page_alloc.c 229.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74
#include "internal.h"
A
Alexander Duyck 已提交
75
#include "page_reporting.h"
L
Linus Torvalds 已提交
76

77 78
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
79
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
80

81 82 83 84 85
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

86 87
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

88 89 90 91 92 93 94 95 96
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97
int _node_numa_mem_[MAX_NUMNODES];
98 99
#endif

100 101 102 103
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

104
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105
volatile unsigned long latent_entropy __latent_entropy;
106 107 108
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
109
/*
110
 * Array of node states.
L
Linus Torvalds 已提交
111
 */
112 113 114 115 116 117 118
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 120
#endif
	[N_MEMORY] = { { [0] = 1UL } },
121 122 123 124 125
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

126 127 128
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

129
unsigned long totalram_pages __read_mostly;
130
unsigned long totalreserve_pages __read_mostly;
131
unsigned long totalcma_pages __read_mostly;
132

133
int percpu_pagelist_fraction;
134
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

154 155 156 157 158
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
159 160 161 162
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
163
 */
164 165 166 167

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
168
{
169
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
170 171 172 173
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
174 175
}

176
void pm_restrict_gfp_mask(void)
177
{
178
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
179 180
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
181
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182
}
183 184 185

bool pm_suspended_storage(void)
{
186
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
187 188 189
		return false;
	return true;
}
190 191
#endif /* CONFIG_PM_SLEEP */

192
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
193
unsigned int pageblock_order __read_mostly;
194 195
#endif

196
static void __free_pages_ok(struct page *page, unsigned int order);
197

L
Linus Torvalds 已提交
198 199 200 201 202 203
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
204
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
205 206 207
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
208
 */
209
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
210
#ifdef CONFIG_ZONE_DMA
211
	[ZONE_DMA] = 256,
212
#endif
213
#ifdef CONFIG_ZONE_DMA32
214
	[ZONE_DMA32] = 256,
215
#endif
216
	[ZONE_NORMAL] = 32,
217
#ifdef CONFIG_HIGHMEM
218
	[ZONE_HIGHMEM] = 0,
219
#endif
220
	[ZONE_MOVABLE] = 0,
221
};
L
Linus Torvalds 已提交
222 223 224

EXPORT_SYMBOL(totalram_pages);

225
static char * const zone_names[MAX_NR_ZONES] = {
226
#ifdef CONFIG_ZONE_DMA
227
	 "DMA",
228
#endif
229
#ifdef CONFIG_ZONE_DMA32
230
	 "DMA32",
231
#endif
232
	 "Normal",
233
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
234
	 "HighMem",
235
#endif
M
Mel Gorman 已提交
236
	 "Movable",
237 238 239
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
240 241
};

242 243 244 245 246 247 248 249 250 251 252 253 254
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

255 256 257 258 259 260
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
261 262 263
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
264 265
};

L
Linus Torvalds 已提交
266
int min_free_kbytes = 1024;
267
int user_min_free_kbytes = -1;
268
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
269

270 271 272
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
273

T
Tejun Heo 已提交
274
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
275 276 277
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
278
static unsigned long required_kernelcore_percent __initdata;
279
static unsigned long required_movablecore __initdata;
280
static unsigned long required_movablecore_percent __initdata;
281 282
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
283 284 285 286 287

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288

M
Miklos Szeredi 已提交
289 290
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
291
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
292
EXPORT_SYMBOL(nr_node_ids);
293
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
294 295
#endif

296 297
int page_group_by_mobility_disabled __read_mostly;

298
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

325
/* Returns true if the struct page for the pfn is uninitialised */
326
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
327
{
328 329 330
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
331 332 333 334 335 336 337 338 339 340 341 342 343
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
344
	/* Always populate low zones for address-constrained allocations */
345 346 347
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
348
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
349 350 351 352 353 354 355 356
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
357 358
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

359 360 361 362 363 364 365 366 367 368 369 370 371
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
472

473
void set_pageblock_migratetype(struct page *page, int migratetype)
474
{
475 476
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
477 478
		migratetype = MIGRATE_UNMOVABLE;

479 480 481 482
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
483
#ifdef CONFIG_DEBUG_VM
484
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
485
{
486 487 488
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
489
	unsigned long sp, start_pfn;
490

491 492
	do {
		seq = zone_span_seqbegin(zone);
493 494
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
495
		if (!zone_spans_pfn(zone, pfn))
496 497 498
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

499
	if (ret)
500 501 502
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
503

504
	return ret;
505 506 507 508
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
509
	if (!pfn_valid_within(page_to_pfn(page)))
510
		return 0;
L
Linus Torvalds 已提交
511
	if (zone != page_zone(page))
512 513 514 515 516 517 518
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
519
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
520 521
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
522
		return 1;
523 524 525
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
526 527
	return 0;
}
N
Nick Piggin 已提交
528
#else
529
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
530 531 532 533 534
{
	return 0;
}
#endif

535 536
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
537
{
538 539 540 541 542 543 544 545 546 547 548 549 550 551
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
552
			pr_alert(
553
			      "BUG: Bad page state: %lu messages suppressed\n",
554 555 556 557 558 559 560 561
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

562
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
563
		current->comm, page_to_pfn(page));
564 565 566 567 568
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
569
	dump_page_owner(page);
570

571
	print_modules();
L
Linus Torvalds 已提交
572
	dump_stack();
573
out:
574
	/* Leave bad fields for debug, except PageBuddy could make trouble */
575
	page_mapcount_reset(page); /* remove PageBuddy */
576
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
577 578 579 580 581
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
582
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
583
 *
584 585
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
586
 *
587 588
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
589
 *
590
 * The first tail page's ->compound_order holds the order of allocation.
591
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
592
 */
593

594
void free_compound_page(struct page *page)
595
{
596
	mem_cgroup_uncharge(page);
597
	__free_pages_ok(page, compound_order(page));
598 599
}

600
void prep_compound_page(struct page *page, unsigned int order)
601 602 603 604
{
	int i;
	int nr_pages = 1 << order;

605
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
606 607 608 609
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
610
		set_page_count(p, 0);
611
		p->mapping = TAIL_MAPPING;
612
		set_compound_head(p, page);
613
	}
614
	atomic_set(compound_mapcount_ptr(page), -1);
615 616
}

617 618
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
619 620
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
621
EXPORT_SYMBOL(_debug_pagealloc_enabled);
622 623
bool _debug_guardpage_enabled __read_mostly;

624 625 626 627
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
628
	return kstrtobool(buf, &_debug_pagealloc_enabled);
629 630 631
}
early_param("debug_pagealloc", early_debug_pagealloc);

632 633
static bool need_debug_guardpage(void)
{
634 635 636 637
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

638 639 640
	if (!debug_guardpage_minorder())
		return false;

641 642 643 644 645
	return true;
}

static void init_debug_guardpage(void)
{
646 647 648
	if (!debug_pagealloc_enabled())
		return;

649 650 651
	if (!debug_guardpage_minorder())
		return;

652 653 654 655 656 657 658
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
659 660 661 662 663 664

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
665
		pr_err("Bad debug_guardpage_minorder value\n");
666 667 668
		return 0;
	}
	_debug_guardpage_minorder = res;
669
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
670 671
	return 0;
}
672
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
673

674
static inline bool set_page_guard(struct zone *zone, struct page *page,
675
				unsigned int order, int migratetype)
676
{
677 678 679
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
680 681 682 683
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
684 685

	page_ext = lookup_page_ext(page);
686
	if (unlikely(!page_ext))
687
		return false;
688

689 690
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

691 692 693 694
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
695 696

	return true;
697 698
}

699 700
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
701
{
702 703 704 705 706 707
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
708 709 710
	if (unlikely(!page_ext))
		return;

711 712
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

713 714 715
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
716 717
}
#else
718
struct page_ext_operations debug_guardpage_ops;
719 720
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
721 722
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
723 724
#endif

725
static inline void set_page_order(struct page *page, unsigned int order)
726
{
H
Hugh Dickins 已提交
727
	set_page_private(page, order);
728
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
729 730 731 732
}

/*
 * This function checks whether a page is free && is the buddy
733
 * we can coalesce a page and its buddy if
734
 * (a) the buddy is not in a hole (check before calling!) &&
735
 * (b) the buddy is in the buddy system &&
736 737
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
738
 *
739 740
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
741
 *
742
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
743
 */
744
static inline int page_is_buddy(struct page *page, struct page *buddy,
745
							unsigned int order)
L
Linus Torvalds 已提交
746
{
747
	if (page_is_guard(buddy) && page_order(buddy) == order) {
748 749 750
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

751 752
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

753 754 755
		return 1;
	}

756
	if (PageBuddy(buddy) && page_order(buddy) == order) {
757 758 759 760 761 762 763 764
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

765 766
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

767
		return 1;
768
	}
769
	return 0;
L
Linus Torvalds 已提交
770 771
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
804 805 806 807
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

808 809 810 811 812 813
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
878 879
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
880
 * So when we are allocating or freeing one, we can derive the state of the
881 882
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
883
 * If a block is freed, and its buddy is also free, then this
884
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
885
 *
886
 * -- nyc
L
Linus Torvalds 已提交
887 888
 */

N
Nick Piggin 已提交
889
static inline void __free_one_page(struct page *page,
890
		unsigned long pfn,
891
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
892
		int migratetype, bool report)
L
Linus Torvalds 已提交
893
{
894 895
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
896
	struct page *buddy;
897
	unsigned int max_order;
898
	struct capture_control *capc = task_capc(zone);
899 900

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
901

902
	VM_BUG_ON(!zone_is_initialized(zone));
903
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
904

905
	VM_BUG_ON(migratetype == -1);
906
	if (likely(!is_migrate_isolate(migratetype)))
907
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
908

909
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
910
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
911

912
continue_merging:
913
	while (order < max_order - 1) {
914 915 916 917 918
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
919 920
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
921 922 923

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
924
		if (!page_is_buddy(page, buddy, order))
925
			goto done_merging;
926 927 928 929
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
930
		if (page_is_guard(buddy))
931
			clear_page_guard(zone, buddy, order, migratetype);
932
		else
933
			del_page_from_free_list(buddy, zone, order);
934 935 936
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
937 938
		order++;
	}
939 940 941 942 943 944 945 946 947 948 949 950
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

951 952
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
953 954 955 956 957 958 959 960 961 962 963 964
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
965
	set_page_order(page, order);
966 967 968 969 970 971 972 973 974

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
975
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
976
		struct page *higher_page, *higher_buddy;
977 978 979 980
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
981 982
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
983
			add_to_free_list_tail(page, zone, order,
984 985
					      migratetype);
			return;
986 987 988
		}
	}

989
	add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
990 991 992 993

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
994 995
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1018
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1019
{
1020 1021 1022 1023 1024
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1025

1026
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1027 1028 1029
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1030
	if (unlikely(page_ref_count(page) != 0))
1031
		bad_reason = "nonzero _refcount";
1032 1033 1034 1035
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1036 1037 1038 1039
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1040
	bad_page(page, bad_reason, bad_flags);
1041 1042 1043 1044
}

static inline int free_pages_check(struct page *page)
{
1045
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1046 1047 1048 1049
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1050
	return 1;
L
Linus Torvalds 已提交
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1069
		/* the first tail page: ->mapping may be compound_mapcount() */
1070 1071 1072 1073 1074 1075 1076 1077
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1078
		 * deferred_list.next -- ignore value.
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1103 1104
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1105
{
1106
	int bad = 0;
1107 1108 1109

	VM_BUG_ON_PAGE(PageTail(page), page);

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1121

1122 1123
		if (compound)
			ClearPageDoubleMap(page);
1124 1125 1126 1127 1128 1129 1130
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
G
Gavin Shan 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

			/*
			 * The page age information is stored in page flags
			 * or node's page array. We need to explicitly clear
			 * it in both cases. Otherwise, the stale age will
			 * be provided when it's allocated again. Also, we
			 * maintain age information for each page in the
			 * compound page, So we have to clear them one by one.
			 */
			kidled_set_page_age(page_pgdat(page + i),
					    page_to_pfn(page + i), 0);
1142 1143 1144
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1145
	if (PageMappingFlags(page))
1146
		page->mapping = NULL;
1147
	if (memcg_kmem_enabled() && PageKmemcg(page))
1148
		memcg_kmem_uncharge(page, order);
1149 1150 1151 1152
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1153

1154
	page_cpupid_reset_last(page);
G
Gavin Shan 已提交
1155
	kidled_set_page_age(page_pgdat(page), page_to_pfn(page), 0);
1156 1157
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1158 1159 1160

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1161
					   PAGE_SIZE << order);
1162
		debug_check_no_obj_freed(page_address(page),
1163
					   PAGE_SIZE << order);
1164
	}
1165 1166 1167
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1168
	kasan_free_nondeferred_pages(page, order);
1169 1170 1171 1172

	return true;
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1189 1190 1191 1192 1193 1194
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1195 1196 1197 1198 1199 1200 1201 1202 1203
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1204
/*
1205
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1206
 * Assumes all pages on list are in same zone, and of same order.
1207
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213 1214
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1215 1216
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1217
{
1218
	int migratetype = 0;
1219
	int batch_free = 0;
1220
	int prefetch_nr = 0;
1221
	bool isolated_pageblocks;
1222 1223
	struct page *page, *tmp;
	LIST_HEAD(head);
1224

1225
	while (count) {
1226 1227 1228
		struct list_head *list;

		/*
1229 1230 1231 1232 1233
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1234 1235
		 */
		do {
1236
			batch_free++;
1237 1238 1239 1240
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1241

1242 1243
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1244
			batch_free = count;
1245

1246
		do {
1247
			page = list_last_entry(list, struct page, lru);
1248
			/* must delete to avoid corrupting pcp list */
1249
			list_del(&page->lru);
1250
			pcp->count--;
1251

1252 1253 1254
			if (bulkfree_pcp_prepare(page))
				continue;

1255
			list_add_tail(&page->lru, &head);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1268
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1269
	}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1286
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1287 1288
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1289
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1290 1291
}

1292 1293
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1294
				unsigned int order,
1295
				int migratetype)
L
Linus Torvalds 已提交
1296
{
1297
	spin_lock(&zone->lock);
1298 1299 1300 1301
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1302
	__free_one_page(page, pfn, zone, order, migratetype, true);
1303
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1304 1305
}

1306
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1307
				unsigned long zone, int nid)
1308
{
1309
	mm_zero_struct_page(page);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1323
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1324
static void __meminit init_reserved_page(unsigned long pfn)
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1341
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1342 1343 1344 1345 1346 1347 1348
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1349 1350 1351 1352 1353 1354
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1355
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1356 1357 1358 1359
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1360 1361 1362 1363 1364
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1365 1366 1367 1368

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1369 1370 1371
			SetPageReserved(page);
		}
	}
1372 1373
}

1374 1375
static void __free_pages_ok(struct page *page, unsigned int order)
{
1376
	unsigned long flags;
M
Minchan Kim 已提交
1377
	int migratetype;
1378
	unsigned long pfn = page_to_pfn(page);
1379

1380
	if (!free_pages_prepare(page, order, true))
1381 1382
		return;

1383
	migratetype = get_pfnblock_migratetype(page, pfn);
1384 1385
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1386
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1387
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1388 1389
}

1390
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1391
{
1392
	unsigned int nr_pages = 1 << order;
1393
	struct page *p = page;
1394
	unsigned int loop;
1395

1396 1397 1398
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1399 1400
		__ClearPageReserved(p);
		set_page_count(p, 0);
1401
	}
1402 1403
	__ClearPageReserved(p);
	set_page_count(p, 0);
1404

1405
	page_zone(page)->managed_pages += nr_pages;
1406 1407
	set_page_refcounted(page);
	__free_pages(page, order);
1408 1409
}

1410 1411
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1412

1413 1414 1415 1416
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1417
	static DEFINE_SPINLOCK(early_pfn_lock);
1418 1419
	int nid;

1420
	spin_lock(&early_pfn_lock);
1421
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1422
	if (nid < 0)
1423
		nid = first_online_node;
1424 1425 1426
	spin_unlock(&early_pfn_lock);

	return nid;
1427 1428 1429 1430
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1431 1432
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1433 1434 1435
{
	int nid;

1436
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1450
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1451 1452 1453 1454
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1455
	return __free_pages_boot_core(page, order);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1487 1488 1489
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1529
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1530 1531
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1532
{
1533 1534
	struct page *page;
	unsigned long i;
1535

1536
	if (!nr_pages)
1537 1538
		return;

1539 1540
	page = pfn_to_page(pfn);

1541
	/* Free a large naturally-aligned chunk if possible */
1542 1543
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1544
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1545
		__free_pages_boot_core(page, pageblock_order);
1546 1547 1548
		return;
	}

1549 1550 1551
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1552
		__free_pages_boot_core(page, 0);
1553
	}
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1565

1566
/*
1567 1568 1569 1570 1571 1572 1573 1574
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1575
 */
1576
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1577
{
1578 1579 1580 1581 1582 1583
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1584

1585 1586 1587 1588
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1589
static void __init deferred_free_pages(unsigned long pfn,
1590 1591 1592 1593
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1594

1595
	for (; pfn < end_pfn; pfn++) {
1596
		if (!deferred_pfn_valid(pfn)) {
1597 1598 1599 1600 1601
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1602
			touch_nmi_watchdog();
1603 1604 1605 1606 1607 1608
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1609 1610
}

1611 1612 1613 1614 1615
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1616
static unsigned long  __init deferred_init_pages(struct zone *zone,
1617 1618
						 unsigned long pfn,
						 unsigned long end_pfn)
1619 1620
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1621
	int nid = zone_to_nid(zone);
1622
	unsigned long nr_pages = 0;
1623
	int zid = zone_idx(zone);
1624 1625
	struct page *page = NULL;

1626
	for (; pfn < end_pfn; pfn++) {
1627
		if (!deferred_pfn_valid(pfn)) {
1628
			page = NULL;
1629
			continue;
1630
		} else if (!page || !(pfn & nr_pgmask)) {
1631
			page = pfn_to_page(pfn);
1632
			touch_nmi_watchdog();
1633 1634
		} else {
			page++;
1635
		}
1636
		__init_single_page(page, pfn, zid, nid);
1637
		nr_pages++;
1638
	}
1639
	return (nr_pages);
1640 1641
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1726 1727 1728 1729 1730
/*
 * Release the pending interrupts for every TICK_PAGE_COUNT pages.
 */
#define TICK_PAGE_COUNT	(32 * 1024)

1731
/* Initialise remaining memory on a node */
1732
static int __init deferred_init_memmap(void *data)
1733
{
1734
	pg_data_t *pgdat = data;
1735
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1736
	unsigned long spfn = 0, epfn = 0, nr_pages = 0, prev_nr_pages = 0;
1737
	unsigned long first_init_pfn, flags;
1738 1739
	unsigned long start = jiffies;
	struct zone *zone;
1740
	int zid;
1741
	u64 i;
1742

1743 1744 1745 1746
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

1747
again:
1748 1749
	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1750
	if (first_init_pfn == ULONG_MAX) {
1751
		pgdat_resize_unlock(pgdat, &flags);
1752
		pgdat_init_report_one_done();
1753 1754 1755
		return 0;
	}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1766 1767 1768 1769 1770

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1771

1772
	/*
1773 1774 1775
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1776
	 */
1777
	while (spfn < epfn) {
1778
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		/*
		 * Release the interrupts for every TICK_PAGE_COUNT pages
		 * (128MB) to give tick timer the chance to update the
		 * system jiffies.
		 */
		if ((nr_pages - prev_nr_pages) > TICK_PAGE_COUNT) {
			prev_nr_pages = nr_pages;
			pgdat->first_deferred_pfn = spfn;
			pgdat_resize_unlock(pgdat, &flags);
			goto again;
		}
	}

1792
zone_empty:
1793
	pgdat->first_deferred_pfn = ULONG_MAX;
1794
	pgdat_resize_unlock(pgdat, &flags);
1795 1796 1797 1798

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1799 1800
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1801 1802

	pgdat_init_report_one_done();
1803 1804
	return 0;
}
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1825
	pg_data_t *pgdat = zone->zone_pgdat;
1826
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1827 1828
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1857 1858 1859 1860
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1861
		pgdat_resize_unlock(pgdat, &flags);
1862 1863
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1864 1865
	}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1876

1877 1878 1879
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1880

1881
		/* If our quota has been met we can stop here */
1882 1883 1884 1885
		if (nr_pages >= nr_pages_needed)
			break;
	}

1886
	pgdat->first_deferred_pfn = spfn;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1904
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1905 1906 1907

void __init page_alloc_init_late(void)
{
1908 1909 1910
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1911 1912
	int nid;

1913 1914
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1915 1916 1917 1918 1919
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1920
	wait_for_completion(&pgdat_init_all_done_comp);
1921

1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

1930 1931 1932 1933 1934 1935
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1936 1937
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1938
#endif
P
Pavel Tatashin 已提交
1939 1940 1941 1942
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1943 1944 1945

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1946 1947
}

1948
#ifdef CONFIG_CMA
1949
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1950 1951 1952 1953 1954 1955 1956 1957
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1958
	} while (++p, --i);
1959 1960

	set_pageblock_migratetype(page, MIGRATE_CMA);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1975
	adjust_managed_page_count(page, pageblock_nr_pages);
1976 1977
}
#endif
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1991
 * -- nyc
L
Linus Torvalds 已提交
1992
 */
N
Nick Piggin 已提交
1993
static inline void expand(struct zone *zone, struct page *page,
1994
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999 2000
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2001
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2002

2003 2004 2005 2006 2007 2008 2009
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2010
			continue;
2011

2012
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2013 2014 2015 2016
		set_page_order(&page[size], high);
	}
}

2017
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2018
{
2019 2020
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2021

2022
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2023 2024 2025
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2026
	if (unlikely(page_ref_count(page) != 0))
2027
		bad_reason = "nonzero _count";
2028 2029 2030
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2031 2032 2033
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2034
	}
2035 2036 2037 2038
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2039 2040 2041 2042
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2057 2058
}

2059
static inline bool free_pages_prezeroed(void)
2060 2061
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2062
		page_poisoning_enabled();
2063 2064
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2099 2100 2101 2102 2103 2104 2105 2106 2107
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2108
	kernel_poison_pages(page, 1 << order, 1);
2109 2110 2111
	set_page_owner(page, order, gfp_flags);
}

2112
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2113
							unsigned int alloc_flags)
2114 2115
{
	int i;
2116

2117
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2118

2119
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2120 2121
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2122 2123 2124 2125

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2126
	/*
2127
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2128 2129 2130 2131
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2132 2133 2134 2135
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2136 2137
}

2138 2139 2140 2141
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2142
static __always_inline
2143
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2144 2145 2146
						int migratetype)
{
	unsigned int current_order;
2147
	struct free_area *area;
2148 2149 2150 2151 2152
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2153
		page = get_page_from_free_area(area, migratetype);
2154 2155
		if (!page)
			continue;
2156 2157
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2158
		set_pcppage_migratetype(page, migratetype);
2159 2160 2161 2162 2163 2164 2165
		return page;
	}

	return NULL;
}


2166 2167 2168 2169
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2170
static int fallbacks[MIGRATE_TYPES][4] = {
2171 2172 2173
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2174
#ifdef CONFIG_CMA
2175
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2176
#endif
2177
#ifdef CONFIG_MEMORY_ISOLATION
2178
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2179
#endif
2180 2181
};

2182
#ifdef CONFIG_CMA
2183
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2184 2185 2186 2187 2188 2189 2190 2191 2192
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2193 2194
/*
 * Move the free pages in a range to the free lists of the requested type.
2195
 * Note that start_page and end_pages are not aligned on a pageblock
2196 2197
 * boundary. If alignment is required, use move_freepages_block()
 */
2198
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2199
			  struct page *start_page, struct page *end_page,
2200
			  int migratetype, int *num_movable)
2201 2202
{
	struct page *page;
2203
	unsigned int order;
2204
	int pages_moved = 0;
2205 2206 2207 2208 2209 2210 2211

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2212
	 * grouping pages by mobility
2213
	 */
2214 2215 2216
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2217 2218
#endif

2219 2220 2221
	if (num_movable)
		*num_movable = 0;

2222 2223 2224 2225 2226 2227
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2228 2229 2230
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2231
		if (!PageBuddy(page)) {
2232 2233 2234 2235 2236 2237 2238 2239 2240
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2241 2242 2243 2244 2245
			page++;
			continue;
		}

		order = page_order(page);
2246
		move_to_free_list(page, zone, order, migratetype);
2247
		page += 1 << order;
2248
		pages_moved += 1 << order;
2249 2250
	}

2251
	return pages_moved;
2252 2253
}

2254
int move_freepages_block(struct zone *zone, struct page *page,
2255
				int migratetype, int *num_movable)
2256 2257 2258 2259 2260
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2261
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2262
	start_page = pfn_to_page(start_pfn);
2263 2264
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2265 2266

	/* Do not cross zone boundaries */
2267
	if (!zone_spans_pfn(zone, start_pfn))
2268
		start_page = page;
2269
	if (!zone_spans_pfn(zone, end_pfn))
2270 2271
		return 0;

2272 2273
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2274 2275
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2287
/*
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2298
 */
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2323 2324 2325 2326
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2327 2328
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2329
					int start_type, bool whole_block)
2330
{
2331
	unsigned int current_order = page_order(page);
2332 2333 2334 2335
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2336

2337 2338 2339 2340
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2341
	if (is_migrate_highatomic(old_block_type))
2342 2343
		goto single_page;

2344 2345 2346
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2347
		goto single_page;
2348 2349
	}

2350 2351 2352 2353
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2378
	/* moving whole block can fail due to zone boundary conditions */
2379
	if (!free_pages)
2380
		goto single_page;
2381

2382 2383 2384 2385 2386
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2387 2388
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2389 2390 2391 2392

	return;

single_page:
2393
	move_to_free_list(page, zone, current_order, start_type);
2394 2395
}

2396 2397 2398 2399 2400 2401 2402 2403
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2414
		if (fallback_mt == MIGRATE_TYPES)
2415 2416
			break;

2417
		if (free_area_empty(area, fallback_mt))
2418
			continue;
2419

2420 2421 2422
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2423 2424 2425 2426 2427
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2428
	}
2429 2430

	return -1;
2431 2432
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2459 2460
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2461 2462
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2463
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2475 2476 2477
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2478
 */
2479 2480
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2481 2482 2483 2484 2485 2486 2487
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2488
	bool ret;
2489 2490 2491

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2492 2493 2494 2495 2496 2497
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2498 2499 2500 2501 2502 2503
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2504
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2505
			if (!page)
2506 2507 2508
				continue;

			/*
2509 2510 2511 2512 2513
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2514
			 */
2515
			if (is_migrate_highatomic_page(page)) {
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2538 2539
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2540 2541 2542 2543
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2544 2545 2546
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2547 2548

	return false;
2549 2550
}

2551 2552 2553 2554 2555
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2556 2557 2558 2559
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2560
 */
2561
static __always_inline bool
2562
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2563
{
2564
	struct free_area *area;
2565
	int current_order;
2566
	struct page *page;
2567 2568
	int fallback_mt;
	bool can_steal;
2569

2570 2571 2572 2573 2574
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2575
	for (current_order = MAX_ORDER - 1; current_order >= order;
2576
				--current_order) {
2577 2578
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2579
				start_migratetype, false, &can_steal);
2580 2581
		if (fallback_mt == -1)
			continue;
2582

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2594

2595 2596
		goto do_steal;
	}
2597

2598
	return false;
2599

2600 2601 2602 2603 2604 2605 2606 2607
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2608 2609
	}

2610 2611 2612 2613 2614 2615 2616
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2617
	page = get_page_from_free_area(area, fallback_mt);
2618 2619 2620 2621 2622 2623 2624 2625

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2626 2627
}

2628
/*
L
Linus Torvalds 已提交
2629 2630 2631
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2632 2633
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2634 2635 2636
{
	struct page *page;

2637
retry:
2638
	page = __rmqueue_smallest(zone, order, migratetype);
2639
	if (unlikely(!page)) {
2640 2641 2642
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2643 2644
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2645 2646
	}

2647
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2648
	return page;
L
Linus Torvalds 已提交
2649 2650
}

2651
/*
L
Linus Torvalds 已提交
2652 2653 2654 2655
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2656
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2657
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2658
			int migratetype)
L
Linus Torvalds 已提交
2659
{
2660
	int i, alloced = 0;
2661

2662
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2663
	for (i = 0; i < count; ++i) {
2664
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2665
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2666
			break;
2667

2668 2669 2670
		if (unlikely(check_pcp_refill(page)))
			continue;

2671
		/*
2672 2673 2674 2675 2676 2677 2678 2679
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2680
		 */
2681
		list_add_tail(&page->lru, list);
2682
		alloced++;
2683
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2684 2685
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2686
	}
2687 2688 2689 2690 2691 2692 2693

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2694
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2695
	spin_unlock(&zone->lock);
2696
	return alloced;
L
Linus Torvalds 已提交
2697 2698
}

2699
#ifdef CONFIG_NUMA
2700
/*
2701 2702 2703 2704
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2705 2706
 * Note that this function must be called with the thread pinned to
 * a single processor.
2707
 */
2708
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2709 2710
{
	unsigned long flags;
2711
	int to_drain, batch;
2712

2713
	local_irq_save(flags);
2714
	batch = READ_ONCE(pcp->batch);
2715
	to_drain = min(pcp->count, batch);
2716
	if (to_drain > 0)
2717
		free_pcppages_bulk(zone, to_drain, pcp);
2718
	local_irq_restore(flags);
2719 2720 2721
}
#endif

2722
/*
2723
 * Drain pcplists of the indicated processor and zone.
2724 2725 2726 2727 2728
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2729
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2730
{
N
Nick Piggin 已提交
2731
	unsigned long flags;
2732 2733
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2734

2735 2736
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2737

2738
	pcp = &pset->pcp;
2739
	if (pcp->count)
2740 2741 2742
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2757 2758 2759
	}
}

2760 2761
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2762 2763 2764
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2765
 */
2766
void drain_local_pages(struct zone *zone)
2767
{
2768 2769 2770 2771 2772 2773
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2774 2775
}

2776 2777
static void drain_local_pages_wq(struct work_struct *work)
{
2778 2779 2780 2781 2782 2783 2784 2785
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2786
	drain_local_pages(NULL);
2787
	preempt_enable();
2788 2789
}

2790
/*
2791 2792
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2793 2794
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2795
 * Note that this can be extremely slow as the draining happens in a workqueue.
2796
 */
2797
void drain_all_pages(struct zone *zone)
2798
{
2799 2800 2801 2802 2803 2804 2805 2806
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2807 2808 2809 2810 2811 2812 2813
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2824

2825 2826 2827 2828 2829 2830 2831
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2832 2833
		struct per_cpu_pageset *pcp;
		struct zone *z;
2834
		bool has_pcps = false;
2835 2836

		if (zone) {
2837
			pcp = per_cpu_ptr(zone->pageset, cpu);
2838
			if (pcp->pcp.count)
2839
				has_pcps = true;
2840 2841 2842 2843 2844 2845 2846
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2847 2848
			}
		}
2849

2850 2851 2852 2853 2854
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2855

2856 2857 2858
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2859
		queue_work_on(cpu, mm_percpu_wq, work);
2860
	}
2861 2862 2863 2864
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2865 2866
}

2867
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2868

2869 2870 2871 2872 2873
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2874 2875
void mark_free_pages(struct zone *zone)
{
2876
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2877
	unsigned long flags;
2878
	unsigned int order, t;
2879
	struct page *page;
L
Linus Torvalds 已提交
2880

2881
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2882 2883 2884
		return;

	spin_lock_irqsave(&zone->lock, flags);
2885

2886
	max_zone_pfn = zone_end_pfn(zone);
2887 2888
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2889
			page = pfn_to_page(pfn);
2890

2891 2892 2893 2894 2895
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2896 2897 2898
			if (page_zone(page) != zone)
				continue;

2899 2900
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2901
		}
L
Linus Torvalds 已提交
2902

2903
	for_each_migratetype_order(order, t) {
2904 2905
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2906
			unsigned long i;
L
Linus Torvalds 已提交
2907

2908
			pfn = page_to_pfn(page);
2909 2910 2911 2912 2913
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2914
				swsusp_set_page_free(pfn_to_page(pfn + i));
2915
			}
2916
		}
2917
	}
L
Linus Torvalds 已提交
2918 2919
	spin_unlock_irqrestore(&zone->lock, flags);
}
2920
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2921

2922
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2923
{
2924
	int migratetype;
L
Linus Torvalds 已提交
2925

2926
	if (!free_pcp_prepare(page))
2927
		return false;
2928

2929
	migratetype = get_pfnblock_migratetype(page, pfn);
2930
	set_pcppage_migratetype(page, migratetype);
2931 2932 2933
	return true;
}

2934
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2935 2936 2937 2938 2939 2940
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2941
	__count_vm_event(PGFREE);
2942

2943 2944 2945
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2946
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2947 2948 2949 2950
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2951
		if (unlikely(is_migrate_isolate(migratetype))) {
2952
			free_one_page(zone, page, pfn, 0, migratetype);
2953
			return;
2954 2955 2956 2957
		}
		migratetype = MIGRATE_MOVABLE;
	}

2958
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2959
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2960
	pcp->count++;
N
Nick Piggin 已提交
2961
	if (pcp->count >= pcp->high) {
2962
		unsigned long batch = READ_ONCE(pcp->batch);
2963
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2964
	}
2965
}
2966

2967 2968 2969
/*
 * Free a 0-order page
 */
2970
void free_unref_page(struct page *page)
2971 2972 2973 2974
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2975
	if (!free_unref_page_prepare(page, pfn))
2976 2977 2978
		return;

	local_irq_save(flags);
2979
	free_unref_page_commit(page, pfn);
2980
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2981 2982
}

2983 2984 2985
/*
 * Free a list of 0-order pages
 */
2986
void free_unref_page_list(struct list_head *list)
2987 2988
{
	struct page *page, *next;
2989
	unsigned long flags, pfn;
2990
	int batch_count = 0;
2991 2992 2993 2994

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2995
		if (!free_unref_page_prepare(page, pfn))
2996 2997 2998
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2999

3000
	local_irq_save(flags);
3001
	list_for_each_entry_safe(page, next, list, lru) {
3002 3003 3004
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3005 3006
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3017
	}
3018
	local_irq_restore(flags);
3019 3020
}

N
Nick Piggin 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3033 3034
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3035

3036
	for (i = 1; i < (1 << order); i++)
3037
		set_page_refcounted(page + i);
3038
	split_page_owner(page, order);
N
Nick Piggin 已提交
3039
}
K
K. Y. Srinivasan 已提交
3040
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3041

3042
int __isolate_free_page(struct page *page, unsigned int order)
3043 3044 3045
{
	unsigned long watermark;
	struct zone *zone;
3046
	int mt;
3047 3048 3049 3050

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3051
	mt = get_pageblock_migratetype(page);
3052

3053
	if (!is_migrate_isolate(mt)) {
3054 3055 3056 3057 3058 3059
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3060
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3061
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3062 3063
			return 0;

3064
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3065
	}
3066 3067

	/* Remove page from free list */
3068

3069
	del_page_from_free_list(page, zone, order);
3070

3071 3072 3073 3074
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3075 3076
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3077 3078
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3079
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3080
			    && !is_migrate_highatomic(mt))
3081 3082 3083
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3084 3085
	}

3086

3087
	return 1UL << order;
3088 3089
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3106
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3107 3108
}

3109 3110 3111 3112 3113
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3114
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3115 3116
{
#ifdef CONFIG_NUMA
3117
	enum numa_stat_item local_stat = NUMA_LOCAL;
3118

3119 3120 3121 3122
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3123
	if (zone_to_nid(z) != numa_node_id())
3124 3125
		local_stat = NUMA_OTHER;

3126
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3127
		__inc_numa_state(z, NUMA_HIT);
3128
	else {
3129 3130
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3131
	}
3132
	__inc_numa_state(z, local_stat);
3133 3134 3135
#endif
}

3136 3137
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
3138
			struct per_cpu_pages *pcp,
3139 3140 3141 3142 3143 3144 3145 3146
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
3147
					migratetype);
3148 3149 3150 3151
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3152
		page = list_first_entry(list, struct page, lru);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3168
	unsigned long flags;
3169

3170
	local_irq_save(flags);
3171 3172
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
3173
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
3174 3175 3176 3177
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3178
	local_irq_restore(flags);
3179 3180 3181
	return page;
}

L
Linus Torvalds 已提交
3182
/*
3183
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3184
 */
3185
static inline
3186
struct page *rmqueue(struct zone *preferred_zone,
3187
			struct zone *zone, unsigned int order,
3188 3189
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3190 3191
{
	unsigned long flags;
3192
	struct page *page;
L
Linus Torvalds 已提交
3193

3194
	if (likely(order == 0)) {
3195 3196 3197 3198
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
3199

3200 3201 3202 3203 3204 3205
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3206

3207 3208 3209 3210 3211 3212 3213
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3214
		if (!page)
3215 3216 3217 3218 3219 3220 3221
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3222

3223
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3224
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3225
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3226

3227 3228
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3229
	return page;
N
Nick Piggin 已提交
3230 3231 3232 3233

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3234 3235
}

3236 3237
#ifdef CONFIG_FAIL_PAGE_ALLOC

3238
static struct {
3239 3240
	struct fault_attr attr;

3241
	bool ignore_gfp_highmem;
3242
	bool ignore_gfp_reclaim;
3243
	u32 min_order;
3244 3245
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3246
	.ignore_gfp_reclaim = true,
3247
	.ignore_gfp_highmem = true,
3248
	.min_order = 1,
3249 3250 3251 3252 3253 3254 3255 3256
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3257
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3258
{
3259
	if (order < fail_page_alloc.min_order)
3260
		return false;
3261
	if (gfp_mask & __GFP_NOFAIL)
3262
		return false;
3263
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3264
		return false;
3265 3266
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3267
		return false;
3268 3269 3270 3271 3272 3273 3274 3275

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3276
	umode_t mode = S_IFREG | 0600;
3277 3278
	struct dentry *dir;

3279 3280 3281 3282
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3283

3284
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3285
				&fail_page_alloc.ignore_gfp_reclaim))
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3296
	debugfs_remove_recursive(dir);
3297

3298
	return -ENOMEM;
3299 3300 3301 3302 3303 3304 3305 3306
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3307
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3308
{
3309
	return false;
3310 3311 3312 3313
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3314
/*
3315 3316 3317 3318
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3319
 */
3320 3321 3322
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3323
{
3324
	long min = mark;
L
Linus Torvalds 已提交
3325
	int o;
3326
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3327

3328 3329 3330 3331 3332 3333 3334 3335
	/* apply negative memory.wmark_min_adj */
	if ((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) {
		int min_adj = memcg_get_wmark_min_adj(current);

		if (min_adj < 0)
			min -= mark * (-min_adj) / 100;
	}

3336
	/* free_pages may go negative - that's OK */
3337
	free_pages -= (1 << order) - 1;
3338

R
Rohit Seth 已提交
3339
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3340
		min -= min / 2;
3341 3342 3343 3344 3345 3346

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3347
	if (likely(!alloc_harder)) {
3348
		free_pages -= z->nr_reserved_highatomic;
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3362 3363 3364 3365 3366 3367
	/*
	 * Only happens due to memory.wmark_min_adj.
	 * Guarantee safe min after memory.wmark_min_adj?
	 */
	if (min < mark / 4)
		min = mark / 4;
3368

3369 3370 3371 3372 3373 3374
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3375 3376 3377 3378 3379 3380
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3381
		return false;
L
Linus Torvalds 已提交
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3396
			if (!free_area_empty(area, mt))
3397 3398 3399 3400
				return true;
		}

#ifdef CONFIG_CMA
3401
		if ((alloc_flags & ALLOC_CMA) &&
3402
		    !free_area_empty(area, MIGRATE_CMA)) {
3403
			return true;
3404
		}
3405
#endif
3406 3407 3408
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3409
	}
3410
	return false;
3411 3412
}

3413
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3414
		      int classzone_idx, unsigned int alloc_flags)
3415 3416 3417 3418 3419
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3420 3421 3422 3423
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3424 3425 3426 3427 3428 3429 3430
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3431 3432 3433 3434 3435 3436 3437 3438

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3439
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3440 3441 3442 3443 3444 3445
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3446
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3447
			unsigned long mark, int classzone_idx)
3448 3449 3450 3451 3452 3453
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3454
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3455
								free_pages);
L
Linus Torvalds 已提交
3456 3457
}

3458
#ifdef CONFIG_NUMA
3459 3460
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3461
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3462
				RECLAIM_DISTANCE;
3463
}
3464
#else	/* CONFIG_NUMA */
3465 3466 3467 3468
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3469 3470
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3471
/*
3472
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3473 3474 3475
 * a page.
 */
static struct page *
3476 3477
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3478
{
3479
	struct zoneref *z = ac->preferred_zoneref;
3480
	struct zone *zone;
3481 3482
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3483
	/*
3484
	 * Scan zonelist, looking for a zone with enough free.
3485
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3486
	 */
3487
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3488
								ac->nodemask) {
3489
		struct page *page;
3490 3491
		unsigned long mark;

3492 3493
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3494
			!__cpuset_zone_allowed(zone, gfp_mask))
3495
				continue;
3496 3497
		/*
		 * When allocating a page cache page for writing, we
3498 3499
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3500
		 * proportional share of globally allowed dirty pages.
3501
		 * The dirty limits take into account the node's
3502 3503 3504 3505 3506
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3507
		 * exceed the per-node dirty limit in the slowpath
3508
		 * (spread_dirty_pages unset) before going into reclaim,
3509
		 * which is important when on a NUMA setup the allowed
3510
		 * nodes are together not big enough to reach the
3511
		 * global limit.  The proper fix for these situations
3512
		 * will require awareness of nodes in the
3513 3514
		 * dirty-throttling and the flusher threads.
		 */
3515 3516 3517 3518 3519 3520 3521 3522 3523
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3524

3525
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3526
		if (!zone_watermark_fast(zone, order, mark,
3527
				       ac_classzone_idx(ac), alloc_flags)) {
3528 3529
			int ret;

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3540 3541 3542 3543 3544
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3545
			if (node_reclaim_mode == 0 ||
3546
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3547 3548
				continue;

3549
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3550
			switch (ret) {
3551
			case NODE_RECLAIM_NOSCAN:
3552
				/* did not scan */
3553
				continue;
3554
			case NODE_RECLAIM_FULL:
3555
				/* scanned but unreclaimable */
3556
				continue;
3557 3558
			default:
				/* did we reclaim enough */
3559
				if (zone_watermark_ok(zone, order, mark,
3560
						ac_classzone_idx(ac), alloc_flags))
3561 3562 3563
					goto try_this_zone;

				continue;
3564
			}
R
Rohit Seth 已提交
3565 3566
		}

3567
try_this_zone:
3568
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3569
				gfp_mask, alloc_flags, ac->migratetype);
3570
		if (page) {
3571
			prep_new_page(page, order, gfp_mask, alloc_flags);
3572 3573 3574 3575 3576 3577 3578 3579

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3580
			return page;
3581 3582 3583 3584 3585 3586 3587 3588
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3589
		}
3590
	}
3591

3592
	return NULL;
M
Martin Hicks 已提交
3593 3594
}

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3609
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3610 3611
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3612
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3613

3614
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3615 3616 3617 3618 3619 3620 3621 3622
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3623
		if (tsk_is_oom_victim(current) ||
3624 3625
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3626
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3627 3628
		filter &= ~SHOW_MEM_FILTER_NODES;

3629
	show_mem(filter, nodemask);
3630 3631
}

3632
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3633 3634 3635 3636 3637 3638
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3639
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3640 3641
		return;

3642 3643 3644
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3645 3646 3647
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3648
	va_end(args);
J
Joe Perches 已提交
3649

3650
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3651

3652
	dump_stack();
3653
	warn_alloc_show_mem(gfp_mask, nodemask);
3654 3655
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3676 3677
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3678
	const struct alloc_context *ac, unsigned long *did_some_progress)
3679
{
3680 3681 3682
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3683
		.memcg = NULL,
3684 3685 3686
		.gfp_mask = gfp_mask,
		.order = order,
	};
3687 3688
	struct page *page;

3689 3690 3691
	*did_some_progress = 0;

	/*
3692 3693
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3694
	 */
3695
	if (!mutex_trylock(&oom_lock)) {
3696
		*did_some_progress = 1;
3697
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3698 3699
		return NULL;
	}
3700

3701 3702 3703
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3704 3705 3706
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3707
	 */
3708 3709 3710
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3711
	if (page)
3712 3713
		goto out;

3714 3715 3716 3717 3718 3719
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3720 3721 3722 3723 3724 3725 3726 3727
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3746

3747
	/* Exhausted what can be done so it's blame time */
3748
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3749
		*did_some_progress = 1;
3750

3751 3752 3753 3754 3755 3756
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3757 3758
					ALLOC_NO_WATERMARKS, ac);
	}
3759
out:
3760
	mutex_unlock(&oom_lock);
3761 3762 3763
	return page;
}

3764 3765 3766 3767 3768 3769
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3770 3771 3772 3773
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3774
		unsigned int alloc_flags, const struct alloc_context *ac,
3775
		enum compact_priority prio, enum compact_result *compact_result)
3776
{
3777
	struct page *page = NULL;
3778
	unsigned long pflags;
3779
	unsigned int noreclaim_flag;
3780
	u64 start;
3781 3782

	if (!order)
3783 3784
		return NULL;

3785
	psi_memstall_enter(&pflags);
3786
	memcg_lat_stat_start(&start);
3787
	noreclaim_flag = memalloc_noreclaim_save();
3788

3789
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3790
									prio, &page);
3791

3792
	memalloc_noreclaim_restore(noreclaim_flag);
3793
	memcg_lat_stat_end(MEM_LAT_DIRECT_COMPACT, start);
3794
	psi_memstall_leave(&pflags);
3795

3796 3797 3798 3799 3800
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3801

3802 3803 3804 3805 3806 3807 3808
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3809

3810 3811
	if (page) {
		struct zone *zone = page_zone(page);
3812

3813 3814 3815 3816 3817
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3818

3819 3820 3821 3822 3823
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3824

3825
	cond_resched();
3826 3827 3828

	return NULL;
}
3829

3830 3831 3832 3833
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3834
		     int *compaction_retries)
3835 3836
{
	int max_retries = MAX_COMPACT_RETRIES;
3837
	int min_priority;
3838 3839 3840
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3841 3842 3843 3844

	if (!order)
		return false;

3845 3846 3847
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3848 3849 3850 3851 3852
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3853 3854
	if (compaction_failed(compact_result))
		goto check_priority;
3855 3856 3857 3858 3859 3860 3861

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3862 3863 3864 3865
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3866 3867

	/*
3868
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3869 3870 3871 3872 3873 3874 3875 3876
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3877 3878 3879 3880
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3881

3882 3883 3884 3885 3886
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3887 3888
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3889

3890
	if (*compact_priority > min_priority) {
3891 3892
		(*compact_priority)--;
		*compaction_retries = 0;
3893
		ret = true;
3894
	}
3895 3896 3897
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3898
}
3899 3900 3901
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3902
		unsigned int alloc_flags, const struct alloc_context *ac,
3903
		enum compact_priority prio, enum compact_result *compact_result)
3904
{
3905
	*compact_result = COMPACT_SKIPPED;
3906 3907
	return NULL;
}
3908 3909

static inline bool
3910 3911
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3912
		     enum compact_priority *compact_priority,
3913
		     int *compaction_retries)
3914
{
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3933 3934
	return false;
}
3935
#endif /* CONFIG_COMPACTION */
3936

3937
#ifdef CONFIG_LOCKDEP
3938
static struct lockdep_map __fs_reclaim_map =
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3950
	if (current->flags & PF_MEMALLOC)
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3973 3974 3975
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3976
		__fs_reclaim_acquire();
3977 3978 3979 3980 3981 3982
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3983
		__fs_reclaim_release();
3984 3985 3986 3987
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3988 3989
/* Perform direct synchronous page reclaim */
static int
3990 3991
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3992 3993
{
	struct reclaim_state reclaim_state;
3994
	int progress;
3995
	unsigned int noreclaim_flag;
3996
	unsigned long pflags;
3997
	u64 start;
3998 3999 4000 4001 4002

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4003
	psi_memstall_enter(&pflags);
4004
	memcg_lat_stat_start(&start);
4005
	fs_reclaim_acquire(gfp_mask);
4006
	noreclaim_flag = memalloc_noreclaim_save();
4007
	reclaim_state.reclaimed_slab = 0;
4008
	current->reclaim_state = &reclaim_state;
4009

4010 4011
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4012

4013
	current->reclaim_state = NULL;
4014
	memalloc_noreclaim_restore(noreclaim_flag);
4015
	fs_reclaim_release(gfp_mask);
4016
	memcg_lat_stat_end(MEM_LAT_GLOBAL_DIRECT_RECLAIM, start);
4017
	psi_memstall_leave(&pflags);
4018 4019 4020

	cond_resched();

4021 4022 4023 4024 4025 4026
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4027
		unsigned int alloc_flags, const struct alloc_context *ac,
4028
		unsigned long *did_some_progress)
4029 4030 4031 4032
{
	struct page *page = NULL;
	bool drained = false;

4033
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4034 4035
	if (unlikely(!(*did_some_progress)))
		return NULL;
4036

4037
retry:
4038
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4039 4040 4041

	/*
	 * If an allocation failed after direct reclaim, it could be because
4042 4043
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4044 4045
	 */
	if (!page && !drained) {
4046
		unreserve_highatomic_pageblock(ac, false);
4047
		drain_all_pages(NULL);
4048 4049 4050 4051
		drained = true;
		goto retry;
	}

4052 4053 4054
	return page;
}

4055 4056
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4057 4058 4059
{
	struct zoneref *z;
	struct zone *zone;
4060
	pg_data_t *last_pgdat = NULL;
4061
	enum zone_type high_zoneidx = ac->high_zoneidx;
4062

4063 4064
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4065
		if (last_pgdat != zone->zone_pgdat)
4066
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4067 4068
		last_pgdat = zone->zone_pgdat;
	}
4069 4070
}

4071
static inline unsigned int
4072 4073
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4074
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4075

4076
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4077
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4078

4079 4080 4081 4082
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4083
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4084
	 */
4085
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4086

4087
	if (gfp_mask & __GFP_ATOMIC) {
4088
		/*
4089 4090
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4091
		 */
4092
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4093
			alloc_flags |= ALLOC_HARDER;
4094
		/*
4095
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4096
		 * comment for __cpuset_node_allowed().
4097
		 */
4098
		alloc_flags &= ~ALLOC_CPUSET;
4099
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4100 4101
		alloc_flags |= ALLOC_HARDER;

4102 4103 4104 4105
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4106 4107 4108
	return alloc_flags;
}

4109
static bool oom_reserves_allowed(struct task_struct *tsk)
4110
{
4111 4112 4113 4114 4115 4116 4117 4118
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4119 4120
		return false;

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4132
	if (gfp_mask & __GFP_MEMALLOC)
4133
		return ALLOC_NO_WATERMARKS;
4134
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4135 4136 4137 4138 4139 4140 4141
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4142

4143 4144 4145 4146 4147 4148
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4149 4150
}

M
Michal Hocko 已提交
4151 4152 4153
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4154 4155 4156 4157
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4158 4159 4160 4161 4162 4163
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4164
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4165 4166 4167 4168
{
	struct zone *zone;
	struct zoneref *z;

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4179 4180 4181 4182
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4183 4184
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4185
		return unreserve_highatomic_pageblock(ac, true);
4186
	}
M
Michal Hocko 已提交
4187

4188 4189 4190 4191 4192
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4193 4194 4195 4196
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4197
		unsigned long reclaimable;
4198 4199
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4200

4201 4202
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4203 4204

		/*
4205 4206
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4207
		 */
4208 4209 4210 4211 4212
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4213 4214 4215 4216 4217 4218 4219
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4220
				unsigned long write_pending;
4221

4222 4223
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4224

4225
				if (2 * write_pending > reclaimable) {
4226 4227 4228 4229
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4230

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4245 4246 4247 4248 4249 4250 4251
			return true;
		}
	}

	return false;
}

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4285 4286
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4287
						struct alloc_context *ac)
4288
{
4289
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4290
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4291
	struct page *page = NULL;
4292
	unsigned int alloc_flags;
4293
	unsigned long did_some_progress;
4294
	enum compact_priority compact_priority;
4295
	enum compact_result compact_result;
4296 4297 4298
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4299
	int reserve_flags;
L
Linus Torvalds 已提交
4300

4301 4302 4303 4304 4305 4306 4307 4308
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4309 4310 4311 4312 4313
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4314 4315 4316 4317 4318 4319 4320 4321

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4333
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4334
		wake_all_kswapds(order, gfp_mask, ac);
4335 4336 4337 4338 4339 4340 4341 4342 4343

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4344 4345
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4346 4347 4348 4349 4350 4351
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4352
	 */
4353 4354 4355 4356
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4357 4358
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4359
						INIT_COMPACT_PRIORITY,
4360 4361 4362 4363
						&compact_result);
		if (page)
			goto got_pg;

4364 4365 4366 4367
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4368
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4381 4382
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4383
			 * using async compaction.
4384
			 */
4385
			compact_priority = INIT_COMPACT_PRIORITY;
4386 4387
		}
	}
4388

4389
retry:
4390
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4391
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4392
		wake_all_kswapds(order, gfp_mask, ac);
4393

4394 4395 4396
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4397

4398
	/*
4399 4400 4401
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4402
	 */
4403
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4404
		ac->nodemask = NULL;
4405 4406 4407 4408
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4409
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4410
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4411 4412
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4413

4414
	/* Caller is not willing to reclaim, we can't balance anything */
4415
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4416 4417
		goto nopage;

4418 4419
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4420 4421
		goto nopage;

4422 4423 4424 4425 4426 4427 4428
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4429
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4430
					compact_priority, &compact_result);
4431 4432
	if (page)
		goto got_pg;
4433

4434 4435
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4436
		goto nopage;
4437

M
Michal Hocko 已提交
4438 4439
	/*
	 * Do not retry costly high order allocations unless they are
4440
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4441
	 */
4442
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4443
		goto nopage;
M
Michal Hocko 已提交
4444 4445

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4446
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4447 4448
		goto retry;

4449 4450 4451 4452 4453 4454 4455
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4456
			should_compact_retry(ac, order, alloc_flags,
4457
				compact_result, &compact_priority,
4458
				&compaction_retries))
4459 4460
		goto retry;

4461 4462 4463

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4464 4465
		goto retry_cpuset;

4466 4467 4468 4469 4470
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4471
	/* Avoid allocations with no watermarks from looping endlessly */
4472 4473
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4474
	     (gfp_mask & __GFP_NOMEMALLOC)))
4475 4476
		goto nopage;

4477
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4478 4479
	if (did_some_progress) {
		no_progress_loops = 0;
4480
		goto retry;
M
Michal Hocko 已提交
4481
	}
4482

L
Linus Torvalds 已提交
4483
nopage:
4484 4485
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4486 4487
		goto retry_cpuset;

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4525 4526 4527 4528
		cond_resched();
		goto retry;
	}
fail:
4529
	warn_alloc(gfp_mask, ac->nodemask,
4530
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4531
got_pg:
4532 4533 4534 4535

	if (ac->migratetype == MIGRATE_MOVABLE)
		memcg_check_wmark_min_adj(current, ac);

4536
	return page;
L
Linus Torvalds 已提交
4537
}
4538

4539
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4540
		int preferred_nid, nodemask_t *nodemask,
4541 4542
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4543
{
4544
	ac->high_zoneidx = gfp_zone(gfp_mask);
4545
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4546 4547
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4548

4549
	if (cpusets_enabled()) {
4550 4551 4552
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4553 4554
		else
			*alloc_flags |= ALLOC_CPUSET;
4555 4556
	}

4557 4558
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4559

4560
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4561 4562

	if (should_fail_alloc_page(gfp_mask, order))
4563
		return false;
4564

4565 4566 4567
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4568 4569
	return true;
}
4570

4571
/* Determine whether to spread dirty pages and what the first usable zone */
4572
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4573
{
4574
	/* Dirty zone balancing only done in the fast path */
4575
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4576

4577 4578 4579 4580 4581
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4582 4583 4584 4585 4586 4587 4588 4589
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4590 4591
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4592 4593 4594
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4595
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4596 4597
	struct alloc_context ac = { };

4598 4599 4600 4601 4602 4603 4604 4605 4606
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4607
	gfp_mask &= gfp_allowed_mask;
4608
	alloc_mask = gfp_mask;
4609
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4610 4611
		return NULL;

4612
	finalise_ac(gfp_mask, &ac);
4613

4614
	/* First allocation attempt */
4615
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4616 4617
	if (likely(page))
		goto out;
4618

4619
	/*
4620 4621 4622 4623
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4624
	 */
4625
	alloc_mask = current_gfp_context(gfp_mask);
4626
	ac.spread_dirty_pages = false;
4627

4628 4629 4630 4631
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4632
	if (unlikely(ac.nodemask != nodemask))
4633
		ac.nodemask = nodemask;
4634

4635
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4636

4637
out:
4638 4639 4640 4641
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4642 4643
	}

4644 4645
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4646
	return page;
L
Linus Torvalds 已提交
4647
}
4648
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4649 4650

/*
4651 4652 4653
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4654
 */
H
Harvey Harrison 已提交
4655
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4656
{
4657 4658
	struct page *page;

4659
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4660 4661 4662 4663 4664 4665
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4666
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4667
{
4668
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4669 4670 4671
}
EXPORT_SYMBOL(get_zeroed_page);

4672
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4673
{
4674 4675 4676 4677
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4678 4679
}

4680 4681 4682 4683 4684
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4685 4686
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4687
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4688 4689
{
	if (addr != 0) {
N
Nick Piggin 已提交
4690
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4691 4692 4693 4694 4695 4696
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4708 4709
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4729
void __page_frag_cache_drain(struct page *page, unsigned int count)
4730 4731 4732
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4733 4734
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4735
}
4736
EXPORT_SYMBOL(__page_frag_cache_drain);
4737

4738 4739
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4740 4741 4742 4743 4744 4745 4746
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4747
		page = __page_frag_cache_refill(nc, gfp_mask);
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4758
		page_ref_add(page, size);
4759 4760

		/* reset page count bias and offset to start of new frag */
4761
		nc->pfmemalloc = page_is_pfmemalloc(page);
4762
		nc->pagecnt_bias = size + 1;
4763 4764 4765 4766 4767 4768 4769
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4770
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4771 4772 4773 4774 4775 4776 4777
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4778
		set_page_count(page, size + 1);
4779 4780

		/* reset page count bias and offset to start of new frag */
4781
		nc->pagecnt_bias = size + 1;
4782 4783 4784 4785 4786 4787 4788 4789
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4790
EXPORT_SYMBOL(page_frag_alloc);
4791 4792 4793 4794

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4795
void page_frag_free(void *addr)
4796 4797 4798
{
	struct page *page = virt_to_head_page(addr);

4799 4800
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4801
}
4802
EXPORT_SYMBOL(page_frag_free);
4803

4804 4805
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4839
	return make_alloc_exact(addr, order, size);
4840 4841 4842
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4843 4844 4845
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4846
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4847 4848 4849 4850 4851 4852
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4853
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4854
{
4855
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4856 4857 4858 4859 4860 4861
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4881 4882 4883 4884 4885 4886 4887
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4888 4889
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4890
 */
4891
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4892
{
4893
	struct zoneref *z;
4894 4895
	struct zone *zone;

4896
	/* Just pick one node, since fallback list is circular */
4897
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4898

4899
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4900

4901
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4902
		unsigned long size = zone->managed_pages;
4903
		unsigned long high = high_wmark_pages(zone);
4904 4905
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4906 4907 4908 4909 4910
	}

	return sum;
}

4911 4912 4913 4914 4915
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4916
 */
4917
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4918
{
A
Al Viro 已提交
4919
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4920
}
4921
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4922

4923 4924 4925 4926 4927
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4928
 */
4929
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4930
{
M
Mel Gorman 已提交
4931
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4932
}
4933 4934

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4935
{
4936
	if (IS_ENABLED(CONFIG_NUMA))
4937
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4938 4939
}

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4950
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4951 4952

	for_each_zone(zone)
4953
		wmark_low += low_wmark_pages(zone);
4954 4955 4956 4957 4958

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4959
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4974 4975 4976
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4977

4978 4979 4980 4981 4982 4983 4984
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

4985 4986 4987 4988 4989 4990
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4991 4992 4993
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4994
	val->sharedram = global_node_page_state(NR_SHMEM);
4995
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5007 5008
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5009 5010
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5011 5012
	pg_data_t *pgdat = NODE_DATA(nid);

5013 5014 5015
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
5016
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5017
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5018
#ifdef CONFIG_HIGHMEM
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5029
#else
5030 5031
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5032
#endif
L
Linus Torvalds 已提交
5033 5034 5035 5036
	val->mem_unit = PAGE_SIZE;
}
#endif

5037
/*
5038 5039
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5040
 */
5041
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5042 5043
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5044
		return false;
5045

5046 5047 5048 5049 5050 5051 5052 5053 5054
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5055 5056
}

L
Linus Torvalds 已提交
5057 5058
#define K(x) ((x) << (PAGE_SHIFT-10))

5059 5060 5061 5062 5063
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5064 5065
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5066 5067 5068
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5069
#ifdef CONFIG_MEMORY_ISOLATION
5070
		[MIGRATE_ISOLATE]	= 'I',
5071
#endif
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5083
	printk(KERN_CONT "(%s) ", tmp);
5084 5085
}

L
Linus Torvalds 已提交
5086 5087 5088 5089
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5090 5091 5092 5093
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5094
 */
5095
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5096
{
5097
	unsigned long free_pcp = 0;
5098
	int cpu;
L
Linus Torvalds 已提交
5099
	struct zone *zone;
M
Mel Gorman 已提交
5100
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5101

5102
	for_each_populated_zone(zone) {
5103
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5104
			continue;
5105

5106 5107
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5108 5109
	}

K
KOSAKI Motohiro 已提交
5110 5111
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5112 5113
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5114
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5115
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5116 5117 5118 5119 5120 5121 5122
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5123 5124 5125
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5126 5127
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5128
		global_node_page_state(NR_FILE_MAPPED),
5129
		global_node_page_state(NR_SHMEM),
5130 5131 5132
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5133
		free_pcp,
5134
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5135

M
Mel Gorman 已提交
5136
	for_each_online_pgdat(pgdat) {
5137
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5138 5139
			continue;

M
Mel Gorman 已提交
5140 5141 5142 5143 5144 5145 5146 5147
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5148
			" mapped:%lukB"
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5169
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5170 5171
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5172
			K(node_page_state(pgdat, NR_SHMEM)),
5173 5174 5175 5176 5177 5178 5179 5180
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5181 5182
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5183 5184
	}

5185
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5186 5187
		int i;

5188
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5189
			continue;
5190 5191 5192 5193 5194

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5195
		show_node(zone);
5196 5197
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5198 5199 5200 5201
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5202 5203 5204 5205 5206
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5207
			" writepending:%lukB"
L
Linus Torvalds 已提交
5208
			" present:%lukB"
5209
			" managed:%lukB"
5210
			" mlocked:%lukB"
5211
			" kernel_stack:%lukB"
5212 5213
			" pagetables:%lukB"
			" bounce:%lukB"
5214 5215
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5216
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5217 5218
			"\n",
			zone->name,
5219
			K(zone_page_state(zone, NR_FREE_PAGES)),
5220 5221 5222
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5223 5224 5225 5226 5227
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5228
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5229
			K(zone->present_pages),
5230
			K(zone->managed_pages),
5231
			K(zone_page_state(zone, NR_MLOCK)),
5232
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5233 5234
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5235 5236
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5237
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5238 5239
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5240 5241
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5242 5243
	}

5244
	for_each_populated_zone(zone) {
5245 5246
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5247
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5248

5249
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5250
			continue;
L
Linus Torvalds 已提交
5251
		show_node(zone);
5252
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5253 5254 5255

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5256 5257 5258 5259
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5260
			total += nr[order] << order;
5261 5262 5263

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5264
				if (!free_area_empty(area, type))
5265 5266
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5267 5268
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5269
		for (order = 0; order < MAX_ORDER; order++) {
5270 5271
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5272 5273 5274
			if (nr[order])
				show_migration_types(types[order]);
		}
5275
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5276 5277
	}

5278 5279
	hugetlb_show_meminfo();

5280
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5281

L
Linus Torvalds 已提交
5282 5283 5284
	show_swap_cache_info();
}

5285 5286 5287 5288 5289 5290
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5291 5292
/*
 * Builds allocation fallback zone lists.
5293 5294
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5295
 */
5296
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5297
{
5298
	struct zone *zone;
5299
	enum zone_type zone_type = MAX_NR_ZONES;
5300
	int nr_zones = 0;
5301 5302

	do {
5303
		zone_type--;
5304
		zone = pgdat->node_zones + zone_type;
5305
		if (managed_zone(zone)) {
5306
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5307
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5308
		}
5309
	} while (zone_type);
5310

5311
	return nr_zones;
L
Linus Torvalds 已提交
5312 5313 5314
}

#ifdef CONFIG_NUMA
5315 5316 5317

static int __parse_numa_zonelist_order(char *s)
{
5318 5319 5320 5321 5322 5323 5324 5325
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5326 5327 5328 5329 5330 5331 5332
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5333 5334 5335
	if (!s)
		return 0;

5336
	return __parse_numa_zonelist_order(s);
5337 5338 5339
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5340 5341
char numa_zonelist_order[] = "Node";

5342 5343 5344
/*
 * sysctl handler for numa_zonelist_order
 */
5345
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5346
		void __user *buffer, size_t *length,
5347 5348
		loff_t *ppos)
{
5349
	char *str;
5350 5351
	int ret;

5352 5353 5354 5355 5356
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5357

5358 5359
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5360
	return ret;
5361 5362 5363
}


5364
#define MAX_NODE_LOAD (nr_online_nodes)
5365 5366
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5367
/**
5368
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5381
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5382
{
5383
	int n, val;
L
Linus Torvalds 已提交
5384
	int min_val = INT_MAX;
D
David Rientjes 已提交
5385
	int best_node = NUMA_NO_NODE;
5386
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5387

5388 5389 5390 5391 5392
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5393

5394
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5395 5396 5397 5398 5399 5400 5401 5402

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5403 5404 5405
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5406
		/* Give preference to headless and unused nodes */
5407 5408
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5427 5428 5429 5430 5431 5432

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5433 5434
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5435
{
5436 5437 5438 5439 5440 5441 5442 5443 5444
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5445

5446 5447 5448 5449 5450
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5451 5452
}

5453 5454 5455 5456 5457
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5458 5459
	struct zoneref *zonerefs;
	int nr_zones;
5460

5461 5462 5463 5464 5465
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5466 5467
}

5468 5469 5470 5471 5472 5473 5474 5475 5476
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5477 5478
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5479
	nodemask_t used_mask;
5480
	int local_node, prev_node;
L
Linus Torvalds 已提交
5481 5482 5483

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5484
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5485 5486
	prev_node = local_node;
	nodes_clear(used_mask);
5487 5488

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5489 5490 5491 5492 5493 5494
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5495 5496
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5497 5498
			node_load[node] = load;

5499
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5500 5501 5502
		prev_node = node;
		load--;
	}
5503

5504
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5505
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5506 5507
}

5508 5509 5510 5511 5512 5513 5514 5515 5516
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5517
	struct zoneref *z;
5518

5519
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5520
				   gfp_zone(GFP_KERNEL),
5521
				   NULL);
5522
	return zone_to_nid(z->zone);
5523 5524
}
#endif
5525

5526 5527
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5528 5529
#else	/* CONFIG_NUMA */

5530
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5531
{
5532
	int node, local_node;
5533 5534
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5535 5536 5537

	local_node = pgdat->node_id;

5538 5539 5540
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5541

5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5553 5554
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5555
	}
5556 5557 5558
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5559 5560
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5561 5562
	}

5563 5564
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5565 5566 5567 5568
}

#endif	/* CONFIG_NUMA */

5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5586
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5587

5588
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5589
{
5590
	int nid;
5591
	int __maybe_unused cpu;
5592
	pg_data_t *self = data;
5593 5594 5595
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5596

5597 5598 5599
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5600

5601 5602 5603 5604
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5605 5606
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5607 5608 5609
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5610

5611 5612
			build_zonelists(pgdat);
		}
5613

5614 5615 5616 5617 5618 5619 5620 5621 5622
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5623
		for_each_online_cpu(cpu)
5624
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5625
#endif
5626
	}
5627 5628

	spin_unlock(&lock);
5629 5630
}

5631 5632 5633
static noinline void __init
build_all_zonelists_init(void)
{
5634 5635
	int cpu;

5636
	__build_all_zonelists(NULL);
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5654 5655 5656 5657
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5658 5659
/*
 * unless system_state == SYSTEM_BOOTING.
5660
 *
5661
 * __ref due to call of __init annotated helper build_all_zonelists_init
5662
 * [protected by SYSTEM_BOOTING].
5663
 */
5664
void __ref build_all_zonelists(pg_data_t *pgdat)
5665 5666
{
	if (system_state == SYSTEM_BOOTING) {
5667
		build_all_zonelists_init();
5668
	} else {
5669
		__build_all_zonelists(pgdat);
5670 5671
		/* cpuset refresh routine should be here */
	}
5672
	vm_total_pages = nr_free_pagecache_pages();
5673 5674 5675 5676 5677 5678 5679
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5680
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5681 5682 5683 5684
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5685
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5686 5687 5688
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5689
#ifdef CONFIG_NUMA
5690
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5691
#endif
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696 5697 5698
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5699
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5700 5701
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5702
{
A
Andy Whitcroft 已提交
5703
	unsigned long end_pfn = start_pfn + size;
5704
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5705
	unsigned long pfn;
5706
	unsigned long nr_initialised = 0;
5707
	struct page *page;
5708 5709 5710
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5711

5712 5713 5714
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5715 5716 5717 5718 5719 5720 5721
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5722
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5723
		/*
5724 5725
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5726
		 */
5727 5728 5729
		if (context != MEMMAP_EARLY)
			goto not_early;

5730
		if (!early_pfn_valid(pfn))
5731 5732 5733 5734 5735
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5736 5737

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5755
			}
D
Dave Hansen 已提交
5756
		}
5757
#endif
5758

5759
not_early:
5760 5761 5762 5763 5764
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5765 5766 5767 5768 5769
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5770
		 * kernel allocations are made.
5771 5772 5773 5774 5775
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5776 5777 5778
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5779 5780 5781
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5782
			cond_resched();
5783
		}
L
Linus Torvalds 已提交
5784 5785 5786
	}
}

5787
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5788
{
5789
	unsigned int order, t;
5790 5791
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5792 5793 5794 5795 5796 5797
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5798
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5799 5800
#endif

5801
static int zone_batchsize(struct zone *zone)
5802
{
5803
#ifdef CONFIG_MMU
5804 5805 5806 5807
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5808
	 * size of the zone.
5809
	 */
5810
	batch = zone->managed_pages / 1024;
5811 5812 5813
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5814 5815 5816 5817 5818
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5819 5820 5821
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5822
	 *
5823 5824 5825 5826
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5827
	 */
5828
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5829

5830
	return batch;
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5848 5849
}

5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5877
/* a companion to pageset_set_high() */
5878 5879
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5880
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5881 5882
}

5883
static void pageset_init(struct per_cpu_pageset *p)
5884 5885
{
	struct per_cpu_pages *pcp;
5886
	int migratetype;
5887

5888 5889
	memset(p, 0, sizeof(*p));

5890
	pcp = &p->pcp;
5891
	pcp->count = 0;
5892 5893
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5894 5895
}

5896 5897 5898 5899 5900 5901
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5902
/*
5903
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5904 5905
 * to the value high for the pageset p.
 */
5906
static void pageset_set_high(struct per_cpu_pageset *p,
5907 5908
				unsigned long high)
{
5909 5910 5911
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5912

5913
	pageset_update(&p->pcp, high, batch);
5914 5915
}

5916 5917
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5918 5919
{
	if (percpu_pagelist_fraction)
5920
		pageset_set_high(pcp,
5921 5922 5923 5924 5925 5926
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5927 5928 5929 5930 5931 5932 5933 5934
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5935
void __meminit setup_zone_pageset(struct zone *zone)
5936 5937 5938
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5939 5940
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5941 5942
}

5943
/*
5944 5945
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5946
 */
5947
void __init setup_per_cpu_pageset(void)
5948
{
5949
	struct pglist_data *pgdat;
5950
	struct zone *zone;
5951

5952 5953
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5954 5955 5956 5957

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5958 5959
}

5960
static __meminit void zone_pcp_init(struct zone *zone)
5961
{
5962 5963 5964 5965 5966 5967
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5968

5969
	if (populated_zone(zone))
5970 5971 5972
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5973 5974
}

5975
void __meminit init_currently_empty_zone(struct zone *zone,
5976
					unsigned long zone_start_pfn,
5977
					unsigned long size)
5978 5979
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5980
	int zone_idx = zone_idx(zone) + 1;
5981

5982 5983
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5984 5985 5986

	zone->zone_start_pfn = zone_start_pfn;

5987 5988 5989 5990 5991 5992
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5993
	zone_init_free_lists(zone);
5994
	zone->initialized = 1;
5995 5996
}

T
Tejun Heo 已提交
5997
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5998
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5999

6000 6001 6002
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6003 6004
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6005
{
6006
	unsigned long start_pfn, end_pfn;
6007
	int nid;
6008

6009 6010
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6011

6012 6013
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
6014 6015 6016
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6017 6018 6019
	}

	return nid;
6020 6021 6022 6023
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6024
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6025
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6026
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6027
 *
6028 6029 6030
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6031
 */
6032
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6033
{
6034 6035
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6036

6037 6038 6039
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6040

6041
		if (start_pfn < end_pfn)
6042 6043 6044
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6045 6046 6047
	}
}

6048 6049
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6050
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6051
 *
6052 6053
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6054 6055 6056
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6057 6058
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6059

6060 6061
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6062 6063 6064 6065
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6066 6067 6068
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6069 6070
 *
 * It returns the start and end page frame of a node based on information
6071
 * provided by memblock_set_node(). If called for a node
6072
 * with no available memory, a warning is printed and the start and end
6073
 * PFNs will be 0.
6074
 */
6075
void __meminit get_pfn_range_for_nid(unsigned int nid,
6076 6077
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6078
	unsigned long this_start_pfn, this_end_pfn;
6079
	int i;
6080

6081 6082 6083
	*start_pfn = -1UL;
	*end_pfn = 0;

6084 6085 6086
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6087 6088
	}

6089
	if (*start_pfn == -1UL)
6090 6091 6092
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6093 6094 6095 6096 6097
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6098
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6116
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6117 6118 6119 6120 6121 6122 6123
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
6124
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6139 6140 6141 6142 6143 6144
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6145 6146 6147 6148 6149 6150
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6151 6152 6153 6154
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
6155
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6156
					unsigned long zone_type,
6157 6158
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6159 6160
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6161 6162
					unsigned long *ignored)
{
6163 6164
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6165
	/* When hotadd a new node from cpu_up(), the node should be empty */
6166 6167 6168
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6169
	/* Get the start and end of the zone */
6170 6171
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6172 6173
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6174
				zone_start_pfn, zone_end_pfn);
6175 6176

	/* Check that this node has pages within the zone's required range */
6177
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6178 6179 6180
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6181 6182
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6183 6184

	/* Return the spanned pages */
6185
	return *zone_end_pfn - *zone_start_pfn;
6186 6187 6188 6189
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6190
 * then all holes in the requested range will be accounted for.
6191
 */
6192
unsigned long __meminit __absent_pages_in_range(int nid,
6193 6194 6195
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6196 6197 6198
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6199

6200 6201 6202 6203
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6204
	}
6205
	return nr_absent;
6206 6207 6208 6209 6210 6211 6212
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6213
 * It returns the number of pages frames in memory holes within a range.
6214 6215 6216 6217 6218 6219 6220 6221
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6222
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6223
					unsigned long zone_type,
6224 6225
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6226 6227
					unsigned long *ignored)
{
6228 6229
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6230
	unsigned long zone_start_pfn, zone_end_pfn;
6231
	unsigned long nr_absent;
6232

6233
	/* When hotadd a new node from cpu_up(), the node should be empty */
6234 6235 6236
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6237 6238
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6239

M
Mel Gorman 已提交
6240 6241 6242
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6243 6244 6245 6246 6247 6248 6249
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6267 6268 6269 6270
		}
	}

	return nr_absent;
6271
}
6272

T
Tejun Heo 已提交
6273
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6274
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6275
					unsigned long zone_type,
6276 6277
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6278 6279
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6280 6281
					unsigned long *zones_size)
{
6282 6283 6284 6285 6286 6287 6288 6289
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6290 6291 6292
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6293
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6294
						unsigned long zone_type,
6295 6296
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6297 6298 6299 6300 6301 6302 6303
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6304

T
Tejun Heo 已提交
6305
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6306

6307
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6308 6309 6310 6311
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6312
{
6313
	unsigned long realtotalpages = 0, totalpages = 0;
6314 6315
	enum zone_type i;

6316 6317
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6318
		unsigned long zone_start_pfn, zone_end_pfn;
6319
		unsigned long size, real_size;
6320

6321 6322 6323
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6324 6325
						  &zone_start_pfn,
						  &zone_end_pfn,
6326 6327
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6328 6329
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6330 6331 6332 6333
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6334 6335 6336 6337 6338 6339 6340 6341
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6342 6343 6344 6345 6346
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6347 6348 6349
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6350 6351
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6352 6353 6354
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6355
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6356 6357 6358
{
	unsigned long usemapsize;

6359
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6360 6361
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6362 6363 6364 6365 6366 6367
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6368
static void __ref setup_usemap(struct pglist_data *pgdat,
6369 6370 6371
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6372
{
6373
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6374
	zone->pageblock_flags = NULL;
6375
	if (usemapsize)
6376 6377 6378
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6379 6380
}
#else
6381 6382
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6383 6384
#endif /* CONFIG_SPARSEMEM */

6385
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6386

6387
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6388
void __init set_pageblock_order(void)
6389
{
6390 6391
	unsigned int order;

6392 6393 6394 6395
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6396 6397 6398 6399 6400
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6401 6402
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6403 6404
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6405 6406 6407 6408 6409
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6410 6411
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6412 6413 6414
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6415
 */
6416
void __init set_pageblock_order(void)
6417 6418
{
}
6419 6420 6421

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6422
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6423
						unsigned long present_pages)
6424 6425 6426 6427 6428 6429 6430 6431
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6432
	 * populated regions may not be naturally aligned on page boundary.
6433 6434 6435 6436 6437 6438 6439 6440 6441
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6442 6443 6444
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6445 6446 6447 6448 6449
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6464
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6465
{
6466
	pgdat_resize_init(pgdat);
6467 6468 6469 6470

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6471
	init_waitqueue_head(&pgdat->kswapd_wait);
6472
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6473

6474
	pgdat_page_ext_init(pgdat);
6475
	spin_lock_init(&pgdat->lru_lock);
6476
	lruvec_init(node_lruvec(pgdat));
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6523

6524
	pgdat_init_internals(pgdat);
6525 6526
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6527 6528
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6529
		unsigned long size, freesize, memmap_pages;
6530
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6531

6532
		size = zone->spanned_pages;
6533
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6534

6535
		/*
6536
		 * Adjust freesize so that it accounts for how much memory
6537 6538 6539
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6540
		memmap_pages = calc_memmap_size(size, freesize);
6541 6542 6543 6544 6545 6546 6547 6548
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6549
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6550 6551
					zone_names[j], memmap_pages, freesize);
		}
6552

6553
		/* Account for reserved pages */
6554 6555
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6556
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6557
					zone_names[0], dma_reserve);
6558 6559
		}

6560
		if (!is_highmem_idx(j))
6561
			nr_kernel_pages += freesize;
6562 6563 6564
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6565
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6566

6567 6568 6569 6570 6571
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6572
		zone_init_internals(zone, j, nid, freesize);
6573

6574
		if (!size)
L
Linus Torvalds 已提交
6575 6576
			continue;

6577
		set_pageblock_order();
6578 6579
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6580
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6581 6582 6583
	}
}

6584
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6585
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6586
{
6587
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6588 6589
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6590 6591 6592 6593
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6594 6595
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6596 6597
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6598
		unsigned long size, end;
A
Andy Whitcroft 已提交
6599 6600
		struct page *map;

6601 6602 6603 6604 6605
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6606
		end = pgdat_end_pfn(pgdat);
6607 6608
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6609
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6610
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6611
	}
6612 6613 6614
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6615
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6616 6617 6618
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6619
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6620
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6621
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6622
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6623
			mem_map -= offset;
T
Tejun Heo 已提交
6624
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6625
	}
L
Linus Torvalds 已提交
6626 6627
#endif
}
6628 6629 6630
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6631

6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6647
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6648 6649
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6650
{
6651
	pg_data_t *pgdat = NODE_DATA(nid);
6652 6653
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6654

6655
	/* pg_data_t should be reset to zero when it's allocated */
6656
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6657

L
Linus Torvalds 已提交
6658 6659
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6660
	pgdat->per_cpu_nodestats = NULL;
6661 6662
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6663
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6664 6665
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6666 6667
#else
	start_pfn = node_start_pfn;
6668 6669 6670
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6671 6672

	alloc_node_mem_map(pgdat);
6673
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6674

6675
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6676 6677
}

6678
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6679 6680 6681 6682 6683 6684
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6685 6686 6687 6688 6689
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6690
 */
6691
void __init zero_resv_unavail(void)
6692 6693 6694 6695
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;
6696
	phys_addr_t next = 0;
6697 6698

	/*
6699
	 * Loop through unavailable ranges not covered by memblock.memory.
6700 6701
	 */
	pgcnt = 0;
6702 6703 6704 6705 6706 6707 6708 6709
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
		if (next < start) {
			for (pfn = PFN_DOWN(next); pfn < PFN_UP(start); pfn++) {
				if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
					continue;
				mm_zero_struct_page(pfn_to_page(pfn));
				pgcnt++;
6710
			}
6711
		}
6712 6713 6714 6715 6716 6717 6718
		next = end;
	}
	for (pfn = PFN_DOWN(next); pfn < max_pfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
			continue;
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
6719 6720
	}

6721

6722 6723 6724 6725 6726 6727 6728 6729
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
6730 6731
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);

6732
}
6733
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6734

T
Tejun Heo 已提交
6735
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6736 6737 6738 6739 6740

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6741
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6742
{
6743
	unsigned int highest;
M
Miklos Szeredi 已提交
6744

6745
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6746 6747 6748 6749
	nr_node_ids = highest + 1;
}
#endif

6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6772
	unsigned long start, end, mask;
6773
	int last_nid = -1;
6774
	int i, nid;
6775

6776
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6800
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6801
static unsigned long __init find_min_pfn_for_node(int nid)
6802
{
6803
	unsigned long min_pfn = ULONG_MAX;
6804 6805
	unsigned long start_pfn;
	int i;
6806

6807 6808
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6809

6810
	if (min_pfn == ULONG_MAX) {
6811
		pr_warn("Could not find start_pfn for node %d\n", nid);
6812 6813 6814 6815
		return 0;
	}

	return min_pfn;
6816 6817 6818 6819 6820 6821
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6822
 * memblock_set_node().
6823 6824 6825 6826 6827 6828
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6829 6830 6831
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6832
 * Populate N_MEMORY for calculating usable_nodes.
6833
 */
A
Adrian Bunk 已提交
6834
static unsigned long __init early_calculate_totalpages(void)
6835 6836
{
	unsigned long totalpages = 0;
6837 6838 6839 6840 6841
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6842

6843 6844
		totalpages += pages;
		if (pages)
6845
			node_set_state(nid, N_MEMORY);
6846
	}
6847
	return totalpages;
6848 6849
}

M
Mel Gorman 已提交
6850 6851 6852 6853 6854 6855
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6856
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6857 6858 6859 6860
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6861
	/* save the state before borrow the nodemask */
6862
	nodemask_t saved_node_state = node_states[N_MEMORY];
6863
	unsigned long totalpages = early_calculate_totalpages();
6864
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6865
	struct memblock_region *r;
6866 6867 6868 6869 6870 6871 6872 6873 6874

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6875 6876
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6877 6878
				continue;

E
Emil Medve 已提交
6879
			nid = r->nid;
6880

E
Emil Medve 已提交
6881
			usable_startpfn = PFN_DOWN(r->base);
6882 6883 6884 6885 6886 6887 6888
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6889

6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6920
	/*
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6948
		required_movablecore = min(totalpages, required_movablecore);
6949 6950 6951 6952 6953
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6954 6955 6956 6957 6958
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6959
		goto out;
M
Mel Gorman 已提交
6960 6961 6962 6963 6964 6965 6966

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6967
	for_each_node_state(nid, N_MEMORY) {
6968 6969
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6986
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6987 6988
			unsigned long size_pages;

6989
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7032
			 * satisfied
M
Mel Gorman 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7046
	 * satisfied
M
Mel Gorman 已提交
7047 7048 7049 7050 7051
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7052
out2:
M
Mel Gorman 已提交
7053 7054 7055 7056
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7057

7058
out:
7059
	/* restore the node_state */
7060
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7061 7062
}

7063 7064
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7065 7066 7067
{
	enum zone_type zone_type;

7068 7069 7070 7071
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7072
		struct zone *zone = &pgdat->node_zones[zone_type];
7073
		if (populated_zone(zone)) {
7074 7075 7076 7077
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
7078 7079
			break;
		}
7080 7081 7082
	}
}

7083 7084
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7085
 * @max_zone_pfn: an array of max PFNs for each zone
7086 7087
 *
 * This will call free_area_init_node() for each active node in the system.
7088
 * Using the page ranges provided by memblock_set_node(), the size of each
7089 7090 7091 7092 7093 7094 7095 7096 7097
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7098 7099
	unsigned long start_pfn, end_pfn;
	int i, nid;
7100

7101 7102 7103 7104 7105
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7106 7107 7108 7109

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7110 7111
		if (i == ZONE_MOVABLE)
			continue;
7112 7113 7114 7115 7116 7117

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7118
	}
M
Mel Gorman 已提交
7119 7120 7121

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7122
	find_zone_movable_pfns_for_nodes();
7123 7124

	/* Print out the zone ranges */
7125
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7126 7127 7128
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7129
		pr_info("  %-8s ", zone_names[i]);
7130 7131
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7132
			pr_cont("empty\n");
7133
		else
7134 7135 7136 7137
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7138
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7139 7140 7141
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7142
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7143 7144
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7145 7146
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7147
	}
7148

7149
	/* Print out the early node map */
7150
	pr_info("Early memory node ranges\n");
7151
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7152 7153 7154
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7155 7156

	/* Initialise every node */
7157
	mminit_verify_pageflags_layout();
7158
	setup_nr_node_ids();
7159
	zero_resv_unavail();
7160 7161
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7162
		free_area_init_node(nid, NULL,
7163
				find_min_pfn_for_node(nid), NULL);
7164 7165 7166

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7167 7168
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7169 7170
	}
}
M
Mel Gorman 已提交
7171

7172 7173
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7174 7175
{
	unsigned long long coremem;
7176 7177
	char *endptr;

M
Mel Gorman 已提交
7178 7179 7180
	if (!p)
		return -EINVAL;

7181 7182 7183 7184 7185
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7186

7187 7188 7189 7190 7191
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7192

7193 7194 7195
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7196 7197
	return 0;
}
M
Mel Gorman 已提交
7198

7199 7200 7201 7202 7203 7204
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7205 7206 7207 7208 7209 7210
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7211 7212
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7213 7214 7215 7216 7217 7218 7219 7220
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7221 7222
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7223 7224
}

M
Mel Gorman 已提交
7225
early_param("kernelcore", cmdline_parse_kernelcore);
7226
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7227

T
Tejun Heo 已提交
7228
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7229

7230 7231 7232 7233 7234
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7235 7236 7237 7238
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7239 7240
	spin_unlock(&managed_page_count_lock);
}
7241
EXPORT_SYMBOL(adjust_managed_page_count);
7242

7243
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7244
{
7245 7246
	void *pos;
	unsigned long pages = 0;
7247

7248 7249 7250
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7262
		if ((unsigned int)poison <= 0xFF)
7263 7264 7265
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7266 7267 7268
	}

	if (pages && s)
7269 7270
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7271 7272 7273

	return pages;
}
7274
EXPORT_SYMBOL(free_reserved_area);
7275

7276 7277 7278 7279 7280
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7281
	page_zone(page)->managed_pages++;
7282 7283 7284 7285
	totalhigh_pages++;
}
#endif

7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7308 7309 7310 7311
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7322
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7323
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7324
		", %luK highmem"
7325
#endif
J
Joe Perches 已提交
7326 7327 7328 7329 7330 7331 7332
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7333
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7334
		totalhigh_pages << (PAGE_SHIFT - 10),
7335
#endif
J
Joe Perches 已提交
7336
		str ? ", " : "", str ? str : "");
7337 7338
}

7339
/**
7340 7341
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7342
 *
7343
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7344 7345
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7346 7347 7348
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7349 7350 7351 7352 7353 7354
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7355 7356
void __init free_area_init(unsigned long *zones_size)
{
7357
	zero_resv_unavail();
7358
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7359 7360 7361
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7362
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7363 7364
{

7365 7366
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7367

7368 7369 7370 7371 7372 7373 7374
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7375

7376 7377 7378 7379 7380 7381 7382 7383 7384
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7385 7386 7387 7388
}

void __init page_alloc_init(void)
{
7389 7390 7391 7392 7393 7394
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7395 7396
}

7397
/*
7398
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7399 7400 7401 7402 7403 7404
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7405
	enum zone_type i, j;
7406 7407

	for_each_online_pgdat(pgdat) {
7408 7409 7410

		pgdat->totalreserve_pages = 0;

7411 7412
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7413
			long max = 0;
7414 7415 7416 7417 7418 7419 7420

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7421 7422
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7423

7424 7425
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7426

7427
			pgdat->totalreserve_pages += max;
7428

7429 7430 7431 7432 7433 7434
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7435 7436
/*
 * setup_per_zone_lowmem_reserve - called whenever
7437
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7438 7439 7440 7441 7442 7443
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7444
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7445

7446
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7447 7448
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7449
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7450 7451 7452

			zone->lowmem_reserve[j] = 0;

7453 7454
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7455 7456
				struct zone *lower_zone;

7457
				idx--;
L
Linus Torvalds 已提交
7458
				lower_zone = pgdat->node_zones + idx;
7459 7460 7461 7462 7463 7464 7465 7466

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7467
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7468 7469 7470
			}
		}
	}
7471 7472 7473

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7474 7475
}

7476
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7477 7478 7479 7480 7481 7482 7483 7484 7485
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7486
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7487 7488 7489
	}

	for_each_zone(zone) {
7490 7491
		u64 tmp;

7492
		spin_lock_irqsave(&zone->lock, flags);
7493
		tmp = (u64)pages_min * zone->managed_pages;
7494
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7495 7496
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7497 7498 7499 7500
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7501
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7502
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7503
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7504
			 */
7505
			unsigned long min_pages;
L
Linus Torvalds 已提交
7506

7507
			min_pages = zone->managed_pages / 1024;
7508
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7509
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7510
		} else {
N
Nick Piggin 已提交
7511 7512
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7513 7514
			 * proportionate to the zone's size.
			 */
7515
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7516 7517
		}

7518 7519 7520 7521 7522 7523 7524 7525 7526
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

7527 7528
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7529

7530
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7531
	}
7532 7533 7534

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7535 7536
}

7537 7538 7539 7540 7541 7542 7543 7544 7545
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7546 7547 7548
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7549
	__setup_per_zone_wmarks();
7550
	spin_unlock(&lock);
7551 7552
}

L
Linus Torvalds 已提交
7553 7554 7555 7556 7557 7558 7559
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7560
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7577
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7578 7579
{
	unsigned long lowmem_kbytes;
7580
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7581 7582

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7595
	setup_per_zone_wmarks();
7596
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7597
	setup_per_zone_lowmem_reserve();
7598 7599 7600 7601 7602 7603

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7604 7605
	return 0;
}
7606
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7607 7608

/*
7609
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7610 7611 7612
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7613
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7614
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7615
{
7616 7617 7618 7619 7620 7621
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7622 7623
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7624
		setup_per_zone_wmarks();
7625
	}
L
Linus Torvalds 已提交
7626 7627 7628
	return 0;
}

7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7644
#ifdef CONFIG_NUMA
7645
static void setup_min_unmapped_ratio(void)
7646
{
7647
	pg_data_t *pgdat;
7648 7649
	struct zone *zone;

7650
	for_each_online_pgdat(pgdat)
7651
		pgdat->min_unmapped_pages = 0;
7652

7653
	for_each_zone(zone)
7654
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7655 7656
				sysctl_min_unmapped_ratio) / 100;
}
7657

7658 7659

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7660
	void __user *buffer, size_t *length, loff_t *ppos)
7661 7662 7663
{
	int rc;

7664
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7665 7666 7667
	if (rc)
		return rc;

7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7678 7679 7680
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7681
	for_each_zone(zone)
7682
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7683
				sysctl_min_slab_ratio) / 100;
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7697 7698
	return 0;
}
7699 7700
#endif

L
Linus Torvalds 已提交
7701 7702 7703 7704 7705 7706
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7707
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7708 7709
 * if in function of the boot time zone sizes.
 */
7710
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7711
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7712
{
7713
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7714 7715 7716 7717
	setup_per_zone_lowmem_reserve();
	return 0;
}

7718 7719
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7720 7721
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7722
 */
7723
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7724
	void __user *buffer, size_t *length, loff_t *ppos)
7725 7726
{
	struct zone *zone;
7727
	int old_percpu_pagelist_fraction;
7728 7729
	int ret;

7730 7731 7732
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7733
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7748

7749
	for_each_populated_zone(zone) {
7750 7751
		unsigned int cpu;

7752
		for_each_possible_cpu(cpu)
7753 7754
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7755
	}
7756
out:
7757
	mutex_unlock(&pcp_batch_high_lock);
7758
	return ret;
7759 7760
}

7761
#ifdef CONFIG_NUMA
7762
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7813 7814
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7815
{
7816
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7817 7818
	unsigned long log2qty, size;
	void *table = NULL;
7819
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7820 7821 7822 7823

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7824
		numentries = nr_kernel_pages;
7825
		numentries -= arch_reserved_kernel_pages();
7826 7827 7828 7829

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7830

P
Pavel Tatashin 已提交
7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7841 7842 7843 7844 7845
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7846 7847

		/* Make sure we've got at least a 0-order allocation.. */
7848 7849 7850 7851 7852 7853 7854 7855
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7856
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7857
	}
7858
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7859 7860 7861 7862 7863 7864

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7865
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7866

7867 7868
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7869 7870 7871
	if (numentries > max)
		numentries = max;

7872
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7873

7874
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7875 7876
	do {
		size = bucketsize << log2qty;
7877 7878 7879 7880 7881 7882
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7883
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7884
		} else {
7885 7886
			/*
			 * If bucketsize is not a power-of-two, we may free
7887 7888
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7889
			 */
7890
			if (get_order(size) < MAX_ORDER) {
7891 7892
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7893
			}
L
Linus Torvalds 已提交
7894 7895 7896 7897 7898 7899
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7900 7901
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7902 7903 7904 7905 7906 7907 7908 7909

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7910

K
KAMEZAWA Hiroyuki 已提交
7911
/*
7912 7913 7914
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7915
 * PageLRU check without isolation or lru_lock could race so that
7916 7917 7918
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7919
 */
7920
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7921
			 int migratetype,
7922
			 bool skip_hwpoisoned_pages)
7923 7924
{
	unsigned long pfn, iter, found;
7925

7926
	/*
7927 7928 7929 7930 7931
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7932 7933
	 */

7934 7935 7936 7937 7938 7939 7940 7941 7942
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7943 7944 7945 7946
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7947
		if (!pfn_valid_within(check))
7948
			continue;
7949

7950
		page = pfn_to_page(check);
7951

7952
		if (PageReserved(page))
7953
			goto unmovable;
7954

7955 7956 7957 7958 7959 7960 7961 7962
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7963 7964 7965 7966 7967 7968
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7969 7970
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7971

7972
			if (!hugepage_migration_supported(page_hstate(head)))
7973 7974
				goto unmovable;

7975 7976
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7977 7978 7979
			continue;
		}

7980 7981 7982 7983
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7984
		 * because their page->_refcount is zero at all time.
7985
		 */
7986
		if (!page_ref_count(page)) {
7987 7988 7989 7990
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7991

7992 7993 7994 7995 7996 7997 7998
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7999 8000 8001
		if (__PageMovable(page))
			continue;

8002 8003 8004
		if (!PageLRU(page))
			found++;
		/*
8005 8006 8007
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8018
			goto unmovable;
8019
	}
8020
	return false;
8021 8022 8023
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
8024 8025
}

8026
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8041 8042
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8043 8044
{
	/* This function is based on compact_zone() from compaction.c. */
8045
	unsigned long nr_reclaimed;
8046 8047 8048 8049
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8050
	migrate_prep();
8051

8052
	while (pfn < end || !list_empty(&cc->migratepages)) {
8053 8054 8055 8056 8057
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8058 8059
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8060
			pfn = isolate_migratepages_range(cc, pfn, end);
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8071 8072 8073
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8074

8075
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8076
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8077
	}
8078 8079 8080 8081 8082
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8083 8084 8085 8086 8087 8088
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8089 8090 8091 8092
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8093
 * @gfp_mask:	GFP mask to use during compaction
8094 8095
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8096
 * aligned.  The PFN range must belong to a single zone.
8097
 *
8098 8099 8100
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8101 8102 8103 8104 8105
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8106
int alloc_contig_range(unsigned long start, unsigned long end,
8107
		       unsigned migratetype, gfp_t gfp_mask)
8108 8109
{
	unsigned long outer_start, outer_end;
8110 8111
	unsigned int order;
	int ret = 0;
8112

8113 8114 8115 8116
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8117
		.mode = MIGRATE_SYNC,
8118
		.ignore_skip_hint = true,
8119
		.no_set_skip_hint = true,
8120
		.gfp_mask = current_gfp_context(gfp_mask),
8121 8122 8123
	};
	INIT_LIST_HEAD(&cc.migratepages);

8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8149 8150
				       pfn_max_align_up(end), migratetype,
				       false);
8151
	if (ret)
8152
		return ret;
8153

8154 8155
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8156 8157 8158 8159 8160 8161 8162
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8163
	 */
8164
	ret = __alloc_contig_migrate_range(&cc, start, end);
8165
	if (ret && ret != -EBUSY)
8166
		goto done;
8167
	ret =0;
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8187
	drain_all_pages(cc.zone);
8188 8189 8190 8191 8192

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8193 8194
			outer_start = start;
			break;
8195 8196 8197 8198
		}
		outer_start &= ~0UL << order;
	}

8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8212
	/* Make sure the range is really isolated. */
8213
	if (test_pages_isolated(outer_start, end, false)) {
8214
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8215
			__func__, outer_start, end);
8216 8217 8218 8219
		ret = -EBUSY;
		goto done;
	}

8220
	/* Grab isolated pages from freelists. */
8221
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8235
				pfn_max_align_up(end), migratetype);
8236 8237 8238 8239 8240
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8241 8242 8243 8244 8245 8246 8247 8248 8249
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8250 8251 8252
}
#endif

8253 8254 8255 8256
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8257 8258
void __meminit zone_pcp_update(struct zone *zone)
{
8259
	unsigned cpu;
8260
	mutex_lock(&pcp_batch_high_lock);
8261
	for_each_possible_cpu(cpu)
8262 8263
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8264
	mutex_unlock(&pcp_batch_high_lock);
8265 8266
}

8267 8268 8269
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8270 8271
	int cpu;
	struct per_cpu_pageset *pset;
8272 8273 8274 8275

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8276 8277 8278 8279
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8280 8281 8282 8283 8284 8285
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8286
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8287
/*
8288 8289
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8290 8291 8292 8293 8294 8295
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8296
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8297 8298 8299 8300 8301 8302 8303 8304
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8305
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8306 8307 8308 8309 8310 8311 8312 8313 8314
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8325 8326 8327 8328
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8329 8330
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8331
#endif
8332
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8333 8334 8335 8336 8337 8338 8339
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8340 8341 8342 8343 8344 8345

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8346
	unsigned int order;
8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif