page_alloc.c 225.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74 75
#include "internal.h"

76 77
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
78
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
79

80 81 82 83 84
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

85 86
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

87 88 89 90 91 92 93 94 95
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96
int _node_numa_mem_[MAX_NUMNODES];
97 98
#endif

99 100 101 102
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

103
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104
volatile unsigned long latent_entropy __latent_entropy;
105 106 107
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
108
/*
109
 * Array of node states.
L
Linus Torvalds 已提交
110
 */
111 112 113 114 115 116 117
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 119
#endif
	[N_MEMORY] = { { [0] = 1UL } },
120 121 122 123 124
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

125 126 127
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

128
unsigned long totalram_pages __read_mostly;
129
unsigned long totalreserve_pages __read_mostly;
130
unsigned long totalcma_pages __read_mostly;
131

132
int percpu_pagelist_fraction;
133
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

153 154 155 156 157
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
158 159 160 161
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
162
 */
163 164 165 166

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
167
{
168
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 170 171 172
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
173 174
}

175
void pm_restrict_gfp_mask(void)
176
{
177
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 179
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
180
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181
}
182 183 184

bool pm_suspended_storage(void)
{
185
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 187 188
		return false;
	return true;
}
189 190
#endif /* CONFIG_PM_SLEEP */

191
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192
unsigned int pageblock_order __read_mostly;
193 194
#endif

195
static void __free_pages_ok(struct page *page, unsigned int order);
196

L
Linus Torvalds 已提交
197 198 199 200 201 202
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
203
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
204 205 206
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
207
 */
208
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209
#ifdef CONFIG_ZONE_DMA
210
	[ZONE_DMA] = 256,
211
#endif
212
#ifdef CONFIG_ZONE_DMA32
213
	[ZONE_DMA32] = 256,
214
#endif
215
	[ZONE_NORMAL] = 32,
216
#ifdef CONFIG_HIGHMEM
217
	[ZONE_HIGHMEM] = 0,
218
#endif
219
	[ZONE_MOVABLE] = 0,
220
};
L
Linus Torvalds 已提交
221 222 223

EXPORT_SYMBOL(totalram_pages);

224
static char * const zone_names[MAX_NR_ZONES] = {
225
#ifdef CONFIG_ZONE_DMA
226
	 "DMA",
227
#endif
228
#ifdef CONFIG_ZONE_DMA32
229
	 "DMA32",
230
#endif
231
	 "Normal",
232
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
233
	 "HighMem",
234
#endif
M
Mel Gorman 已提交
235
	 "Movable",
236 237 238
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
239 240
};

241 242 243 244 245 246 247 248 249 250 251 252 253
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

254 255 256 257 258 259
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
260 261 262
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
263 264
};

L
Linus Torvalds 已提交
265
int min_free_kbytes = 1024;
266
int user_min_free_kbytes = -1;
267
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
268

269 270 271
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
272

T
Tejun Heo 已提交
273
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 275 276
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
277
static unsigned long required_kernelcore_percent __initdata;
278
static unsigned long required_movablecore __initdata;
279
static unsigned long required_movablecore_percent __initdata;
280 281
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
282 283 284 285 286

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287

M
Miklos Szeredi 已提交
288 289
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
290
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
291
EXPORT_SYMBOL(nr_node_ids);
292
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
293 294
#endif

295 296
int page_group_by_mobility_disabled __read_mostly;

297
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

324
/* Returns true if the struct page for the pfn is uninitialised */
325
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
326
{
327 328 329
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
330 331 332 333 334 335 336 337 338 339 340 341 342
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
343
	/* Always populate low zones for address-constrained allocations */
344 345 346
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
347
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
348 349 350 351 352 353 354 355
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
356 357
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

358 359 360 361 362 363 364 365 366 367 368 369 370
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
471

472
void set_pageblock_migratetype(struct page *page, int migratetype)
473
{
474 475
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
476 477
		migratetype = MIGRATE_UNMOVABLE;

478 479 480 481
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
482
#ifdef CONFIG_DEBUG_VM
483
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
484
{
485 486 487
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
488
	unsigned long sp, start_pfn;
489

490 491
	do {
		seq = zone_span_seqbegin(zone);
492 493
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
494
		if (!zone_spans_pfn(zone, pfn))
495 496 497
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

498
	if (ret)
499 500 501
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
502

503
	return ret;
504 505 506 507
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
508
	if (!pfn_valid_within(page_to_pfn(page)))
509
		return 0;
L
Linus Torvalds 已提交
510
	if (zone != page_zone(page))
511 512 513 514 515 516 517
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
518
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
519 520
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
521
		return 1;
522 523 524
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
525 526
	return 0;
}
N
Nick Piggin 已提交
527
#else
528
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
529 530 531 532 533
{
	return 0;
}
#endif

534 535
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
536
{
537 538 539 540 541 542 543 544 545 546 547 548 549 550
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
551
			pr_alert(
552
			      "BUG: Bad page state: %lu messages suppressed\n",
553 554 555 556 557 558 559 560
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

561
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
562
		current->comm, page_to_pfn(page));
563 564 565 566 567
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
568
	dump_page_owner(page);
569

570
	print_modules();
L
Linus Torvalds 已提交
571
	dump_stack();
572
out:
573
	/* Leave bad fields for debug, except PageBuddy could make trouble */
574
	page_mapcount_reset(page); /* remove PageBuddy */
575
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
576 577 578 579 580
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
581
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
582
 *
583 584
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
585
 *
586 587
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
588
 *
589
 * The first tail page's ->compound_order holds the order of allocation.
590
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
591
 */
592

593
void free_compound_page(struct page *page)
594
{
595
	mem_cgroup_uncharge(page);
596
	__free_pages_ok(page, compound_order(page));
597 598
}

599
void prep_compound_page(struct page *page, unsigned int order)
600 601 602 603
{
	int i;
	int nr_pages = 1 << order;

604
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
605 606 607 608
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
609
		set_page_count(p, 0);
610
		p->mapping = TAIL_MAPPING;
611
		set_compound_head(p, page);
612
	}
613
	atomic_set(compound_mapcount_ptr(page), -1);
614 615
}

616 617
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
618 619
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
620
EXPORT_SYMBOL(_debug_pagealloc_enabled);
621 622
bool _debug_guardpage_enabled __read_mostly;

623 624 625 626
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
627
	return kstrtobool(buf, &_debug_pagealloc_enabled);
628 629 630
}
early_param("debug_pagealloc", early_debug_pagealloc);

631 632
static bool need_debug_guardpage(void)
{
633 634 635 636
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

637 638 639
	if (!debug_guardpage_minorder())
		return false;

640 641 642 643 644
	return true;
}

static void init_debug_guardpage(void)
{
645 646 647
	if (!debug_pagealloc_enabled())
		return;

648 649 650
	if (!debug_guardpage_minorder())
		return;

651 652 653 654 655 656 657
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
658 659 660 661 662 663

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
664
		pr_err("Bad debug_guardpage_minorder value\n");
665 666 667
		return 0;
	}
	_debug_guardpage_minorder = res;
668
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
669 670
	return 0;
}
671
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
672

673
static inline bool set_page_guard(struct zone *zone, struct page *page,
674
				unsigned int order, int migratetype)
675
{
676 677 678
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
679 680 681 682
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
683 684

	page_ext = lookup_page_ext(page);
685
	if (unlikely(!page_ext))
686
		return false;
687

688 689
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

690 691 692 693
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
694 695

	return true;
696 697
}

698 699
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
700
{
701 702 703 704 705 706
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
707 708 709
	if (unlikely(!page_ext))
		return;

710 711
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

712 713 714
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
715 716
}
#else
717
struct page_ext_operations debug_guardpage_ops;
718 719
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
720 721
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
722 723
#endif

724
static inline void set_page_order(struct page *page, unsigned int order)
725
{
H
Hugh Dickins 已提交
726
	set_page_private(page, order);
727
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
728 729 730 731
}

/*
 * This function checks whether a page is free && is the buddy
732
 * we can coalesce a page and its buddy if
733
 * (a) the buddy is not in a hole (check before calling!) &&
734
 * (b) the buddy is in the buddy system &&
735 736
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
737
 *
738 739
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
740
 *
741
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
742
 */
743
static inline int page_is_buddy(struct page *page, struct page *buddy,
744
							unsigned int order)
L
Linus Torvalds 已提交
745
{
746
	if (page_is_guard(buddy) && page_order(buddy) == order) {
747 748 749
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

750 751
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

752 753 754
		return 1;
	}

755
	if (PageBuddy(buddy) && page_order(buddy) == order) {
756 757 758 759 760 761 762 763
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

764 765
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

766
		return 1;
767
	}
768
	return 0;
L
Linus Torvalds 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
784 785
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
786
 * So when we are allocating or freeing one, we can derive the state of the
787 788
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
789
 * If a block is freed, and its buddy is also free, then this
790
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
791
 *
792
 * -- nyc
L
Linus Torvalds 已提交
793 794
 */

N
Nick Piggin 已提交
795
static inline void __free_one_page(struct page *page,
796
		unsigned long pfn,
797 798
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
799
{
800 801
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
802
	struct page *buddy;
803 804 805
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
806

807
	VM_BUG_ON(!zone_is_initialized(zone));
808
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
809

810
	VM_BUG_ON(migratetype == -1);
811
	if (likely(!is_migrate_isolate(migratetype)))
812
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
813

814
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
815
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
816

817
continue_merging:
818
	while (order < max_order - 1) {
819 820
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
821 822 823

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
824
		if (!page_is_buddy(page, buddy, order))
825
			goto done_merging;
826 827 828 829
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
830
		if (page_is_guard(buddy))
831
			clear_page_guard(zone, buddy, order, migratetype);
832 833
		else
			del_page_from_free_area(buddy, &zone->free_area[order]);
834 835 836
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
837 838
		order++;
	}
839 840 841 842 843 844 845 846 847 848 849 850
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

851 852
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
853 854 855 856 857 858 859 860 861 862 863 864
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
865
	set_page_order(page, order);
866 867 868 869 870 871 872 873 874

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
875
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
876
		struct page *higher_page, *higher_buddy;
877 878 879 880
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
881 882
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
883 884 885
			add_to_free_area_tail(page, &zone->free_area[order],
					      migratetype);
			return;
886 887 888
		}
	}

889
	add_to_free_area(page, &zone->free_area[order], migratetype);
L
Linus Torvalds 已提交
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

914
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
915
{
916 917 918 919 920
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
921

922
	if (unlikely(atomic_read(&page->_mapcount) != -1))
923 924 925
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
926
	if (unlikely(page_ref_count(page) != 0))
927
		bad_reason = "nonzero _refcount";
928 929 930 931
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
932 933 934 935
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
936
	bad_page(page, bad_reason, bad_flags);
937 938 939 940
}

static inline int free_pages_check(struct page *page)
{
941
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
942 943 944 945
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
946
	return 1;
L
Linus Torvalds 已提交
947 948
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
965
		/* the first tail page: ->mapping may be compound_mapcount() */
966 967 968 969 970 971 972 973
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
974
		 * deferred_list.next -- ignore value.
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

999 1000
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1001
{
1002
	int bad = 0;
1003 1004 1005

	VM_BUG_ON_PAGE(PageTail(page), page);

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1017

1018 1019
		if (compound)
			ClearPageDoubleMap(page);
1020 1021 1022 1023 1024 1025 1026
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
G
Gavin Shan 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

			/*
			 * The page age information is stored in page flags
			 * or node's page array. We need to explicitly clear
			 * it in both cases. Otherwise, the stale age will
			 * be provided when it's allocated again. Also, we
			 * maintain age information for each page in the
			 * compound page, So we have to clear them one by one.
			 */
			kidled_set_page_age(page_pgdat(page + i),
					    page_to_pfn(page + i), 0);
1038 1039 1040
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1041
	if (PageMappingFlags(page))
1042
		page->mapping = NULL;
1043
	if (memcg_kmem_enabled() && PageKmemcg(page))
1044
		memcg_kmem_uncharge(page, order);
1045 1046 1047 1048
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1049

1050
	page_cpupid_reset_last(page);
G
Gavin Shan 已提交
1051
	kidled_set_page_age(page_pgdat(page), page_to_pfn(page), 0);
1052 1053
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1054 1055 1056

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1057
					   PAGE_SIZE << order);
1058
		debug_check_no_obj_freed(page_address(page),
1059
					   PAGE_SIZE << order);
1060
	}
1061 1062 1063
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1064
	kasan_free_nondeferred_pages(page, order);
1065 1066 1067 1068

	return true;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1085 1086 1087 1088 1089 1090
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1091 1092 1093 1094 1095 1096 1097 1098 1099
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1100
/*
1101
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1102
 * Assumes all pages on list are in same zone, and of same order.
1103
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108 1109 1110
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1111 1112
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1113
{
1114
	int migratetype = 0;
1115
	int batch_free = 0;
1116
	int prefetch_nr = 0;
1117
	bool isolated_pageblocks;
1118 1119
	struct page *page, *tmp;
	LIST_HEAD(head);
1120

1121
	while (count) {
1122 1123 1124
		struct list_head *list;

		/*
1125 1126 1127 1128 1129
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1130 1131
		 */
		do {
1132
			batch_free++;
1133 1134 1135 1136
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1137

1138 1139
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1140
			batch_free = count;
1141

1142
		do {
1143
			page = list_last_entry(list, struct page, lru);
1144
			/* must delete to avoid corrupting pcp list */
1145
			list_del(&page->lru);
1146
			pcp->count--;
1147

1148 1149 1150
			if (bulkfree_pcp_prepare(page))
				continue;

1151
			list_add_tail(&page->lru, &head);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1164
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1165
	}
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1185
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1186 1187
}

1188 1189
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1190
				unsigned int order,
1191
				int migratetype)
L
Linus Torvalds 已提交
1192
{
1193
	spin_lock(&zone->lock);
1194 1195 1196 1197
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1198
	__free_one_page(page, pfn, zone, order, migratetype);
1199
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1200 1201
}

1202
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1203
				unsigned long zone, int nid)
1204
{
1205
	mm_zero_struct_page(page);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1219
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1220
static void __meminit init_reserved_page(unsigned long pfn)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1237
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1238 1239 1240 1241 1242 1243 1244
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1245 1246 1247 1248 1249 1250
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1251
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1252 1253 1254 1255
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1256 1257 1258 1259 1260
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1261 1262 1263 1264

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1265 1266 1267
			SetPageReserved(page);
		}
	}
1268 1269
}

1270 1271
static void __free_pages_ok(struct page *page, unsigned int order)
{
1272
	unsigned long flags;
M
Minchan Kim 已提交
1273
	int migratetype;
1274
	unsigned long pfn = page_to_pfn(page);
1275

1276
	if (!free_pages_prepare(page, order, true))
1277 1278
		return;

1279
	migratetype = get_pfnblock_migratetype(page, pfn);
1280 1281
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1282
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1283
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1284 1285
}

1286
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1287
{
1288
	unsigned int nr_pages = 1 << order;
1289
	struct page *p = page;
1290
	unsigned int loop;
1291

1292 1293 1294
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1295 1296
		__ClearPageReserved(p);
		set_page_count(p, 0);
1297
	}
1298 1299
	__ClearPageReserved(p);
	set_page_count(p, 0);
1300

1301
	page_zone(page)->managed_pages += nr_pages;
1302 1303
	set_page_refcounted(page);
	__free_pages(page, order);
1304 1305
}

1306 1307
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1308

1309 1310 1311 1312
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1313
	static DEFINE_SPINLOCK(early_pfn_lock);
1314 1315
	int nid;

1316
	spin_lock(&early_pfn_lock);
1317
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1318
	if (nid < 0)
1319
		nid = first_online_node;
1320 1321 1322
	spin_unlock(&early_pfn_lock);

	return nid;
1323 1324 1325 1326
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1327 1328
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 1330 1331
{
	int nid;

1332
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1346
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1347 1348 1349 1350
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1351
	return __free_pages_boot_core(page, order);
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1383 1384 1385
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1425
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1426 1427
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1428
{
1429 1430
	struct page *page;
	unsigned long i;
1431

1432
	if (!nr_pages)
1433 1434
		return;

1435 1436
	page = pfn_to_page(pfn);

1437
	/* Free a large naturally-aligned chunk if possible */
1438 1439
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1440
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1441
		__free_pages_boot_core(page, pageblock_order);
1442 1443 1444
		return;
	}

1445 1446 1447
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1448
		__free_pages_boot_core(page, 0);
1449
	}
1450 1451
}

1452 1453 1454 1455 1456 1457 1458 1459 1460
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1461

1462
/*
1463 1464 1465 1466 1467 1468 1469 1470
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1471
 */
1472
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1473
{
1474 1475 1476 1477 1478 1479
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1480

1481 1482 1483 1484
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1485
static void __init deferred_free_pages(unsigned long pfn,
1486 1487 1488 1489
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1490

1491
	for (; pfn < end_pfn; pfn++) {
1492
		if (!deferred_pfn_valid(pfn)) {
1493 1494 1495 1496 1497
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1498
			touch_nmi_watchdog();
1499 1500 1501 1502 1503 1504
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1505 1506
}

1507 1508 1509 1510 1511
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1512
static unsigned long  __init deferred_init_pages(struct zone *zone,
1513 1514
						 unsigned long pfn,
						 unsigned long end_pfn)
1515 1516
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1517
	int nid = zone_to_nid(zone);
1518
	unsigned long nr_pages = 0;
1519
	int zid = zone_idx(zone);
1520 1521
	struct page *page = NULL;

1522
	for (; pfn < end_pfn; pfn++) {
1523
		if (!deferred_pfn_valid(pfn)) {
1524
			page = NULL;
1525
			continue;
1526
		} else if (!page || !(pfn & nr_pgmask)) {
1527
			page = pfn_to_page(pfn);
1528
			touch_nmi_watchdog();
1529 1530
		} else {
			page++;
1531
		}
1532
		__init_single_page(page, pfn, zid, nid);
1533
		nr_pages++;
1534
	}
1535
	return (nr_pages);
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1622 1623 1624 1625 1626
/*
 * Release the pending interrupts for every TICK_PAGE_COUNT pages.
 */
#define TICK_PAGE_COUNT	(32 * 1024)

1627
/* Initialise remaining memory on a node */
1628
static int __init deferred_init_memmap(void *data)
1629
{
1630
	pg_data_t *pgdat = data;
1631
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1632
	unsigned long spfn = 0, epfn = 0, nr_pages = 0, prev_nr_pages = 0;
1633
	unsigned long first_init_pfn, flags;
1634 1635
	unsigned long start = jiffies;
	struct zone *zone;
1636
	int zid;
1637
	u64 i;
1638

1639 1640 1641 1642
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

1643
again:
1644 1645
	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1646
	if (first_init_pfn == ULONG_MAX) {
1647
		pgdat_resize_unlock(pgdat, &flags);
1648
		pgdat_init_report_one_done();
1649 1650 1651
		return 0;
	}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1662 1663 1664 1665 1666

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1667

1668
	/*
1669 1670 1671
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1672
	 */
1673
	while (spfn < epfn) {
1674
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		/*
		 * Release the interrupts for every TICK_PAGE_COUNT pages
		 * (128MB) to give tick timer the chance to update the
		 * system jiffies.
		 */
		if ((nr_pages - prev_nr_pages) > TICK_PAGE_COUNT) {
			prev_nr_pages = nr_pages;
			pgdat->first_deferred_pfn = spfn;
			pgdat_resize_unlock(pgdat, &flags);
			goto again;
		}
	}

1688
zone_empty:
1689
	pgdat->first_deferred_pfn = ULONG_MAX;
1690
	pgdat_resize_unlock(pgdat, &flags);
1691 1692 1693 1694

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1695 1696
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1697 1698

	pgdat_init_report_one_done();
1699 1700
	return 0;
}
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1721
	pg_data_t *pgdat = zone->zone_pgdat;
1722
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1723 1724
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1753 1754 1755 1756
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1757
		pgdat_resize_unlock(pgdat, &flags);
1758 1759
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1760 1761
	}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1772

1773 1774 1775
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1776

1777
		/* If our quota has been met we can stop here */
1778 1779 1780 1781
		if (nr_pages >= nr_pages_needed)
			break;
	}

1782
	pgdat->first_deferred_pfn = spfn;
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1800
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1801 1802 1803

void __init page_alloc_init_late(void)
{
1804 1805 1806
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1807 1808
	int nid;

1809 1810
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1811 1812 1813 1814 1815
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1816
	wait_for_completion(&pgdat_init_all_done_comp);
1817

1818 1819 1820 1821 1822 1823 1824 1825
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

1826 1827 1828 1829 1830 1831
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1832 1833
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1834
#endif
P
Pavel Tatashin 已提交
1835 1836 1837 1838
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1839 1840 1841

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1842 1843
}

1844
#ifdef CONFIG_CMA
1845
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1846 1847 1848 1849 1850 1851 1852 1853
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1854
	} while (++p, --i);
1855 1856

	set_pageblock_migratetype(page, MIGRATE_CMA);
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1871
	adjust_managed_page_count(page, pageblock_nr_pages);
1872 1873
}
#endif
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1887
 * -- nyc
L
Linus Torvalds 已提交
1888
 */
N
Nick Piggin 已提交
1889
static inline void expand(struct zone *zone, struct page *page,
1890 1891
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1892 1893 1894 1895 1896 1897 1898
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1899
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1900

1901 1902 1903 1904 1905 1906 1907
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1908
			continue;
1909

1910
		add_to_free_area(&page[size], area, migratetype);
L
Linus Torvalds 已提交
1911 1912 1913 1914
		set_page_order(&page[size], high);
	}
}

1915
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1916
{
1917 1918
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1919

1920
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1921 1922 1923
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1924
	if (unlikely(page_ref_count(page) != 0))
1925
		bad_reason = "nonzero _count";
1926 1927 1928
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1929 1930 1931
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1932
	}
1933 1934 1935 1936
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1937 1938 1939 1940
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1955 1956
}

1957
static inline bool free_pages_prezeroed(void)
1958 1959
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1960
		page_poisoning_enabled();
1961 1962
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1997 1998 1999 2000 2001 2002 2003 2004 2005
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2006
	kernel_poison_pages(page, 1 << order, 1);
2007 2008 2009
	set_page_owner(page, order, gfp_flags);
}

2010
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2011
							unsigned int alloc_flags)
2012 2013
{
	int i;
2014

2015
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2016

2017
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2018 2019
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2020 2021 2022 2023

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2024
	/*
2025
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2026 2027 2028 2029
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2030 2031 2032 2033
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2034 2035
}

2036 2037 2038 2039
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2040
static __always_inline
2041
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2042 2043 2044
						int migratetype)
{
	unsigned int current_order;
2045
	struct free_area *area;
2046 2047 2048 2049 2050
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2051
		page = get_page_from_free_area(area, migratetype);
2052 2053
		if (!page)
			continue;
2054
		del_page_from_free_area(page, area);
2055
		expand(zone, page, order, current_order, area, migratetype);
2056
		set_pcppage_migratetype(page, migratetype);
2057 2058 2059 2060 2061 2062 2063
		return page;
	}

	return NULL;
}


2064 2065 2066 2067
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2068
static int fallbacks[MIGRATE_TYPES][4] = {
2069 2070 2071
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2072
#ifdef CONFIG_CMA
2073
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2074
#endif
2075
#ifdef CONFIG_MEMORY_ISOLATION
2076
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2077
#endif
2078 2079
};

2080
#ifdef CONFIG_CMA
2081
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2082 2083 2084 2085 2086 2087 2088 2089 2090
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2091 2092
/*
 * Move the free pages in a range to the free lists of the requested type.
2093
 * Note that start_page and end_pages are not aligned on a pageblock
2094 2095
 * boundary. If alignment is required, use move_freepages_block()
 */
2096
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2097
			  struct page *start_page, struct page *end_page,
2098
			  int migratetype, int *num_movable)
2099 2100
{
	struct page *page;
2101
	unsigned int order;
2102
	int pages_moved = 0;
2103 2104 2105 2106 2107 2108 2109

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2110
	 * grouping pages by mobility
2111
	 */
2112 2113 2114
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2115 2116
#endif

2117 2118 2119
	if (num_movable)
		*num_movable = 0;

2120 2121 2122 2123 2124 2125
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2126 2127 2128
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2129
		if (!PageBuddy(page)) {
2130 2131 2132 2133 2134 2135 2136 2137 2138
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2139 2140 2141 2142 2143
			page++;
			continue;
		}

		order = page_order(page);
2144
		move_to_free_area(page, &zone->free_area[order], migratetype);
2145
		page += 1 << order;
2146
		pages_moved += 1 << order;
2147 2148
	}

2149
	return pages_moved;
2150 2151
}

2152
int move_freepages_block(struct zone *zone, struct page *page,
2153
				int migratetype, int *num_movable)
2154 2155 2156 2157 2158
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2159
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2160
	start_page = pfn_to_page(start_pfn);
2161 2162
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2163 2164

	/* Do not cross zone boundaries */
2165
	if (!zone_spans_pfn(zone, start_pfn))
2166
		start_page = page;
2167
	if (!zone_spans_pfn(zone, end_pfn))
2168 2169
		return 0;

2170 2171
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2172 2173
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2185
/*
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2196
 */
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2221 2222 2223 2224
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2225 2226
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2227
					int start_type, bool whole_block)
2228
{
2229
	unsigned int current_order = page_order(page);
2230
	struct free_area *area;
2231 2232 2233 2234
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2235

2236 2237 2238 2239
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2240
	if (is_migrate_highatomic(old_block_type))
2241 2242
		goto single_page;

2243 2244 2245
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2246
		goto single_page;
2247 2248
	}

2249 2250 2251 2252
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2277
	/* moving whole block can fail due to zone boundary conditions */
2278
	if (!free_pages)
2279
		goto single_page;
2280

2281 2282 2283 2284 2285
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2286 2287
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2288 2289 2290 2291 2292

	return;

single_page:
	area = &zone->free_area[current_order];
2293
	move_to_free_area(page, area, start_type);
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2314
		if (fallback_mt == MIGRATE_TYPES)
2315 2316
			break;

2317
		if (free_area_empty(area, fallback_mt))
2318
			continue;
2319

2320 2321 2322
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2323 2324 2325 2326 2327
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2328
	}
2329 2330

	return -1;
2331 2332
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2359 2360
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2361 2362
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2363
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2375 2376 2377
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2378
 */
2379 2380
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2381 2382 2383 2384 2385 2386 2387
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2388
	bool ret;
2389 2390 2391

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2392 2393 2394 2395 2396 2397
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2398 2399 2400 2401 2402 2403
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2404
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2405
			if (!page)
2406 2407 2408
				continue;

			/*
2409 2410 2411 2412 2413
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2414
			 */
2415
			if (is_migrate_highatomic_page(page)) {
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2438 2439
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2440 2441 2442 2443
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2444 2445 2446
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2447 2448

	return false;
2449 2450
}

2451 2452 2453 2454 2455
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2456 2457 2458 2459
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2460
 */
2461
static __always_inline bool
2462
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2463
{
2464
	struct free_area *area;
2465
	int current_order;
2466
	struct page *page;
2467 2468
	int fallback_mt;
	bool can_steal;
2469

2470 2471 2472 2473 2474
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2475
	for (current_order = MAX_ORDER - 1; current_order >= order;
2476
				--current_order) {
2477 2478
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2479
				start_migratetype, false, &can_steal);
2480 2481
		if (fallback_mt == -1)
			continue;
2482

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2494

2495 2496
		goto do_steal;
	}
2497

2498
	return false;
2499

2500 2501 2502 2503 2504 2505 2506 2507
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2508 2509
	}

2510 2511 2512 2513 2514 2515 2516
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2517
	page = get_page_from_free_area(area, fallback_mt);
2518 2519 2520 2521 2522 2523 2524 2525

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2526 2527
}

2528
/*
L
Linus Torvalds 已提交
2529 2530 2531
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2532 2533
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2534 2535 2536
{
	struct page *page;

2537
retry:
2538
	page = __rmqueue_smallest(zone, order, migratetype);
2539
	if (unlikely(!page)) {
2540 2541 2542
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2543 2544
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2545 2546
	}

2547
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2548
	return page;
L
Linus Torvalds 已提交
2549 2550
}

2551
/*
L
Linus Torvalds 已提交
2552 2553 2554 2555
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2556
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2557
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2558
			int migratetype)
L
Linus Torvalds 已提交
2559
{
2560
	int i, alloced = 0;
2561

2562
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2563
	for (i = 0; i < count; ++i) {
2564
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2565
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2566
			break;
2567

2568 2569 2570
		if (unlikely(check_pcp_refill(page)))
			continue;

2571
		/*
2572 2573 2574 2575 2576 2577 2578 2579
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2580
		 */
2581
		list_add_tail(&page->lru, list);
2582
		alloced++;
2583
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2584 2585
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2586
	}
2587 2588 2589 2590 2591 2592 2593

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2594
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2595
	spin_unlock(&zone->lock);
2596
	return alloced;
L
Linus Torvalds 已提交
2597 2598
}

2599
#ifdef CONFIG_NUMA
2600
/*
2601 2602 2603 2604
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2605 2606
 * Note that this function must be called with the thread pinned to
 * a single processor.
2607
 */
2608
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2609 2610
{
	unsigned long flags;
2611
	int to_drain, batch;
2612

2613
	local_irq_save(flags);
2614
	batch = READ_ONCE(pcp->batch);
2615
	to_drain = min(pcp->count, batch);
2616
	if (to_drain > 0)
2617
		free_pcppages_bulk(zone, to_drain, pcp);
2618
	local_irq_restore(flags);
2619 2620 2621
}
#endif

2622
/*
2623
 * Drain pcplists of the indicated processor and zone.
2624 2625 2626 2627 2628
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2629
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2630
{
N
Nick Piggin 已提交
2631
	unsigned long flags;
2632 2633
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2634

2635 2636
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2637

2638
	pcp = &pset->pcp;
2639
	if (pcp->count)
2640 2641 2642
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2643

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2657 2658 2659
	}
}

2660 2661
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2662 2663 2664
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2665
 */
2666
void drain_local_pages(struct zone *zone)
2667
{
2668 2669 2670 2671 2672 2673
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2674 2675
}

2676 2677
static void drain_local_pages_wq(struct work_struct *work)
{
2678 2679 2680 2681 2682 2683 2684 2685
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2686
	drain_local_pages(NULL);
2687
	preempt_enable();
2688 2689
}

2690
/*
2691 2692
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2693 2694
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2695
 * Note that this can be extremely slow as the draining happens in a workqueue.
2696
 */
2697
void drain_all_pages(struct zone *zone)
2698
{
2699 2700 2701 2702 2703 2704 2705 2706
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2707 2708 2709 2710 2711 2712 2713
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2724

2725 2726 2727 2728 2729 2730 2731
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2732 2733
		struct per_cpu_pageset *pcp;
		struct zone *z;
2734
		bool has_pcps = false;
2735 2736

		if (zone) {
2737
			pcp = per_cpu_ptr(zone->pageset, cpu);
2738
			if (pcp->pcp.count)
2739
				has_pcps = true;
2740 2741 2742 2743 2744 2745 2746
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2747 2748
			}
		}
2749

2750 2751 2752 2753 2754
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2755

2756 2757 2758
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2759
		queue_work_on(cpu, mm_percpu_wq, work);
2760
	}
2761 2762 2763 2764
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2765 2766
}

2767
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2768

2769 2770 2771 2772 2773
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2774 2775
void mark_free_pages(struct zone *zone)
{
2776
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2777
	unsigned long flags;
2778
	unsigned int order, t;
2779
	struct page *page;
L
Linus Torvalds 已提交
2780

2781
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2782 2783 2784
		return;

	spin_lock_irqsave(&zone->lock, flags);
2785

2786
	max_zone_pfn = zone_end_pfn(zone);
2787 2788
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2789
			page = pfn_to_page(pfn);
2790

2791 2792 2793 2794 2795
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2796 2797 2798
			if (page_zone(page) != zone)
				continue;

2799 2800
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2801
		}
L
Linus Torvalds 已提交
2802

2803
	for_each_migratetype_order(order, t) {
2804 2805
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2806
			unsigned long i;
L
Linus Torvalds 已提交
2807

2808
			pfn = page_to_pfn(page);
2809 2810 2811 2812 2813
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2814
				swsusp_set_page_free(pfn_to_page(pfn + i));
2815
			}
2816
		}
2817
	}
L
Linus Torvalds 已提交
2818 2819
	spin_unlock_irqrestore(&zone->lock, flags);
}
2820
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2821

2822
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2823
{
2824
	int migratetype;
L
Linus Torvalds 已提交
2825

2826
	if (!free_pcp_prepare(page))
2827
		return false;
2828

2829
	migratetype = get_pfnblock_migratetype(page, pfn);
2830
	set_pcppage_migratetype(page, migratetype);
2831 2832 2833
	return true;
}

2834
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2835 2836 2837 2838 2839 2840
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2841
	__count_vm_event(PGFREE);
2842

2843 2844 2845
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2846
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2847 2848 2849 2850
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2851
		if (unlikely(is_migrate_isolate(migratetype))) {
2852
			free_one_page(zone, page, pfn, 0, migratetype);
2853
			return;
2854 2855 2856 2857
		}
		migratetype = MIGRATE_MOVABLE;
	}

2858
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2859
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2860
	pcp->count++;
N
Nick Piggin 已提交
2861
	if (pcp->count >= pcp->high) {
2862
		unsigned long batch = READ_ONCE(pcp->batch);
2863
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2864
	}
2865
}
2866

2867 2868 2869
/*
 * Free a 0-order page
 */
2870
void free_unref_page(struct page *page)
2871 2872 2873 2874
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2875
	if (!free_unref_page_prepare(page, pfn))
2876 2877 2878
		return;

	local_irq_save(flags);
2879
	free_unref_page_commit(page, pfn);
2880
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2881 2882
}

2883 2884 2885
/*
 * Free a list of 0-order pages
 */
2886
void free_unref_page_list(struct list_head *list)
2887 2888
{
	struct page *page, *next;
2889
	unsigned long flags, pfn;
2890
	int batch_count = 0;
2891 2892 2893 2894

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2895
		if (!free_unref_page_prepare(page, pfn))
2896 2897 2898
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2899

2900
	local_irq_save(flags);
2901
	list_for_each_entry_safe(page, next, list, lru) {
2902 2903 2904
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2905 2906
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2917
	}
2918
	local_irq_restore(flags);
2919 2920
}

N
Nick Piggin 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2933 2934
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2935

2936
	for (i = 1; i < (1 << order); i++)
2937
		set_page_refcounted(page + i);
2938
	split_page_owner(page, order);
N
Nick Piggin 已提交
2939
}
K
K. Y. Srinivasan 已提交
2940
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2941

2942
int __isolate_free_page(struct page *page, unsigned int order)
2943
{
2944
	struct free_area *area = &page_zone(page)->free_area[order];
2945 2946
	unsigned long watermark;
	struct zone *zone;
2947
	int mt;
2948 2949 2950 2951

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2952
	mt = get_pageblock_migratetype(page);
2953

2954
	if (!is_migrate_isolate(mt)) {
2955 2956 2957 2958 2959 2960 2961
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2962
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2963 2964
			return 0;

2965
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2966
	}
2967 2968

	/* Remove page from free list */
2969 2970

	del_page_from_free_area(page, area);
2971

2972 2973 2974 2975
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2976 2977
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2978 2979
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2980
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2981
			    && !is_migrate_highatomic(mt))
2982 2983 2984
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2985 2986
	}

2987

2988
	return 1UL << order;
2989 2990
}

2991 2992 2993 2994 2995
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2996
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2997 2998
{
#ifdef CONFIG_NUMA
2999
	enum numa_stat_item local_stat = NUMA_LOCAL;
3000

3001 3002 3003 3004
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3005
	if (zone_to_nid(z) != numa_node_id())
3006 3007
		local_stat = NUMA_OTHER;

3008
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3009
		__inc_numa_state(z, NUMA_HIT);
3010
	else {
3011 3012
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3013
	}
3014
	__inc_numa_state(z, local_stat);
3015 3016 3017
#endif
}

3018 3019
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
3020
			struct per_cpu_pages *pcp,
3021 3022 3023 3024 3025 3026 3027 3028
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
3029
					migratetype);
3030 3031 3032 3033
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3034
		page = list_first_entry(list, struct page, lru);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3050
	unsigned long flags;
3051

3052
	local_irq_save(flags);
3053 3054
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
3055
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
3056 3057 3058 3059
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3060
	local_irq_restore(flags);
3061 3062 3063
	return page;
}

L
Linus Torvalds 已提交
3064
/*
3065
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3066
 */
3067
static inline
3068
struct page *rmqueue(struct zone *preferred_zone,
3069
			struct zone *zone, unsigned int order,
3070 3071
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3072 3073
{
	unsigned long flags;
3074
	struct page *page;
L
Linus Torvalds 已提交
3075

3076
	if (likely(order == 0)) {
3077 3078 3079 3080
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
3081

3082 3083 3084 3085 3086 3087
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3088

3089 3090 3091 3092 3093 3094 3095
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3096
		if (!page)
3097 3098 3099 3100 3101 3102 3103
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3104

3105
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3106
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3107
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3108

3109 3110
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3111
	return page;
N
Nick Piggin 已提交
3112 3113 3114 3115

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3116 3117
}

3118 3119
#ifdef CONFIG_FAIL_PAGE_ALLOC

3120
static struct {
3121 3122
	struct fault_attr attr;

3123
	bool ignore_gfp_highmem;
3124
	bool ignore_gfp_reclaim;
3125
	u32 min_order;
3126 3127
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3128
	.ignore_gfp_reclaim = true,
3129
	.ignore_gfp_highmem = true,
3130
	.min_order = 1,
3131 3132 3133 3134 3135 3136 3137 3138
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3139
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3140
{
3141
	if (order < fail_page_alloc.min_order)
3142
		return false;
3143
	if (gfp_mask & __GFP_NOFAIL)
3144
		return false;
3145
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3146
		return false;
3147 3148
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3149
		return false;
3150 3151 3152 3153 3154 3155 3156 3157

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3158
	umode_t mode = S_IFREG | 0600;
3159 3160
	struct dentry *dir;

3161 3162 3163 3164
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3165

3166
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3167
				&fail_page_alloc.ignore_gfp_reclaim))
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3178
	debugfs_remove_recursive(dir);
3179

3180
	return -ENOMEM;
3181 3182 3183 3184 3185 3186 3187 3188
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3189
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3190
{
3191
	return false;
3192 3193 3194 3195
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3196
/*
3197 3198 3199 3200
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3201
 */
3202 3203 3204
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3205
{
3206
	long min = mark;
L
Linus Torvalds 已提交
3207
	int o;
3208
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3209

3210 3211 3212 3213 3214 3215 3216 3217
	/* apply negative memory.wmark_min_adj */
	if ((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) {
		int min_adj = memcg_get_wmark_min_adj(current);

		if (min_adj < 0)
			min -= mark * (-min_adj) / 100;
	}

3218
	/* free_pages may go negative - that's OK */
3219
	free_pages -= (1 << order) - 1;
3220

R
Rohit Seth 已提交
3221
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3222
		min -= min / 2;
3223 3224 3225 3226 3227 3228

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3229
	if (likely(!alloc_harder)) {
3230
		free_pages -= z->nr_reserved_highatomic;
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3244 3245 3246 3247 3248 3249
	/*
	 * Only happens due to memory.wmark_min_adj.
	 * Guarantee safe min after memory.wmark_min_adj?
	 */
	if (min < mark / 4)
		min = mark / 4;
3250

3251 3252 3253 3254 3255 3256
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3257 3258 3259 3260 3261 3262
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3263
		return false;
L
Linus Torvalds 已提交
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3278
			if (!free_area_empty(area, mt))
3279 3280 3281 3282
				return true;
		}

#ifdef CONFIG_CMA
3283
		if ((alloc_flags & ALLOC_CMA) &&
3284
		    !free_area_empty(area, MIGRATE_CMA)) {
3285
			return true;
3286
		}
3287
#endif
3288 3289 3290
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3291
	}
3292
	return false;
3293 3294
}

3295
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3296
		      int classzone_idx, unsigned int alloc_flags)
3297 3298 3299 3300 3301
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3302 3303 3304 3305
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3306 3307 3308 3309 3310 3311 3312
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3313 3314 3315 3316 3317 3318 3319 3320

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3321
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3322 3323 3324 3325 3326 3327
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3328
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3329
			unsigned long mark, int classzone_idx)
3330 3331 3332 3333 3334 3335
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3336
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3337
								free_pages);
L
Linus Torvalds 已提交
3338 3339
}

3340
#ifdef CONFIG_NUMA
3341 3342
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3343
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3344
				RECLAIM_DISTANCE;
3345
}
3346
#else	/* CONFIG_NUMA */
3347 3348 3349 3350
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3351 3352
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3353
/*
3354
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3355 3356 3357
 * a page.
 */
static struct page *
3358 3359
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3360
{
3361
	struct zoneref *z = ac->preferred_zoneref;
3362
	struct zone *zone;
3363 3364
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3365
	/*
3366
	 * Scan zonelist, looking for a zone with enough free.
3367
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3368
	 */
3369
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3370
								ac->nodemask) {
3371
		struct page *page;
3372 3373
		unsigned long mark;

3374 3375
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3376
			!__cpuset_zone_allowed(zone, gfp_mask))
3377
				continue;
3378 3379
		/*
		 * When allocating a page cache page for writing, we
3380 3381
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3382
		 * proportional share of globally allowed dirty pages.
3383
		 * The dirty limits take into account the node's
3384 3385 3386 3387 3388
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3389
		 * exceed the per-node dirty limit in the slowpath
3390
		 * (spread_dirty_pages unset) before going into reclaim,
3391
		 * which is important when on a NUMA setup the allowed
3392
		 * nodes are together not big enough to reach the
3393
		 * global limit.  The proper fix for these situations
3394
		 * will require awareness of nodes in the
3395 3396
		 * dirty-throttling and the flusher threads.
		 */
3397 3398 3399 3400 3401 3402 3403 3404 3405
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3406

3407
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3408
		if (!zone_watermark_fast(zone, order, mark,
3409
				       ac_classzone_idx(ac), alloc_flags)) {
3410 3411
			int ret;

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3422 3423 3424 3425 3426
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3427
			if (node_reclaim_mode == 0 ||
3428
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3429 3430
				continue;

3431
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3432
			switch (ret) {
3433
			case NODE_RECLAIM_NOSCAN:
3434
				/* did not scan */
3435
				continue;
3436
			case NODE_RECLAIM_FULL:
3437
				/* scanned but unreclaimable */
3438
				continue;
3439 3440
			default:
				/* did we reclaim enough */
3441
				if (zone_watermark_ok(zone, order, mark,
3442
						ac_classzone_idx(ac), alloc_flags))
3443 3444 3445
					goto try_this_zone;

				continue;
3446
			}
R
Rohit Seth 已提交
3447 3448
		}

3449
try_this_zone:
3450
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3451
				gfp_mask, alloc_flags, ac->migratetype);
3452
		if (page) {
3453
			prep_new_page(page, order, gfp_mask, alloc_flags);
3454 3455 3456 3457 3458 3459 3460 3461

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3462
			return page;
3463 3464 3465 3466 3467 3468 3469 3470
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3471
		}
3472
	}
3473

3474
	return NULL;
M
Martin Hicks 已提交
3475 3476
}

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3491
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3492 3493
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3494
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3495

3496
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3497 3498 3499 3500 3501 3502 3503 3504
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3505
		if (tsk_is_oom_victim(current) ||
3506 3507
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3508
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3509 3510
		filter &= ~SHOW_MEM_FILTER_NODES;

3511
	show_mem(filter, nodemask);
3512 3513
}

3514
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3515 3516 3517 3518 3519 3520
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3521
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3522 3523
		return;

3524 3525 3526
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3527 3528 3529
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3530
	va_end(args);
J
Joe Perches 已提交
3531

3532
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3533

3534
	dump_stack();
3535
	warn_alloc_show_mem(gfp_mask, nodemask);
3536 3537
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3558 3559
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3560
	const struct alloc_context *ac, unsigned long *did_some_progress)
3561
{
3562 3563 3564
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3565
		.memcg = NULL,
3566 3567 3568
		.gfp_mask = gfp_mask,
		.order = order,
	};
3569 3570
	struct page *page;

3571 3572 3573
	*did_some_progress = 0;

	/*
3574 3575
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3576
	 */
3577
	if (!mutex_trylock(&oom_lock)) {
3578
		*did_some_progress = 1;
3579
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3580 3581
		return NULL;
	}
3582

3583 3584 3585
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3586 3587 3588
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3589
	 */
3590 3591 3592
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3593
	if (page)
3594 3595
		goto out;

3596 3597 3598 3599 3600 3601
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3602 3603 3604 3605 3606 3607 3608 3609
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3628

3629
	/* Exhausted what can be done so it's blame time */
3630
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3631
		*did_some_progress = 1;
3632

3633 3634 3635 3636 3637 3638
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3639 3640
					ALLOC_NO_WATERMARKS, ac);
	}
3641
out:
3642
	mutex_unlock(&oom_lock);
3643 3644 3645
	return page;
}

3646 3647 3648 3649 3650 3651
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3652 3653 3654 3655
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3656
		unsigned int alloc_flags, const struct alloc_context *ac,
3657
		enum compact_priority prio, enum compact_result *compact_result)
3658
{
3659
	struct page *page;
3660
	unsigned long pflags;
3661
	unsigned int noreclaim_flag;
3662 3663

	if (!order)
3664 3665
		return NULL;

3666
	psi_memstall_enter(&pflags);
3667
	noreclaim_flag = memalloc_noreclaim_save();
3668

3669
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3670
									prio);
3671

3672
	memalloc_noreclaim_restore(noreclaim_flag);
3673
	psi_memstall_leave(&pflags);
3674

3675
	if (*compact_result <= COMPACT_INACTIVE)
3676
		return NULL;
3677

3678 3679 3680 3681 3682
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3683

3684
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3685

3686 3687
	if (page) {
		struct zone *zone = page_zone(page);
3688

3689 3690 3691 3692 3693
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3694

3695 3696 3697 3698 3699
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3700

3701
	cond_resched();
3702 3703 3704

	return NULL;
}
3705

3706 3707 3708 3709
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3710
		     int *compaction_retries)
3711 3712
{
	int max_retries = MAX_COMPACT_RETRIES;
3713
	int min_priority;
3714 3715 3716
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3717 3718 3719 3720

	if (!order)
		return false;

3721 3722 3723
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3724 3725 3726 3727 3728
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3729 3730
	if (compaction_failed(compact_result))
		goto check_priority;
3731 3732 3733 3734 3735 3736 3737

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3738 3739 3740 3741
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3742 3743

	/*
3744
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3745 3746 3747 3748 3749 3750 3751 3752
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3753 3754 3755 3756
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3757

3758 3759 3760 3761 3762
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3763 3764
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3765

3766
	if (*compact_priority > min_priority) {
3767 3768
		(*compact_priority)--;
		*compaction_retries = 0;
3769
		ret = true;
3770
	}
3771 3772 3773
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3774
}
3775 3776 3777
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3778
		unsigned int alloc_flags, const struct alloc_context *ac,
3779
		enum compact_priority prio, enum compact_result *compact_result)
3780
{
3781
	*compact_result = COMPACT_SKIPPED;
3782 3783
	return NULL;
}
3784 3785

static inline bool
3786 3787
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3788
		     enum compact_priority *compact_priority,
3789
		     int *compaction_retries)
3790
{
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3809 3810
	return false;
}
3811
#endif /* CONFIG_COMPACTION */
3812

3813
#ifdef CONFIG_LOCKDEP
3814
static struct lockdep_map __fs_reclaim_map =
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3826
	if (current->flags & PF_MEMALLOC)
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3849 3850 3851
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3852
		__fs_reclaim_acquire();
3853 3854 3855 3856 3857 3858
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3859
		__fs_reclaim_release();
3860 3861 3862 3863
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3864 3865
/* Perform direct synchronous page reclaim */
static int
3866 3867
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3868 3869
{
	struct reclaim_state reclaim_state;
3870
	int progress;
3871
	unsigned int noreclaim_flag;
3872
	unsigned long pflags;
3873 3874 3875 3876 3877

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3878
	psi_memstall_enter(&pflags);
3879
	fs_reclaim_acquire(gfp_mask);
3880
	noreclaim_flag = memalloc_noreclaim_save();
3881
	reclaim_state.reclaimed_slab = 0;
3882
	current->reclaim_state = &reclaim_state;
3883

3884 3885
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3886

3887
	current->reclaim_state = NULL;
3888
	memalloc_noreclaim_restore(noreclaim_flag);
3889
	fs_reclaim_release(gfp_mask);
3890
	psi_memstall_leave(&pflags);
3891 3892 3893

	cond_resched();

3894 3895 3896 3897 3898 3899
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3900
		unsigned int alloc_flags, const struct alloc_context *ac,
3901
		unsigned long *did_some_progress)
3902 3903 3904 3905
{
	struct page *page = NULL;
	bool drained = false;

3906
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3907 3908
	if (unlikely(!(*did_some_progress)))
		return NULL;
3909

3910
retry:
3911
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3912 3913 3914

	/*
	 * If an allocation failed after direct reclaim, it could be because
3915 3916
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3917 3918
	 */
	if (!page && !drained) {
3919
		unreserve_highatomic_pageblock(ac, false);
3920
		drain_all_pages(NULL);
3921 3922 3923 3924
		drained = true;
		goto retry;
	}

3925 3926 3927
	return page;
}

3928 3929
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
3930 3931 3932
{
	struct zoneref *z;
	struct zone *zone;
3933
	pg_data_t *last_pgdat = NULL;
3934
	enum zone_type high_zoneidx = ac->high_zoneidx;
3935

3936 3937
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
3938
		if (last_pgdat != zone->zone_pgdat)
3939
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3940 3941
		last_pgdat = zone->zone_pgdat;
	}
3942 3943
}

3944
static inline unsigned int
3945 3946
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3947
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3948

3949
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3950
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3951

3952 3953 3954 3955
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3956
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3957
	 */
3958
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3959

3960
	if (gfp_mask & __GFP_ATOMIC) {
3961
		/*
3962 3963
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3964
		 */
3965
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3966
			alloc_flags |= ALLOC_HARDER;
3967
		/*
3968
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3969
		 * comment for __cpuset_node_allowed().
3970
		 */
3971
		alloc_flags &= ~ALLOC_CPUSET;
3972
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3973 3974
		alloc_flags |= ALLOC_HARDER;

3975 3976 3977 3978
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
3979 3980 3981
	return alloc_flags;
}

3982
static bool oom_reserves_allowed(struct task_struct *tsk)
3983
{
3984 3985 3986 3987 3988 3989 3990 3991
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3992 3993
		return false;

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4005
	if (gfp_mask & __GFP_MEMALLOC)
4006
		return ALLOC_NO_WATERMARKS;
4007
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4008 4009 4010 4011 4012 4013 4014
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4015

4016 4017 4018 4019 4020 4021
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4022 4023
}

M
Michal Hocko 已提交
4024 4025 4026
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4027 4028 4029 4030
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4031 4032 4033 4034 4035 4036
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4037
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4038 4039 4040 4041
{
	struct zone *zone;
	struct zoneref *z;

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4052 4053 4054 4055
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4056 4057
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4058
		return unreserve_highatomic_pageblock(ac, true);
4059
	}
M
Michal Hocko 已提交
4060

4061 4062 4063 4064 4065
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4066 4067 4068 4069
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4070
		unsigned long reclaimable;
4071 4072
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4073

4074 4075
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4076 4077

		/*
4078 4079
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4080
		 */
4081 4082 4083 4084 4085
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4086 4087 4088 4089 4090 4091 4092
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4093
				unsigned long write_pending;
4094

4095 4096
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4097

4098
				if (2 * write_pending > reclaimable) {
4099 4100 4101 4102
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4103

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4118 4119 4120 4121 4122 4123 4124
			return true;
		}
	}

	return false;
}

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4158 4159
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4160
						struct alloc_context *ac)
4161
{
4162
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4163
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4164
	struct page *page = NULL;
4165
	unsigned int alloc_flags;
4166
	unsigned long did_some_progress;
4167
	enum compact_priority compact_priority;
4168
	enum compact_result compact_result;
4169 4170 4171
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4172
	int reserve_flags;
L
Linus Torvalds 已提交
4173

4174 4175 4176 4177 4178 4179 4180 4181
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4182 4183 4184 4185 4186
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4187 4188 4189 4190 4191 4192 4193 4194

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4206
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4207
		wake_all_kswapds(order, gfp_mask, ac);
4208 4209 4210 4211 4212 4213 4214 4215 4216

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4217 4218
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4219 4220 4221 4222 4223 4224
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4225
	 */
4226 4227 4228 4229
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4230 4231
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4232
						INIT_COMPACT_PRIORITY,
4233 4234 4235 4236
						&compact_result);
		if (page)
			goto got_pg;

4237 4238 4239 4240
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4241
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4254 4255
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4256
			 * using async compaction.
4257
			 */
4258
			compact_priority = INIT_COMPACT_PRIORITY;
4259 4260
		}
	}
4261

4262
retry:
4263
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4264
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4265
		wake_all_kswapds(order, gfp_mask, ac);
4266

4267 4268 4269
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4270

4271
	/*
4272 4273 4274
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4275
	 */
4276
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4277
		ac->nodemask = NULL;
4278 4279 4280 4281
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4282
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4283
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4284 4285
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4286

4287
	/* Caller is not willing to reclaim, we can't balance anything */
4288
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4289 4290
		goto nopage;

4291 4292
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4293 4294
		goto nopage;

4295 4296 4297 4298 4299 4300 4301
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4302
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4303
					compact_priority, &compact_result);
4304 4305
	if (page)
		goto got_pg;
4306

4307 4308
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4309
		goto nopage;
4310

M
Michal Hocko 已提交
4311 4312
	/*
	 * Do not retry costly high order allocations unless they are
4313
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4314
	 */
4315
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4316
		goto nopage;
M
Michal Hocko 已提交
4317 4318

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4319
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4320 4321
		goto retry;

4322 4323 4324 4325 4326 4327 4328
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4329
			should_compact_retry(ac, order, alloc_flags,
4330
				compact_result, &compact_priority,
4331
				&compaction_retries))
4332 4333
		goto retry;

4334 4335 4336

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4337 4338
		goto retry_cpuset;

4339 4340 4341 4342 4343
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4344
	/* Avoid allocations with no watermarks from looping endlessly */
4345 4346
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4347
	     (gfp_mask & __GFP_NOMEMALLOC)))
4348 4349
		goto nopage;

4350
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4351 4352
	if (did_some_progress) {
		no_progress_loops = 0;
4353
		goto retry;
M
Michal Hocko 已提交
4354
	}
4355

L
Linus Torvalds 已提交
4356
nopage:
4357 4358
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4359 4360
		goto retry_cpuset;

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4398 4399 4400 4401
		cond_resched();
		goto retry;
	}
fail:
4402
	warn_alloc(gfp_mask, ac->nodemask,
4403
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4404
got_pg:
4405 4406 4407 4408

	if (ac->migratetype == MIGRATE_MOVABLE)
		memcg_check_wmark_min_adj(current, ac);

4409
	return page;
L
Linus Torvalds 已提交
4410
}
4411

4412
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4413
		int preferred_nid, nodemask_t *nodemask,
4414 4415
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4416
{
4417
	ac->high_zoneidx = gfp_zone(gfp_mask);
4418
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4419 4420
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4421

4422
	if (cpusets_enabled()) {
4423 4424 4425
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4426 4427
		else
			*alloc_flags |= ALLOC_CPUSET;
4428 4429
	}

4430 4431
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4432

4433
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4434 4435

	if (should_fail_alloc_page(gfp_mask, order))
4436
		return false;
4437

4438 4439 4440
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4441 4442
	return true;
}
4443

4444
/* Determine whether to spread dirty pages and what the first usable zone */
4445
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4446
{
4447
	/* Dirty zone balancing only done in the fast path */
4448
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4449

4450 4451 4452 4453 4454
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4455 4456 4457 4458 4459 4460 4461 4462
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4463 4464
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4465 4466 4467
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4468
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4469 4470
	struct alloc_context ac = { };

4471 4472 4473 4474 4475 4476 4477 4478 4479
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4480
	gfp_mask &= gfp_allowed_mask;
4481
	alloc_mask = gfp_mask;
4482
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4483 4484
		return NULL;

4485
	finalise_ac(gfp_mask, &ac);
4486

4487
	/* First allocation attempt */
4488
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4489 4490
	if (likely(page))
		goto out;
4491

4492
	/*
4493 4494 4495 4496
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4497
	 */
4498
	alloc_mask = current_gfp_context(gfp_mask);
4499
	ac.spread_dirty_pages = false;
4500

4501 4502 4503 4504
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4505
	if (unlikely(ac.nodemask != nodemask))
4506
		ac.nodemask = nodemask;
4507

4508
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4509

4510
out:
4511 4512 4513 4514
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4515 4516
	}

4517 4518
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4519
	return page;
L
Linus Torvalds 已提交
4520
}
4521
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4522 4523

/*
4524 4525 4526
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4527
 */
H
Harvey Harrison 已提交
4528
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4529
{
4530 4531
	struct page *page;

4532
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4539
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4540
{
4541
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4542 4543 4544
}
EXPORT_SYMBOL(get_zeroed_page);

4545
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4546
{
4547 4548 4549 4550
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4551 4552
}

4553 4554 4555 4556 4557
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4558 4559
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4560
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4561 4562
{
	if (addr != 0) {
N
Nick Piggin 已提交
4563
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4581 4582
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4602
void __page_frag_cache_drain(struct page *page, unsigned int count)
4603 4604 4605
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4606 4607
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4608
}
4609
EXPORT_SYMBOL(__page_frag_cache_drain);
4610

4611 4612
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4613 4614 4615 4616 4617 4618 4619
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4620
		page = __page_frag_cache_refill(nc, gfp_mask);
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4631
		page_ref_add(page, size);
4632 4633

		/* reset page count bias and offset to start of new frag */
4634
		nc->pfmemalloc = page_is_pfmemalloc(page);
4635
		nc->pagecnt_bias = size + 1;
4636 4637 4638 4639 4640 4641 4642
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4643
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4644 4645 4646 4647 4648 4649 4650
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4651
		set_page_count(page, size + 1);
4652 4653

		/* reset page count bias and offset to start of new frag */
4654
		nc->pagecnt_bias = size + 1;
4655 4656 4657 4658 4659 4660 4661 4662
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4663
EXPORT_SYMBOL(page_frag_alloc);
4664 4665 4666 4667

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4668
void page_frag_free(void *addr)
4669 4670 4671
{
	struct page *page = virt_to_head_page(addr);

4672 4673
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4674
}
4675
EXPORT_SYMBOL(page_frag_free);
4676

4677 4678
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4712
	return make_alloc_exact(addr, order, size);
4713 4714 4715
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4716 4717 4718
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4719
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4720 4721 4722 4723 4724 4725
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4726
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4727
{
4728
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4729 4730 4731 4732 4733 4734
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4754 4755 4756 4757 4758 4759 4760
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4761 4762
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4763
 */
4764
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4765
{
4766
	struct zoneref *z;
4767 4768
	struct zone *zone;

4769
	/* Just pick one node, since fallback list is circular */
4770
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4771

4772
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4773

4774
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4775
		unsigned long size = zone->managed_pages;
4776
		unsigned long high = high_wmark_pages(zone);
4777 4778
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783
	}

	return sum;
}

4784 4785 4786 4787 4788
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4789
 */
4790
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4791
{
A
Al Viro 已提交
4792
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4793
}
4794
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4795

4796 4797 4798 4799 4800
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4801
 */
4802
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4803
{
M
Mel Gorman 已提交
4804
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4805
}
4806 4807

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4808
{
4809
	if (IS_ENABLED(CONFIG_NUMA))
4810
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4811 4812
}

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4823
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4824 4825 4826 4827 4828 4829 4830 4831

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4832
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4847 4848 4849
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4850

4851 4852 4853 4854 4855 4856 4857
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

4858 4859 4860 4861 4862 4863
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4864 4865 4866
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4867
	val->sharedram = global_node_page_state(NR_SHMEM);
4868
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4880 4881
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4882 4883
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4884 4885
	pg_data_t *pgdat = NODE_DATA(nid);

4886 4887 4888
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4889
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4890
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4891
#ifdef CONFIG_HIGHMEM
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4902
#else
4903 4904
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4905
#endif
L
Linus Torvalds 已提交
4906 4907 4908 4909
	val->mem_unit = PAGE_SIZE;
}
#endif

4910
/*
4911 4912
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4913
 */
4914
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4915 4916
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4917
		return false;
4918

4919 4920 4921 4922 4923 4924 4925 4926 4927
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4928 4929
}

L
Linus Torvalds 已提交
4930 4931
#define K(x) ((x) << (PAGE_SHIFT-10))

4932 4933 4934 4935 4936
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4937 4938
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4939 4940 4941
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4942
#ifdef CONFIG_MEMORY_ISOLATION
4943
		[MIGRATE_ISOLATE]	= 'I',
4944
#endif
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4956
	printk(KERN_CONT "(%s) ", tmp);
4957 4958
}

L
Linus Torvalds 已提交
4959 4960 4961 4962
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4963 4964 4965 4966
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4967
 */
4968
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4969
{
4970
	unsigned long free_pcp = 0;
4971
	int cpu;
L
Linus Torvalds 已提交
4972
	struct zone *zone;
M
Mel Gorman 已提交
4973
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4974

4975
	for_each_populated_zone(zone) {
4976
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4977
			continue;
4978

4979 4980
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4981 4982
	}

K
KOSAKI Motohiro 已提交
4983 4984
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4985 4986
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4987
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4988
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4989 4990 4991 4992 4993 4994 4995
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4996 4997 4998
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4999 5000
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5001
		global_node_page_state(NR_FILE_MAPPED),
5002
		global_node_page_state(NR_SHMEM),
5003 5004 5005
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5006
		free_pcp,
5007
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5008

M
Mel Gorman 已提交
5009
	for_each_online_pgdat(pgdat) {
5010
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5011 5012
			continue;

M
Mel Gorman 已提交
5013 5014 5015 5016 5017 5018 5019 5020
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5021
			" mapped:%lukB"
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5042
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5043 5044
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5045
			K(node_page_state(pgdat, NR_SHMEM)),
5046 5047 5048 5049 5050 5051 5052 5053
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5054 5055
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5056 5057
	}

5058
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5059 5060
		int i;

5061
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5062
			continue;
5063 5064 5065 5066 5067

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5068
		show_node(zone);
5069 5070
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5071 5072 5073 5074
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5075 5076 5077 5078 5079
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5080
			" writepending:%lukB"
L
Linus Torvalds 已提交
5081
			" present:%lukB"
5082
			" managed:%lukB"
5083
			" mlocked:%lukB"
5084
			" kernel_stack:%lukB"
5085 5086
			" pagetables:%lukB"
			" bounce:%lukB"
5087 5088
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5089
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5090 5091
			"\n",
			zone->name,
5092
			K(zone_page_state(zone, NR_FREE_PAGES)),
5093 5094 5095
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5096 5097 5098 5099 5100
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5101
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5102
			K(zone->present_pages),
5103
			K(zone->managed_pages),
5104
			K(zone_page_state(zone, NR_MLOCK)),
5105
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5106 5107
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5108 5109
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5110
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5111 5112
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5113 5114
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5115 5116
	}

5117
	for_each_populated_zone(zone) {
5118 5119
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5120
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5121

5122
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5123
			continue;
L
Linus Torvalds 已提交
5124
		show_node(zone);
5125
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5126 5127 5128

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5129 5130 5131 5132
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5133
			total += nr[order] << order;
5134 5135 5136

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5137
				if (!free_area_empty(area, type))
5138 5139
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5140 5141
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5142
		for (order = 0; order < MAX_ORDER; order++) {
5143 5144
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5145 5146 5147
			if (nr[order])
				show_migration_types(types[order]);
		}
5148
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5149 5150
	}

5151 5152
	hugetlb_show_meminfo();

5153
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5154

L
Linus Torvalds 已提交
5155 5156 5157
	show_swap_cache_info();
}

5158 5159 5160 5161 5162 5163
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5164 5165
/*
 * Builds allocation fallback zone lists.
5166 5167
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5168
 */
5169
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5170
{
5171
	struct zone *zone;
5172
	enum zone_type zone_type = MAX_NR_ZONES;
5173
	int nr_zones = 0;
5174 5175

	do {
5176
		zone_type--;
5177
		zone = pgdat->node_zones + zone_type;
5178
		if (managed_zone(zone)) {
5179
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5180
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5181
		}
5182
	} while (zone_type);
5183

5184
	return nr_zones;
L
Linus Torvalds 已提交
5185 5186 5187
}

#ifdef CONFIG_NUMA
5188 5189 5190

static int __parse_numa_zonelist_order(char *s)
{
5191 5192 5193 5194 5195 5196 5197 5198
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5199 5200 5201 5202 5203 5204 5205
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5206 5207 5208
	if (!s)
		return 0;

5209
	return __parse_numa_zonelist_order(s);
5210 5211 5212
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5213 5214
char numa_zonelist_order[] = "Node";

5215 5216 5217
/*
 * sysctl handler for numa_zonelist_order
 */
5218
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5219
		void __user *buffer, size_t *length,
5220 5221
		loff_t *ppos)
{
5222
	char *str;
5223 5224
	int ret;

5225 5226 5227 5228 5229
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5230

5231 5232
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5233
	return ret;
5234 5235 5236
}


5237
#define MAX_NODE_LOAD (nr_online_nodes)
5238 5239
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5240
/**
5241
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5254
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5255
{
5256
	int n, val;
L
Linus Torvalds 已提交
5257
	int min_val = INT_MAX;
D
David Rientjes 已提交
5258
	int best_node = NUMA_NO_NODE;
5259
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5260

5261 5262 5263 5264 5265
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5266

5267
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5268 5269 5270 5271 5272 5273 5274 5275

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5276 5277 5278
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5279
		/* Give preference to headless and unused nodes */
5280 5281
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5300 5301 5302 5303 5304 5305

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5306 5307
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5308
{
5309 5310 5311 5312 5313 5314 5315 5316 5317
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5318

5319 5320 5321 5322 5323
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5324 5325
}

5326 5327 5328 5329 5330
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5331 5332
	struct zoneref *zonerefs;
	int nr_zones;
5333

5334 5335 5336 5337 5338
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5339 5340
}

5341 5342 5343 5344 5345 5346 5347 5348 5349
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5350 5351
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5352
	nodemask_t used_mask;
5353
	int local_node, prev_node;
L
Linus Torvalds 已提交
5354 5355 5356

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5357
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5358 5359
	prev_node = local_node;
	nodes_clear(used_mask);
5360 5361

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5368 5369
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5370 5371
			node_load[node] = load;

5372
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5373 5374 5375
		prev_node = node;
		load--;
	}
5376

5377
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5378
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5379 5380
}

5381 5382 5383 5384 5385 5386 5387 5388 5389
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5390
	struct zoneref *z;
5391

5392
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5393
				   gfp_zone(GFP_KERNEL),
5394
				   NULL);
5395
	return zone_to_nid(z->zone);
5396 5397
}
#endif
5398

5399 5400
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5401 5402
#else	/* CONFIG_NUMA */

5403
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5404
{
5405
	int node, local_node;
5406 5407
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5408 5409 5410

	local_node = pgdat->node_id;

5411 5412 5413
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5414

5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5426 5427
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5428
	}
5429 5430 5431
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5432 5433
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5434 5435
	}

5436 5437
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5438 5439 5440 5441
}

#endif	/* CONFIG_NUMA */

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5459
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5460

5461
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5462
{
5463
	int nid;
5464
	int __maybe_unused cpu;
5465
	pg_data_t *self = data;
5466 5467 5468
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5469

5470 5471 5472
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5473

5474 5475 5476 5477
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5478 5479
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5480 5481 5482
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5483

5484 5485
			build_zonelists(pgdat);
		}
5486

5487 5488 5489 5490 5491 5492 5493 5494 5495
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5496
		for_each_online_cpu(cpu)
5497
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5498
#endif
5499
	}
5500 5501

	spin_unlock(&lock);
5502 5503
}

5504 5505 5506
static noinline void __init
build_all_zonelists_init(void)
{
5507 5508
	int cpu;

5509
	__build_all_zonelists(NULL);
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5527 5528 5529 5530
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5531 5532
/*
 * unless system_state == SYSTEM_BOOTING.
5533
 *
5534
 * __ref due to call of __init annotated helper build_all_zonelists_init
5535
 * [protected by SYSTEM_BOOTING].
5536
 */
5537
void __ref build_all_zonelists(pg_data_t *pgdat)
5538 5539
{
	if (system_state == SYSTEM_BOOTING) {
5540
		build_all_zonelists_init();
5541
	} else {
5542
		__build_all_zonelists(pgdat);
5543 5544
		/* cpuset refresh routine should be here */
	}
5545
	vm_total_pages = nr_free_pagecache_pages();
5546 5547 5548 5549 5550 5551 5552
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5553
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5554 5555 5556 5557
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5558
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5559 5560 5561
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5562
#ifdef CONFIG_NUMA
5563
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5564
#endif
L
Linus Torvalds 已提交
5565 5566 5567 5568 5569 5570 5571
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5572
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5573 5574
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5575
{
A
Andy Whitcroft 已提交
5576
	unsigned long end_pfn = start_pfn + size;
5577
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5578
	unsigned long pfn;
5579
	unsigned long nr_initialised = 0;
5580
	struct page *page;
5581 5582 5583
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5584

5585 5586 5587
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5588 5589 5590 5591 5592 5593 5594
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5595
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5596
		/*
5597 5598
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5599
		 */
5600 5601 5602
		if (context != MEMMAP_EARLY)
			goto not_early;

5603
		if (!early_pfn_valid(pfn))
5604 5605 5606 5607 5608
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5609 5610

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5628
			}
D
Dave Hansen 已提交
5629
		}
5630
#endif
5631

5632
not_early:
5633 5634 5635 5636 5637
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5638 5639 5640 5641 5642
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5643
		 * kernel allocations are made.
5644 5645 5646 5647 5648
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5649 5650 5651
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5652 5653 5654
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5655
			cond_resched();
5656
		}
L
Linus Torvalds 已提交
5657 5658 5659
	}
}

5660
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5661
{
5662
	unsigned int order, t;
5663 5664
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5665 5666 5667 5668 5669 5670
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5671
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5672 5673
#endif

5674
static int zone_batchsize(struct zone *zone)
5675
{
5676
#ifdef CONFIG_MMU
5677 5678 5679 5680
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5681
	 * size of the zone.
5682
	 */
5683
	batch = zone->managed_pages / 1024;
5684 5685 5686
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5687 5688 5689 5690 5691
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5692 5693 5694
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5695
	 *
5696 5697 5698 5699
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5700
	 */
5701
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5702

5703
	return batch;
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5721 5722
}

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5750
/* a companion to pageset_set_high() */
5751 5752
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5753
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5754 5755
}

5756
static void pageset_init(struct per_cpu_pageset *p)
5757 5758
{
	struct per_cpu_pages *pcp;
5759
	int migratetype;
5760

5761 5762
	memset(p, 0, sizeof(*p));

5763
	pcp = &p->pcp;
5764
	pcp->count = 0;
5765 5766
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5767 5768
}

5769 5770 5771 5772 5773 5774
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5775
/*
5776
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5777 5778
 * to the value high for the pageset p.
 */
5779
static void pageset_set_high(struct per_cpu_pageset *p,
5780 5781
				unsigned long high)
{
5782 5783 5784
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5785

5786
	pageset_update(&p->pcp, high, batch);
5787 5788
}

5789 5790
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5791 5792
{
	if (percpu_pagelist_fraction)
5793
		pageset_set_high(pcp,
5794 5795 5796 5797 5798 5799
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5800 5801 5802 5803 5804 5805 5806 5807
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5808
void __meminit setup_zone_pageset(struct zone *zone)
5809 5810 5811
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5812 5813
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5814 5815
}

5816
/*
5817 5818
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5819
 */
5820
void __init setup_per_cpu_pageset(void)
5821
{
5822
	struct pglist_data *pgdat;
5823
	struct zone *zone;
5824

5825 5826
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5827 5828 5829 5830

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5831 5832
}

5833
static __meminit void zone_pcp_init(struct zone *zone)
5834
{
5835 5836 5837 5838 5839 5840
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5841

5842
	if (populated_zone(zone))
5843 5844 5845
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5846 5847
}

5848
void __meminit init_currently_empty_zone(struct zone *zone,
5849
					unsigned long zone_start_pfn,
5850
					unsigned long size)
5851 5852
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5853
	int zone_idx = zone_idx(zone) + 1;
5854

5855 5856
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5857 5858 5859

	zone->zone_start_pfn = zone_start_pfn;

5860 5861 5862 5863 5864 5865
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5866
	zone_init_free_lists(zone);
5867
	zone->initialized = 1;
5868 5869
}

T
Tejun Heo 已提交
5870
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5871
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5872

5873 5874 5875
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5876 5877
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5878
{
5879
	unsigned long start_pfn, end_pfn;
5880
	int nid;
5881

5882 5883
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5884

5885 5886
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5887 5888 5889
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5890 5891 5892
	}

	return nid;
5893 5894 5895 5896
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5897
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5898
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5899
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5900
 *
5901 5902 5903
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5904
 */
5905
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5906
{
5907 5908
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5909

5910 5911 5912
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5913

5914
		if (start_pfn < end_pfn)
5915 5916 5917
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5918 5919 5920
	}
}

5921 5922
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5923
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5924
 *
5925 5926
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5927 5928 5929
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5930 5931
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5932

5933 5934
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5935 5936 5937 5938
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5939 5940 5941
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5942 5943
 *
 * It returns the start and end page frame of a node based on information
5944
 * provided by memblock_set_node(). If called for a node
5945
 * with no available memory, a warning is printed and the start and end
5946
 * PFNs will be 0.
5947
 */
5948
void __meminit get_pfn_range_for_nid(unsigned int nid,
5949 5950
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5951
	unsigned long this_start_pfn, this_end_pfn;
5952
	int i;
5953

5954 5955 5956
	*start_pfn = -1UL;
	*end_pfn = 0;

5957 5958 5959
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5960 5961
	}

5962
	if (*start_pfn == -1UL)
5963 5964 5965
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5966 5967 5968 5969 5970
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5971
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5989
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5990 5991 5992 5993 5994 5995 5996
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5997
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6012 6013 6014 6015 6016 6017
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6018 6019 6020 6021 6022 6023
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6024 6025 6026 6027
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
6028
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6029
					unsigned long zone_type,
6030 6031
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6032 6033
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6034 6035
					unsigned long *ignored)
{
6036 6037
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6038
	/* When hotadd a new node from cpu_up(), the node should be empty */
6039 6040 6041
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6042
	/* Get the start and end of the zone */
6043 6044
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6045 6046
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6047
				zone_start_pfn, zone_end_pfn);
6048 6049

	/* Check that this node has pages within the zone's required range */
6050
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6051 6052 6053
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6054 6055
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6056 6057

	/* Return the spanned pages */
6058
	return *zone_end_pfn - *zone_start_pfn;
6059 6060 6061 6062
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6063
 * then all holes in the requested range will be accounted for.
6064
 */
6065
unsigned long __meminit __absent_pages_in_range(int nid,
6066 6067 6068
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6069 6070 6071
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6072

6073 6074 6075 6076
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6077
	}
6078
	return nr_absent;
6079 6080 6081 6082 6083 6084 6085
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6086
 * It returns the number of pages frames in memory holes within a range.
6087 6088 6089 6090 6091 6092 6093 6094
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6095
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6096
					unsigned long zone_type,
6097 6098
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6099 6100
					unsigned long *ignored)
{
6101 6102
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6103
	unsigned long zone_start_pfn, zone_end_pfn;
6104
	unsigned long nr_absent;
6105

6106
	/* When hotadd a new node from cpu_up(), the node should be empty */
6107 6108 6109
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6110 6111
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6112

M
Mel Gorman 已提交
6113 6114 6115
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6116 6117 6118 6119 6120 6121 6122
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6140 6141 6142 6143
		}
	}

	return nr_absent;
6144
}
6145

T
Tejun Heo 已提交
6146
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6147
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6148
					unsigned long zone_type,
6149 6150
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6151 6152
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6153 6154
					unsigned long *zones_size)
{
6155 6156 6157 6158 6159 6160 6161 6162
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6163 6164 6165
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6166
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6167
						unsigned long zone_type,
6168 6169
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6170 6171 6172 6173 6174 6175 6176
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6177

T
Tejun Heo 已提交
6178
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6179

6180
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6181 6182 6183 6184
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6185
{
6186
	unsigned long realtotalpages = 0, totalpages = 0;
6187 6188
	enum zone_type i;

6189 6190
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6191
		unsigned long zone_start_pfn, zone_end_pfn;
6192
		unsigned long size, real_size;
6193

6194 6195 6196
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6197 6198
						  &zone_start_pfn,
						  &zone_end_pfn,
6199 6200
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6201 6202
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6203 6204 6205 6206
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6207 6208 6209 6210 6211 6212 6213 6214
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6215 6216 6217 6218 6219
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6220 6221 6222
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6223 6224
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6225 6226 6227
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6228
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6229 6230 6231
{
	unsigned long usemapsize;

6232
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6233 6234
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6235 6236 6237 6238 6239 6240
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6241
static void __ref setup_usemap(struct pglist_data *pgdat,
6242 6243 6244
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6245
{
6246
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6247
	zone->pageblock_flags = NULL;
6248
	if (usemapsize)
6249 6250 6251
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6252 6253
}
#else
6254 6255
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6256 6257
#endif /* CONFIG_SPARSEMEM */

6258
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6259

6260
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6261
void __init set_pageblock_order(void)
6262
{
6263 6264
	unsigned int order;

6265 6266 6267 6268
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6269 6270 6271 6272 6273
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6274 6275
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6276 6277
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6278 6279 6280 6281 6282
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6283 6284
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6285 6286 6287
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6288
 */
6289
void __init set_pageblock_order(void)
6290 6291
{
}
6292 6293 6294

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6295
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6296
						unsigned long present_pages)
6297 6298 6299 6300 6301 6302 6303 6304
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6305
	 * populated regions may not be naturally aligned on page boundary.
6306 6307 6308 6309 6310 6311 6312 6313 6314
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6315 6316 6317
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6318 6319 6320 6321 6322
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6337
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6338
{
6339
	pgdat_resize_init(pgdat);
6340 6341 6342 6343

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6344
	init_waitqueue_head(&pgdat->kswapd_wait);
6345
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6346

6347
	pgdat_page_ext_init(pgdat);
6348
	spin_lock_init(&pgdat->lru_lock);
6349
	lruvec_init(node_lruvec(pgdat));
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6396

6397
	pgdat_init_internals(pgdat);
6398 6399
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6400 6401
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6402
		unsigned long size, freesize, memmap_pages;
6403
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6404

6405
		size = zone->spanned_pages;
6406
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6407

6408
		/*
6409
		 * Adjust freesize so that it accounts for how much memory
6410 6411 6412
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6413
		memmap_pages = calc_memmap_size(size, freesize);
6414 6415 6416 6417 6418 6419 6420 6421
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6422
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6423 6424
					zone_names[j], memmap_pages, freesize);
		}
6425

6426
		/* Account for reserved pages */
6427 6428
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6429
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6430
					zone_names[0], dma_reserve);
6431 6432
		}

6433
		if (!is_highmem_idx(j))
6434
			nr_kernel_pages += freesize;
6435 6436 6437
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6438
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6439

6440 6441 6442 6443 6444
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6445
		zone_init_internals(zone, j, nid, freesize);
6446

6447
		if (!size)
L
Linus Torvalds 已提交
6448 6449
			continue;

6450
		set_pageblock_order();
6451 6452
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6453
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6454 6455 6456
	}
}

6457
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6458
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6459
{
6460
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6461 6462
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6463 6464 6465 6466
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6467 6468
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6469 6470
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6471
		unsigned long size, end;
A
Andy Whitcroft 已提交
6472 6473
		struct page *map;

6474 6475 6476 6477 6478
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6479
		end = pgdat_end_pfn(pgdat);
6480 6481
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6482
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6483
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6484
	}
6485 6486 6487
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6488
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6489 6490 6491
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6492
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6493
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6494
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6495
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6496
			mem_map -= offset;
T
Tejun Heo 已提交
6497
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6498
	}
L
Linus Torvalds 已提交
6499 6500
#endif
}
6501 6502 6503
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6504

6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6520
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6521 6522
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6523
{
6524
	pg_data_t *pgdat = NODE_DATA(nid);
6525 6526
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6527

6528
	/* pg_data_t should be reset to zero when it's allocated */
6529
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6530

L
Linus Torvalds 已提交
6531 6532
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6533
	pgdat->per_cpu_nodestats = NULL;
6534 6535
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6536
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6537 6538
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6539 6540
#else
	start_pfn = node_start_pfn;
6541 6542 6543
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6544 6545

	alloc_node_mem_map(pgdat);
6546
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6547

6548
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6549 6550
}

6551
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6552 6553 6554 6555 6556 6557 6558
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
6559
void __init zero_resv_unavail(void)
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6572 6573 6574
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
				pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
					+ pageblock_nr_pages - 1;
6575
				continue;
6576
			}
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
6592
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6593

T
Tejun Heo 已提交
6594
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6595 6596 6597 6598 6599

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6600
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6601
{
6602
	unsigned int highest;
M
Miklos Szeredi 已提交
6603

6604
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6605 6606 6607 6608
	nr_node_ids = highest + 1;
}
#endif

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6631
	unsigned long start, end, mask;
6632
	int last_nid = -1;
6633
	int i, nid;
6634

6635
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6659
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6660
static unsigned long __init find_min_pfn_for_node(int nid)
6661
{
6662
	unsigned long min_pfn = ULONG_MAX;
6663 6664
	unsigned long start_pfn;
	int i;
6665

6666 6667
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6668

6669
	if (min_pfn == ULONG_MAX) {
6670
		pr_warn("Could not find start_pfn for node %d\n", nid);
6671 6672 6673 6674
		return 0;
	}

	return min_pfn;
6675 6676 6677 6678 6679 6680
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6681
 * memblock_set_node().
6682 6683 6684 6685 6686 6687
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6688 6689 6690
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6691
 * Populate N_MEMORY for calculating usable_nodes.
6692
 */
A
Adrian Bunk 已提交
6693
static unsigned long __init early_calculate_totalpages(void)
6694 6695
{
	unsigned long totalpages = 0;
6696 6697 6698 6699 6700
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6701

6702 6703
		totalpages += pages;
		if (pages)
6704
			node_set_state(nid, N_MEMORY);
6705
	}
6706
	return totalpages;
6707 6708
}

M
Mel Gorman 已提交
6709 6710 6711 6712 6713 6714
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6715
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6716 6717 6718 6719
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6720
	/* save the state before borrow the nodemask */
6721
	nodemask_t saved_node_state = node_states[N_MEMORY];
6722
	unsigned long totalpages = early_calculate_totalpages();
6723
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6724
	struct memblock_region *r;
6725 6726 6727 6728 6729 6730 6731 6732 6733

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6734 6735
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6736 6737
				continue;

E
Emil Medve 已提交
6738
			nid = r->nid;
6739

E
Emil Medve 已提交
6740
			usable_startpfn = PFN_DOWN(r->base);
6741 6742 6743 6744 6745 6746 6747
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6748

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6779
	/*
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6807
		required_movablecore = min(totalpages, required_movablecore);
6808 6809 6810 6811 6812
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6813 6814 6815 6816 6817
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6818
		goto out;
M
Mel Gorman 已提交
6819 6820 6821 6822 6823 6824 6825

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6826
	for_each_node_state(nid, N_MEMORY) {
6827 6828
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6845
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6846 6847
			unsigned long size_pages;

6848
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6891
			 * satisfied
M
Mel Gorman 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6905
	 * satisfied
M
Mel Gorman 已提交
6906 6907 6908 6909 6910
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6911
out2:
M
Mel Gorman 已提交
6912 6913 6914 6915
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6916

6917
out:
6918
	/* restore the node_state */
6919
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6920 6921
}

6922 6923
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6924 6925 6926
{
	enum zone_type zone_type;

6927 6928 6929 6930
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6931
		struct zone *zone = &pgdat->node_zones[zone_type];
6932
		if (populated_zone(zone)) {
6933 6934 6935 6936
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6937 6938
			break;
		}
6939 6940 6941
	}
}

6942 6943
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6944
 * @max_zone_pfn: an array of max PFNs for each zone
6945 6946
 *
 * This will call free_area_init_node() for each active node in the system.
6947
 * Using the page ranges provided by memblock_set_node(), the size of each
6948 6949 6950 6951 6952 6953 6954 6955 6956
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6957 6958
	unsigned long start_pfn, end_pfn;
	int i, nid;
6959

6960 6961 6962 6963 6964
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6965 6966 6967 6968

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6969 6970
		if (i == ZONE_MOVABLE)
			continue;
6971 6972 6973 6974 6975 6976

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6977
	}
M
Mel Gorman 已提交
6978 6979 6980

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6981
	find_zone_movable_pfns_for_nodes();
6982 6983

	/* Print out the zone ranges */
6984
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6985 6986 6987
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6988
		pr_info("  %-8s ", zone_names[i]);
6989 6990
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6991
			pr_cont("empty\n");
6992
		else
6993 6994 6995 6996
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6997
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6998 6999 7000
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7001
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7002 7003
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7004 7005
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7006
	}
7007

7008
	/* Print out the early node map */
7009
	pr_info("Early memory node ranges\n");
7010
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7011 7012 7013
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7014 7015

	/* Initialise every node */
7016
	mminit_verify_pageflags_layout();
7017
	setup_nr_node_ids();
7018
	zero_resv_unavail();
7019 7020
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7021
		free_area_init_node(nid, NULL,
7022
				find_min_pfn_for_node(nid), NULL);
7023 7024 7025

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7026 7027
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7028 7029
	}
}
M
Mel Gorman 已提交
7030

7031 7032
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7033 7034
{
	unsigned long long coremem;
7035 7036
	char *endptr;

M
Mel Gorman 已提交
7037 7038 7039
	if (!p)
		return -EINVAL;

7040 7041 7042 7043 7044
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7045

7046 7047 7048 7049 7050
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7051

7052 7053 7054
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7055 7056
	return 0;
}
M
Mel Gorman 已提交
7057

7058 7059 7060 7061 7062 7063
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7064 7065 7066 7067 7068 7069
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7070 7071
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7072 7073 7074 7075 7076 7077 7078 7079
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7080 7081
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7082 7083
}

M
Mel Gorman 已提交
7084
early_param("kernelcore", cmdline_parse_kernelcore);
7085
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7086

T
Tejun Heo 已提交
7087
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7088

7089 7090 7091 7092 7093
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7094 7095 7096 7097
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7098 7099
	spin_unlock(&managed_page_count_lock);
}
7100
EXPORT_SYMBOL(adjust_managed_page_count);
7101

7102
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7103
{
7104 7105
	void *pos;
	unsigned long pages = 0;
7106

7107 7108 7109
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7121
		if ((unsigned int)poison <= 0xFF)
7122 7123 7124
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7125 7126 7127
	}

	if (pages && s)
7128 7129
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7130 7131 7132

	return pages;
}
7133
EXPORT_SYMBOL(free_reserved_area);
7134

7135 7136 7137 7138 7139
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7140
	page_zone(page)->managed_pages++;
7141 7142 7143 7144
	totalhigh_pages++;
}
#endif

7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7167 7168 7169 7170
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7181
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7182
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7183
		", %luK highmem"
7184
#endif
J
Joe Perches 已提交
7185 7186 7187 7188 7189 7190 7191
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7192
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7193
		totalhigh_pages << (PAGE_SHIFT - 10),
7194
#endif
J
Joe Perches 已提交
7195
		str ? ", " : "", str ? str : "");
7196 7197
}

7198
/**
7199 7200
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7201
 *
7202
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7203 7204
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7205 7206 7207
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7208 7209 7210 7211 7212 7213
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7214 7215
void __init free_area_init(unsigned long *zones_size)
{
7216
	zero_resv_unavail();
7217
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7218 7219 7220
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7221
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7222 7223
{

7224 7225
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7226

7227 7228 7229 7230 7231 7232 7233
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7234

7235 7236 7237 7238 7239 7240 7241 7242 7243
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7244 7245 7246 7247
}

void __init page_alloc_init(void)
{
7248 7249 7250 7251 7252 7253
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7254 7255
}

7256
/*
7257
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7258 7259 7260 7261 7262 7263
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7264
	enum zone_type i, j;
7265 7266

	for_each_online_pgdat(pgdat) {
7267 7268 7269

		pgdat->totalreserve_pages = 0;

7270 7271
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7272
			long max = 0;
7273 7274 7275 7276 7277 7278 7279

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7280 7281
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7282

7283 7284
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7285

7286
			pgdat->totalreserve_pages += max;
7287

7288 7289 7290 7291 7292 7293
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7294 7295
/*
 * setup_per_zone_lowmem_reserve - called whenever
7296
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7297 7298 7299 7300 7301 7302
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7303
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7304

7305
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7306 7307
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7308
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7309 7310 7311

			zone->lowmem_reserve[j] = 0;

7312 7313
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7314 7315
				struct zone *lower_zone;

7316
				idx--;
L
Linus Torvalds 已提交
7317
				lower_zone = pgdat->node_zones + idx;
7318 7319 7320 7321 7322 7323 7324 7325

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7326
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7327 7328 7329
			}
		}
	}
7330 7331 7332

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7333 7334
}

7335
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7336 7337 7338 7339 7340 7341 7342 7343 7344
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7345
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7346 7347 7348
	}

	for_each_zone(zone) {
7349 7350
		u64 tmp;

7351
		spin_lock_irqsave(&zone->lock, flags);
7352
		tmp = (u64)pages_min * zone->managed_pages;
7353
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7354 7355
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7356 7357 7358 7359
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7360
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7361
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7362
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7363
			 */
7364
			unsigned long min_pages;
L
Linus Torvalds 已提交
7365

7366
			min_pages = zone->managed_pages / 1024;
7367
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7368
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7369
		} else {
N
Nick Piggin 已提交
7370 7371
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7372 7373
			 * proportionate to the zone's size.
			 */
7374
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7375 7376
		}

7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7388

7389
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7390
	}
7391 7392 7393

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7394 7395
}

7396 7397 7398 7399 7400 7401 7402 7403 7404
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7405 7406 7407
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7408
	__setup_per_zone_wmarks();
7409
	spin_unlock(&lock);
7410 7411
}

L
Linus Torvalds 已提交
7412 7413 7414 7415 7416 7417 7418
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7419
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7436
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7437 7438
{
	unsigned long lowmem_kbytes;
7439
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7440 7441

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7454
	setup_per_zone_wmarks();
7455
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7456
	setup_per_zone_lowmem_reserve();
7457 7458 7459 7460 7461 7462

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7463 7464
	return 0;
}
7465
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7466 7467

/*
7468
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7469 7470 7471
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7472
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7473
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7474
{
7475 7476 7477 7478 7479 7480
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7481 7482
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7483
		setup_per_zone_wmarks();
7484
	}
L
Linus Torvalds 已提交
7485 7486 7487
	return 0;
}

7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7503
#ifdef CONFIG_NUMA
7504
static void setup_min_unmapped_ratio(void)
7505
{
7506
	pg_data_t *pgdat;
7507 7508
	struct zone *zone;

7509
	for_each_online_pgdat(pgdat)
7510
		pgdat->min_unmapped_pages = 0;
7511

7512
	for_each_zone(zone)
7513
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7514 7515
				sysctl_min_unmapped_ratio) / 100;
}
7516

7517 7518

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7519
	void __user *buffer, size_t *length, loff_t *ppos)
7520 7521 7522
{
	int rc;

7523
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7524 7525 7526
	if (rc)
		return rc;

7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7537 7538 7539
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7540
	for_each_zone(zone)
7541
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7542
				sysctl_min_slab_ratio) / 100;
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7556 7557
	return 0;
}
7558 7559
#endif

L
Linus Torvalds 已提交
7560 7561 7562 7563 7564 7565
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7566
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7567 7568
 * if in function of the boot time zone sizes.
 */
7569
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7570
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7571
{
7572
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7573 7574 7575 7576
	setup_per_zone_lowmem_reserve();
	return 0;
}

7577 7578
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7579 7580
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7581
 */
7582
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7583
	void __user *buffer, size_t *length, loff_t *ppos)
7584 7585
{
	struct zone *zone;
7586
	int old_percpu_pagelist_fraction;
7587 7588
	int ret;

7589 7590 7591
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7592
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7607

7608
	for_each_populated_zone(zone) {
7609 7610
		unsigned int cpu;

7611
		for_each_possible_cpu(cpu)
7612 7613
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7614
	}
7615
out:
7616
	mutex_unlock(&pcp_batch_high_lock);
7617
	return ret;
7618 7619
}

7620
#ifdef CONFIG_NUMA
7621
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7672 7673
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7674
{
7675
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7676 7677
	unsigned long log2qty, size;
	void *table = NULL;
7678
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7679 7680 7681 7682

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7683
		numentries = nr_kernel_pages;
7684
		numentries -= arch_reserved_kernel_pages();
7685 7686 7687 7688

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7689

P
Pavel Tatashin 已提交
7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7700 7701 7702 7703 7704
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7705 7706

		/* Make sure we've got at least a 0-order allocation.. */
7707 7708 7709 7710 7711 7712 7713 7714
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7715
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7716
	}
7717
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7718 7719 7720 7721 7722 7723

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7724
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7725

7726 7727
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7728 7729 7730
	if (numentries > max)
		numentries = max;

7731
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7732

7733
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7734 7735
	do {
		size = bucketsize << log2qty;
7736 7737 7738 7739 7740 7741
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7742
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7743
		} else {
7744 7745
			/*
			 * If bucketsize is not a power-of-two, we may free
7746 7747
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7748
			 */
7749
			if (get_order(size) < MAX_ORDER) {
7750 7751
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7752
			}
L
Linus Torvalds 已提交
7753 7754 7755 7756 7757 7758
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7759 7760
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7761 7762 7763 7764 7765 7766 7767 7768

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7769

K
KAMEZAWA Hiroyuki 已提交
7770
/*
7771 7772 7773
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7774
 * PageLRU check without isolation or lru_lock could race so that
7775 7776 7777
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7778
 */
7779
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7780
			 int migratetype,
7781
			 bool skip_hwpoisoned_pages)
7782 7783
{
	unsigned long pfn, iter, found;
7784

7785
	/*
7786 7787 7788 7789 7790
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7791 7792
	 */

7793 7794 7795 7796 7797 7798 7799 7800 7801
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7802 7803 7804 7805
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7806
		if (!pfn_valid_within(check))
7807
			continue;
7808

7809
		page = pfn_to_page(check);
7810

7811
		if (PageReserved(page))
7812
			goto unmovable;
7813

7814 7815 7816 7817 7818 7819 7820 7821
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7822 7823 7824 7825 7826 7827
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7828 7829
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7830

7831
			if (!hugepage_migration_supported(page_hstate(head)))
7832 7833
				goto unmovable;

7834 7835
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7836 7837 7838
			continue;
		}

7839 7840 7841 7842
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7843
		 * because their page->_refcount is zero at all time.
7844
		 */
7845
		if (!page_ref_count(page)) {
7846 7847 7848 7849
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7850

7851 7852 7853 7854 7855 7856 7857
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7858 7859 7860
		if (__PageMovable(page))
			continue;

7861 7862 7863
		if (!PageLRU(page))
			found++;
		/*
7864 7865 7866
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7877
			goto unmovable;
7878
	}
7879
	return false;
7880 7881 7882
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
7883 7884
}

7885
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7900 7901
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7902 7903
{
	/* This function is based on compact_zone() from compaction.c. */
7904
	unsigned long nr_reclaimed;
7905 7906 7907 7908
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7909
	migrate_prep();
7910

7911
	while (pfn < end || !list_empty(&cc->migratepages)) {
7912 7913 7914 7915 7916
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7917 7918
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7919
			pfn = isolate_migratepages_range(cc, pfn, end);
7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7930 7931 7932
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7933

7934
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7935
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7936
	}
7937 7938 7939 7940 7941
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7942 7943 7944 7945 7946 7947
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7948 7949 7950 7951
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7952
 * @gfp_mask:	GFP mask to use during compaction
7953 7954
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7955
 * aligned.  The PFN range must belong to a single zone.
7956
 *
7957 7958 7959
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
7960 7961 7962 7963 7964
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7965
int alloc_contig_range(unsigned long start, unsigned long end,
7966
		       unsigned migratetype, gfp_t gfp_mask)
7967 7968
{
	unsigned long outer_start, outer_end;
7969 7970
	unsigned int order;
	int ret = 0;
7971

7972 7973 7974 7975
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7976
		.mode = MIGRATE_SYNC,
7977
		.ignore_skip_hint = true,
7978
		.no_set_skip_hint = true,
7979
		.gfp_mask = current_gfp_context(gfp_mask),
7980 7981 7982
	};
	INIT_LIST_HEAD(&cc.migratepages);

7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8008 8009
				       pfn_max_align_up(end), migratetype,
				       false);
8010
	if (ret)
8011
		return ret;
8012

8013 8014
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8015 8016 8017 8018 8019 8020 8021
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8022
	 */
8023
	ret = __alloc_contig_migrate_range(&cc, start, end);
8024
	if (ret && ret != -EBUSY)
8025
		goto done;
8026
	ret =0;
8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8046
	drain_all_pages(cc.zone);
8047 8048 8049 8050 8051

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8052 8053
			outer_start = start;
			break;
8054 8055 8056 8057
		}
		outer_start &= ~0UL << order;
	}

8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8071
	/* Make sure the range is really isolated. */
8072
	if (test_pages_isolated(outer_start, end, false)) {
8073
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8074
			__func__, outer_start, end);
8075 8076 8077 8078
		ret = -EBUSY;
		goto done;
	}

8079
	/* Grab isolated pages from freelists. */
8080
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8094
				pfn_max_align_up(end), migratetype);
8095 8096 8097 8098 8099
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8100 8101 8102 8103 8104 8105 8106 8107 8108
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8109 8110 8111
}
#endif

8112 8113 8114 8115
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8116 8117
void __meminit zone_pcp_update(struct zone *zone)
{
8118
	unsigned cpu;
8119
	mutex_lock(&pcp_batch_high_lock);
8120
	for_each_possible_cpu(cpu)
8121 8122
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8123
	mutex_unlock(&pcp_batch_high_lock);
8124 8125
}

8126 8127 8128
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8129 8130
	int cpu;
	struct per_cpu_pageset *pset;
8131 8132 8133 8134

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8135 8136 8137 8138
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8139 8140 8141 8142 8143 8144
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8145
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8146
/*
8147 8148
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8149 8150 8151 8152 8153 8154
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8155
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8156 8157 8158 8159 8160 8161 8162 8163
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8164
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8165 8166 8167 8168 8169 8170 8171 8172 8173
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8184 8185 8186 8187
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8188 8189
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8190
#endif
8191
		del_page_from_free_area(page, &zone->free_area[order]);
K
KAMEZAWA Hiroyuki 已提交
8192 8193 8194 8195 8196 8197 8198
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8199 8200 8201 8202 8203 8204

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8205
	unsigned int order;
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif