kvm-s390.c 110.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * hosting IBM Z kernel virtual machines (s390x)
4
 *
5
 * Copyright IBM Corp. 2008, 2018
6 7 8 9
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
10
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
11
 *               Jason J. Herne <jjherne@us.ibm.com>
12 13 14 15 16
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
17
#include <linux/hrtimer.h>
18 19 20
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
21
#include <linux/mman.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/random.h>
25
#include <linux/slab.h>
26
#include <linux/timer.h>
27
#include <linux/vmalloc.h>
28
#include <linux/bitmap.h>
29
#include <linux/sched/signal.h>
30
#include <linux/string.h>
31

32
#include <asm/asm-offsets.h>
33
#include <asm/lowcore.h>
34
#include <asm/stp.h>
35
#include <asm/pgtable.h>
36
#include <asm/gmap.h>
37
#include <asm/nmi.h>
38
#include <asm/switch_to.h>
39
#include <asm/isc.h>
40
#include <asm/sclp.h>
41
#include <asm/cpacf.h>
42
#include <asm/timex.h>
43
#include "kvm-s390.h"
44 45
#include "gaccess.h"

46 47 48 49
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

50 51
#define CREATE_TRACE_POINTS
#include "trace.h"
52
#include "trace-s390.h"
53

54
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
55 56 57
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
58

59
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
61 62 63

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
64
	{ "exit_null", VCPU_STAT(exit_null) },
65 66 67
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
68
	{ "exit_io_request", VCPU_STAT(exit_io_request) },
69
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
70
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
71
	{ "exit_pei", VCPU_STAT(exit_pei) },
72 73
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
74
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
75
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
76
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
77
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
78
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
79
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
80
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
81 82
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
83 84
	{ "deliver_ckc", VCPU_STAT(deliver_ckc) },
	{ "deliver_cputm", VCPU_STAT(deliver_cputm) },
85
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
86
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
88
	{ "deliver_virtio", VCPU_STAT(deliver_virtio) },
89 90 91
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
92 93
	{ "deliver_program", VCPU_STAT(deliver_program) },
	{ "deliver_io", VCPU_STAT(deliver_io) },
94
	{ "deliver_machine_check", VCPU_STAT(deliver_machine_check) },
95
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	{ "inject_ckc", VCPU_STAT(inject_ckc) },
	{ "inject_cputm", VCPU_STAT(inject_cputm) },
	{ "inject_external_call", VCPU_STAT(inject_external_call) },
	{ "inject_float_mchk", VM_STAT(inject_float_mchk) },
	{ "inject_emergency_signal", VCPU_STAT(inject_emergency_signal) },
	{ "inject_io", VM_STAT(inject_io) },
	{ "inject_mchk", VCPU_STAT(inject_mchk) },
	{ "inject_pfault_done", VM_STAT(inject_pfault_done) },
	{ "inject_program", VCPU_STAT(inject_program) },
	{ "inject_restart", VCPU_STAT(inject_restart) },
	{ "inject_service_signal", VM_STAT(inject_service_signal) },
	{ "inject_set_prefix", VCPU_STAT(inject_set_prefix) },
	{ "inject_stop_signal", VCPU_STAT(inject_stop_signal) },
	{ "inject_pfault_init", VCPU_STAT(inject_pfault_init) },
	{ "inject_virtio", VM_STAT(inject_virtio) },
111 112 113 114 115
	{ "instruction_epsw", VCPU_STAT(instruction_epsw) },
	{ "instruction_gs", VCPU_STAT(instruction_gs) },
	{ "instruction_io_other", VCPU_STAT(instruction_io_other) },
	{ "instruction_lpsw", VCPU_STAT(instruction_lpsw) },
	{ "instruction_lpswe", VCPU_STAT(instruction_lpswe) },
116
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
117
	{ "instruction_ptff", VCPU_STAT(instruction_ptff) },
118
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
119 120
	{ "instruction_sck", VCPU_STAT(instruction_sck) },
	{ "instruction_sckpf", VCPU_STAT(instruction_sckpf) },
121 122 123
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
124 125 126 127
	{ "instruction_iske", VCPU_STAT(instruction_iske) },
	{ "instruction_ri", VCPU_STAT(instruction_ri) },
	{ "instruction_rrbe", VCPU_STAT(instruction_rrbe) },
	{ "instruction_sske", VCPU_STAT(instruction_sske) },
128
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
129
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
130 131
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
132 133
	{ "instruction_tb", VCPU_STAT(instruction_tb) },
	{ "instruction_tpi", VCPU_STAT(instruction_tpi) },
134
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
135
	{ "instruction_tsch", VCPU_STAT(instruction_tsch) },
J
Janosch Frank 已提交
136
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
137
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
138
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
139
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
140
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
141
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
142 143
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
144
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
145 146
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
147
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
148 149 150
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
151 152 153
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
154 155 156 157 158 159
	{ "instruction_diag_10", VCPU_STAT(diagnose_10) },
	{ "instruction_diag_44", VCPU_STAT(diagnose_44) },
	{ "instruction_diag_9c", VCPU_STAT(diagnose_9c) },
	{ "instruction_diag_258", VCPU_STAT(diagnose_258) },
	{ "instruction_diag_308", VCPU_STAT(diagnose_308) },
	{ "instruction_diag_500", VCPU_STAT(diagnose_500) },
160
	{ "instruction_diag_other", VCPU_STAT(diagnose_other) },
161 162 163
	{ NULL }
};

164 165 166 167 168 169
struct kvm_s390_tod_clock_ext {
	__u8 epoch_idx;
	__u64 tod;
	__u8 reserved[7];
} __packed;

170 171 172 173 174
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

175 176 177 178
/* allow 1m huge page guest backing, if !nested */
static int hpage;
module_param(hpage, int, 0444);
MODULE_PARM_DESC(hpage, "1m huge page backing support");
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * For now we handle at most 16 double words as this is what the s390 base
 * kernel handles and stores in the prefix page. If we ever need to go beyond
 * this, this requires changes to code, but the external uapi can stay.
 */
#define SIZE_INTERNAL 16

/*
 * Base feature mask that defines default mask for facilities. Consists of the
 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
 */
static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
/*
 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
 * and defines the facilities that can be enabled via a cpu model.
 */
static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };

static unsigned long kvm_s390_fac_size(void)
199
{
200 201 202 203 204 205
	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
	BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
		sizeof(S390_lowcore.stfle_fac_list));

	return SIZE_INTERNAL;
206 207
}

208 209
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
210 211
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
212

213
static struct gmap_notifier gmap_notifier;
214
static struct gmap_notifier vsie_gmap_notifier;
215
debug_info_t *kvm_s390_dbf;
216

217
/* Section: not file related */
218
int kvm_arch_hardware_enable(void)
219 220
{
	/* every s390 is virtualization enabled ;-) */
221
	return 0;
222 223
}

224 225
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
{
	u8 delta_idx = 0;

	/*
	 * The TOD jumps by delta, we have to compensate this by adding
	 * -delta to the epoch.
	 */
	delta = -delta;

	/* sign-extension - we're adding to signed values below */
	if ((s64)delta < 0)
		delta_idx = -1;

	scb->epoch += delta;
	if (scb->ecd & ECD_MEF) {
		scb->epdx += delta_idx;
		if (scb->epoch < delta)
			scb->epdx += 1;
	}
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm_for_each_vcpu(i, vcpu, kvm) {
265 266 267 268 269
			kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
			if (i == 0) {
				kvm->arch.epoch = vcpu->arch.sie_block->epoch;
				kvm->arch.epdx = vcpu->arch.sie_block->epdx;
			}
270 271
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
272
			if (vcpu->arch.vsie_block)
273 274
				kvm_clock_sync_scb(vcpu->arch.vsie_block,
						   *delta);
275 276 277 278 279 280 281 282 283
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

284 285
int kvm_arch_hardware_setup(void)
{
286
	gmap_notifier.notifier_call = kvm_gmap_notifier;
287
	gmap_register_pte_notifier(&gmap_notifier);
288 289
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
290 291
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
292 293 294 295 296
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
297
	gmap_unregister_pte_notifier(&gmap_notifier);
298
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
299 300
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
301 302
}

303 304 305 306 307
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

308 309 310
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
311
	int cc;
312 313 314 315 316 317 318 319 320 321 322 323

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

324 325
static void kvm_s390_cpu_feat_init(void)
{
326 327 328 329 330 331 332 333
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
334 335 336
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
337 338

	if (test_facility(17)) { /* MSA */
339 340 341 342 343 344 345 346 347 348
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
349 350
	}
	if (test_facility(76)) /* MSA3 */
351 352
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
353
	if (test_facility(77)) { /* MSA4 */
354 355 356 357 358 359 360 361
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
362 363
	}
	if (test_facility(57)) /* MSA5 */
364
		__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
365
			      kvm_s390_available_subfunc.ppno);
366

367 368 369 370
	if (test_facility(146)) /* MSA8 */
		__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kma);

371 372
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
373 374 375 376 377
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
378
	    !test_facility(3) || !nested)
379 380
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
381 382
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
383 384
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
385 386
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
387 388
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
389 390
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
391 392
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
393 394
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
395 396
	if (sclp.has_kss)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
415 416
}

417 418
int kvm_arch_init(void *opaque)
{
419 420 421 422 423 424 425 426 427
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

428 429
	kvm_s390_cpu_feat_init();

430 431
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
432 433
}

434 435 436 437 438
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

439 440 441 442 443 444 445 446 447
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

448
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
449
{
450 451
	int r;

452
	switch (ext) {
453
	case KVM_CAP_S390_PSW:
454
	case KVM_CAP_S390_GMAP:
455
	case KVM_CAP_SYNC_MMU:
456 457 458
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
459
	case KVM_CAP_ASYNC_PF:
460
	case KVM_CAP_SYNC_REGS:
461
	case KVM_CAP_ONE_REG:
462
	case KVM_CAP_ENABLE_CAP:
463
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
464
	case KVM_CAP_IOEVENTFD:
465
	case KVM_CAP_DEVICE_CTRL:
466
	case KVM_CAP_ENABLE_CAP_VM:
467
	case KVM_CAP_S390_IRQCHIP:
468
	case KVM_CAP_VM_ATTRIBUTES:
469
	case KVM_CAP_MP_STATE:
470
	case KVM_CAP_IMMEDIATE_EXIT:
471
	case KVM_CAP_S390_INJECT_IRQ:
472
	case KVM_CAP_S390_USER_SIGP:
473
	case KVM_CAP_S390_USER_STSI:
474
	case KVM_CAP_S390_SKEYS:
475
	case KVM_CAP_S390_IRQ_STATE:
476
	case KVM_CAP_S390_USER_INSTR0:
477
	case KVM_CAP_S390_CMMA_MIGRATION:
478
	case KVM_CAP_S390_AIS:
479
	case KVM_CAP_S390_AIS_MIGRATION:
480 481
		r = 1;
		break;
482 483
	case KVM_CAP_S390_HPAGE_1M:
		r = 0;
484
		if (hpage && !kvm_is_ucontrol(kvm))
485 486
			r = 1;
		break;
487 488 489
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
490 491
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
492
		r = KVM_S390_BSCA_CPU_SLOTS;
493 494 495
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
496
			r = KVM_S390_ESCA_CPU_SLOTS;
497
		break;
498 499 500
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
501
	case KVM_CAP_S390_COW:
502
		r = MACHINE_HAS_ESOP;
503
		break;
504 505 506
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
507 508 509
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
F
Fan Zhang 已提交
510 511 512
	case KVM_CAP_S390_GS:
		r = test_facility(133);
		break;
513 514 515
	case KVM_CAP_S390_BPB:
		r = test_facility(82);
		break;
516
	default:
517
		r = 0;
518
	}
519
	return r;
520 521
}

522
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
523
				    struct kvm_memory_slot *memslot)
524
{
525
	int i;
526
	gfn_t cur_gfn, last_gfn;
527
	unsigned long gaddr, vmaddr;
528
	struct gmap *gmap = kvm->arch.gmap;
529
	DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
530

531 532
	/* Loop over all guest segments */
	cur_gfn = memslot->base_gfn;
533
	last_gfn = memslot->base_gfn + memslot->npages;
534 535 536 537 538 539 540 541 542 543 544 545
	for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
		gaddr = gfn_to_gpa(cur_gfn);
		vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
		if (kvm_is_error_hva(vmaddr))
			continue;

		bitmap_zero(bitmap, _PAGE_ENTRIES);
		gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
		for (i = 0; i < _PAGE_ENTRIES; i++) {
			if (test_bit(i, bitmap))
				mark_page_dirty(kvm, cur_gfn + i);
		}
546

547 548
		if (fatal_signal_pending(current))
			return;
549
		cond_resched();
550 551 552
	}
}

553
/* Section: vm related */
554 555
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

556 557 558 559 560 561
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
562 563
	int r;
	unsigned long n;
564
	struct kvm_memslots *slots;
565 566 567
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

568 569 570
	if (kvm_is_ucontrol(kvm))
		return -EINVAL;

571 572 573 574 575 576
	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

577 578
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
597 598
}

599 600 601 602 603 604 605 606 607 608
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

609 610 611 612 613 614 615 616
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
617
	case KVM_CAP_S390_IRQCHIP:
618
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
619 620 621
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
622
	case KVM_CAP_S390_USER_SIGP:
623
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
624 625 626
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
627
	case KVM_CAP_S390_VECTOR_REGISTERS:
628
		mutex_lock(&kvm->lock);
629
		if (kvm->created_vcpus) {
630 631
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
632 633
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
634 635 636 637
			if (test_facility(134)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 134);
				set_kvm_facility(kvm->arch.model.fac_list, 134);
			}
638 639 640 641
			if (test_facility(135)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 135);
				set_kvm_facility(kvm->arch.model.fac_list, 135);
			}
642 643 644
			r = 0;
		} else
			r = -EINVAL;
645
		mutex_unlock(&kvm->lock);
646 647
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
648
		break;
649 650 651
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
652
		if (kvm->created_vcpus) {
653 654
			r = -EBUSY;
		} else if (test_facility(64)) {
655 656
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
657 658 659 660 661 662
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
663 664 665 666 667 668 669 670 671 672 673 674 675
	case KVM_CAP_S390_AIS:
		mutex_lock(&kvm->lock);
		if (kvm->created_vcpus) {
			r = -EBUSY;
		} else {
			set_kvm_facility(kvm->arch.model.fac_mask, 72);
			set_kvm_facility(kvm->arch.model.fac_list, 72);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: AIS %s",
			 r ? "(not available)" : "(success)");
		break;
F
Fan Zhang 已提交
676 677 678
	case KVM_CAP_S390_GS:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
679
		if (kvm->created_vcpus) {
F
Fan Zhang 已提交
680 681 682 683 684 685 686 687 688 689
			r = -EBUSY;
		} else if (test_facility(133)) {
			set_kvm_facility(kvm->arch.model.fac_mask, 133);
			set_kvm_facility(kvm->arch.model.fac_list, 133);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
			 r ? "(not available)" : "(success)");
		break;
690 691 692 693
	case KVM_CAP_S390_HPAGE_1M:
		mutex_lock(&kvm->lock);
		if (kvm->created_vcpus)
			r = -EBUSY;
694
		else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
695 696 697
			r = -EINVAL;
		else {
			r = 0;
698
			down_write(&kvm->mm->mmap_sem);
699
			kvm->mm->context.allow_gmap_hpage_1m = 1;
700
			up_write(&kvm->mm->mmap_sem);
701 702 703 704 705 706 707 708 709 710 711 712
			/*
			 * We might have to create fake 4k page
			 * tables. To avoid that the hardware works on
			 * stale PGSTEs, we emulate these instructions.
			 */
			kvm->arch.use_skf = 0;
			kvm->arch.use_pfmfi = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
			 r ? "(not available)" : "(success)");
		break;
713
	case KVM_CAP_S390_USER_STSI:
714
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
715 716 717
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
718 719 720 721 722 723
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
724 725 726 727 728 729 730
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

731 732 733 734 735 736 737
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
738
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
739 740
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
741 742 743 744 745 746 747 748 749 750
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
751 752 753 754 755
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
756
		ret = -ENXIO;
757
		if (!sclp.has_cmma)
758 759
			break;

760
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
761
		mutex_lock(&kvm->lock);
762 763 764 765 766
		if (kvm->created_vcpus)
			ret = -EBUSY;
		else if (kvm->mm->context.allow_gmap_hpage_1m)
			ret = -EINVAL;
		else {
767
			kvm->arch.use_cmma = 1;
768 769
			/* Not compatible with cmma. */
			kvm->arch.use_pfmfi = 0;
770 771 772 773 774
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
775 776 777
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
778 779 780 781
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

782
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
783 784
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
785
		s390_reset_cmma(kvm->arch.gmap->mm);
786 787 788 789
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
790 791 792 793 794 795 796 797 798
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

799 800
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
801 802
			return -E2BIG;

803 804 805
		if (!new_limit)
			return -EINVAL;

806
		/* gmap_create takes last usable address */
807 808 809
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

810 811
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
812
		if (!kvm->created_vcpus) {
813 814
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
815 816 817 818

			if (!new) {
				ret = -ENOMEM;
			} else {
819
				gmap_remove(kvm->arch.gmap);
820 821 822 823 824 825
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
826 827 828
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
829 830
		break;
	}
831 832 833 834 835 836 837
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

838 839
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

840
void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
841 842 843 844
{
	struct kvm_vcpu *vcpu;
	int i;

845 846 847 848 849 850 851 852 853 854
	kvm_s390_vcpu_block_all(kvm);

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_s390_vcpu_crypto_setup(vcpu);

	kvm_s390_vcpu_unblock_all(kvm);
}

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
855
	if (!test_kvm_facility(kvm, 76))
856 857 858 859 860 861 862 863 864
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
865
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
866 867 868 869 870 871
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
872
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
873 874 875 876 877
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
878
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
879 880 881 882 883
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
884
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
885 886 887 888 889 890
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

891
	kvm_s390_vcpu_crypto_reset_all(kvm);
892 893 894 895
	mutex_unlock(&kvm->lock);
	return 0;
}

896 897 898 899 900 901 902 903 904 905 906
static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
{
	int cx;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(cx, vcpu, kvm)
		kvm_s390_sync_request(req, vcpu);
}

/*
 * Must be called with kvm->srcu held to avoid races on memslots, and with
907
 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
908 909 910 911 912
 */
static int kvm_s390_vm_start_migration(struct kvm *kvm)
{
	struct kvm_memory_slot *ms;
	struct kvm_memslots *slots;
913
	unsigned long ram_pages = 0;
914 915 916
	int slotnr;

	/* migration mode already enabled */
917
	if (kvm->arch.migration_mode)
918 919 920 921 922
		return 0;
	slots = kvm_memslots(kvm);
	if (!slots || !slots->used_slots)
		return -EINVAL;

923 924 925 926 927 928 929
	if (!kvm->arch.use_cmma) {
		kvm->arch.migration_mode = 1;
		return 0;
	}
	/* mark all the pages in active slots as dirty */
	for (slotnr = 0; slotnr < slots->used_slots; slotnr++) {
		ms = slots->memslots + slotnr;
930
		/*
931 932 933 934
		 * The second half of the bitmap is only used on x86,
		 * and would be wasted otherwise, so we put it to good
		 * use here to keep track of the state of the storage
		 * attributes.
935
		 */
936 937
		memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
		ram_pages += ms->npages;
938
	}
939 940 941
	atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
	kvm->arch.migration_mode = 1;
	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
942 943 944 945
	return 0;
}

/*
946
 * Must be called with kvm->slots_lock to avoid races with ourselves and
947 948 949 950 951
 * kvm_s390_vm_start_migration.
 */
static int kvm_s390_vm_stop_migration(struct kvm *kvm)
{
	/* migration mode already disabled */
952
	if (!kvm->arch.migration_mode)
953
		return 0;
954 955
	kvm->arch.migration_mode = 0;
	if (kvm->arch.use_cmma)
956 957 958 959 960 961 962
		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
	return 0;
}

static int kvm_s390_vm_set_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
963
	int res = -ENXIO;
964

965
	mutex_lock(&kvm->slots_lock);
966 967 968 969 970 971 972 973 974 975
	switch (attr->attr) {
	case KVM_S390_VM_MIGRATION_START:
		res = kvm_s390_vm_start_migration(kvm);
		break;
	case KVM_S390_VM_MIGRATION_STOP:
		res = kvm_s390_vm_stop_migration(kvm);
		break;
	default:
		break;
	}
976
	mutex_unlock(&kvm->slots_lock);
977 978 979 980 981 982 983

	return res;
}

static int kvm_s390_vm_get_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
984
	u64 mig = kvm->arch.migration_mode;
985 986 987 988 989 990 991 992 993

	if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
		return -ENXIO;

	if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
		return -EFAULT;
	return 0;
}

994 995 996 997 998 999 1000
static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

1001
	if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1002
		return -EINVAL;
1003
	kvm_s390_set_tod_clock(kvm, &gtod);
1004 1005 1006 1007 1008 1009 1010

	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);

	return 0;
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
1021
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1022 1023 1024 1025 1026 1027

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
1028
	struct kvm_s390_vm_tod_clock gtod = { 0 };
1029

1030 1031
	if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
			   sizeof(gtod.tod)))
1032 1033
		return -EFAULT;

1034 1035
	kvm_s390_set_tod_clock(kvm, &gtod);
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
1047 1048 1049
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_set_tod_ext(kvm, attr);
		break;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

1063 1064
static void kvm_s390_get_tod_clock(struct kvm *kvm,
				   struct kvm_s390_vm_tod_clock *gtod)
1065 1066 1067 1068 1069 1070 1071 1072
{
	struct kvm_s390_tod_clock_ext htod;

	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	gtod->tod = htod.tod + kvm->arch.epoch;
1073 1074 1075 1076 1077 1078
	gtod->epoch_idx = 0;
	if (test_kvm_facility(kvm, 139)) {
		gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx;
		if (gtod->tod < htod.tod)
			gtod->epoch_idx += 1;
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087

	preempt_enable();
}

static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	memset(&gtod, 0, sizeof(gtod));
1088
	kvm_s390_get_tod_clock(kvm, &gtod);
1089 1090 1091 1092 1093 1094 1095 1096
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);
	return 0;
}

1097 1098 1099 1100 1101 1102 1103
static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
1104
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1105 1106 1107 1108 1109 1110

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
1111
	u64 gtod;
1112

1113
	gtod = kvm_s390_get_tod_clock_fast(kvm);
1114 1115
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
1116
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
1129 1130 1131
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_get_tod_ext(kvm, attr);
		break;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

1145 1146 1147
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
1148
	u16 lowest_ibc, unblocked_ibc;
1149 1150 1151
	int ret = 0;

	mutex_lock(&kvm->lock);
1152
	if (kvm->created_vcpus) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
1163
		kvm->arch.model.cpuid = proc->cpuid;
1164 1165
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
1166
		if (lowest_ibc && proc->ibc) {
1167 1168 1169 1170 1171 1172 1173
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
1174
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
1175
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
1176 1177 1178 1179 1180 1181 1182
		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
			 kvm->arch.model.ibc,
			 kvm->arch.model.cpuid);
		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
			 kvm->arch.model.fac_list[0],
			 kvm->arch.model.fac_list[1],
			 kvm->arch.model.fac_list[2]);
1183 1184 1185 1186 1187 1188 1189 1190
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
1204 1205 1206
	if (kvm->created_vcpus) {
		mutex_unlock(&kvm->lock);
		return -EBUSY;
1207
	}
1208 1209
	bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
1210
	mutex_unlock(&kvm->lock);
1211 1212 1213 1214 1215
	VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
	return 0;
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

1228 1229 1230 1231 1232 1233 1234 1235
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
1236 1237 1238
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
1239 1240 1241
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
1256
	proc->cpuid = kvm->arch.model.cpuid;
1257
	proc->ibc = kvm->arch.model.ibc;
1258 1259
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1260 1261 1262 1263 1264 1265 1266
	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
		 kvm->arch.model.fac_list[0],
		 kvm->arch.model.fac_list[1],
		 kvm->arch.model.fac_list[2]);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
1285
	mach->ibc = sclp.ibc;
1286
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1287
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1288
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
1289
	       sizeof(S390_lowcore.stfle_fac_list));
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_mask[0],
		 mach->fac_mask[1],
		 mach->fac_mask[2]);
	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_list[0],
		 mach->fac_list[1],
		 mach->fac_list[2]);
1301 1302 1303 1304 1305 1306 1307
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
1317 1318 1319 1320
	VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
1334 1335 1336 1337
	VM_EVENT(kvm, 3, "GET: host feat:  0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
1338 1339 1340
	return 0;
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
1371 1372 1373 1374 1375 1376
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
1377 1378 1379 1380 1381 1382
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
1383 1384 1385 1386
	}
	return ret;
}

1387 1388 1389 1390 1391
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1392
	case KVM_S390_VM_MEM_CTRL:
1393
		ret = kvm_s390_set_mem_control(kvm, attr);
1394
		break;
1395 1396 1397
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1398 1399 1400
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1401 1402 1403
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1404 1405 1406
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_set_migration(kvm, attr);
		break;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1417 1418 1419 1420 1421 1422
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1423 1424 1425
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1426 1427 1428
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1429 1430 1431
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_get_migration(kvm, attr);
		break;
1432 1433 1434 1435 1436 1437
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1438 1439 1440 1441 1442 1443 1444
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1445 1446 1447 1448
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1449 1450
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1451
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1452 1453 1454 1455 1456 1457 1458
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1470 1471 1472 1473
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1474 1475
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1476
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1477 1478
			ret = 0;
			break;
1479 1480
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1481 1482 1483 1484 1485
		default:
			ret = -ENXIO;
			break;
		}
		break;
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1499 1500 1501
	case KVM_S390_VM_MIGRATION:
		ret = 0;
		break;
1502 1503 1504 1505 1506 1507 1508 1509
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1510 1511 1512 1513
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1514
	int srcu_idx, i, r = 0;
1515 1516 1517 1518 1519

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
1520
	if (!mm_uses_skeys(current->mm))
1521 1522 1523 1524 1525 1526
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1527
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1528 1529 1530
	if (!keys)
		return -ENOMEM;

1531
	down_read(&current->mm->mmap_sem);
1532
	srcu_idx = srcu_read_lock(&kvm->srcu);
1533 1534 1535 1536
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1537
			break;
1538 1539
		}

1540 1541
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1542
			break;
1543
	}
1544
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1545 1546 1547 1548 1549 1550 1551
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1562
	int srcu_idx, i, r = 0;
1563
	bool unlocked;
1564 1565 1566 1567 1568 1569 1570 1571

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1572
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1584 1585 1586
	r = s390_enable_skey();
	if (r)
		goto out;
1587

1588
	i = 0;
1589
	down_read(&current->mm->mmap_sem);
1590
	srcu_idx = srcu_read_lock(&kvm->srcu);
1591 1592
        while (i < args->count) {
		unlocked = false;
1593 1594 1595
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1596
			break;
1597 1598 1599 1600 1601
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1602
			break;
1603 1604
		}

1605
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1606 1607 1608 1609 1610 1611 1612 1613
		if (r) {
			r = fixup_user_fault(current, current->mm, hva,
					     FAULT_FLAG_WRITE, &unlocked);
			if (r)
				break;
		}
		if (!r)
			i++;
1614
	}
1615
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1616
	up_read(&current->mm->mmap_sem);
1617 1618 1619 1620 1621
out:
	kvfree(keys);
	return r;
}

1622 1623 1624 1625 1626 1627 1628 1629 1630
/*
 * Base address and length must be sent at the start of each block, therefore
 * it's cheaper to send some clean data, as long as it's less than the size of
 * two longs.
 */
#define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
/* for consistency */
#define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
/*
 * Similar to gfn_to_memslot, but returns the index of a memslot also when the
 * address falls in a hole. In that case the index of one of the memslots
 * bordering the hole is returned.
 */
static int gfn_to_memslot_approx(struct kvm_memslots *slots, gfn_t gfn)
{
	int start = 0, end = slots->used_slots;
	int slot = atomic_read(&slots->lru_slot);
	struct kvm_memory_slot *memslots = slots->memslots;

	if (gfn >= memslots[slot].base_gfn &&
	    gfn < memslots[slot].base_gfn + memslots[slot].npages)
		return slot;

	while (start < end) {
		slot = start + (end - start) / 2;

		if (gfn >= memslots[slot].base_gfn)
			end = slot;
		else
			start = slot + 1;
	}

	if (gfn >= memslots[start].base_gfn &&
	    gfn < memslots[start].base_gfn + memslots[start].npages) {
		atomic_set(&slots->lru_slot, start);
	}

	return start;
}

static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
			      u8 *res, unsigned long bufsize)
{
	unsigned long pgstev, hva, cur_gfn = args->start_gfn;

	args->count = 0;
	while (args->count < bufsize) {
		hva = gfn_to_hva(kvm, cur_gfn);
		/*
		 * We return an error if the first value was invalid, but we
		 * return successfully if at least one value was copied.
		 */
		if (kvm_is_error_hva(hva))
			return args->count ? 0 : -EFAULT;
		if (get_pgste(kvm->mm, hva, &pgstev) < 0)
			pgstev = 0;
		res[args->count++] = (pgstev >> 24) & 0x43;
		cur_gfn++;
	}

	return 0;
}

static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
					      unsigned long cur_gfn)
{
	int slotidx = gfn_to_memslot_approx(slots, cur_gfn);
	struct kvm_memory_slot *ms = slots->memslots + slotidx;
	unsigned long ofs = cur_gfn - ms->base_gfn;

	if (ms->base_gfn + ms->npages <= cur_gfn) {
		slotidx--;
		/* If we are above the highest slot, wrap around */
		if (slotidx < 0)
			slotidx = slots->used_slots - 1;

		ms = slots->memslots + slotidx;
		ofs = 0;
	}
	ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
	while ((slotidx > 0) && (ofs >= ms->npages)) {
		slotidx--;
		ms = slots->memslots + slotidx;
		ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, 0);
	}
	return ms->base_gfn + ofs;
}

static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
			     u8 *res, unsigned long bufsize)
{
	unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *ms;

	cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
	ms = gfn_to_memslot(kvm, cur_gfn);
	args->count = 0;
	args->start_gfn = cur_gfn;
	if (!ms)
		return 0;
	next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
	mem_end = slots->memslots[0].base_gfn + slots->memslots[0].npages;

	while (args->count < bufsize) {
		hva = gfn_to_hva(kvm, cur_gfn);
		if (kvm_is_error_hva(hva))
			return 0;
		/* Decrement only if we actually flipped the bit to 0 */
		if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
			atomic64_dec(&kvm->arch.cmma_dirty_pages);
		if (get_pgste(kvm->mm, hva, &pgstev) < 0)
			pgstev = 0;
		/* Save the value */
		res[args->count++] = (pgstev >> 24) & 0x43;
		/* If the next bit is too far away, stop. */
		if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
			return 0;
		/* If we reached the previous "next", find the next one */
		if (cur_gfn == next_gfn)
			next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
		/* Reached the end of memory or of the buffer, stop */
		if ((next_gfn >= mem_end) ||
		    (next_gfn - args->start_gfn >= bufsize))
			return 0;
		cur_gfn++;
		/* Reached the end of the current memslot, take the next one. */
		if (cur_gfn - ms->base_gfn >= ms->npages) {
			ms = gfn_to_memslot(kvm, cur_gfn);
			if (!ms)
				return 0;
		}
	}
	return 0;
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/*
 * This function searches for the next page with dirty CMMA attributes, and
 * saves the attributes in the buffer up to either the end of the buffer or
 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
 * no trailing clean bytes are saved.
 * In case no dirty bits were found, or if CMMA was not enabled or used, the
 * output buffer will indicate 0 as length.
 */
static int kvm_s390_get_cmma_bits(struct kvm *kvm,
				  struct kvm_s390_cmma_log *args)
{
1770 1771 1772
	unsigned long bufsize;
	int srcu_idx, peek, ret;
	u8 *values;
1773

1774
	if (!kvm->arch.use_cmma)
1775 1776 1777 1778 1779 1780
		return -ENXIO;
	/* Invalid/unsupported flags were specified */
	if (args->flags & ~KVM_S390_CMMA_PEEK)
		return -EINVAL;
	/* Migration mode query, and we are not doing a migration */
	peek = !!(args->flags & KVM_S390_CMMA_PEEK);
1781
	if (!peek && !kvm->arch.migration_mode)
1782 1783 1784
		return -EINVAL;
	/* CMMA is disabled or was not used, or the buffer has length zero */
	bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
1785
	if (!bufsize || !kvm->mm->context.uses_cmm) {
1786 1787 1788
		memset(args, 0, sizeof(*args));
		return 0;
	}
1789 1790 1791 1792
	/* We are not peeking, and there are no dirty pages */
	if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
		memset(args, 0, sizeof(*args));
		return 0;
1793 1794
	}

1795 1796
	values = vmalloc(bufsize);
	if (!values)
1797 1798 1799 1800
		return -ENOMEM;

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
1801 1802 1803 1804
	if (peek)
		ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
	else
		ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
1805 1806 1807
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);

1808 1809 1810 1811
	if (kvm->arch.migration_mode)
		args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
	else
		args->remaining = 0;
1812

1813 1814 1815 1816 1817
	if (copy_to_user((void __user *)args->values, values, args->count))
		ret = -EFAULT;

	vfree(values);
	return ret;
1818 1819 1820 1821 1822
}

/*
 * This function sets the CMMA attributes for the given pages. If the input
 * buffer has zero length, no action is taken, otherwise the attributes are
1823
 * set and the mm->context.uses_cmm flag is set.
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
 */
static int kvm_s390_set_cmma_bits(struct kvm *kvm,
				  const struct kvm_s390_cmma_log *args)
{
	unsigned long hva, mask, pgstev, i;
	uint8_t *bits;
	int srcu_idx, r = 0;

	mask = args->mask;

	if (!kvm->arch.use_cmma)
		return -ENXIO;
	/* invalid/unsupported flags */
	if (args->flags != 0)
		return -EINVAL;
	/* Enforce sane limit on memory allocation */
	if (args->count > KVM_S390_CMMA_SIZE_MAX)
		return -EINVAL;
	/* Nothing to do */
	if (args->count == 0)
		return 0;

1846
	bits = vmalloc(array_size(sizeof(*bits), args->count));
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	if (!bits)
		return -ENOMEM;

	r = copy_from_user(bits, (void __user *)args->values, args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			break;
		}

		pgstev = bits[i];
		pgstev = pgstev << 24;
1867
		mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
1868 1869 1870 1871 1872
		set_pgste_bits(kvm->mm, hva, mask, pgstev);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);

1873
	if (!kvm->mm->context.uses_cmm) {
1874
		down_write(&kvm->mm->mmap_sem);
1875
		kvm->mm->context.uses_cmm = 1;
1876 1877 1878 1879 1880 1881 1882
		up_write(&kvm->mm->mmap_sem);
	}
out:
	vfree(bits);
	return r;
}

1883 1884 1885 1886 1887
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1888
	struct kvm_device_attr attr;
1889 1890 1891
	int r;

	switch (ioctl) {
1892 1893 1894 1895 1896 1897 1898 1899 1900
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1901 1902 1903 1904 1905 1906 1907 1908
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1909 1910 1911 1912 1913 1914 1915
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1916
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1917 1918 1919
		}
		break;
	}
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1961 1962 1963 1964 1965 1966
	case KVM_S390_GET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
1967
		mutex_lock(&kvm->slots_lock);
1968
		r = kvm_s390_get_cmma_bits(kvm, &args);
1969
		mutex_unlock(&kvm->slots_lock);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		if (!r) {
			r = copy_to_user(argp, &args, sizeof(args));
			if (r)
				r = -EFAULT;
		}
		break;
	}
	case KVM_S390_SET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
1983
		mutex_lock(&kvm->slots_lock);
1984
		r = kvm_s390_set_cmma_bits(kvm, &args);
1985
		mutex_unlock(&kvm->slots_lock);
1986 1987
		break;
	}
1988
	default:
1989
		r = -ENOTTY;
1990 1991 1992 1993 1994
	}

	return r;
}

1995 1996 1997
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1998
	u32 cc = 0;
1999

2000
	memset(config, 0, 128);
2001 2002 2003 2004
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
2005
		"0: ipm %0\n"
2006
		"srl %0,28\n"
2007 2008 2009
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

2022
	if (test_facility(12)) {
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

2044
static u64 kvm_s390_get_initial_cpuid(void)
2045
{
2046 2047 2048 2049 2050
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
2051 2052
}

2053
static void kvm_s390_crypto_init(struct kvm *kvm)
2054
{
2055
	if (!test_kvm_facility(kvm, 76))
2056
		return;
2057

2058
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
2059
	kvm_s390_set_crycb_format(kvm);
2060

2061 2062 2063 2064 2065 2066 2067
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
2068 2069
}

2070 2071 2072
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
2073
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
2074 2075 2076 2077 2078
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

2079
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
2080
{
2081
	gfp_t alloc_flags = GFP_KERNEL;
2082
	int i, rc;
2083
	char debug_name[16];
2084
	static unsigned long sca_offset;
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

2097 2098
	rc = s390_enable_sie();
	if (rc)
2099
		goto out_err;
2100

2101 2102
	rc = -ENOMEM;

2103 2104
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
2105
	rwlock_init(&kvm->arch.sca_lock);
2106
	/* start with basic SCA */
2107
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
2108
	if (!kvm->arch.sca)
2109
		goto out_err;
2110
	spin_lock(&kvm_lock);
2111
	sca_offset += 16;
2112
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
2113
		sca_offset = 0;
2114 2115
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
2116
	spin_unlock(&kvm_lock);
2117 2118 2119

	sprintf(debug_name, "kvm-%u", current->pid);

2120
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
2121
	if (!kvm->arch.dbf)
2122
		goto out_err;
2123

2124
	BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
2125 2126 2127
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
2128
		goto out_err;
2129

2130
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
2131 2132 2133 2134 2135 2136 2137 2138

	for (i = 0; i < kvm_s390_fac_size(); i++) {
		kvm->arch.model.fac_mask[i] = S390_lowcore.stfle_fac_list[i] &
					      (kvm_s390_fac_base[i] |
					       kvm_s390_fac_ext[i]);
		kvm->arch.model.fac_list[i] = S390_lowcore.stfle_fac_list[i] &
					      kvm_s390_fac_base[i];
	}
2139

2140 2141 2142 2143
	/* we are always in czam mode - even on pre z14 machines */
	set_kvm_facility(kvm->arch.model.fac_mask, 138);
	set_kvm_facility(kvm->arch.model.fac_list, 138);
	/* we emulate STHYI in kvm */
J
Janosch Frank 已提交
2144 2145
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);
2146 2147 2148 2149
	if (MACHINE_HAS_TLB_GUEST) {
		set_kvm_facility(kvm->arch.model.fac_mask, 147);
		set_kvm_facility(kvm->arch.model.fac_list, 147);
	}
J
Janosch Frank 已提交
2150

2151
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
2152
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
2153

2154
	kvm_s390_crypto_init(kvm);
2155

2156
	mutex_init(&kvm->arch.float_int.ais_lock);
2157
	spin_lock_init(&kvm->arch.float_int.lock);
2158 2159
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
2160
	init_waitqueue_head(&kvm->arch.ipte_wq);
2161
	mutex_init(&kvm->arch.ipte_mutex);
2162

2163
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
2164
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
2165

2166 2167
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
2168
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
2169
	} else {
2170
		if (sclp.hamax == U64_MAX)
2171
			kvm->arch.mem_limit = TASK_SIZE_MAX;
2172
		else
2173
			kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
2174
						    sclp.hamax + 1);
2175
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
2176
		if (!kvm->arch.gmap)
2177
			goto out_err;
2178
		kvm->arch.gmap->private = kvm;
2179
		kvm->arch.gmap->pfault_enabled = 0;
2180
	}
2181

2182
	kvm->arch.use_pfmfi = sclp.has_pfmfi;
2183
	kvm->arch.use_skf = sclp.has_skey;
2184
	spin_lock_init(&kvm->arch.start_stop_lock);
2185
	kvm_s390_vsie_init(kvm);
2186
	kvm_s390_gisa_init(kvm);
2187
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
2188

2189
	return 0;
2190
out_err:
2191
	free_page((unsigned long)kvm->arch.sie_page2);
2192
	debug_unregister(kvm->arch.dbf);
2193
	sca_dispose(kvm);
2194
	KVM_EVENT(3, "creation of vm failed: %d", rc);
2195
	return rc;
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

2208 2209 2210
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
2211
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
2212
	kvm_s390_clear_local_irqs(vcpu);
2213
	kvm_clear_async_pf_completion_queue(vcpu);
2214
	if (!kvm_is_ucontrol(vcpu->kvm))
2215
		sca_del_vcpu(vcpu);
2216 2217

	if (kvm_is_ucontrol(vcpu->kvm))
2218
		gmap_remove(vcpu->arch.gmap);
2219

2220
	if (vcpu->kvm->arch.use_cmma)
2221
		kvm_s390_vcpu_unsetup_cmma(vcpu);
2222
	free_page((unsigned long)(vcpu->arch.sie_block));
2223

2224
	kvm_vcpu_uninit(vcpu);
2225
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2226 2227 2228 2229 2230
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
2231
	struct kvm_vcpu *vcpu;
2232

2233 2234 2235 2236 2237 2238 2239 2240 2241
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
2242 2243
}

2244 2245
void kvm_arch_destroy_vm(struct kvm *kvm)
{
2246
	kvm_free_vcpus(kvm);
2247
	sca_dispose(kvm);
2248
	debug_unregister(kvm->arch.dbf);
2249
	kvm_s390_gisa_destroy(kvm);
2250
	free_page((unsigned long)kvm->arch.sie_page2);
2251
	if (!kvm_is_ucontrol(kvm))
2252
		gmap_remove(kvm->arch.gmap);
2253
	kvm_s390_destroy_adapters(kvm);
2254
	kvm_s390_clear_float_irqs(kvm);
2255
	kvm_s390_vsie_destroy(kvm);
2256
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
2257 2258 2259
}

/* Section: vcpu related */
2260 2261
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
2262
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
2263 2264 2265 2266 2267 2268 2269
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

2270 2271
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
2272 2273
	if (!kvm_s390_use_sca_entries())
		return;
2274
	read_lock(&vcpu->kvm->arch.sca_lock);
2275 2276
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2277

2278
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2279
		sca->cpu[vcpu->vcpu_id].sda = 0;
2280 2281 2282 2283
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2284
		sca->cpu[vcpu->vcpu_id].sda = 0;
2285
	}
2286
	read_unlock(&vcpu->kvm->arch.sca_lock);
2287 2288
}

2289
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
2290
{
2291 2292 2293 2294 2295 2296
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2297
		return;
2298
	}
2299 2300 2301
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2302

2303
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2304 2305
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
2306
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2307
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2308
	} else {
2309
		struct bsca_block *sca = vcpu->kvm->arch.sca;
2310

2311
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2312 2313
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2314
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2315
	}
2316
	read_unlock(&vcpu->kvm->arch.sca_lock);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
2360
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2361 2362 2363 2364 2365 2366 2367 2368 2369
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

2370 2371
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
2372
	return 0;
2373 2374 2375 2376
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
2377 2378
	int rc;

2379 2380 2381 2382 2383
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
2384 2385
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
2386
	if (!sclp.has_esca || !sclp.has_64bscao)
2387 2388 2389 2390 2391 2392 2393
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
2394 2395
}

2396 2397
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
2398 2399
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2400 2401
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
2402
				    KVM_SYNC_ACRS |
2403 2404 2405
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
2406
	kvm_s390_set_prefix(vcpu, 0);
2407 2408
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
2409 2410
	if (test_kvm_facility(vcpu->kvm, 82))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
F
Fan Zhang 已提交
2411 2412
	if (test_kvm_facility(vcpu->kvm, 133))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
2413 2414
	if (test_kvm_facility(vcpu->kvm, 156))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
2415 2416 2417 2418
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
2419
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
2420 2421
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
2422 2423 2424 2425

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

2426 2427 2428
	return 0;
}

2429 2430 2431 2432
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
2433
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2434
	vcpu->arch.cputm_start = get_tod_clock_fast();
2435
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2436 2437 2438 2439 2440 2441
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
2442
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2443 2444
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
2445
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

2478 2479 2480
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
2481
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2482
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2483 2484
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
2485
	vcpu->arch.sie_block->cputm = cputm;
2486
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2487
	preempt_enable();
2488 2489
}

2490
/* update and get the cpu timer - can also be called from other VCPU threads */
2491 2492
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
2493
	unsigned int seq;
2494 2495 2496 2497 2498
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
2513
	return value;
2514 2515
}

2516 2517
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
2518

2519
	gmap_enable(vcpu->arch.enabled_gmap);
2520
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
2521
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2522
		__start_cpu_timer_accounting(vcpu);
2523
	vcpu->cpu = cpu;
2524 2525 2526 2527
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
2528
	vcpu->cpu = -1;
2529
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2530
		__stop_cpu_timer_accounting(vcpu);
2531
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
2532 2533
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
2534

2535 2536 2537 2538 2539 2540 2541
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
2542
	kvm_s390_set_prefix(vcpu, 0);
2543
	kvm_s390_set_cpu_timer(vcpu, 0);
2544 2545 2546
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
2547 2548 2549 2550 2551 2552
	vcpu->arch.sie_block->gcr[0]  = CR0_UNUSED_56 |
					CR0_INTERRUPT_KEY_SUBMASK |
					CR0_MEASUREMENT_ALERT_SUBMASK;
	vcpu->arch.sie_block->gcr[14] = CR14_UNUSED_32 |
					CR14_UNUSED_33 |
					CR14_EXTERNAL_DAMAGE_SUBMASK;
2553 2554 2555
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
2556
	vcpu->arch.sie_block->gbea = 1;
2557
	vcpu->arch.sie_block->pp = 0;
2558
	vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
2559 2560
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2561 2562
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
2563
	kvm_s390_clear_local_irqs(vcpu);
2564 2565
}

2566
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
2567
{
2568
	mutex_lock(&vcpu->kvm->lock);
2569
	preempt_disable();
2570
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
2571
	vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
2572
	preempt_enable();
2573
	mutex_unlock(&vcpu->kvm->lock);
2574
	if (!kvm_is_ucontrol(vcpu->kvm)) {
2575
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
2576
		sca_add_vcpu(vcpu);
2577
	}
2578 2579
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2580 2581
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
2582 2583
}

2584 2585
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
2586
	if (!test_kvm_facility(vcpu->kvm, 76))
2587 2588
		return;

2589 2590 2591 2592 2593 2594 2595
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

2596 2597 2598
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;
	return 0;
}

2613 2614 2615 2616 2617
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
2618
	if (test_kvm_facility(vcpu->kvm, 7))
2619
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
2620 2621
}

2622 2623
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
2624
	int rc = 0;
2625

2626 2627
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
2628 2629
						    CPUSTAT_STOPPED);

2630
	if (test_kvm_facility(vcpu->kvm, 78))
2631
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
2632
	else if (test_kvm_facility(vcpu->kvm, 8))
2633
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
2634

2635 2636
	kvm_s390_vcpu_setup_model(vcpu);

2637 2638
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
2639
		vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
2640
	if (test_kvm_facility(vcpu->kvm, 9))
2641
		vcpu->arch.sie_block->ecb |= ECB_SRSI;
2642
	if (test_kvm_facility(vcpu->kvm, 73))
2643
		vcpu->arch.sie_block->ecb |= ECB_TE;
2644

2645
	if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
2646
		vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
2647
	if (test_kvm_facility(vcpu->kvm, 130))
2648 2649
		vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
	vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
2650
	if (sclp.has_cei)
2651
		vcpu->arch.sie_block->eca |= ECA_CEI;
2652
	if (sclp.has_ib)
2653
		vcpu->arch.sie_block->eca |= ECA_IB;
2654
	if (sclp.has_siif)
2655
		vcpu->arch.sie_block->eca |= ECA_SII;
2656
	if (sclp.has_sigpif)
2657
		vcpu->arch.sie_block->eca |= ECA_SIGPI;
2658
	if (test_kvm_facility(vcpu->kvm, 129)) {
2659 2660
		vcpu->arch.sie_block->eca |= ECA_VX;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
2661
	}
2662 2663
	if (test_kvm_facility(vcpu->kvm, 139))
		vcpu->arch.sie_block->ecd |= ECD_MEF;
2664 2665
	if (test_kvm_facility(vcpu->kvm, 156))
		vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
2666 2667 2668 2669 2670
	if (vcpu->arch.sie_block->gd) {
		vcpu->arch.sie_block->eca |= ECA_AIV;
		VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
			   vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
	}
F
Fan Zhang 已提交
2671 2672
	vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx)
					| SDNXC;
2673
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
2674 2675

	if (sclp.has_kss)
2676
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
2677 2678
	else
		vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
2679

2680
	if (vcpu->kvm->arch.use_cmma) {
2681 2682 2683
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
2684
	}
2685
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2686
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2687

2688 2689
	kvm_s390_vcpu_crypto_setup(vcpu);

2690
	return rc;
2691 2692 2693 2694 2695
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
2696
	struct kvm_vcpu *vcpu;
2697
	struct sie_page *sie_page;
2698 2699
	int rc = -EINVAL;

2700
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2701 2702 2703
		goto out;

	rc = -ENOMEM;
2704

2705
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2706
	if (!vcpu)
2707
		goto out;
2708

2709
	BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
2710 2711
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
2712 2713
		goto out_free_cpu;

2714 2715 2716
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

2717 2718 2719 2720
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

2721
	vcpu->arch.sie_block->icpua = id;
2722
	spin_lock_init(&vcpu->arch.local_int.lock);
2723
	vcpu->arch.sie_block->gd = (u32)(u64)kvm->arch.gisa;
2724 2725
	if (vcpu->arch.sie_block->gd && sclp.has_gisaf)
		vcpu->arch.sie_block->gd |= GISA_FORMAT1;
2726
	seqcount_init(&vcpu->arch.cputm_seqcount);
2727

2728 2729
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2730
		goto out_free_sie_block;
2731
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2732
		 vcpu->arch.sie_block);
2733
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2734 2735

	return vcpu;
2736 2737
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2738
out_free_cpu:
2739
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2740
out:
2741 2742 2743 2744 2745
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2746
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2747 2748
}

2749 2750
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
2751
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
2752 2753
}

2754
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2755
{
2756
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2757
	exit_sie(vcpu);
2758 2759
}

2760
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2761
{
2762
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2763 2764
}

2765 2766
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2767
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2768
	exit_sie(vcpu);
2769 2770 2771 2772
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2773
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2774 2775
}

2776 2777 2778 2779 2780 2781
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2782
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
2783 2784 2785 2786
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2787 2788
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2789
{
2790 2791
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2792 2793
}

2794 2795
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2796 2797 2798
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2799 2800
	unsigned long prefix;
	int i;
2801

2802 2803
	if (gmap_is_shadow(gmap))
		return;
2804 2805 2806
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2807 2808
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2809 2810 2811 2812
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2813
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2814 2815 2816 2817
		}
	}
}

2818 2819 2820 2821 2822 2823 2824
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2825 2826 2827 2828 2829 2830
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2831 2832 2833 2834 2835 2836 2837 2838
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2839
	case KVM_REG_S390_CPU_TIMER:
2840
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2841 2842 2843 2844 2845 2846
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2859 2860 2861 2862
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2863 2864 2865 2866
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2878
	__u64 val;
2879 2880

	switch (reg->id) {
2881 2882 2883 2884 2885 2886 2887 2888
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2889
	case KVM_REG_S390_CPU_TIMER:
2890 2891 2892
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2893 2894 2895 2896 2897
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2898 2899 2900
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2901 2902
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2903 2904 2905 2906 2907 2908 2909 2910 2911
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2912 2913 2914 2915
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2916 2917 2918 2919
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2920 2921 2922 2923 2924 2925
	default:
		break;
	}

	return r;
}
2926

2927 2928 2929 2930 2931 2932 2933 2934
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2935
	vcpu_load(vcpu);
2936
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2937
	vcpu_put(vcpu);
2938 2939 2940 2941 2942
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2943
	vcpu_load(vcpu);
2944
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2945
	vcpu_put(vcpu);
2946 2947 2948 2949 2950 2951
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2952 2953
	vcpu_load(vcpu);

2954
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2955
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2956 2957

	vcpu_put(vcpu);
2958 2959 2960 2961 2962 2963
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2964 2965
	vcpu_load(vcpu);

2966
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2967
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
2968 2969

	vcpu_put(vcpu);
2970 2971 2972 2973 2974
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2975 2976 2977 2978 2979 2980 2981 2982
	int ret = 0;

	vcpu_load(vcpu);

	if (test_fp_ctl(fpu->fpc)) {
		ret = -EINVAL;
		goto out;
	}
2983
	vcpu->run->s.regs.fpc = fpu->fpc;
2984
	if (MACHINE_HAS_VX)
2985 2986
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2987
	else
2988
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2989 2990 2991 2992

out:
	vcpu_put(vcpu);
	return ret;
2993 2994 2995 2996
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2997 2998
	vcpu_load(vcpu);

2999 3000 3001
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
3002 3003
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
3004
	else
3005
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
3006
	fpu->fpc = vcpu->run->s.regs.fpc;
3007 3008

	vcpu_put(vcpu);
3009 3010 3011 3012 3013 3014 3015
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

3016
	if (!is_vcpu_stopped(vcpu))
3017
		rc = -EBUSY;
3018 3019 3020 3021
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
3022 3023 3024 3025 3026 3027 3028 3029 3030
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

3031 3032 3033 3034
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
3035 3036
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
3037
{
3038 3039
	int rc = 0;

3040 3041
	vcpu_load(vcpu);

3042 3043 3044
	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

3045 3046 3047 3048 3049 3050 3051 3052
	if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
		rc = -EINVAL;
		goto out;
	}
	if (!sclp.has_gpere) {
		rc = -EINVAL;
		goto out;
	}
3053 3054 3055 3056

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
3057
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
3058 3059 3060 3061

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
3062
		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
3063 3064 3065 3066 3067 3068
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
3069
		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
3070 3071
	}

3072 3073
out:
	vcpu_put(vcpu);
3074
	return rc;
3075 3076
}

3077 3078 3079
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
3080 3081 3082 3083
	int ret;

	vcpu_load(vcpu);

3084
	/* CHECK_STOP and LOAD are not supported yet */
3085 3086 3087 3088 3089
	ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				      KVM_MP_STATE_OPERATING;

	vcpu_put(vcpu);
	return ret;
3090 3091 3092 3093 3094
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
3095 3096
	int rc = 0;

3097 3098
	vcpu_load(vcpu);

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

3116
	vcpu_put(vcpu);
3117
	return rc;
3118 3119
}

3120 3121
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
3122
	return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
3123 3124
}

3125 3126
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
3127
retry:
3128
	kvm_s390_vcpu_request_handled(vcpu);
R
Radim Krčmář 已提交
3129
	if (!kvm_request_pending(vcpu))
3130
		return 0;
3131 3132
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
3133
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
3134 3135 3136 3137
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
3138
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
3139
		int rc;
3140 3141 3142
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
3143 3144
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
3145
			return rc;
3146
		}
3147
		goto retry;
3148
	}
3149

3150 3151 3152 3153 3154
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

3155 3156 3157
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
3158
			kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
3159 3160
		}
		goto retry;
3161
	}
3162 3163 3164 3165

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
3166
			kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
3167 3168 3169 3170
		}
		goto retry;
	}

3171 3172 3173 3174 3175
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

3176 3177
	if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
		/*
3178
		 * Disable CMM virtualization; we will emulate the ESSA
3179 3180 3181 3182 3183 3184 3185 3186 3187
		 * instruction manually, in order to provide additional
		 * functionalities needed for live migration.
		 */
		vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
		goto retry;
	}

	if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
		/*
3188 3189
		 * Re-enable CMM virtualization if CMMA is available and
		 * CMM has been used.
3190 3191
		 */
		if ((vcpu->kvm->arch.use_cmma) &&
3192
		    (vcpu->kvm->mm->context.uses_cmm))
3193 3194 3195 3196
			vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
		goto retry;
	}

3197
	/* nothing to do, just clear the request */
3198
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
3199

3200 3201 3202
	return 0;
}

3203 3204
void kvm_s390_set_tod_clock(struct kvm *kvm,
			    const struct kvm_s390_vm_tod_clock *gtod)
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
{
	struct kvm_vcpu *vcpu;
	struct kvm_s390_tod_clock_ext htod;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	kvm->arch.epoch = gtod->tod - htod.tod;
3216 3217 3218 3219 3220 3221
	kvm->arch.epdx = 0;
	if (test_kvm_facility(kvm, 139)) {
		kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx;
		if (kvm->arch.epoch > gtod->tod)
			kvm->arch.epdx -= 1;
	}
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
		vcpu->arch.sie_block->epdx  = kvm->arch.epdx;
	}

	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
3245
{
3246 3247
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
3248 3249
}

3250 3251 3252 3253
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
3254
	struct kvm_s390_irq irq;
3255 3256

	if (start_token) {
3257 3258 3259
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
3260 3261
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
3262
		inti.parm64 = token;
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
3309
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
3310
		return 0;
3311
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
3312 3313 3314 3315
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
3316 3317 3318
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
3319 3320 3321 3322 3323 3324
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

3325
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
3326
{
3327
	int rc, cpuflags;
3328

3329 3330 3331 3332 3333 3334 3335
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

3336 3337
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
3338 3339 3340 3341

	if (need_resched())
		schedule();

3342
	if (test_cpu_flag(CIF_MCCK_PENDING))
3343 3344
		s390_handle_mcck();

3345 3346 3347 3348 3349
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
3350

3351 3352 3353 3354
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

3355 3356 3357 3358 3359
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

3360
	vcpu->arch.sie_block->icptcode = 0;
3361 3362 3363
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
3364

3365 3366 3367
	return 0;
}

3368 3369
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
3370 3371 3372 3373
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
3387
	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
3388
	ilen = insn_length(opcode);
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
3399 3400 3401
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
3402 3403
}

3404 3405
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
3406 3407 3408
	struct mcck_volatile_info *mcck_info;
	struct sie_page *sie_page;

3409 3410 3411 3412
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

3413 3414 3415
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

3416 3417
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
3418

3419 3420 3421 3422 3423 3424 3425 3426 3427
	if (exit_reason == -EINTR) {
		VCPU_EVENT(vcpu, 3, "%s", "machine check");
		sie_page = container_of(vcpu->arch.sie_block,
					struct sie_page, sie_block);
		mcck_info = &sie_page->mcck_info;
		kvm_s390_reinject_machine_check(vcpu, mcck_info);
		return 0;
	}

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
3441 3442 3443 3444 3445
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
3446
		return -EREMOTE;
3447
	} else if (current->thread.gmap_pfault) {
3448
		trace_kvm_s390_major_guest_pfault(vcpu);
3449
		current->thread.gmap_pfault = 0;
3450 3451 3452
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
3453
	}
3454
	return vcpu_post_run_fault_in_sie(vcpu);
3455 3456 3457 3458 3459 3460
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

3461 3462 3463 3464 3465 3466
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

3467 3468 3469 3470
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
3471

3472
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3473 3474 3475 3476
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
3477
		local_irq_disable();
3478
		guest_enter_irqoff();
3479
		__disable_cpu_timer_accounting(vcpu);
3480
		local_irq_enable();
3481 3482
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
3483
		local_irq_disable();
3484
		__enable_cpu_timer_accounting(vcpu);
3485
		guest_exit_irqoff();
3486
		local_irq_enable();
3487
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3488 3489

		rc = vcpu_post_run(vcpu, exit_reason);
3490
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
3491

3492
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3493
	return rc;
3494 3495
}

3496 3497
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3498
	struct runtime_instr_cb *riccb;
F
Fan Zhang 已提交
3499
	struct gs_cb *gscb;
3500 3501

	riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
F
Fan Zhang 已提交
3502
	gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
3503 3504 3505 3506 3507 3508
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
3509 3510
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3511 3512
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
3513
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
3514 3515 3516 3517 3518 3519 3520 3521 3522
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
3523 3524
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
3525
	}
F
Fan Zhang 已提交
3526 3527 3528 3529 3530
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
3531
	    test_kvm_facility(vcpu->kvm, 64) &&
3532
	    riccb->v &&
3533
	    !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
3534
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
3535
		vcpu->arch.sie_block->ecb3 |= ECB3_RI;
F
Fan Zhang 已提交
3536
	}
F
Fan Zhang 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	/*
	 * If userspace sets the gscb (e.g. after migration) to non-zero,
	 * we should enable GS here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
	    test_kvm_facility(vcpu->kvm, 133) &&
	    gscb->gssm &&
	    !vcpu->arch.gs_enabled) {
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
		vcpu->arch.sie_block->ecb |= ECB_GS;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
		vcpu->arch.gs_enabled = 1;
F
Fan Zhang 已提交
3549
	}
3550 3551 3552 3553 3554
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
	    test_kvm_facility(vcpu->kvm, 82)) {
		vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
		vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
	}
3555 3556
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	if (MACHINE_HAS_GS) {
		preempt_disable();
		__ctl_set_bit(2, 4);
		if (current->thread.gs_cb) {
			vcpu->arch.host_gscb = current->thread.gs_cb;
			save_gs_cb(vcpu->arch.host_gscb);
		}
		if (vcpu->arch.gs_enabled) {
			current->thread.gs_cb = (struct gs_cb *)
						&vcpu->run->s.regs.gscb;
			restore_gs_cb(current->thread.gs_cb);
		}
		preempt_enable();
	}
3583
	/* SIE will load etoken directly from SDNX and therefore kvm_run */
F
Fan Zhang 已提交
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
3594
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
3595 3596 3597 3598 3599 3600 3601
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
3602
	kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
3603 3604
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
3605 3606 3607 3608 3609 3610
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
F
Fan Zhang 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	if (MACHINE_HAS_GS) {
		__ctl_set_bit(2, 4);
		if (vcpu->arch.gs_enabled)
			save_gs_cb(current->thread.gs_cb);
		preempt_disable();
		current->thread.gs_cb = vcpu->arch.host_gscb;
		restore_gs_cb(vcpu->arch.host_gscb);
		preempt_enable();
		if (!vcpu->arch.host_gscb)
			__ctl_clear_bit(2, 4);
		vcpu->arch.host_gscb = NULL;
	}
3623
	/* SIE will save etoken directly into SDNX and therefore kvm_run */
3624 3625
}

3626 3627
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3628
	int rc;
3629

3630 3631 3632
	if (kvm_run->immediate_exit)
		return -EINTR;

3633 3634
	vcpu_load(vcpu);

3635 3636
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
3637 3638
		rc = 0;
		goto out;
3639 3640
	}

3641
	kvm_sigset_activate(vcpu);
3642

3643 3644 3645
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
3646
		pr_err_ratelimited("can't run stopped vcpu %d\n",
3647
				   vcpu->vcpu_id);
3648 3649
		rc = -EINVAL;
		goto out;
3650
	}
3651

3652
	sync_regs(vcpu, kvm_run);
3653
	enable_cpu_timer_accounting(vcpu);
3654

3655
	might_fault();
3656
	rc = __vcpu_run(vcpu);
3657

3658 3659
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
3660
		rc = -EINTR;
3661
	}
3662

3663 3664 3665 3666 3667
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

3668
	if (rc == -EREMOTE) {
3669
		/* userspace support is needed, kvm_run has been prepared */
3670 3671
		rc = 0;
	}
3672

3673
	disable_cpu_timer_accounting(vcpu);
3674
	store_regs(vcpu, kvm_run);
3675

3676
	kvm_sigset_deactivate(vcpu);
3677 3678

	vcpu->stat.exit_userspace++;
3679 3680
out:
	vcpu_put(vcpu);
3681
	return rc;
3682 3683 3684 3685 3686 3687 3688 3689
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
3690
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
3691
{
3692
	unsigned char archmode = 1;
3693
	freg_t fprs[NUM_FPRS];
3694
	unsigned int px;
3695
	u64 clkcomp, cputm;
3696
	int rc;
3697

3698
	px = kvm_s390_get_prefix(vcpu);
3699 3700
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
3701
			return -EFAULT;
3702
		gpa = 0;
3703 3704
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
3705
			return -EFAULT;
3706 3707 3708
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
3709 3710 3711

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
3712
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
3713 3714 3715 3716
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
3717
				     vcpu->run->s.regs.fprs, 128);
3718
	}
3719
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
3720
			      vcpu->run->s.regs.gprs, 128);
3721
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
3722
			      &vcpu->arch.sie_block->gpsw, 16);
3723
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
3724
			      &px, 4);
3725
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
3726
			      &vcpu->run->s.regs.fpc, 4);
3727
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
3728
			      &vcpu->arch.sie_block->todpr, 4);
3729
	cputm = kvm_s390_get_cpu_timer(vcpu);
3730
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
3731
			      &cputm, 8);
3732
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
3733
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
3734
			      &clkcomp, 8);
3735
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
3736
			      &vcpu->run->s.regs.acrs, 64);
3737
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
3738 3739
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
3740 3741
}

3742 3743 3744 3745
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
3746
	 * switch in the run ioctl. Let's update our copies before we save
3747 3748
	 * it into the save area
	 */
3749
	save_fpu_regs();
3750
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
3751 3752 3753 3754 3755
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

3756 3757 3758
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
3759
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
3774 3775
	if (!sclp.has_ibs)
		return;
3776
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
3777
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
3778 3779
}

3780 3781
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
3782 3783 3784 3785 3786
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

3787
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
3788
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3789
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

3809
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
3810 3811 3812 3813
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
3814
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3815
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3816
	return;
3817 3818 3819 3820
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
3821 3822 3823 3824 3825 3826
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

3827
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
3828
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3829
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3830 3831
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

3832
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
3833
	kvm_s390_clear_stop_irq(vcpu);
3834

3835
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

3853
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3854
	return;
3855 3856
}

3857 3858 3859 3860 3861 3862 3863 3864 3865
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
3866 3867 3868
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
3869
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3870 3871 3872 3873
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3874 3875 3876 3877 3878 3879 3880
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3907 3908
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3919 3920
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3942 3943
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
3944 3945 3946 3947
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

3948
	switch (ioctl) {
3949 3950 3951 3952
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
3953 3954
			return -EFAULT;
		return kvm_s390_inject_vcpu(vcpu, &s390irq);
3955
	}
3956
	case KVM_S390_INTERRUPT: {
3957
		struct kvm_s390_interrupt s390int;
3958
		struct kvm_s390_irq s390irq;
3959 3960

		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3961
			return -EFAULT;
3962 3963
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
3964
		return kvm_s390_inject_vcpu(vcpu, &s390irq);
3965
	}
3966
	}
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int idx;
	long r;
3977 3978 3979 3980

	vcpu_load(vcpu);

	switch (ioctl) {
3981
	case KVM_S390_STORE_STATUS:
3982
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3983
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3984
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3985
		break;
3986 3987 3988
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3989
		r = -EFAULT;
3990
		if (copy_from_user(&psw, argp, sizeof(psw)))
3991 3992 3993
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3994 3995
	}
	case KVM_S390_INITIAL_RESET:
3996 3997
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
4046
	case KVM_S390_VCPU_FAULT: {
4047
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
4048 4049
		break;
	}
4050 4051 4052 4053 4054 4055 4056 4057 4058
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
4059 4060 4061 4062 4063 4064 4065 4066 4067
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
4080
		/* do not use irq_state.flags, it will break old QEMUs */
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
4096
		/* do not use irq_state.flags, it will break old QEMUs */
4097 4098 4099 4100 4101
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
4102
	default:
4103
		r = -ENOTTY;
4104
	}
4105 4106

	vcpu_put(vcpu);
4107
	return r;
4108 4109
}

4110
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

4123 4124
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
4125 4126 4127 4128
{
	return 0;
}

4129
/* Section: memory related */
4130 4131
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
4132
				   const struct kvm_userspace_memory_region *mem,
4133
				   enum kvm_mr_change change)
4134
{
4135 4136 4137 4138
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
4139

4140
	if (mem->userspace_addr & 0xffffful)
4141 4142
		return -EINVAL;

4143
	if (mem->memory_size & 0xffffful)
4144 4145
		return -EINVAL;

4146 4147 4148
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

4149 4150 4151 4152
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
4153
				const struct kvm_userspace_memory_region *mem,
4154
				const struct kvm_memory_slot *old,
4155
				const struct kvm_memory_slot *new,
4156
				enum kvm_mr_change change)
4157
{
4158
	int rc;
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
4170 4171 4172 4173

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
4174
		pr_warn("failed to commit memory region\n");
4175
	return;
4176 4177
}

4178 4179 4180 4181 4182 4183 4184
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

4185 4186 4187 4188 4189
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

4190 4191
static int __init kvm_s390_init(void)
{
4192 4193
	int i;

4194 4195 4196 4197 4198
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

4199 4200 4201 4202 4203
	if (nested && hpage) {
		pr_info("nested (vSIE) and hpage (huge page backing) can currently not be activated concurrently");
		return -EINVAL;
	}

4204
	for (i = 0; i < 16; i++)
4205
		kvm_s390_fac_base[i] |=
4206 4207
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

4208
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
4209 4210 4211 4212 4213 4214 4215 4216 4217
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
4218 4219 4220 4221 4222 4223 4224 4225 4226

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");