
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7082 7083 7084
			}
		}
	}
7085 7086 7087

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7088 7089
}

7090
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7100
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7101 7102 7103
	}

	for_each_zone(zone) {
7104 7105
		u64 tmp;

7106
		spin_lock_irqsave(&zone->lock, flags);
7107
		tmp = (u64)pages_min * zone->managed_pages;
7108
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7109 7110
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7111 7112 7113 7114
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7115
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7116
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7117
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7118
			 */
7119
			unsigned long min_pages;
L
Linus Torvalds 已提交
7120

7121
			min_pages = zone->managed_pages / 1024;
7122
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7123
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7124
		} else {
N
Nick Piggin 已提交
7125 7126
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7127 7128
			 * proportionate to the zone's size.
			 */
7129
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7130 7131
		}

7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7143

7144
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7145
	}
7146 7147 7148

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7149 7150
}

7151 7152 7153 7154 7155 7156 7157 7158 7159
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7160 7161 7162
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7163
	__setup_per_zone_wmarks();
7164
	spin_unlock(&lock);
7165 7166
}

L
Linus Torvalds 已提交
7167 7168 7169 7170 7171 7172 7173
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7174
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7191
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7192 7193
{
	unsigned long lowmem_kbytes;
7194
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7195 7196

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7209
	setup_per_zone_wmarks();
7210
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7211
	setup_per_zone_lowmem_reserve();
7212 7213 7214 7215 7216 7217

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7218 7219
	return 0;
}
7220
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7221 7222

/*
7223
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7224 7225 7226
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7227
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7228
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7229
{
7230 7231 7232 7233 7234 7235
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7236 7237
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7238
		setup_per_zone_wmarks();
7239
	}
L
Linus Torvalds 已提交
7240 7241 7242
	return 0;
}

7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7258
#ifdef CONFIG_NUMA
7259
static void setup_min_unmapped_ratio(void)
7260
{
7261
	pg_data_t *pgdat;
7262 7263
	struct zone *zone;

7264
	for_each_online_pgdat(pgdat)
7265
		pgdat->min_unmapped_pages = 0;
7266

7267
	for_each_zone(zone)
7268
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7269 7270
				sysctl_min_unmapped_ratio) / 100;
}
7271

7272 7273

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7274
	void __user *buffer, size_t *length, loff_t *ppos)
7275 7276 7277
{
	int rc;

7278
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7279 7280 7281
	if (rc)
		return rc;

7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7292 7293 7294
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7295
	for_each_zone(zone)
7296
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7297
				sysctl_min_slab_ratio) / 100;
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7311 7312
	return 0;
}
7313 7314
#endif

L
Linus Torvalds 已提交
7315 7316 7317 7318 7319 7320
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7321
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7322 7323
 * if in function of the boot time zone sizes.
 */
7324
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7325
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7326
{
7327
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7328 7329 7330 7331
	setup_per_zone_lowmem_reserve();
	return 0;
}

7332 7333
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7334 7335
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7336
 */
7337
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7338
	void __user *buffer, size_t *length, loff_t *ppos)
7339 7340
{
	struct zone *zone;
7341
	int old_percpu_pagelist_fraction;
7342 7343
	int ret;

7344 7345 7346
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7347
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7362

7363
	for_each_populated_zone(zone) {
7364 7365
		unsigned int cpu;

7366
		for_each_possible_cpu(cpu)
7367 7368
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7369
	}
7370
out:
7371
	mutex_unlock(&pcp_batch_high_lock);
7372
	return ret;
7373 7374
}

7375
#ifdef CONFIG_NUMA
7376
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7427 7428
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7429
{
7430
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7431 7432
	unsigned long log2qty, size;
	void *table = NULL;
7433
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7434 7435 7436 7437

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7438
		numentries = nr_kernel_pages;
7439
		numentries -= arch_reserved_kernel_pages();
7440 7441 7442 7443

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7444

P
Pavel Tatashin 已提交
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7455 7456 7457 7458 7459
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7460 7461

		/* Make sure we've got at least a 0-order allocation.. */
7462 7463 7464 7465 7466 7467 7468 7469
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7470
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7471
	}
7472
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7473 7474 7475 7476 7477 7478

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7479
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7480

7481 7482
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7483 7484 7485
	if (numentries > max)
		numentries = max;

7486
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7487

7488
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7489 7490
	do {
		size = bucketsize << log2qty;
7491 7492 7493 7494 7495 7496
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7497
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7498
		} else {
7499 7500
			/*
			 * If bucketsize is not a power-of-two, we may free
7501 7502
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7503
			 */
7504
			if (get_order(size) < MAX_ORDER) {
7505 7506
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7507
			}
L
Linus Torvalds 已提交
7508 7509 7510 7511 7512 7513
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7514 7515
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7516 7517 7518 7519 7520 7521 7522 7523

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7524

K
KAMEZAWA Hiroyuki 已提交
7525
/*
7526 7527 7528
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7529
 * PageLRU check without isolation or lru_lock could race so that
7530 7531 7532
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7533
 */
7534
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7535
			 int migratetype,
7536
			 bool skip_hwpoisoned_pages)
7537 7538
{
	unsigned long pfn, iter, found;
7539

7540 7541
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7542
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7543 7544
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7545
		return false;
7546

7547 7548 7549 7550 7551 7552 7553 7554 7555
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7556 7557 7558 7559
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7560
		if (!pfn_valid_within(check))
7561
			continue;
7562

7563
		page = pfn_to_page(check);
7564

7565 7566 7567
		if (PageReserved(page))
			return true;

7568 7569 7570 7571 7572 7573 7574 7575 7576 7577
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7578 7579 7580 7581
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7582
		 * because their page->_refcount is zero at all time.
7583
		 */
7584
		if (!page_ref_count(page)) {
7585 7586 7587 7588
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7589

7590 7591 7592 7593 7594 7595 7596
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7597 7598 7599
		if (__PageMovable(page))
			continue;

7600 7601 7602
		if (!PageLRU(page))
			found++;
		/*
7603 7604 7605
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7616
			return true;
7617
	}
7618
	return false;
7619 7620 7621 7622
}

bool is_pageblock_removable_nolock(struct page *page)
{
7623 7624
	struct zone *zone;
	unsigned long pfn;
7625 7626 7627 7628 7629

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7630 7631
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7632
	 */
7633 7634 7635 7636 7637
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7638
	if (!zone_spans_pfn(zone, pfn))
7639 7640
		return false;

7641
	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
K
KAMEZAWA Hiroyuki 已提交
7642
}
K
KAMEZAWA Hiroyuki 已提交
7643

7644
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7659 7660
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7661 7662
{
	/* This function is based on compact_zone() from compaction.c. */
7663
	unsigned long nr_reclaimed;
7664 7665 7666 7667
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7668
	migrate_prep();
7669

7670
	while (pfn < end || !list_empty(&cc->migratepages)) {
7671 7672 7673 7674 7675
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7676 7677
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7678
			pfn = isolate_migratepages_range(cc, pfn, end);
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7689 7690 7691
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7692

7693
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7694
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7695
	}
7696 7697 7698 7699 7700
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7701 7702 7703 7704 7705 7706
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7707 7708 7709 7710
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7711
 * @gfp_mask:	GFP mask to use during compaction
7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7724
int alloc_contig_range(unsigned long start, unsigned long end,
7725
		       unsigned migratetype, gfp_t gfp_mask)
7726 7727
{
	unsigned long outer_start, outer_end;
7728 7729
	unsigned int order;
	int ret = 0;
7730

7731 7732 7733 7734
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7735
		.mode = MIGRATE_SYNC,
7736
		.ignore_skip_hint = true,
7737
		.no_set_skip_hint = true,
7738
		.gfp_mask = current_gfp_context(gfp_mask),
7739 7740 7741
	};
	INIT_LIST_HEAD(&cc.migratepages);

7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7767 7768
				       pfn_max_align_up(end), migratetype,
				       false);
7769
	if (ret)
7770
		return ret;
7771

7772 7773
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7774 7775 7776 7777 7778 7779 7780
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7781
	 */
7782
	ret = __alloc_contig_migrate_range(&cc, start, end);
7783
	if (ret && ret != -EBUSY)
7784
		goto done;
7785
	ret =0;
7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7805
	drain_all_pages(cc.zone);
7806 7807 7808 7809 7810

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7811 7812
			outer_start = start;
			break;
7813 7814 7815 7816
		}
		outer_start &= ~0UL << order;
	}

7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7830
	/* Make sure the range is really isolated. */
7831
	if (test_pages_isolated(outer_start, end, false)) {
7832
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7833
			__func__, outer_start, end);
7834 7835 7836 7837
		ret = -EBUSY;
		goto done;
	}

7838
	/* Grab isolated pages from freelists. */
7839
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7853
				pfn_max_align_up(end), migratetype);
7854 7855 7856 7857 7858
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7859 7860 7861 7862 7863 7864 7865 7866 7867
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7868 7869 7870
}
#endif

7871
#ifdef CONFIG_MEMORY_HOTPLUG
7872 7873 7874 7875
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7876 7877
void __meminit zone_pcp_update(struct zone *zone)
{
7878
	unsigned cpu;
7879
	mutex_lock(&pcp_batch_high_lock);
7880
	for_each_possible_cpu(cpu)
7881 7882
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7883
	mutex_unlock(&pcp_batch_high_lock);
7884 7885 7886
}
#endif

7887 7888 7889
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7890 7891
	int cpu;
	struct per_cpu_pageset *pset;
7892 7893 7894 7895

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7896 7897 7898 7899
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7900 7901 7902 7903 7904 7905
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7906
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7907
/*
7908 7909
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7910 7911 7912 7913 7914 7915
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7916
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7917 7918 7919 7920 7921 7922 7923 7924
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7925
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7926 7927 7928 7929 7930 7931 7932 7933 7934
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7935 7936 7937 7938 7939 7940 7941 7942 7943 7944
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7945 7946 7947 7948
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7949 7950
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7962 7963 7964 7965 7966 7967

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7968
	unsigned int order;
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}