page_alloc.c 232.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74
#include "internal.h"
A
Alexander Duyck 已提交
75
#include "page_reporting.h"
L
Linus Torvalds 已提交
76

77 78
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
79
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
80

81 82 83 84 85
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

86 87
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

88 89 90 91 92 93 94 95 96
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97
int _node_numa_mem_[MAX_NUMNODES];
98 99
#endif

100 101 102 103
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

104
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105
volatile unsigned long latent_entropy __latent_entropy;
106 107 108
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
109
/*
110
 * Array of node states.
L
Linus Torvalds 已提交
111
 */
112 113 114 115 116 117 118
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 120
#endif
	[N_MEMORY] = { { [0] = 1UL } },
121 122 123 124 125
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

126 127 128
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

129
unsigned long totalram_pages __read_mostly;
130
unsigned long totalreserve_pages __read_mostly;
131
unsigned long totalcma_pages __read_mostly;
132

133
int percpu_pagelist_fraction;
134
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

154 155 156 157 158
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
159 160 161 162
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
163
 */
164 165 166 167

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
168
{
169
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
170 171 172 173
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
174 175
}

176
void pm_restrict_gfp_mask(void)
177
{
178
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
179 180
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
181
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182
}
183 184 185

bool pm_suspended_storage(void)
{
186
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
187 188 189
		return false;
	return true;
}
190 191
#endif /* CONFIG_PM_SLEEP */

192
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
193
unsigned int pageblock_order __read_mostly;
194 195
#endif

196
static void __free_pages_ok(struct page *page, unsigned int order);
197

L
Linus Torvalds 已提交
198 199 200 201 202 203
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
204
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
205 206 207
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
208
 */
209
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
210
#ifdef CONFIG_ZONE_DMA
211
	[ZONE_DMA] = 256,
212
#endif
213
#ifdef CONFIG_ZONE_DMA32
214
	[ZONE_DMA32] = 256,
215
#endif
216
	[ZONE_NORMAL] = 32,
217
#ifdef CONFIG_HIGHMEM
218
	[ZONE_HIGHMEM] = 0,
219
#endif
220
	[ZONE_MOVABLE] = 0,
221
};
L
Linus Torvalds 已提交
222 223 224

EXPORT_SYMBOL(totalram_pages);

225
static char * const zone_names[MAX_NR_ZONES] = {
226
#ifdef CONFIG_ZONE_DMA
227
	 "DMA",
228
#endif
229
#ifdef CONFIG_ZONE_DMA32
230
	 "DMA32",
231
#endif
232
	 "Normal",
233
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
234
	 "HighMem",
235
#endif
M
Mel Gorman 已提交
236
	 "Movable",
237 238 239
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
240 241
};

242 243 244 245 246 247 248 249 250 251 252 253 254
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

255 256 257 258 259 260
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
261 262 263
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
264 265
};

L
Linus Torvalds 已提交
266
int min_free_kbytes = 1024;
267
int user_min_free_kbytes = -1;
268
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
269

270 271 272
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
273

T
Tejun Heo 已提交
274
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
275 276 277
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
278
static unsigned long required_kernelcore_percent __initdata;
279
static unsigned long required_movablecore __initdata;
280
static unsigned long required_movablecore_percent __initdata;
281 282
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
283 284 285 286 287

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288

M
Miklos Szeredi 已提交
289 290
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
291
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
292
EXPORT_SYMBOL(nr_node_ids);
293
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
294 295
#endif

296 297
int page_group_by_mobility_disabled __read_mostly;

298
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
299
static bool deferred_mem_init_enabled __meminitdata;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

326
/* Returns true if the struct page for the pfn is uninitialised */
327
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
328
{
329 330 331
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
332 333 334 335 336 337 338 339 340 341 342 343 344
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
345 346 347
	if (!deferred_mem_init_enabled)
		return true;

348
	/* Always populate low zones for address-constrained allocations */
349 350 351
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
352
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
353 354 355 356 357 358 359
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
360 361 362 363 364 365 366 367 368 369 370

static int __init setup_deferred_mem_init(char *str)
{
	if (!str)
		deferred_mem_init_enabled = true;

	return 0;
}

early_param("deferred_meminit", setup_deferred_mem_init);

371
#else
372 373
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

374 375 376 377 378 379 380 381 382 383 384 385 386
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
487

488
void set_pageblock_migratetype(struct page *page, int migratetype)
489
{
490 491
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
492 493
		migratetype = MIGRATE_UNMOVABLE;

494 495 496 497
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
498
#ifdef CONFIG_DEBUG_VM
499
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
500
{
501 502 503
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
504
	unsigned long sp, start_pfn;
505

506 507
	do {
		seq = zone_span_seqbegin(zone);
508 509
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
510
		if (!zone_spans_pfn(zone, pfn))
511 512 513
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

514
	if (ret)
515 516 517
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
518

519
	return ret;
520 521 522 523
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
524
	if (!pfn_valid_within(page_to_pfn(page)))
525
		return 0;
L
Linus Torvalds 已提交
526
	if (zone != page_zone(page))
527 528 529 530 531 532 533
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
534
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 536
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
537
		return 1;
538 539 540
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
541 542
	return 0;
}
N
Nick Piggin 已提交
543
#else
544
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
545 546 547 548 549
{
	return 0;
}
#endif

550 551
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
552
{
553 554 555 556 557 558 559 560 561 562 563 564 565 566
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
567
			pr_alert(
568
			      "BUG: Bad page state: %lu messages suppressed\n",
569 570 571 572 573 574 575 576
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

577
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
578
		current->comm, page_to_pfn(page));
579 580 581 582 583
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
584
	dump_page_owner(page);
585

586
	print_modules();
L
Linus Torvalds 已提交
587
	dump_stack();
588
out:
589
	/* Leave bad fields for debug, except PageBuddy could make trouble */
590
	page_mapcount_reset(page); /* remove PageBuddy */
591
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
592 593 594 595 596
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
597
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
598
 *
599 600
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
601
 *
602 603
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
604
 *
605
 * The first tail page's ->compound_order holds the order of allocation.
606
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
607
 */
608

609
void free_compound_page(struct page *page)
610
{
611
	mem_cgroup_uncharge(page);
612
	__free_pages_ok(page, compound_order(page));
613 614
}

615
void prep_compound_page(struct page *page, unsigned int order)
616 617 618 619
{
	int i;
	int nr_pages = 1 << order;

620
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
621 622 623 624
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
625
		set_page_count(p, 0);
626
		p->mapping = TAIL_MAPPING;
627
		set_compound_head(p, page);
628
	}
629
	atomic_set(compound_mapcount_ptr(page), -1);
630 631
}

632 633
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
634 635
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
636
EXPORT_SYMBOL(_debug_pagealloc_enabled);
637 638
bool _debug_guardpage_enabled __read_mostly;

639 640 641 642
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
643
	return kstrtobool(buf, &_debug_pagealloc_enabled);
644 645 646
}
early_param("debug_pagealloc", early_debug_pagealloc);

647 648
static bool need_debug_guardpage(void)
{
649 650 651 652
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

653 654 655
	if (!debug_guardpage_minorder())
		return false;

656 657 658 659 660
	return true;
}

static void init_debug_guardpage(void)
{
661 662 663
	if (!debug_pagealloc_enabled())
		return;

664 665 666
	if (!debug_guardpage_minorder())
		return;

667 668 669 670 671 672 673
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
674 675 676 677 678 679

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
680
		pr_err("Bad debug_guardpage_minorder value\n");
681 682 683
		return 0;
	}
	_debug_guardpage_minorder = res;
684
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
685 686
	return 0;
}
687
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
688

689
static inline bool set_page_guard(struct zone *zone, struct page *page,
690
				unsigned int order, int migratetype)
691
{
692 693 694
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
695 696 697 698
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
699 700

	page_ext = lookup_page_ext(page);
701
	if (unlikely(!page_ext))
702
		return false;
703

704 705
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

706 707 708 709
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
710 711

	return true;
712 713
}

714 715
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
716
{
717 718 719 720 721 722
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
723 724 725
	if (unlikely(!page_ext))
		return;

726 727
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

728 729 730
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
731 732
}
#else
733
struct page_ext_operations debug_guardpage_ops;
734 735
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
736 737
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
738 739
#endif

740
static inline void set_page_order(struct page *page, unsigned int order)
741
{
H
Hugh Dickins 已提交
742
	set_page_private(page, order);
743
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
744 745 746 747
}

/*
 * This function checks whether a page is free && is the buddy
748
 * we can coalesce a page and its buddy if
749
 * (a) the buddy is not in a hole (check before calling!) &&
750
 * (b) the buddy is in the buddy system &&
751 752
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
753
 *
754 755
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
756
 *
757
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
758
 */
759
static inline int page_is_buddy(struct page *page, struct page *buddy,
760
							unsigned int order)
L
Linus Torvalds 已提交
761
{
762
	if (page_is_guard(buddy) && page_order(buddy) == order) {
763 764 765
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

766 767
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

768 769 770
		return 1;
	}

771
	if (PageBuddy(buddy) && page_order(buddy) == order) {
772 773 774 775 776 777 778 779
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

780 781
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

782
		return 1;
783
	}
784
	return 0;
L
Linus Torvalds 已提交
785 786
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
819 820 821 822
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

823 824 825 826 827 828
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
893 894
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
895
 * So when we are allocating or freeing one, we can derive the state of the
896 897
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
898
 * If a block is freed, and its buddy is also free, then this
899
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
900
 *
901
 * -- nyc
L
Linus Torvalds 已提交
902 903
 */

N
Nick Piggin 已提交
904
static inline void __free_one_page(struct page *page,
905
		unsigned long pfn,
906
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
907
		int migratetype, bool report)
L
Linus Torvalds 已提交
908
{
909 910
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
911
	struct page *buddy;
912
	unsigned int max_order;
913
	struct capture_control *capc = task_capc(zone);
914 915

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
916

917
	VM_BUG_ON(!zone_is_initialized(zone));
918
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
919

920
	VM_BUG_ON(migratetype == -1);
921
	if (likely(!is_migrate_isolate(migratetype)))
922
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
923

924
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
926

927
continue_merging:
928
	while (order < max_order - 1) {
929 930 931 932 933
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
934 935
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
936 937 938

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
939
		if (!page_is_buddy(page, buddy, order))
940
			goto done_merging;
941 942 943 944
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
945
		if (page_is_guard(buddy))
946
			clear_page_guard(zone, buddy, order, migratetype);
947
		else
948
			del_page_from_free_list(buddy, zone, order);
949 950 951
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
952 953
		order++;
	}
954 955 956 957 958 959 960 961 962 963 964 965
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

966 967
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
968 969 970 971 972 973 974 975 976 977 978 979
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
980
	set_page_order(page, order);
981 982 983 984 985 986 987 988 989

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
990
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
991
		struct page *higher_page, *higher_buddy;
992 993 994 995
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
996 997
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
998
			add_to_free_list_tail(page, zone, order,
999 1000
					      migratetype);
			return;
1001 1002 1003
		}
	}

1004
	add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1005 1006 1007 1008

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1033
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1034
{
1035 1036 1037 1038 1039
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1040

1041
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1042 1043 1044
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1045
	if (unlikely(page_ref_count(page) != 0))
1046
		bad_reason = "nonzero _refcount";
1047 1048 1049 1050
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1051 1052 1053 1054
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1055
	bad_page(page, bad_reason, bad_flags);
1056 1057 1058 1059
}

static inline int free_pages_check(struct page *page)
{
1060
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1061 1062 1063 1064
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1065
	return 1;
L
Linus Torvalds 已提交
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1084
		/* the first tail page: ->mapping may be compound_mapcount() */
1085 1086 1087 1088 1089 1090 1091 1092
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1093
		 * deferred_list.next -- ignore value.
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1118 1119
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1120
{
1121
	int bad = 0;
1122 1123 1124

	VM_BUG_ON_PAGE(PageTail(page), page);

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1136

1137 1138
		if (compound)
			ClearPageDoubleMap(page);
1139 1140 1141 1142 1143 1144 1145
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
G
Gavin Shan 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

			/*
			 * The page age information is stored in page flags
			 * or node's page array. We need to explicitly clear
			 * it in both cases. Otherwise, the stale age will
			 * be provided when it's allocated again. Also, we
			 * maintain age information for each page in the
			 * compound page, So we have to clear them one by one.
			 */
			kidled_set_page_age(page_pgdat(page + i),
					    page_to_pfn(page + i), 0);
1157 1158 1159
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1160
	if (PageMappingFlags(page))
1161
		page->mapping = NULL;
1162
	if (memcg_kmem_enabled() && PageKmemcg(page))
1163
		memcg_kmem_uncharge(page, order);
1164 1165 1166 1167
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1168

1169
	page_cpupid_reset_last(page);
G
Gavin Shan 已提交
1170
	kidled_set_page_age(page_pgdat(page), page_to_pfn(page), 0);
1171 1172
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1173 1174 1175

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1176
					   PAGE_SIZE << order);
1177
		debug_check_no_obj_freed(page_address(page),
1178
					   PAGE_SIZE << order);
1179
	}
1180 1181 1182
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1183
	kasan_free_nondeferred_pages(page, order);
1184 1185 1186 1187

	return true;
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1204 1205 1206 1207 1208 1209
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1210 1211 1212 1213 1214 1215 1216 1217 1218
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1219
/*
1220
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1221
 * Assumes all pages on list are in same zone, and of same order.
1222
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1223 1224 1225 1226 1227 1228 1229
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1230 1231
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1232
{
1233
	int migratetype = 0;
1234
	int batch_free = 0;
1235
	int prefetch_nr = 0;
1236
	bool isolated_pageblocks;
1237 1238
	struct page *page, *tmp;
	LIST_HEAD(head);
1239

1240
	while (count) {
1241 1242 1243
		struct list_head *list;

		/*
1244 1245 1246 1247 1248
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1249 1250
		 */
		do {
1251
			batch_free++;
1252 1253 1254 1255
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1256

1257 1258
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1259
			batch_free = count;
1260

1261
		do {
1262
			page = list_last_entry(list, struct page, lru);
1263
			/* must delete to avoid corrupting pcp list */
1264
			list_del(&page->lru);
1265
			pcp->count--;
1266

1267 1268 1269
			if (bulkfree_pcp_prepare(page))
				continue;

1270
			list_add_tail(&page->lru, &head);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1283
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1284
	}
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1301
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1302 1303
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1304
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1305 1306
}

1307 1308
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1309
				unsigned int order,
1310
				int migratetype)
L
Linus Torvalds 已提交
1311
{
1312
	spin_lock(&zone->lock);
1313 1314 1315 1316
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1317
	__free_one_page(page, pfn, zone, order, migratetype, true);
1318
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1319 1320
}

1321
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1322
				unsigned long zone, int nid)
1323
{
1324
	mm_zero_struct_page(page);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1338
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1339
static void __meminit init_reserved_page(unsigned long pfn)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1356
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1357 1358 1359 1360 1361 1362 1363
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1364 1365 1366 1367 1368 1369
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1370
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1371 1372 1373 1374
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1375 1376 1377 1378 1379
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1380 1381 1382 1383

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1384 1385 1386
			SetPageReserved(page);
		}
	}
1387 1388
}

1389 1390
static void __free_pages_ok(struct page *page, unsigned int order)
{
1391
	unsigned long flags;
M
Minchan Kim 已提交
1392
	int migratetype;
1393
	unsigned long pfn = page_to_pfn(page);
1394

1395
	if (!free_pages_prepare(page, order, true))
1396 1397
		return;

1398
	migratetype = get_pfnblock_migratetype(page, pfn);
1399 1400
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1401
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1402
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1403 1404
}

1405
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1406
{
1407
	unsigned int nr_pages = 1 << order;
1408
	struct page *p = page;
1409
	unsigned int loop;
1410

1411 1412 1413
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1414 1415
		__ClearPageReserved(p);
		set_page_count(p, 0);
1416
	}
1417 1418
	__ClearPageReserved(p);
	set_page_count(p, 0);
1419

1420
	page_zone(page)->managed_pages += nr_pages;
1421 1422
	set_page_refcounted(page);
	__free_pages(page, order);
1423 1424
}

1425 1426
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1427

1428 1429 1430 1431
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1432
	static DEFINE_SPINLOCK(early_pfn_lock);
1433 1434
	int nid;

1435
	spin_lock(&early_pfn_lock);
1436
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1437
	if (nid < 0)
1438
		nid = first_online_node;
1439 1440 1441
	spin_unlock(&early_pfn_lock);

	return nid;
1442 1443 1444 1445
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1446 1447
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1448 1449 1450
{
	int nid;

1451
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1465
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1466 1467 1468 1469
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1470
	return __free_pages_boot_core(page, order);
1471 1472
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1502 1503 1504
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1544
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1545 1546
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1547
{
1548 1549
	struct page *page;
	unsigned long i;
1550

1551
	if (!nr_pages)
1552 1553
		return;

1554 1555
	page = pfn_to_page(pfn);

1556
	/* Free a large naturally-aligned chunk if possible */
1557 1558
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1559
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1560
		__free_pages_boot_core(page, pageblock_order);
1561 1562 1563
		return;
	}

1564 1565 1566
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1567
		__free_pages_boot_core(page, 0);
1568
	}
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1580

1581
/*
1582 1583 1584 1585 1586 1587 1588 1589
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1590
 */
1591
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1592
{
1593 1594 1595 1596 1597 1598
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1599

1600 1601 1602 1603
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1604
static void __init deferred_free_pages(unsigned long pfn,
1605 1606 1607 1608
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1609

1610
	for (; pfn < end_pfn; pfn++) {
1611
		if (!deferred_pfn_valid(pfn)) {
1612 1613 1614 1615 1616
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1617
			touch_nmi_watchdog();
1618 1619 1620 1621 1622 1623
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1624 1625
}

1626 1627 1628 1629 1630
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1631
static unsigned long  __init deferred_init_pages(struct zone *zone,
1632 1633
						 unsigned long pfn,
						 unsigned long end_pfn)
1634 1635
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1636
	int nid = zone_to_nid(zone);
1637
	unsigned long nr_pages = 0;
1638
	int zid = zone_idx(zone);
1639 1640
	struct page *page = NULL;

1641
	for (; pfn < end_pfn; pfn++) {
1642
		if (!deferred_pfn_valid(pfn)) {
1643
			page = NULL;
1644
			continue;
1645
		} else if (!page || !(pfn & nr_pgmask)) {
1646
			page = pfn_to_page(pfn);
1647
			touch_nmi_watchdog();
1648 1649
		} else {
			page++;
1650
		}
1651
		__init_single_page(page, pfn, zid, nid);
1652
		nr_pages++;
1653
	}
1654
	return (nr_pages);
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1741 1742 1743 1744 1745
/*
 * Release the pending interrupts for every TICK_PAGE_COUNT pages.
 */
#define TICK_PAGE_COUNT	(32 * 1024)

1746
/* Initialise remaining memory on a node */
1747
static int __init deferred_init_memmap(void *data)
1748
{
1749
	pg_data_t *pgdat = data;
1750
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1751
	unsigned long spfn = 0, epfn = 0, nr_pages = 0, prev_nr_pages = 0;
1752
	unsigned long first_init_pfn, flags;
1753 1754
	unsigned long start = jiffies;
	struct zone *zone;
1755
	int zid;
1756
	u64 i;
1757

1758 1759 1760 1761
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

1762
again:
1763 1764
	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1765
	if (first_init_pfn == ULONG_MAX) {
1766
		pgdat_resize_unlock(pgdat, &flags);
1767
		pgdat_init_report_one_done();
1768 1769 1770
		return 0;
	}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1781 1782 1783 1784 1785

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1786

1787
	/*
1788 1789 1790
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1791
	 */
1792
	while (spfn < epfn) {
1793
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		/*
		 * Release the interrupts for every TICK_PAGE_COUNT pages
		 * (128MB) to give tick timer the chance to update the
		 * system jiffies.
		 */
		if ((nr_pages - prev_nr_pages) > TICK_PAGE_COUNT) {
			prev_nr_pages = nr_pages;
			pgdat->first_deferred_pfn = spfn;
			pgdat_resize_unlock(pgdat, &flags);
			goto again;
		}
	}

1807
zone_empty:
1808
	pgdat->first_deferred_pfn = ULONG_MAX;
1809
	pgdat_resize_unlock(pgdat, &flags);
1810 1811 1812 1813

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1814 1815
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1816 1817

	pgdat_init_report_one_done();
1818 1819
	return 0;
}
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1840
	pg_data_t *pgdat = zone->zone_pgdat;
1841
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1842 1843
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1872 1873 1874 1875
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1876
		pgdat_resize_unlock(pgdat, &flags);
1877 1878
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1879 1880
	}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1891

1892 1893 1894
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1895

1896
		/* If our quota has been met we can stop here */
1897 1898 1899 1900
		if (nr_pages >= nr_pages_needed)
			break;
	}

1901
	pgdat->first_deferred_pfn = spfn;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1919
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1920 1921 1922

void __init page_alloc_init_late(void)
{
1923 1924 1925
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1926 1927
	int nid;

1928 1929
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1930 1931 1932 1933 1934
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1935
	wait_for_completion(&pgdat_init_all_done_comp);
1936

1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

1945 1946 1947 1948 1949 1950
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1951 1952
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1953
#endif
P
Pavel Tatashin 已提交
1954 1955 1956 1957
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1958 1959 1960

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1961 1962
}

1963
#ifdef CONFIG_CMA
1964
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1965 1966 1967 1968 1969 1970 1971 1972
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1973
	} while (++p, --i);
1974 1975

	set_pageblock_migratetype(page, MIGRATE_CMA);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1990
	adjust_managed_page_count(page, pageblock_nr_pages);
1991 1992
}
#endif
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2006
 * -- nyc
L
Linus Torvalds 已提交
2007
 */
N
Nick Piggin 已提交
2008
static inline void expand(struct zone *zone, struct page *page,
2009
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2016
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2017

2018 2019 2020 2021 2022 2023 2024
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2025
			continue;
2026

2027
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2028 2029 2030 2031
		set_page_order(&page[size], high);
	}
}

2032
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2033
{
2034 2035
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2036

2037
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2038 2039 2040
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2041
	if (unlikely(page_ref_count(page) != 0))
2042
		bad_reason = "nonzero _count";
2043 2044 2045
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2046 2047 2048
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2049
	}
2050 2051 2052 2053
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2054 2055 2056 2057
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2072 2073
}

2074
static inline bool free_pages_prezeroed(void)
2075 2076
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2077
		page_poisoning_enabled();
2078 2079
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2114 2115 2116 2117 2118 2119 2120 2121 2122
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2123
	kernel_poison_pages(page, 1 << order, 1);
2124 2125 2126
	set_page_owner(page, order, gfp_flags);
}

2127
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2128
							unsigned int alloc_flags)
2129 2130
{
	int i;
2131

2132
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2133

2134
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2135 2136
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2137 2138 2139 2140

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2141
	/*
2142
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2143 2144 2145 2146
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2147 2148 2149 2150
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2151 2152
}

2153 2154 2155 2156
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2157
static __always_inline
2158
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2159 2160 2161
						int migratetype)
{
	unsigned int current_order;
2162
	struct free_area *area;
2163 2164 2165 2166 2167
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2168
		page = get_page_from_free_area(area, migratetype);
2169 2170
		if (!page)
			continue;
2171 2172
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2173
		set_pcppage_migratetype(page, migratetype);
2174 2175 2176 2177 2178 2179 2180
		return page;
	}

	return NULL;
}


2181 2182 2183 2184
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2185
static int fallbacks[MIGRATE_TYPES][4] = {
2186 2187 2188
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2189
#ifdef CONFIG_CMA
2190
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2191
#endif
2192
#ifdef CONFIG_MEMORY_ISOLATION
2193
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2194
#endif
2195 2196
};

2197
#ifdef CONFIG_CMA
2198
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2199 2200 2201 2202 2203 2204 2205 2206 2207
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2208 2209
/*
 * Move the free pages in a range to the free lists of the requested type.
2210
 * Note that start_page and end_pages are not aligned on a pageblock
2211 2212
 * boundary. If alignment is required, use move_freepages_block()
 */
2213
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2214
			  struct page *start_page, struct page *end_page,
2215
			  int migratetype, int *num_movable)
2216 2217
{
	struct page *page;
2218
	unsigned int order;
2219
	int pages_moved = 0;
2220 2221 2222 2223 2224 2225 2226

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2227
	 * grouping pages by mobility
2228
	 */
2229 2230 2231
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2232 2233
#endif

2234 2235 2236
	if (num_movable)
		*num_movable = 0;

2237 2238 2239 2240 2241 2242
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2243 2244 2245
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2246
		if (!PageBuddy(page)) {
2247 2248 2249 2250 2251 2252 2253 2254 2255
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2256 2257 2258 2259 2260
			page++;
			continue;
		}

		order = page_order(page);
2261
		move_to_free_list(page, zone, order, migratetype);
2262
		page += 1 << order;
2263
		pages_moved += 1 << order;
2264 2265
	}

2266
	return pages_moved;
2267 2268
}

2269
int move_freepages_block(struct zone *zone, struct page *page,
2270
				int migratetype, int *num_movable)
2271 2272 2273 2274 2275
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2276
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2277
	start_page = pfn_to_page(start_pfn);
2278 2279
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2280 2281

	/* Do not cross zone boundaries */
2282
	if (!zone_spans_pfn(zone, start_pfn))
2283
		start_page = page;
2284
	if (!zone_spans_pfn(zone, end_pfn))
2285 2286
		return 0;

2287 2288
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2289 2290
}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2302
/*
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2313
 */
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2338 2339 2340 2341
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2342 2343
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2344
					int start_type, bool whole_block)
2345
{
2346
	unsigned int current_order = page_order(page);
2347 2348 2349 2350
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2351

2352 2353 2354 2355
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2356
	if (is_migrate_highatomic(old_block_type))
2357 2358
		goto single_page;

2359 2360 2361
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2362
		goto single_page;
2363 2364
	}

2365 2366 2367 2368
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2393
	/* moving whole block can fail due to zone boundary conditions */
2394
	if (!free_pages)
2395
		goto single_page;
2396

2397 2398 2399 2400 2401
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2402 2403
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2404 2405 2406 2407

	return;

single_page:
2408
	move_to_free_list(page, zone, current_order, start_type);
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2429
		if (fallback_mt == MIGRATE_TYPES)
2430 2431
			break;

2432
		if (free_area_empty(area, fallback_mt))
2433
			continue;
2434

2435 2436 2437
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2438 2439 2440 2441 2442
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2443
	}
2444 2445

	return -1;
2446 2447
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2474 2475
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2476 2477
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2478
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2490 2491 2492
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2493
 */
2494 2495
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2496 2497 2498 2499 2500 2501 2502
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2503
	bool ret;
2504 2505 2506

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2507 2508 2509 2510 2511 2512
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2513 2514 2515 2516 2517 2518
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2519
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2520
			if (!page)
2521 2522 2523
				continue;

			/*
2524 2525 2526 2527 2528
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2529
			 */
2530
			if (is_migrate_highatomic_page(page)) {
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2553 2554
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2555 2556 2557 2558
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2559 2560 2561
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2562 2563

	return false;
2564 2565
}

2566 2567 2568 2569 2570
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2571 2572 2573 2574
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2575
 */
2576
static __always_inline bool
2577 2578
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2579
{
2580
	struct free_area *area;
2581
	int current_order;
2582
	int min_order = order;
2583
	struct page *page;
2584 2585
	int fallback_mt;
	bool can_steal;
2586

2587 2588 2589 2590 2591 2592 2593 2594
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2595 2596 2597 2598 2599
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2600
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2601
				--current_order) {
2602 2603
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2604
				start_migratetype, false, &can_steal);
2605 2606
		if (fallback_mt == -1)
			continue;
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2619

2620 2621
		goto do_steal;
	}
2622

2623
	return false;
2624

2625 2626 2627 2628 2629 2630 2631 2632
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2633 2634
	}

2635 2636 2637 2638 2639 2640 2641
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2642
	page = get_page_from_free_area(area, fallback_mt);
2643 2644 2645 2646 2647 2648 2649 2650

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2651 2652
}

2653
/*
L
Linus Torvalds 已提交
2654 2655 2656
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2657
static __always_inline struct page *
2658 2659
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2660 2661 2662
{
	struct page *page;

2663
retry:
2664
	page = __rmqueue_smallest(zone, order, migratetype);
2665
	if (unlikely(!page)) {
2666 2667 2668
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2669 2670
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
2671
			goto retry;
2672 2673
	}

2674
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2675
	return page;
L
Linus Torvalds 已提交
2676 2677
}

2678
/*
L
Linus Torvalds 已提交
2679 2680 2681 2682
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2683
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2684
			unsigned long count, struct list_head *list,
2685
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
2686
{
2687
	int i, alloced = 0;
2688

2689
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2690
	for (i = 0; i < count; ++i) {
2691 2692
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
2693
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2694
			break;
2695

2696 2697 2698
		if (unlikely(check_pcp_refill(page)))
			continue;

2699
		/*
2700 2701 2702 2703 2704 2705 2706 2707
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2708
		 */
2709
		list_add_tail(&page->lru, list);
2710
		alloced++;
2711
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2712 2713
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2714
	}
2715 2716 2717 2718 2719 2720 2721

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2722
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2723
	spin_unlock(&zone->lock);
2724
	return alloced;
L
Linus Torvalds 已提交
2725 2726
}

2727
#ifdef CONFIG_NUMA
2728
/*
2729 2730 2731 2732
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2733 2734
 * Note that this function must be called with the thread pinned to
 * a single processor.
2735
 */
2736
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2737 2738
{
	unsigned long flags;
2739
	int to_drain, batch;
2740

2741
	local_irq_save(flags);
2742
	batch = READ_ONCE(pcp->batch);
2743
	to_drain = min(pcp->count, batch);
2744
	if (to_drain > 0)
2745
		free_pcppages_bulk(zone, to_drain, pcp);
2746
	local_irq_restore(flags);
2747 2748 2749
}
#endif

2750
/*
2751
 * Drain pcplists of the indicated processor and zone.
2752 2753 2754 2755 2756
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2757
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2758
{
N
Nick Piggin 已提交
2759
	unsigned long flags;
2760 2761
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2762

2763 2764
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2765

2766
	pcp = &pset->pcp;
2767
	if (pcp->count)
2768 2769 2770
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2771

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2785 2786 2787
	}
}

2788 2789
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2790 2791 2792
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2793
 */
2794
void drain_local_pages(struct zone *zone)
2795
{
2796 2797 2798 2799 2800 2801
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2802 2803
}

2804 2805
static void drain_local_pages_wq(struct work_struct *work)
{
2806 2807 2808 2809 2810 2811 2812 2813
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2814
	drain_local_pages(NULL);
2815
	preempt_enable();
2816 2817
}

2818
/*
2819 2820
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2821 2822
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2823
 * Note that this can be extremely slow as the draining happens in a workqueue.
2824
 */
2825
void drain_all_pages(struct zone *zone)
2826
{
2827 2828 2829 2830 2831 2832 2833 2834
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2835 2836 2837 2838 2839 2840 2841
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2852

2853 2854 2855 2856 2857 2858 2859
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2860 2861
		struct per_cpu_pageset *pcp;
		struct zone *z;
2862
		bool has_pcps = false;
2863 2864

		if (zone) {
2865
			pcp = per_cpu_ptr(zone->pageset, cpu);
2866
			if (pcp->pcp.count)
2867
				has_pcps = true;
2868 2869 2870 2871 2872 2873 2874
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2875 2876
			}
		}
2877

2878 2879 2880 2881 2882
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2883

2884 2885 2886
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2887
		queue_work_on(cpu, mm_percpu_wq, work);
2888
	}
2889 2890 2891 2892
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2893 2894
}

2895
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2896

2897 2898 2899 2900 2901
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2902 2903
void mark_free_pages(struct zone *zone)
{
2904
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2905
	unsigned long flags;
2906
	unsigned int order, t;
2907
	struct page *page;
L
Linus Torvalds 已提交
2908

2909
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2910 2911 2912
		return;

	spin_lock_irqsave(&zone->lock, flags);
2913

2914
	max_zone_pfn = zone_end_pfn(zone);
2915 2916
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2917
			page = pfn_to_page(pfn);
2918

2919 2920 2921 2922 2923
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2924 2925 2926
			if (page_zone(page) != zone)
				continue;

2927 2928
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2929
		}
L
Linus Torvalds 已提交
2930

2931
	for_each_migratetype_order(order, t) {
2932 2933
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2934
			unsigned long i;
L
Linus Torvalds 已提交
2935

2936
			pfn = page_to_pfn(page);
2937 2938 2939 2940 2941
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2942
				swsusp_set_page_free(pfn_to_page(pfn + i));
2943
			}
2944
		}
2945
	}
L
Linus Torvalds 已提交
2946 2947
	spin_unlock_irqrestore(&zone->lock, flags);
}
2948
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2949

2950
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2951
{
2952
	int migratetype;
L
Linus Torvalds 已提交
2953

2954
	if (!free_pcp_prepare(page))
2955
		return false;
2956

2957
	migratetype = get_pfnblock_migratetype(page, pfn);
2958
	set_pcppage_migratetype(page, migratetype);
2959 2960 2961
	return true;
}

2962
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2963 2964 2965 2966 2967 2968
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2969
	__count_vm_event(PGFREE);
2970

2971 2972 2973
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2974
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2975 2976 2977 2978
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2979
		if (unlikely(is_migrate_isolate(migratetype))) {
2980
			free_one_page(zone, page, pfn, 0, migratetype);
2981
			return;
2982 2983 2984 2985
		}
		migratetype = MIGRATE_MOVABLE;
	}

2986
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2987
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2988
	pcp->count++;
N
Nick Piggin 已提交
2989
	if (pcp->count >= pcp->high) {
2990
		unsigned long batch = READ_ONCE(pcp->batch);
2991
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2992
	}
2993
}
2994

2995 2996 2997
/*
 * Free a 0-order page
 */
2998
void free_unref_page(struct page *page)
2999 3000 3001 3002
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

3003
	if (!free_unref_page_prepare(page, pfn))
3004 3005 3006
		return;

	local_irq_save(flags);
3007
	free_unref_page_commit(page, pfn);
3008
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3009 3010
}

3011 3012 3013
/*
 * Free a list of 0-order pages
 */
3014
void free_unref_page_list(struct list_head *list)
3015 3016
{
	struct page *page, *next;
3017
	unsigned long flags, pfn;
3018
	int batch_count = 0;
3019 3020 3021 3022

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3023
		if (!free_unref_page_prepare(page, pfn))
3024 3025 3026
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3027

3028
	local_irq_save(flags);
3029
	list_for_each_entry_safe(page, next, list, lru) {
3030 3031 3032
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3033 3034
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3045
	}
3046
	local_irq_restore(flags);
3047 3048
}

N
Nick Piggin 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3061 3062
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3063

3064
	for (i = 1; i < (1 << order); i++)
3065
		set_page_refcounted(page + i);
3066
	split_page_owner(page, order);
N
Nick Piggin 已提交
3067
}
K
K. Y. Srinivasan 已提交
3068
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3069

3070
int __isolate_free_page(struct page *page, unsigned int order)
3071 3072 3073
{
	unsigned long watermark;
	struct zone *zone;
3074
	int mt;
3075 3076 3077 3078

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3079
	mt = get_pageblock_migratetype(page);
3080

3081
	if (!is_migrate_isolate(mt)) {
3082 3083 3084 3085 3086 3087
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3088
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3089
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3090 3091
			return 0;

3092
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3093
	}
3094 3095

	/* Remove page from free list */
3096

3097
	del_page_from_free_list(page, zone, order);
3098

3099 3100 3101 3102
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3103 3104
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3105 3106
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3107
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3108
			    && !is_migrate_highatomic(mt))
3109 3110 3111
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3112 3113
	}

3114

3115
	return 1UL << order;
3116 3117
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3134
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3135 3136
}

3137 3138 3139 3140 3141
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3142
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3143 3144
{
#ifdef CONFIG_NUMA
3145
	enum numa_stat_item local_stat = NUMA_LOCAL;
3146

3147 3148 3149 3150
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3151
	if (zone_to_nid(z) != numa_node_id())
3152 3153
		local_stat = NUMA_OTHER;

3154
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3155
		__inc_numa_state(z, NUMA_HIT);
3156
	else {
3157 3158
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3159
	}
3160
	__inc_numa_state(z, local_stat);
3161 3162 3163
#endif
}

3164 3165
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3166
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3167
			struct per_cpu_pages *pcp,
3168 3169 3170 3171 3172 3173 3174 3175
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
3176
					migratetype, alloc_flags);
3177 3178 3179 3180
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3181
		page = list_first_entry(list, struct page, lru);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
3192 3193
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3194 3195 3196 3197
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3198
	unsigned long flags;
3199

3200
	local_irq_save(flags);
3201 3202
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
3203
	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3204 3205 3206 3207
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3208
	local_irq_restore(flags);
3209 3210 3211
	return page;
}

L
Linus Torvalds 已提交
3212
/*
3213
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3214
 */
3215
static inline
3216
struct page *rmqueue(struct zone *preferred_zone,
3217
			struct zone *zone, unsigned int order,
3218 3219
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3220 3221
{
	unsigned long flags;
3222
	struct page *page;
L
Linus Torvalds 已提交
3223

3224
	if (likely(order == 0)) {
3225
		page = rmqueue_pcplist(preferred_zone, zone, order,
3226
				gfp_flags, migratetype, alloc_flags);
3227 3228
		goto out;
	}
3229

3230 3231 3232 3233 3234 3235
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3236

3237 3238 3239 3240 3241 3242 3243
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3244
		if (!page)
3245
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3246 3247 3248 3249 3250 3251
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3252

3253
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3254
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3255
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3256

3257 3258
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3259
	return page;
N
Nick Piggin 已提交
3260 3261 3262 3263

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3264 3265
}

3266 3267
#ifdef CONFIG_FAIL_PAGE_ALLOC

3268
static struct {
3269 3270
	struct fault_attr attr;

3271
	bool ignore_gfp_highmem;
3272
	bool ignore_gfp_reclaim;
3273
	u32 min_order;
3274 3275
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3276
	.ignore_gfp_reclaim = true,
3277
	.ignore_gfp_highmem = true,
3278
	.min_order = 1,
3279 3280 3281 3282 3283 3284 3285 3286
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3287
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3288
{
3289
	if (order < fail_page_alloc.min_order)
3290
		return false;
3291
	if (gfp_mask & __GFP_NOFAIL)
3292
		return false;
3293
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3294
		return false;
3295 3296
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3297
		return false;
3298 3299 3300 3301 3302 3303 3304 3305

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3306
	umode_t mode = S_IFREG | 0600;
3307 3308
	struct dentry *dir;

3309 3310 3311 3312
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3313

3314
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3315
				&fail_page_alloc.ignore_gfp_reclaim))
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3326
	debugfs_remove_recursive(dir);
3327

3328
	return -ENOMEM;
3329 3330 3331 3332 3333 3334 3335 3336
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3337
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3338
{
3339
	return false;
3340 3341 3342 3343
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3344
/*
3345 3346 3347 3348
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3349
 */
3350 3351 3352
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3353
{
3354
	long min = mark;
L
Linus Torvalds 已提交
3355
	int o;
3356
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3357

3358 3359 3360 3361 3362 3363 3364 3365
	/* apply negative memory.wmark_min_adj */
	if ((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) {
		int min_adj = memcg_get_wmark_min_adj(current);

		if (min_adj < 0)
			min -= mark * (-min_adj) / 100;
	}

3366
	/* free_pages may go negative - that's OK */
3367
	free_pages -= (1 << order) - 1;
3368

R
Rohit Seth 已提交
3369
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3370
		min -= min / 2;
3371 3372 3373 3374 3375 3376

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3377
	if (likely(!alloc_harder)) {
3378
		free_pages -= z->nr_reserved_highatomic;
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3392 3393 3394 3395 3396 3397
	/*
	 * Only happens due to memory.wmark_min_adj.
	 * Guarantee safe min after memory.wmark_min_adj?
	 */
	if (min < mark / 4)
		min = mark / 4;
3398

3399 3400 3401 3402 3403 3404
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3405 3406 3407 3408 3409 3410
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3411
		return false;
L
Linus Torvalds 已提交
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3426
			if (!free_area_empty(area, mt))
3427 3428 3429 3430
				return true;
		}

#ifdef CONFIG_CMA
3431
		if ((alloc_flags & ALLOC_CMA) &&
3432
		    !free_area_empty(area, MIGRATE_CMA)) {
3433
			return true;
3434
		}
3435
#endif
3436 3437 3438
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3439
	}
3440
	return false;
3441 3442
}

3443
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3444
		      int classzone_idx, unsigned int alloc_flags)
3445 3446 3447 3448 3449
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3450 3451 3452 3453
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3454 3455 3456 3457 3458 3459 3460
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3461 3462 3463 3464 3465 3466 3467 3468

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3469
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3470 3471 3472 3473 3474 3475
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3476
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3477
			unsigned long mark, int classzone_idx)
3478 3479 3480 3481 3482 3483
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3484
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3485
								free_pages);
L
Linus Torvalds 已提交
3486 3487
}

3488
#ifdef CONFIG_NUMA
3489 3490
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3491
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3492
				RECLAIM_DISTANCE;
3493
}
3494
#else	/* CONFIG_NUMA */
3495 3496 3497 3498
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3499 3500
#endif	/* CONFIG_NUMA */

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
#ifdef CONFIG_ZONE_DMA32
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
alloc_flags_nofragment(struct zone *zone)
{
	if (zone_idx(zone) != ZONE_NORMAL)
		return 0;

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
		return 0;

	return ALLOC_NOFRAGMENT;
}
#else
static inline unsigned int
alloc_flags_nofragment(struct zone *zone)
{
	return 0;
}
#endif

R
Rohit Seth 已提交
3535
/*
3536
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3537 3538 3539
 * a page.
 */
static struct page *
3540 3541
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3542
{
3543
	struct zoneref *z;
3544
	struct zone *zone;
3545
	struct pglist_data *last_pgdat_dirty_limit = NULL;
3546
	bool no_fallback;
3547

3548
retry:
R
Rohit Seth 已提交
3549
	/*
3550
	 * Scan zonelist, looking for a zone with enough free.
3551
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3552
	 */
3553 3554
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
3555
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3556
								ac->nodemask) {
3557
		struct page *page;
3558 3559
		unsigned long mark;

3560 3561
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3562
			!__cpuset_zone_allowed(zone, gfp_mask))
3563
				continue;
3564 3565
		/*
		 * When allocating a page cache page for writing, we
3566 3567
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3568
		 * proportional share of globally allowed dirty pages.
3569
		 * The dirty limits take into account the node's
3570 3571 3572 3573 3574
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3575
		 * exceed the per-node dirty limit in the slowpath
3576
		 * (spread_dirty_pages unset) before going into reclaim,
3577
		 * which is important when on a NUMA setup the allowed
3578
		 * nodes are together not big enough to reach the
3579
		 * global limit.  The proper fix for these situations
3580
		 * will require awareness of nodes in the
3581 3582
		 * dirty-throttling and the flusher threads.
		 */
3583 3584 3585 3586 3587 3588 3589 3590 3591
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3592

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

3609
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3610
		if (!zone_watermark_fast(zone, order, mark,
3611
				       ac_classzone_idx(ac), alloc_flags)) {
3612 3613
			int ret;

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3624 3625 3626 3627 3628
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3629
			if (node_reclaim_mode == 0 ||
3630
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3631 3632
				continue;

3633
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3634
			switch (ret) {
3635
			case NODE_RECLAIM_NOSCAN:
3636
				/* did not scan */
3637
				continue;
3638
			case NODE_RECLAIM_FULL:
3639
				/* scanned but unreclaimable */
3640
				continue;
3641 3642
			default:
				/* did we reclaim enough */
3643
				if (zone_watermark_ok(zone, order, mark,
3644
						ac_classzone_idx(ac), alloc_flags))
3645 3646 3647
					goto try_this_zone;

				continue;
3648
			}
R
Rohit Seth 已提交
3649 3650
		}

3651
try_this_zone:
3652
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3653
				gfp_mask, alloc_flags, ac->migratetype);
3654
		if (page) {
3655
			prep_new_page(page, order, gfp_mask, alloc_flags);
3656 3657 3658 3659 3660 3661 3662 3663

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3664
			return page;
3665 3666 3667 3668 3669 3670 3671 3672
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3673
		}
3674
	}
3675

3676 3677 3678 3679 3680 3681 3682 3683 3684
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

3685
	return NULL;
M
Martin Hicks 已提交
3686 3687
}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3702
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3703 3704
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3705
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3706

3707
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3708 3709 3710 3711 3712 3713 3714 3715
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3716
		if (tsk_is_oom_victim(current) ||
3717 3718
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3719
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3720 3721
		filter &= ~SHOW_MEM_FILTER_NODES;

3722
	show_mem(filter, nodemask);
3723 3724
}

3725
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3726 3727 3728 3729 3730 3731
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3732
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3733 3734
		return;

3735 3736 3737
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3738 3739 3740
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3741
	va_end(args);
J
Joe Perches 已提交
3742

3743
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3744

3745
	dump_stack();
3746
	warn_alloc_show_mem(gfp_mask, nodemask);
3747 3748
}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3769 3770
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3771
	const struct alloc_context *ac, unsigned long *did_some_progress)
3772
{
3773 3774 3775
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3776
		.memcg = NULL,
3777 3778 3779
		.gfp_mask = gfp_mask,
		.order = order,
	};
3780 3781
	struct page *page;

3782 3783 3784
	*did_some_progress = 0;

	/*
3785 3786
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3787
	 */
3788
	if (!mutex_trylock(&oom_lock)) {
3789
		*did_some_progress = 1;
3790
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3791 3792
		return NULL;
	}
3793

3794 3795 3796
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3797 3798 3799
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3800
	 */
3801 3802 3803
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3804
	if (page)
3805 3806
		goto out;

3807 3808 3809 3810 3811 3812
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3813 3814 3815 3816 3817 3818 3819 3820
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3839

3840
	/* Exhausted what can be done so it's blame time */
3841
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3842
		*did_some_progress = 1;
3843

3844 3845 3846 3847 3848 3849
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3850 3851
					ALLOC_NO_WATERMARKS, ac);
	}
3852
out:
3853
	mutex_unlock(&oom_lock);
3854 3855 3856
	return page;
}

3857 3858 3859 3860 3861 3862
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3863 3864 3865 3866
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3867
		unsigned int alloc_flags, const struct alloc_context *ac,
3868
		enum compact_priority prio, enum compact_result *compact_result)
3869
{
3870
	struct page *page = NULL;
3871
	unsigned long pflags;
3872
	unsigned int noreclaim_flag;
3873
	u64 start;
3874 3875

	if (!order)
3876 3877
		return NULL;

3878
	psi_memstall_enter(&pflags);
3879
	memcg_lat_stat_start(&start);
3880
	noreclaim_flag = memalloc_noreclaim_save();
3881

3882
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3883
									prio, &page);
3884

3885
	memalloc_noreclaim_restore(noreclaim_flag);
3886
	memcg_lat_stat_end(MEM_LAT_DIRECT_COMPACT, start);
3887
	psi_memstall_leave(&pflags);
3888

3889 3890 3891 3892 3893
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3894

3895 3896 3897 3898 3899 3900 3901
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3902

3903 3904
	if (page) {
		struct zone *zone = page_zone(page);
3905

3906 3907 3908 3909 3910
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3911

3912 3913 3914 3915 3916
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3917

3918
	cond_resched();
3919 3920 3921

	return NULL;
}
3922

3923 3924 3925 3926
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3927
		     int *compaction_retries)
3928 3929
{
	int max_retries = MAX_COMPACT_RETRIES;
3930
	int min_priority;
3931 3932 3933
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3934 3935 3936 3937

	if (!order)
		return false;

3938 3939 3940
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3941 3942 3943 3944 3945
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3946 3947
	if (compaction_failed(compact_result))
		goto check_priority;
3948 3949 3950 3951 3952 3953 3954

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3955 3956 3957 3958
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3959 3960

	/*
3961
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3962 3963 3964 3965 3966 3967 3968 3969
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3970 3971 3972 3973
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3974

3975 3976 3977 3978 3979
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3980 3981
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3982

3983
	if (*compact_priority > min_priority) {
3984 3985
		(*compact_priority)--;
		*compaction_retries = 0;
3986
		ret = true;
3987
	}
3988 3989 3990
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3991
}
3992 3993 3994
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3995
		unsigned int alloc_flags, const struct alloc_context *ac,
3996
		enum compact_priority prio, enum compact_result *compact_result)
3997
{
3998
	*compact_result = COMPACT_SKIPPED;
3999 4000
	return NULL;
}
4001 4002

static inline bool
4003 4004
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4005
		     enum compact_priority *compact_priority,
4006
		     int *compaction_retries)
4007
{
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
4026 4027
	return false;
}
4028
#endif /* CONFIG_COMPACTION */
4029

4030
#ifdef CONFIG_LOCKDEP
4031
static struct lockdep_map __fs_reclaim_map =
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4043
	if (current->flags & PF_MEMALLOC)
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4066 4067 4068
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4069
		__fs_reclaim_acquire();
4070 4071 4072 4073 4074 4075
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
4076
		__fs_reclaim_release();
4077 4078 4079 4080
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4081 4082
/* Perform direct synchronous page reclaim */
static int
4083 4084
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4085 4086
{
	struct reclaim_state reclaim_state;
4087
	int progress;
4088
	unsigned int noreclaim_flag;
4089
	unsigned long pflags;
4090
	u64 start;
4091 4092 4093 4094 4095

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4096
	psi_memstall_enter(&pflags);
4097
	memcg_lat_stat_start(&start);
4098
	fs_reclaim_acquire(gfp_mask);
4099
	noreclaim_flag = memalloc_noreclaim_save();
4100
	reclaim_state.reclaimed_slab = 0;
4101
	current->reclaim_state = &reclaim_state;
4102

4103 4104
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4105

4106
	current->reclaim_state = NULL;
4107
	memalloc_noreclaim_restore(noreclaim_flag);
4108
	fs_reclaim_release(gfp_mask);
4109
	memcg_lat_stat_end(MEM_LAT_GLOBAL_DIRECT_RECLAIM, start);
4110
	psi_memstall_leave(&pflags);
4111 4112 4113

	cond_resched();

4114 4115 4116 4117 4118 4119
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4120
		unsigned int alloc_flags, const struct alloc_context *ac,
4121
		unsigned long *did_some_progress)
4122 4123 4124 4125
{
	struct page *page = NULL;
	bool drained = false;

4126
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4127 4128
	if (unlikely(!(*did_some_progress)))
		return NULL;
4129

4130
retry:
4131
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4132 4133 4134

	/*
	 * If an allocation failed after direct reclaim, it could be because
4135 4136
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4137 4138
	 */
	if (!page && !drained) {
4139
		unreserve_highatomic_pageblock(ac, false);
4140
		drain_all_pages(NULL);
4141 4142 4143 4144
		drained = true;
		goto retry;
	}

4145 4146 4147
	return page;
}

4148 4149
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4150 4151 4152
{
	struct zoneref *z;
	struct zone *zone;
4153
	pg_data_t *last_pgdat = NULL;
4154
	enum zone_type high_zoneidx = ac->high_zoneidx;
4155

4156 4157
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4158
		if (last_pgdat != zone->zone_pgdat)
4159
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4160 4161
		last_pgdat = zone->zone_pgdat;
	}
4162 4163
}

4164
static inline unsigned int
4165 4166
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4167
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4168

4169
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4170
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4171

4172 4173 4174 4175
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4176
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4177
	 */
4178
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4179

4180
	if (gfp_mask & __GFP_ATOMIC) {
4181
		/*
4182 4183
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4184
		 */
4185
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4186
			alloc_flags |= ALLOC_HARDER;
4187
		/*
4188
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4189
		 * comment for __cpuset_node_allowed().
4190
		 */
4191
		alloc_flags &= ~ALLOC_CPUSET;
4192
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4193 4194
		alloc_flags |= ALLOC_HARDER;

4195 4196 4197 4198
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4199 4200 4201
	return alloc_flags;
}

4202
static bool oom_reserves_allowed(struct task_struct *tsk)
4203
{
4204 4205 4206 4207 4208 4209 4210 4211
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4212 4213
		return false;

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4225
	if (gfp_mask & __GFP_MEMALLOC)
4226
		return ALLOC_NO_WATERMARKS;
4227
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4228 4229 4230 4231 4232 4233 4234
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4235

4236 4237 4238 4239 4240 4241
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4242 4243
}

M
Michal Hocko 已提交
4244 4245 4246
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4247 4248 4249 4250
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4251 4252 4253 4254 4255 4256
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4257
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4258 4259 4260 4261
{
	struct zone *zone;
	struct zoneref *z;

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4272 4273 4274 4275
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4276 4277
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4278
		return unreserve_highatomic_pageblock(ac, true);
4279
	}
M
Michal Hocko 已提交
4280

4281 4282 4283 4284 4285
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4286 4287 4288 4289
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4290
		unsigned long reclaimable;
4291 4292
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4293

4294 4295
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4296 4297

		/*
4298 4299
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4300
		 */
4301 4302 4303 4304 4305
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4306 4307 4308 4309 4310 4311 4312
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4313
				unsigned long write_pending;
4314

4315 4316
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4317

4318
				if (2 * write_pending > reclaimable) {
4319 4320 4321 4322
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4323

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4338 4339 4340 4341 4342 4343 4344
			return true;
		}
	}

	return false;
}

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4378 4379
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4380
						struct alloc_context *ac)
4381
{
4382
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4383
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4384
	struct page *page = NULL;
4385
	unsigned int alloc_flags;
4386
	unsigned long did_some_progress;
4387
	enum compact_priority compact_priority;
4388
	enum compact_result compact_result;
4389 4390 4391
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4392
	int reserve_flags;
L
Linus Torvalds 已提交
4393

4394 4395 4396 4397 4398 4399 4400 4401
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4402 4403 4404 4405 4406
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4407 4408 4409 4410 4411 4412 4413 4414

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4426
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4427
		wake_all_kswapds(order, gfp_mask, ac);
4428 4429 4430 4431 4432 4433 4434 4435 4436

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4437 4438
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4439 4440 4441 4442 4443 4444
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4445
	 */
4446 4447 4448 4449
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4450 4451
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4452
						INIT_COMPACT_PRIORITY,
4453 4454 4455 4456
						&compact_result);
		if (page)
			goto got_pg;

4457 4458 4459 4460
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4461
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4474 4475
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4476
			 * using async compaction.
4477
			 */
4478
			compact_priority = INIT_COMPACT_PRIORITY;
4479 4480
		}
	}
4481

4482
retry:
4483
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4484
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4485
		wake_all_kswapds(order, gfp_mask, ac);
4486

4487 4488 4489
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4490

4491
	/*
4492 4493 4494
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4495
	 */
4496
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4497
		ac->nodemask = NULL;
4498 4499 4500 4501
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4502
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4503
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4504 4505
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4506

4507
	/* Caller is not willing to reclaim, we can't balance anything */
4508
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4509 4510
		goto nopage;

4511 4512
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4513 4514
		goto nopage;

4515 4516 4517 4518 4519 4520 4521
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4522
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4523
					compact_priority, &compact_result);
4524 4525
	if (page)
		goto got_pg;
4526

4527 4528
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4529
		goto nopage;
4530

M
Michal Hocko 已提交
4531 4532
	/*
	 * Do not retry costly high order allocations unless they are
4533
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4534
	 */
4535
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4536
		goto nopage;
M
Michal Hocko 已提交
4537 4538

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4539
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4540 4541
		goto retry;

4542 4543 4544 4545 4546 4547 4548
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4549
			should_compact_retry(ac, order, alloc_flags,
4550
				compact_result, &compact_priority,
4551
				&compaction_retries))
4552 4553
		goto retry;

4554 4555 4556

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4557 4558
		goto retry_cpuset;

4559 4560 4561 4562 4563
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4564
	/* Avoid allocations with no watermarks from looping endlessly */
4565 4566
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4567
	     (gfp_mask & __GFP_NOMEMALLOC)))
4568 4569
		goto nopage;

4570
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4571 4572
	if (did_some_progress) {
		no_progress_loops = 0;
4573
		goto retry;
M
Michal Hocko 已提交
4574
	}
4575

L
Linus Torvalds 已提交
4576
nopage:
4577 4578
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4579 4580
		goto retry_cpuset;

4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4618 4619 4620 4621
		cond_resched();
		goto retry;
	}
fail:
4622
	warn_alloc(gfp_mask, ac->nodemask,
4623
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4624
got_pg:
4625 4626 4627 4628

	if (ac->migratetype == MIGRATE_MOVABLE)
		memcg_check_wmark_min_adj(current, ac);

4629
	return page;
L
Linus Torvalds 已提交
4630
}
4631

4632
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4633
		int preferred_nid, nodemask_t *nodemask,
4634 4635
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4636
{
4637
	ac->high_zoneidx = gfp_zone(gfp_mask);
4638
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4639 4640
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4641

4642
	if (cpusets_enabled()) {
4643 4644 4645
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4646 4647
		else
			*alloc_flags |= ALLOC_CPUSET;
4648 4649
	}

4650 4651
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4652

4653
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4654 4655

	if (should_fail_alloc_page(gfp_mask, order))
4656
		return false;
4657

4658 4659 4660
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4661 4662
	return true;
}
4663

4664
/* Determine whether to spread dirty pages and what the first usable zone */
4665
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4666
{
4667
	/* Dirty zone balancing only done in the fast path */
4668
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4669

4670 4671 4672 4673 4674
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4675 4676 4677 4678 4679 4680 4681 4682
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4683 4684
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4685 4686 4687
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4688
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4689 4690
	struct alloc_context ac = { };

4691 4692 4693 4694 4695 4696 4697 4698 4699
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4700
	gfp_mask &= gfp_allowed_mask;
4701
	alloc_mask = gfp_mask;
4702
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4703 4704
		return NULL;

4705
	finalise_ac(gfp_mask, &ac);
4706

4707 4708 4709 4710 4711 4712
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone);

4713
	/* First allocation attempt */
4714
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4715 4716
	if (likely(page))
		goto out;
4717

4718
	/*
4719 4720 4721 4722
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4723
	 */
4724
	alloc_mask = current_gfp_context(gfp_mask);
4725
	ac.spread_dirty_pages = false;
4726

4727 4728 4729 4730
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4731
	if (unlikely(ac.nodemask != nodemask))
4732
		ac.nodemask = nodemask;
4733

4734
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4735

4736
out:
4737 4738 4739 4740
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4741 4742
	}

4743 4744
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4745
	return page;
L
Linus Torvalds 已提交
4746
}
4747
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4748 4749

/*
4750 4751 4752
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4753
 */
H
Harvey Harrison 已提交
4754
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4755
{
4756 4757
	struct page *page;

4758
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763 4764
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4765
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4766
{
4767
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4768 4769 4770
}
EXPORT_SYMBOL(get_zeroed_page);

4771
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4772
{
4773 4774 4775 4776
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4777 4778
}

4779 4780 4781 4782 4783
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4784 4785
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4786
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4787 4788
{
	if (addr != 0) {
N
Nick Piggin 已提交
4789
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4807 4808
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4828
void __page_frag_cache_drain(struct page *page, unsigned int count)
4829 4830 4831
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4832 4833
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4834
}
4835
EXPORT_SYMBOL(__page_frag_cache_drain);
4836

4837 4838
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4839 4840 4841 4842 4843 4844 4845
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4846
		page = __page_frag_cache_refill(nc, gfp_mask);
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4857
		page_ref_add(page, size);
4858 4859

		/* reset page count bias and offset to start of new frag */
4860
		nc->pfmemalloc = page_is_pfmemalloc(page);
4861
		nc->pagecnt_bias = size + 1;
4862 4863 4864 4865 4866 4867 4868
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4869
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4870 4871 4872 4873 4874 4875 4876
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4877
		set_page_count(page, size + 1);
4878 4879

		/* reset page count bias and offset to start of new frag */
4880
		nc->pagecnt_bias = size + 1;
4881 4882 4883 4884 4885 4886 4887 4888
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4889
EXPORT_SYMBOL(page_frag_alloc);
4890 4891 4892 4893

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4894
void page_frag_free(void *addr)
4895 4896 4897
{
	struct page *page = virt_to_head_page(addr);

4898 4899
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4900
}
4901
EXPORT_SYMBOL(page_frag_free);
4902

4903 4904
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4938
	return make_alloc_exact(addr, order, size);
4939 4940 4941
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4942 4943 4944
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4945
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4946 4947 4948 4949 4950 4951
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4952
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4953
{
4954
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4955 4956 4957 4958 4959 4960
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4980 4981 4982 4983 4984 4985 4986
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4987 4988
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4989
 */
4990
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4991
{
4992
	struct zoneref *z;
4993 4994
	struct zone *zone;

4995
	/* Just pick one node, since fallback list is circular */
4996
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4997

4998
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4999

5000
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5001
		unsigned long size = zone->managed_pages;
5002
		unsigned long high = high_wmark_pages(zone);
5003 5004
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009
	}

	return sum;
}

5010 5011 5012 5013 5014
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
5015
 */
5016
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5017
{
A
Al Viro 已提交
5018
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5019
}
5020
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5021

5022 5023 5024 5025 5026
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
5027
 */
5028
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
5029
{
M
Mel Gorman 已提交
5030
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
5031
}
5032 5033

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5034
{
5035
	if (IS_ENABLED(CONFIG_NUMA))
5036
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5037 5038
}

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5049
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5050 5051

	for_each_zone(zone)
5052
		wmark_low += low_wmark_pages(zone);
5053 5054 5055 5056 5057

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5058
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
5073 5074 5075
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
5076

5077 5078 5079 5080 5081 5082 5083
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

5084 5085 5086 5087 5088 5089
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5090 5091 5092
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
5093
	val->sharedram = global_node_page_state(NR_SHMEM);
5094
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5106 5107
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5108 5109
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5110 5111
	pg_data_t *pgdat = NODE_DATA(nid);

5112 5113 5114
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
5115
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5116
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5117
#ifdef CONFIG_HIGHMEM
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5128
#else
5129 5130
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5131
#endif
L
Linus Torvalds 已提交
5132 5133 5134 5135
	val->mem_unit = PAGE_SIZE;
}
#endif

5136
/*
5137 5138
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5139
 */
5140
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5141 5142
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5143
		return false;
5144

5145 5146 5147 5148 5149 5150 5151 5152 5153
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5154 5155
}

L
Linus Torvalds 已提交
5156 5157
#define K(x) ((x) << (PAGE_SHIFT-10))

5158 5159 5160 5161 5162
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5163 5164
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5165 5166 5167
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5168
#ifdef CONFIG_MEMORY_ISOLATION
5169
		[MIGRATE_ISOLATE]	= 'I',
5170
#endif
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5182
	printk(KERN_CONT "(%s) ", tmp);
5183 5184
}

L
Linus Torvalds 已提交
5185 5186 5187 5188
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5189 5190 5191 5192
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5193
 */
5194
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5195
{
5196
	unsigned long free_pcp = 0;
5197
	int cpu;
L
Linus Torvalds 已提交
5198
	struct zone *zone;
M
Mel Gorman 已提交
5199
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5200

5201
	for_each_populated_zone(zone) {
5202
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5203
			continue;
5204

5205 5206
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5207 5208
	}

K
KOSAKI Motohiro 已提交
5209 5210
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5211 5212
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5213
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5214
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5215 5216 5217 5218 5219 5220 5221
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5222 5223 5224
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5225 5226
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5227
		global_node_page_state(NR_FILE_MAPPED),
5228
		global_node_page_state(NR_SHMEM),
5229 5230 5231
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5232
		free_pcp,
5233
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5234

M
Mel Gorman 已提交
5235
	for_each_online_pgdat(pgdat) {
5236
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5237 5238
			continue;

M
Mel Gorman 已提交
5239 5240 5241 5242 5243 5244 5245 5246
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5247
			" mapped:%lukB"
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5268
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5269 5270
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5271
			K(node_page_state(pgdat, NR_SHMEM)),
5272 5273 5274 5275 5276 5277 5278 5279
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5280 5281
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5282 5283
	}

5284
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5285 5286
		int i;

5287
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5288
			continue;
5289 5290 5291 5292 5293

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5294
		show_node(zone);
5295 5296
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5297 5298 5299 5300
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5301 5302 5303 5304 5305
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5306
			" writepending:%lukB"
L
Linus Torvalds 已提交
5307
			" present:%lukB"
5308
			" managed:%lukB"
5309
			" mlocked:%lukB"
5310
			" kernel_stack:%lukB"
5311 5312
			" pagetables:%lukB"
			" bounce:%lukB"
5313 5314
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5315
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5316 5317
			"\n",
			zone->name,
5318
			K(zone_page_state(zone, NR_FREE_PAGES)),
5319 5320 5321
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5322 5323 5324 5325 5326
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5327
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5328
			K(zone->present_pages),
5329
			K(zone->managed_pages),
5330
			K(zone_page_state(zone, NR_MLOCK)),
5331
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5332 5333
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5334 5335
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5336
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5337 5338
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5339 5340
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5341 5342
	}

5343
	for_each_populated_zone(zone) {
5344 5345
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5346
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5347

5348
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5349
			continue;
L
Linus Torvalds 已提交
5350
		show_node(zone);
5351
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5352 5353 5354

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5355 5356 5357 5358
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5359
			total += nr[order] << order;
5360 5361 5362

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5363
				if (!free_area_empty(area, type))
5364 5365
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5366 5367
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5368
		for (order = 0; order < MAX_ORDER; order++) {
5369 5370
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5371 5372 5373
			if (nr[order])
				show_migration_types(types[order]);
		}
5374
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5375 5376
	}

5377 5378
	hugetlb_show_meminfo();

5379
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5380

L
Linus Torvalds 已提交
5381 5382 5383
	show_swap_cache_info();
}

5384 5385 5386 5387 5388 5389
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5390 5391
/*
 * Builds allocation fallback zone lists.
5392 5393
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5394
 */
5395
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5396
{
5397
	struct zone *zone;
5398
	enum zone_type zone_type = MAX_NR_ZONES;
5399
	int nr_zones = 0;
5400 5401

	do {
5402
		zone_type--;
5403
		zone = pgdat->node_zones + zone_type;
5404
		if (managed_zone(zone)) {
5405
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5406
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5407
		}
5408
	} while (zone_type);
5409

5410
	return nr_zones;
L
Linus Torvalds 已提交
5411 5412 5413
}

#ifdef CONFIG_NUMA
5414 5415 5416

static int __parse_numa_zonelist_order(char *s)
{
5417 5418 5419 5420 5421 5422 5423 5424
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5425 5426 5427 5428 5429 5430 5431
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5432 5433 5434
	if (!s)
		return 0;

5435
	return __parse_numa_zonelist_order(s);
5436 5437 5438
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5439 5440
char numa_zonelist_order[] = "Node";

5441 5442 5443
/*
 * sysctl handler for numa_zonelist_order
 */
5444
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5445
		void __user *buffer, size_t *length,
5446 5447
		loff_t *ppos)
{
5448
	char *str;
5449 5450
	int ret;

5451 5452 5453 5454 5455
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5456

5457 5458
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5459
	return ret;
5460 5461 5462
}


5463
#define MAX_NODE_LOAD (nr_online_nodes)
5464 5465
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5466
/**
5467
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5480
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5481
{
5482
	int n, val;
L
Linus Torvalds 已提交
5483
	int min_val = INT_MAX;
D
David Rientjes 已提交
5484
	int best_node = NUMA_NO_NODE;
5485
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5486

5487 5488 5489 5490 5491
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5492

5493
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5494 5495 5496 5497 5498 5499 5500 5501

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5502 5503 5504
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5505
		/* Give preference to headless and unused nodes */
5506 5507
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5526 5527 5528 5529 5530 5531

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5532 5533
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5534
{
5535 5536 5537 5538 5539 5540 5541 5542 5543
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5544

5545 5546 5547 5548 5549
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5550 5551
}

5552 5553 5554 5555 5556
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5557 5558
	struct zoneref *zonerefs;
	int nr_zones;
5559

5560 5561 5562 5563 5564
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5565 5566
}

5567 5568 5569 5570 5571 5572 5573 5574 5575
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5576 5577
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5578
	nodemask_t used_mask;
5579
	int local_node, prev_node;
L
Linus Torvalds 已提交
5580 5581 5582

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5583
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5584 5585
	prev_node = local_node;
	nodes_clear(used_mask);
5586 5587

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5594 5595
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5596 5597
			node_load[node] = load;

5598
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5599 5600 5601
		prev_node = node;
		load--;
	}
5602

5603
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5604
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5605 5606
}

5607 5608 5609 5610 5611 5612 5613 5614 5615
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5616
	struct zoneref *z;
5617

5618
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5619
				   gfp_zone(GFP_KERNEL),
5620
				   NULL);
5621
	return zone_to_nid(z->zone);
5622 5623
}
#endif
5624

5625 5626
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5627 5628
#else	/* CONFIG_NUMA */

5629
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5630
{
5631
	int node, local_node;
5632 5633
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5634 5635 5636

	local_node = pgdat->node_id;

5637 5638 5639
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5640

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5652 5653
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5654
	}
5655 5656 5657
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5658 5659
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5660 5661
	}

5662 5663
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5664 5665 5666 5667
}

#endif	/* CONFIG_NUMA */

5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5685
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5686

5687
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5688
{
5689
	int nid;
5690
	int __maybe_unused cpu;
5691
	pg_data_t *self = data;
5692 5693 5694
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5695

5696 5697 5698
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5699

5700 5701 5702 5703
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5704 5705
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5706 5707 5708
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5709

5710 5711
			build_zonelists(pgdat);
		}
5712

5713 5714 5715 5716 5717 5718 5719 5720 5721
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5722
		for_each_online_cpu(cpu)
5723
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5724
#endif
5725
	}
5726 5727

	spin_unlock(&lock);
5728 5729
}

5730 5731 5732
static noinline void __init
build_all_zonelists_init(void)
{
5733 5734
	int cpu;

5735
	__build_all_zonelists(NULL);
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5753 5754 5755 5756
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5757 5758
/*
 * unless system_state == SYSTEM_BOOTING.
5759
 *
5760
 * __ref due to call of __init annotated helper build_all_zonelists_init
5761
 * [protected by SYSTEM_BOOTING].
5762
 */
5763
void __ref build_all_zonelists(pg_data_t *pgdat)
5764 5765
{
	if (system_state == SYSTEM_BOOTING) {
5766
		build_all_zonelists_init();
5767
	} else {
5768
		__build_all_zonelists(pgdat);
5769 5770
		/* cpuset refresh routine should be here */
	}
5771
	vm_total_pages = nr_free_pagecache_pages();
5772 5773 5774 5775 5776 5777 5778
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5779
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5780 5781 5782 5783
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5784
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5785 5786 5787
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5788
#ifdef CONFIG_NUMA
5789
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5790
#endif
L
Linus Torvalds 已提交
5791 5792 5793 5794 5795 5796 5797
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5798
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5799 5800
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5801
{
A
Andy Whitcroft 已提交
5802
	unsigned long end_pfn = start_pfn + size;
5803
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5804
	unsigned long pfn;
5805
	unsigned long nr_initialised = 0;
5806
	struct page *page;
5807 5808 5809
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5810

5811 5812 5813
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5814 5815 5816 5817 5818 5819 5820
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5821
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5822
		/*
5823 5824
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5825
		 */
5826 5827 5828
		if (context != MEMMAP_EARLY)
			goto not_early;

5829
		if (!early_pfn_valid(pfn))
5830 5831 5832 5833 5834
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5835 5836

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5854
			}
D
Dave Hansen 已提交
5855
		}
5856
#endif
5857

5858
not_early:
5859 5860 5861 5862 5863
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5864 5865 5866 5867 5868
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5869
		 * kernel allocations are made.
5870 5871 5872 5873 5874
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5875 5876 5877
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5878 5879 5880
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5881
			cond_resched();
5882
		}
L
Linus Torvalds 已提交
5883 5884 5885
	}
}

5886
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5887
{
5888
	unsigned int order, t;
5889 5890
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5891 5892 5893 5894 5895 5896
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5897
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5898 5899
#endif

5900
static int zone_batchsize(struct zone *zone)
5901
{
5902
#ifdef CONFIG_MMU
5903 5904 5905 5906
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5907
	 * size of the zone.
5908
	 */
5909
	batch = zone->managed_pages / 1024;
5910 5911 5912
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5913 5914 5915 5916 5917
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5918 5919 5920
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5921
	 *
5922 5923 5924 5925
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5926
	 */
5927
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5928

5929
	return batch;
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5947 5948
}

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5976
/* a companion to pageset_set_high() */
5977 5978
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5979
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5980 5981
}

5982
static void pageset_init(struct per_cpu_pageset *p)
5983 5984
{
	struct per_cpu_pages *pcp;
5985
	int migratetype;
5986

5987 5988
	memset(p, 0, sizeof(*p));

5989
	pcp = &p->pcp;
5990
	pcp->count = 0;
5991 5992
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5993 5994
}

5995 5996 5997 5998 5999 6000
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

6001
/*
6002
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6003 6004
 * to the value high for the pageset p.
 */
6005
static void pageset_set_high(struct per_cpu_pageset *p,
6006 6007
				unsigned long high)
{
6008 6009 6010
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
6011

6012
	pageset_update(&p->pcp, high, batch);
6013 6014
}

6015 6016
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
6017 6018
{
	if (percpu_pagelist_fraction)
6019
		pageset_set_high(pcp,
6020 6021 6022 6023 6024 6025
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

6026 6027 6028 6029 6030 6031 6032 6033
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

6034
void __meminit setup_zone_pageset(struct zone *zone)
6035 6036 6037
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6038 6039
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
6040 6041
}

6042
/*
6043 6044
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6045
 */
6046
void __init setup_per_cpu_pageset(void)
6047
{
6048
	struct pglist_data *pgdat;
6049
	struct zone *zone;
6050

6051 6052
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6053 6054 6055 6056

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6057 6058
}

6059
static __meminit void zone_pcp_init(struct zone *zone)
6060
{
6061 6062 6063 6064 6065 6066
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
6067

6068
	if (populated_zone(zone))
6069 6070 6071
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
6072 6073
}

6074
void __meminit init_currently_empty_zone(struct zone *zone,
6075
					unsigned long zone_start_pfn,
6076
					unsigned long size)
6077 6078
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6079
	int zone_idx = zone_idx(zone) + 1;
6080

6081 6082
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6083 6084 6085

	zone->zone_start_pfn = zone_start_pfn;

6086 6087 6088 6089 6090 6091
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6092
	zone_init_free_lists(zone);
6093
	zone->initialized = 1;
6094 6095
}

T
Tejun Heo 已提交
6096
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6097
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6098

6099 6100 6101
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6102 6103
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6104
{
6105
	unsigned long start_pfn, end_pfn;
6106
	int nid;
6107

6108 6109
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6110

6111 6112
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
6113 6114 6115
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6116 6117 6118
	}

	return nid;
6119 6120 6121 6122
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6123
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6124
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6125
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6126
 *
6127 6128 6129
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6130
 */
6131
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6132
{
6133 6134
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6135

6136 6137 6138
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6139

6140
		if (start_pfn < end_pfn)
6141 6142 6143
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6144 6145 6146
	}
}

6147 6148
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6149
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6150
 *
6151 6152
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6153 6154 6155
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6156 6157
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6158

6159 6160
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6161 6162 6163 6164
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6165 6166 6167
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6168 6169
 *
 * It returns the start and end page frame of a node based on information
6170
 * provided by memblock_set_node(). If called for a node
6171
 * with no available memory, a warning is printed and the start and end
6172
 * PFNs will be 0.
6173
 */
6174
void __meminit get_pfn_range_for_nid(unsigned int nid,
6175 6176
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6177
	unsigned long this_start_pfn, this_end_pfn;
6178
	int i;
6179

6180 6181 6182
	*start_pfn = -1UL;
	*end_pfn = 0;

6183 6184 6185
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6186 6187
	}

6188
	if (*start_pfn == -1UL)
6189 6190 6191
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6192 6193 6194 6195 6196
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6197
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6215
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6216 6217 6218 6219 6220 6221 6222
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
6223
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6238 6239 6240 6241 6242 6243
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6244 6245 6246 6247 6248 6249
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6250 6251 6252 6253
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
6254
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6255
					unsigned long zone_type,
6256 6257
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6258 6259
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6260 6261
					unsigned long *ignored)
{
6262 6263
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6264
	/* When hotadd a new node from cpu_up(), the node should be empty */
6265 6266 6267
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6268
	/* Get the start and end of the zone */
6269 6270
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6271 6272
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6273
				zone_start_pfn, zone_end_pfn);
6274 6275

	/* Check that this node has pages within the zone's required range */
6276
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6277 6278 6279
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6280 6281
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6282 6283

	/* Return the spanned pages */
6284
	return *zone_end_pfn - *zone_start_pfn;
6285 6286 6287 6288
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6289
 * then all holes in the requested range will be accounted for.
6290
 */
6291
unsigned long __meminit __absent_pages_in_range(int nid,
6292 6293 6294
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6295 6296 6297
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6298

6299 6300 6301 6302
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6303
	}
6304
	return nr_absent;
6305 6306 6307 6308 6309 6310 6311
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6312
 * It returns the number of pages frames in memory holes within a range.
6313 6314 6315 6316 6317 6318 6319 6320
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6321
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6322
					unsigned long zone_type,
6323 6324
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6325 6326
					unsigned long *ignored)
{
6327 6328
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6329
	unsigned long zone_start_pfn, zone_end_pfn;
6330
	unsigned long nr_absent;
6331

6332
	/* When hotadd a new node from cpu_up(), the node should be empty */
6333 6334 6335
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6336 6337
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6338

M
Mel Gorman 已提交
6339 6340 6341
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6342 6343 6344 6345 6346 6347 6348
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6366 6367 6368 6369
		}
	}

	return nr_absent;
6370
}
6371

T
Tejun Heo 已提交
6372
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6373
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6374
					unsigned long zone_type,
6375 6376
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6377 6378
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6379 6380
					unsigned long *zones_size)
{
6381 6382 6383 6384 6385 6386 6387 6388
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6389 6390 6391
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6392
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6393
						unsigned long zone_type,
6394 6395
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6396 6397 6398 6399 6400 6401 6402
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6403

T
Tejun Heo 已提交
6404
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6405

6406
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6407 6408 6409 6410
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6411
{
6412
	unsigned long realtotalpages = 0, totalpages = 0;
6413 6414
	enum zone_type i;

6415 6416
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6417
		unsigned long zone_start_pfn, zone_end_pfn;
6418
		unsigned long size, real_size;
6419

6420 6421 6422
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6423 6424
						  &zone_start_pfn,
						  &zone_end_pfn,
6425 6426
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6427 6428
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6429 6430 6431 6432
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6433 6434 6435 6436 6437 6438 6439 6440
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6441 6442 6443 6444 6445
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6446 6447 6448
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6449 6450
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6451 6452 6453
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6454
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6455 6456 6457
{
	unsigned long usemapsize;

6458
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6459 6460
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6461 6462 6463 6464 6465 6466
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6467
static void __ref setup_usemap(struct pglist_data *pgdat,
6468 6469 6470
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6471
{
6472
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6473
	zone->pageblock_flags = NULL;
6474
	if (usemapsize)
6475 6476 6477
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6478 6479
}
#else
6480 6481
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6482 6483
#endif /* CONFIG_SPARSEMEM */

6484
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6485

6486
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6487
void __init set_pageblock_order(void)
6488
{
6489 6490
	unsigned int order;

6491 6492 6493 6494
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6495 6496 6497 6498 6499
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6500 6501
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6502 6503
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6504 6505 6506 6507 6508
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6509 6510
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6511 6512 6513
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6514
 */
6515
void __init set_pageblock_order(void)
6516 6517
{
}
6518 6519 6520

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6521
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6522
						unsigned long present_pages)
6523 6524 6525 6526 6527 6528 6529 6530
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6531
	 * populated regions may not be naturally aligned on page boundary.
6532 6533 6534 6535 6536 6537 6538 6539 6540
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6541 6542 6543
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6544 6545 6546 6547 6548
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6563
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6564
{
6565
	pgdat_resize_init(pgdat);
6566 6567 6568 6569

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6570
	init_waitqueue_head(&pgdat->kswapd_wait);
6571
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6572

6573
	pgdat_page_ext_init(pgdat);
6574
	spin_lock_init(&pgdat->lru_lock);
6575
	lruvec_init(node_lruvec(pgdat));
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6622

6623
	pgdat_init_internals(pgdat);
6624 6625
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6626 6627
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6628
		unsigned long size, freesize, memmap_pages;
6629
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6630

6631
		size = zone->spanned_pages;
6632
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6633

6634
		/*
6635
		 * Adjust freesize so that it accounts for how much memory
6636 6637 6638
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6639
		memmap_pages = calc_memmap_size(size, freesize);
6640 6641 6642 6643 6644 6645 6646 6647
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6648
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6649 6650
					zone_names[j], memmap_pages, freesize);
		}
6651

6652
		/* Account for reserved pages */
6653 6654
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6655
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6656
					zone_names[0], dma_reserve);
6657 6658
		}

6659
		if (!is_highmem_idx(j))
6660
			nr_kernel_pages += freesize;
6661 6662 6663
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6664
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6665

6666 6667 6668 6669 6670
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6671
		zone_init_internals(zone, j, nid, freesize);
6672

6673
		if (!size)
L
Linus Torvalds 已提交
6674 6675
			continue;

6676
		set_pageblock_order();
6677 6678
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6679
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6680 6681 6682
	}
}

6683
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6684
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6685
{
6686
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6687 6688
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6689 6690 6691 6692
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6693 6694
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6695 6696
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6697
		unsigned long size, end;
A
Andy Whitcroft 已提交
6698 6699
		struct page *map;

6700 6701 6702 6703 6704
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6705
		end = pgdat_end_pfn(pgdat);
6706 6707
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6708
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6709
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6710
	}
6711 6712 6713
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6714
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6715 6716 6717
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6718
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6719
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6720
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6721
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6722
			mem_map -= offset;
T
Tejun Heo 已提交
6723
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6724
	}
L
Linus Torvalds 已提交
6725 6726
#endif
}
6727 6728 6729
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6730

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6746
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6747 6748
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6749
{
6750
	pg_data_t *pgdat = NODE_DATA(nid);
6751 6752
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6753

6754
	/* pg_data_t should be reset to zero when it's allocated */
6755
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6756

L
Linus Torvalds 已提交
6757 6758
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6759
	pgdat->per_cpu_nodestats = NULL;
6760 6761
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6762
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6763 6764
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6765 6766
#else
	start_pfn = node_start_pfn;
6767 6768 6769
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6770 6771

	alloc_node_mem_map(pgdat);
6772
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6773

6774
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6775 6776
}

6777
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800

/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6801 6802 6803 6804 6805 6806
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6807 6808 6809 6810 6811
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6812
 */
6813
void __init zero_resv_unavail(void)
6814 6815 6816
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6817
	phys_addr_t next = 0;
6818 6819

	/*
6820
	 * Loop through unavailable ranges not covered by memblock.memory.
6821 6822
	 */
	pgcnt = 0;
6823 6824
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6825 6826
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6827 6828
		next = end;
	}
6829
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6830

6831 6832 6833 6834 6835
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6836
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6837
}
6838
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6839

T
Tejun Heo 已提交
6840
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6841 6842 6843 6844 6845

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6846
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6847
{
6848
	unsigned int highest;
M
Miklos Szeredi 已提交
6849

6850
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6851 6852 6853 6854
	nr_node_ids = highest + 1;
}
#endif

6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6877
	unsigned long start, end, mask;
6878
	int last_nid = -1;
6879
	int i, nid;
6880

6881
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6905
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6906
static unsigned long __init find_min_pfn_for_node(int nid)
6907
{
6908
	unsigned long min_pfn = ULONG_MAX;
6909 6910
	unsigned long start_pfn;
	int i;
6911

6912 6913
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6914

6915
	if (min_pfn == ULONG_MAX) {
6916
		pr_warn("Could not find start_pfn for node %d\n", nid);
6917 6918 6919 6920
		return 0;
	}

	return min_pfn;
6921 6922 6923 6924 6925 6926
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6927
 * memblock_set_node().
6928 6929 6930 6931 6932 6933
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6934 6935 6936
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6937
 * Populate N_MEMORY for calculating usable_nodes.
6938
 */
A
Adrian Bunk 已提交
6939
static unsigned long __init early_calculate_totalpages(void)
6940 6941
{
	unsigned long totalpages = 0;
6942 6943 6944 6945 6946
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6947

6948 6949
		totalpages += pages;
		if (pages)
6950
			node_set_state(nid, N_MEMORY);
6951
	}
6952
	return totalpages;
6953 6954
}

M
Mel Gorman 已提交
6955 6956 6957 6958 6959 6960
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6961
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6962 6963 6964 6965
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6966
	/* save the state before borrow the nodemask */
6967
	nodemask_t saved_node_state = node_states[N_MEMORY];
6968
	unsigned long totalpages = early_calculate_totalpages();
6969
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6970
	struct memblock_region *r;
6971 6972 6973 6974 6975 6976 6977 6978 6979

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6980 6981
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6982 6983
				continue;

E
Emil Medve 已提交
6984
			nid = r->nid;
6985

E
Emil Medve 已提交
6986
			usable_startpfn = PFN_DOWN(r->base);
6987 6988 6989 6990 6991 6992 6993
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6994

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

7025
	/*
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7053
		required_movablecore = min(totalpages, required_movablecore);
7054 7055 7056 7057 7058
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7059 7060 7061 7062 7063
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7064
		goto out;
M
Mel Gorman 已提交
7065 7066 7067 7068 7069 7070 7071

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7072
	for_each_node_state(nid, N_MEMORY) {
7073 7074
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7091
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7092 7093
			unsigned long size_pages;

7094
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7137
			 * satisfied
M
Mel Gorman 已提交
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7151
	 * satisfied
M
Mel Gorman 已提交
7152 7153 7154 7155 7156
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7157
out2:
M
Mel Gorman 已提交
7158 7159 7160 7161
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7162

7163
out:
7164
	/* restore the node_state */
7165
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7166 7167
}

7168 7169
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7170 7171 7172
{
	enum zone_type zone_type;

7173 7174 7175 7176
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7177
		struct zone *zone = &pgdat->node_zones[zone_type];
7178
		if (populated_zone(zone)) {
7179 7180 7181 7182
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
7183 7184
			break;
		}
7185 7186 7187
	}
}

7188 7189
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7190
 * @max_zone_pfn: an array of max PFNs for each zone
7191 7192
 *
 * This will call free_area_init_node() for each active node in the system.
7193
 * Using the page ranges provided by memblock_set_node(), the size of each
7194 7195 7196 7197 7198 7199 7200 7201 7202
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7203 7204
	unsigned long start_pfn, end_pfn;
	int i, nid;
7205

7206 7207 7208 7209 7210
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7211 7212 7213 7214

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7215 7216
		if (i == ZONE_MOVABLE)
			continue;
7217 7218 7219 7220 7221 7222

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7223
	}
M
Mel Gorman 已提交
7224 7225 7226

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7227
	find_zone_movable_pfns_for_nodes();
7228 7229

	/* Print out the zone ranges */
7230
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7231 7232 7233
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7234
		pr_info("  %-8s ", zone_names[i]);
7235 7236
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7237
			pr_cont("empty\n");
7238
		else
7239 7240 7241 7242
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7243
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7244 7245 7246
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7247
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7248 7249
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7250 7251
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7252
	}
7253

7254
	/* Print out the early node map */
7255
	pr_info("Early memory node ranges\n");
7256
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7257 7258 7259
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7260 7261

	/* Initialise every node */
7262
	mminit_verify_pageflags_layout();
7263
	setup_nr_node_ids();
7264
	zero_resv_unavail();
7265 7266
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7267
		free_area_init_node(nid, NULL,
7268
				find_min_pfn_for_node(nid), NULL);
7269 7270 7271

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7272 7273
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7274 7275
	}
}
M
Mel Gorman 已提交
7276

7277 7278
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7279 7280
{
	unsigned long long coremem;
7281 7282
	char *endptr;

M
Mel Gorman 已提交
7283 7284 7285
	if (!p)
		return -EINVAL;

7286 7287 7288 7289 7290
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7291

7292 7293 7294 7295 7296
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7297

7298 7299 7300
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7301 7302
	return 0;
}
M
Mel Gorman 已提交
7303

7304 7305 7306 7307 7308 7309
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7310 7311 7312 7313 7314 7315
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7316 7317
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7318 7319 7320 7321 7322 7323 7324 7325
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7326 7327
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7328 7329
}

M
Mel Gorman 已提交
7330
early_param("kernelcore", cmdline_parse_kernelcore);
7331
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7332

T
Tejun Heo 已提交
7333
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7334

7335 7336 7337 7338 7339
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7340 7341 7342 7343
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7344 7345
	spin_unlock(&managed_page_count_lock);
}
7346
EXPORT_SYMBOL(adjust_managed_page_count);
7347

7348
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7349
{
7350 7351
	void *pos;
	unsigned long pages = 0;
7352

7353 7354 7355
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7367
		if ((unsigned int)poison <= 0xFF)
7368 7369 7370
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7371 7372 7373
	}

	if (pages && s)
7374 7375
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7376 7377 7378

	return pages;
}
7379
EXPORT_SYMBOL(free_reserved_area);
7380

7381 7382 7383 7384 7385
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7386
	page_zone(page)->managed_pages++;
7387 7388 7389 7390
	totalhigh_pages++;
}
#endif

7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7413 7414 7415 7416
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7427
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7428
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7429
		", %luK highmem"
7430
#endif
J
Joe Perches 已提交
7431 7432 7433 7434 7435 7436 7437
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7438
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7439
		totalhigh_pages << (PAGE_SHIFT - 10),
7440
#endif
J
Joe Perches 已提交
7441
		str ? ", " : "", str ? str : "");
7442 7443
}

7444
/**
7445 7446
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7447
 *
7448
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7449 7450
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7451 7452 7453
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7454 7455 7456 7457 7458 7459
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7460 7461
void __init free_area_init(unsigned long *zones_size)
{
7462
	zero_resv_unavail();
7463
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7464 7465 7466
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7467
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7468 7469
{

7470 7471
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7472

7473 7474 7475 7476 7477 7478 7479
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7480

7481 7482 7483 7484 7485 7486 7487 7488 7489
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7490 7491 7492 7493
}

void __init page_alloc_init(void)
{
7494 7495 7496 7497 7498 7499
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7500 7501
}

7502
/*
7503
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7504 7505 7506 7507 7508 7509
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7510
	enum zone_type i, j;
7511 7512

	for_each_online_pgdat(pgdat) {
7513 7514 7515

		pgdat->totalreserve_pages = 0;

7516 7517
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7518
			long max = 0;
7519 7520 7521 7522 7523 7524 7525

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7526 7527
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7528

7529 7530
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7531

7532
			pgdat->totalreserve_pages += max;
7533

7534 7535 7536 7537 7538 7539
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7540 7541
/*
 * setup_per_zone_lowmem_reserve - called whenever
7542
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7543 7544 7545 7546 7547 7548
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7549
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7550

7551
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7552 7553
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7554
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7555 7556 7557

			zone->lowmem_reserve[j] = 0;

7558 7559
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7560 7561
				struct zone *lower_zone;

7562
				idx--;
L
Linus Torvalds 已提交
7563
				lower_zone = pgdat->node_zones + idx;
7564 7565 7566 7567 7568 7569 7570 7571

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7572
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7573 7574 7575
			}
		}
	}
7576 7577 7578

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7579 7580
}

7581
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7591
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7592 7593 7594
	}

	for_each_zone(zone) {
7595 7596
		u64 tmp;

7597
		spin_lock_irqsave(&zone->lock, flags);
7598
		tmp = (u64)pages_min * zone->managed_pages;
7599
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7600 7601
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7602 7603 7604 7605
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7606
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7607
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7608
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7609
			 */
7610
			unsigned long min_pages;
L
Linus Torvalds 已提交
7611

7612
			min_pages = zone->managed_pages / 1024;
7613
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7614
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7615
		} else {
N
Nick Piggin 已提交
7616 7617
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7618 7619
			 * proportionate to the zone's size.
			 */
7620
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7621 7622
		}

7623 7624 7625 7626 7627 7628 7629 7630 7631
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

7632 7633
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7634

7635
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7636
	}
7637 7638 7639

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7640 7641
}

7642 7643 7644 7645 7646 7647 7648 7649 7650
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7651 7652 7653
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7654
	__setup_per_zone_wmarks();
7655
	spin_unlock(&lock);
7656 7657
}

L
Linus Torvalds 已提交
7658 7659 7660 7661 7662 7663 7664
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7665
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7682
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7683 7684
{
	unsigned long lowmem_kbytes;
7685
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7686 7687

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7700
	setup_per_zone_wmarks();
7701
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7702
	setup_per_zone_lowmem_reserve();
7703 7704 7705 7706 7707 7708

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7709 7710
	return 0;
}
7711
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7712 7713

/*
7714
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7715 7716 7717
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7718
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7719
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7720
{
7721 7722 7723 7724 7725 7726
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7727 7728
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7729
		setup_per_zone_wmarks();
7730
	}
L
Linus Torvalds 已提交
7731 7732 7733
	return 0;
}

7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7749
#ifdef CONFIG_NUMA
7750
static void setup_min_unmapped_ratio(void)
7751
{
7752
	pg_data_t *pgdat;
7753 7754
	struct zone *zone;

7755
	for_each_online_pgdat(pgdat)
7756
		pgdat->min_unmapped_pages = 0;
7757

7758
	for_each_zone(zone)
7759
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7760 7761
				sysctl_min_unmapped_ratio) / 100;
}
7762

7763 7764

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7765
	void __user *buffer, size_t *length, loff_t *ppos)
7766 7767 7768
{
	int rc;

7769
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7770 7771 7772
	if (rc)
		return rc;

7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7783 7784 7785
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7786
	for_each_zone(zone)
7787
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7788
				sysctl_min_slab_ratio) / 100;
7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7802 7803
	return 0;
}
7804 7805
#endif

L
Linus Torvalds 已提交
7806 7807 7808 7809 7810 7811
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7812
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7813 7814
 * if in function of the boot time zone sizes.
 */
7815
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7816
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7817
{
7818
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7819 7820 7821 7822
	setup_per_zone_lowmem_reserve();
	return 0;
}

7823 7824
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7825 7826
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7827
 */
7828
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7829
	void __user *buffer, size_t *length, loff_t *ppos)
7830 7831
{
	struct zone *zone;
7832
	int old_percpu_pagelist_fraction;
7833 7834
	int ret;

7835 7836 7837
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7838
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7853

7854
	for_each_populated_zone(zone) {
7855 7856
		unsigned int cpu;

7857
		for_each_possible_cpu(cpu)
7858 7859
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7860
	}
7861
out:
7862
	mutex_unlock(&pcp_batch_high_lock);
7863
	return ret;
7864 7865
}

7866
#ifdef CONFIG_NUMA
7867
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7918 7919
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7920
{
7921
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7922 7923
	unsigned long log2qty, size;
	void *table = NULL;
7924
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7925 7926 7927 7928

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7929
		numentries = nr_kernel_pages;
7930
		numentries -= arch_reserved_kernel_pages();
7931 7932 7933 7934

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7935

P
Pavel Tatashin 已提交
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7946 7947 7948 7949 7950
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7951 7952

		/* Make sure we've got at least a 0-order allocation.. */
7953 7954 7955 7956 7957 7958 7959 7960
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7961
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7962
	}
7963
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7964 7965 7966 7967 7968 7969

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7970
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7971

7972 7973
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7974 7975 7976
	if (numentries > max)
		numentries = max;

7977
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7978

7979
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7980 7981
	do {
		size = bucketsize << log2qty;
7982 7983 7984 7985 7986 7987
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7988
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7989
		} else {
7990 7991
			/*
			 * If bucketsize is not a power-of-two, we may free
7992 7993
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7994
			 */
7995
			if (get_order(size) < MAX_ORDER) {
7996 7997
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7998
			}
L
Linus Torvalds 已提交
7999 8000 8001 8002 8003 8004
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8005 8006
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
8007 8008 8009 8010 8011 8012 8013 8014

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8015

K
KAMEZAWA Hiroyuki 已提交
8016
/*
8017 8018 8019
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
8020
 * PageLRU check without isolation or lru_lock could race so that
8021 8022 8023
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
8024
 */
8025
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8026
			 int migratetype,
8027
			 bool skip_hwpoisoned_pages)
8028 8029
{
	unsigned long pfn, iter, found;
8030

8031
	/*
8032 8033 8034 8035 8036
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
8037 8038
	 */

8039 8040 8041 8042 8043 8044 8045 8046 8047
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

8048 8049 8050 8051
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

8052
		if (!pfn_valid_within(check))
8053
			continue;
8054

8055
		page = pfn_to_page(check);
8056

8057
		if (PageReserved(page))
8058
			goto unmovable;
8059

8060 8061 8062 8063 8064 8065 8066 8067
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8068 8069 8070 8071 8072 8073
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
8074 8075
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8076

8077
			if (!hugepage_migration_supported(page_hstate(head)))
8078 8079
				goto unmovable;

8080 8081
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
8082 8083 8084
			continue;
		}

8085 8086 8087 8088
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8089
		 * because their page->_refcount is zero at all time.
8090
		 */
8091
		if (!page_ref_count(page)) {
8092 8093 8094 8095
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8096

8097 8098 8099 8100 8101 8102 8103
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

8104 8105 8106
		if (__PageMovable(page))
			continue;

8107 8108 8109
		if (!PageLRU(page))
			found++;
		/*
8110 8111 8112
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8113 8114 8115 8116 8117 8118 8119 8120 8121 8122
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8123
			goto unmovable;
8124
	}
8125
	return false;
8126 8127 8128
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
8129 8130
}

8131
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8146 8147
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8148 8149
{
	/* This function is based on compact_zone() from compaction.c. */
8150
	unsigned long nr_reclaimed;
8151 8152 8153 8154
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8155
	migrate_prep();
8156

8157
	while (pfn < end || !list_empty(&cc->migratepages)) {
8158 8159 8160 8161 8162
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8163 8164
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8165
			pfn = isolate_migratepages_range(cc, pfn, end);
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8176 8177 8178
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8179

8180
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8181
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8182
	}
8183 8184 8185 8186 8187
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8188 8189 8190 8191 8192 8193
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8194 8195 8196 8197
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8198
 * @gfp_mask:	GFP mask to use during compaction
8199 8200
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8201
 * aligned.  The PFN range must belong to a single zone.
8202
 *
8203 8204 8205
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8206 8207 8208 8209 8210
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8211
int alloc_contig_range(unsigned long start, unsigned long end,
8212
		       unsigned migratetype, gfp_t gfp_mask)
8213 8214
{
	unsigned long outer_start, outer_end;
8215 8216
	unsigned int order;
	int ret = 0;
8217

8218 8219 8220 8221
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8222
		.mode = MIGRATE_SYNC,
8223
		.ignore_skip_hint = true,
8224
		.no_set_skip_hint = true,
8225
		.gfp_mask = current_gfp_context(gfp_mask),
8226 8227 8228
	};
	INIT_LIST_HEAD(&cc.migratepages);

8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8254 8255
				       pfn_max_align_up(end), migratetype,
				       false);
8256
	if (ret)
8257
		return ret;
8258

8259 8260
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8261 8262 8263 8264 8265 8266 8267
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8268
	 */
8269
	ret = __alloc_contig_migrate_range(&cc, start, end);
8270
	if (ret && ret != -EBUSY)
8271
		goto done;
8272
	ret =0;
8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8292
	drain_all_pages(cc.zone);
8293 8294 8295 8296 8297

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8298 8299
			outer_start = start;
			break;
8300 8301 8302 8303
		}
		outer_start &= ~0UL << order;
	}

8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8317
	/* Make sure the range is really isolated. */
8318
	if (test_pages_isolated(outer_start, end, false)) {
8319
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8320
			__func__, outer_start, end);
8321 8322 8323 8324
		ret = -EBUSY;
		goto done;
	}

8325
	/* Grab isolated pages from freelists. */
8326
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8340
				pfn_max_align_up(end), migratetype);
8341 8342 8343 8344 8345
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8346 8347 8348 8349 8350 8351 8352 8353 8354
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8355 8356 8357
}
#endif

8358 8359 8360 8361
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8362 8363
void __meminit zone_pcp_update(struct zone *zone)
{
8364
	unsigned cpu;
8365
	mutex_lock(&pcp_batch_high_lock);
8366
	for_each_possible_cpu(cpu)
8367 8368
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8369
	mutex_unlock(&pcp_batch_high_lock);
8370 8371
}

8372 8373 8374
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8375 8376
	int cpu;
	struct per_cpu_pageset *pset;
8377 8378 8379 8380

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8381 8382 8383 8384
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8385 8386 8387 8388 8389 8390
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8391
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8392
/*
8393 8394
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8395 8396 8397 8398 8399 8400
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8401
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8402 8403 8404 8405 8406 8407 8408 8409
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8410
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8411 8412 8413 8414 8415 8416 8417 8418 8419
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8430 8431 8432 8433
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8434 8435
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8436
#endif
8437
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8438 8439 8440 8441 8442 8443 8444
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8445 8446 8447 8448 8449 8450

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8451
	unsigned int order;
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif