kvm-s390.c 103.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * hosting IBM Z kernel virtual machines (s390x)
4
 *
5
 * Copyright IBM Corp. 2008, 2018
6 7 8 9
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
10
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
11
 *               Jason J. Herne <jjherne@us.ibm.com>
12 13 14 15 16
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
17
#include <linux/hrtimer.h>
18 19 20
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
21
#include <linux/mman.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/random.h>
25
#include <linux/slab.h>
26
#include <linux/timer.h>
27
#include <linux/vmalloc.h>
28
#include <linux/bitmap.h>
29
#include <linux/sched/signal.h>
30
#include <linux/string.h>
31

32
#include <asm/asm-offsets.h>
33
#include <asm/lowcore.h>
34
#include <asm/stp.h>
35
#include <asm/pgtable.h>
36
#include <asm/gmap.h>
37
#include <asm/nmi.h>
38
#include <asm/switch_to.h>
39
#include <asm/isc.h>
40
#include <asm/sclp.h>
41
#include <asm/cpacf.h>
42
#include <asm/timex.h>
43
#include "kvm-s390.h"
44 45
#include "gaccess.h"

46 47 48 49
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

50 51
#define CREATE_TRACE_POINTS
#include "trace.h"
52
#include "trace-s390.h"
53

54
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
55 56 57
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
58

59 60 61 62
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
63
	{ "exit_null", VCPU_STAT(exit_null) },
64 65 66 67
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
68
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
69
	{ "exit_pei", VCPU_STAT(exit_pei) },
70 71
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
72
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
73
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
74
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
75
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
76
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
77
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
78
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
79 80
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
81
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
82
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
83 84 85 86 87 88 89
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
90 91 92 93 94
	{ "instruction_epsw", VCPU_STAT(instruction_epsw) },
	{ "instruction_gs", VCPU_STAT(instruction_gs) },
	{ "instruction_io_other", VCPU_STAT(instruction_io_other) },
	{ "instruction_lpsw", VCPU_STAT(instruction_lpsw) },
	{ "instruction_lpswe", VCPU_STAT(instruction_lpswe) },
95
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
96
	{ "instruction_ptff", VCPU_STAT(instruction_ptff) },
97
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
98 99
	{ "instruction_sck", VCPU_STAT(instruction_sck) },
	{ "instruction_sckpf", VCPU_STAT(instruction_sckpf) },
100 101 102
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
103 104 105 106
	{ "instruction_iske", VCPU_STAT(instruction_iske) },
	{ "instruction_ri", VCPU_STAT(instruction_ri) },
	{ "instruction_rrbe", VCPU_STAT(instruction_rrbe) },
	{ "instruction_sske", VCPU_STAT(instruction_sske) },
107
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
108
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
109 110
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
111 112
	{ "instruction_tb", VCPU_STAT(instruction_tb) },
	{ "instruction_tpi", VCPU_STAT(instruction_tpi) },
113
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
114
	{ "instruction_tsch", VCPU_STAT(instruction_tsch) },
J
Janosch Frank 已提交
115
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
116
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
117
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
118
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
119
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
120
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
121 122
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
123
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
124 125
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
126
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
127 128 129
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
130 131 132
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
133 134 135 136 137 138
	{ "instruction_diag_10", VCPU_STAT(diagnose_10) },
	{ "instruction_diag_44", VCPU_STAT(diagnose_44) },
	{ "instruction_diag_9c", VCPU_STAT(diagnose_9c) },
	{ "instruction_diag_258", VCPU_STAT(diagnose_258) },
	{ "instruction_diag_308", VCPU_STAT(diagnose_308) },
	{ "instruction_diag_500", VCPU_STAT(diagnose_500) },
139
	{ "instruction_diag_other", VCPU_STAT(diagnose_other) },
140 141 142
	{ NULL }
};

143 144 145 146 147 148
struct kvm_s390_tod_clock_ext {
	__u8 epoch_idx;
	__u64 tod;
	__u8 reserved[7];
} __packed;

149 150 151 152 153
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

154
/* upper facilities limit for kvm */
155
unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
156

157
unsigned long kvm_s390_fac_list_mask_size(void)
158
{
159 160
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
161 162
}

163 164
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
165 166
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
167

168
static struct gmap_notifier gmap_notifier;
169
static struct gmap_notifier vsie_gmap_notifier;
170
debug_info_t *kvm_s390_dbf;
171

172
/* Section: not file related */
173
int kvm_arch_hardware_enable(void)
174 175
{
	/* every s390 is virtualization enabled ;-) */
176
	return 0;
177 178
}

179 180
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
200 201
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
202 203
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
204 205 206 207 208 209 210 211 212
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

213 214
int kvm_arch_hardware_setup(void)
{
215
	gmap_notifier.notifier_call = kvm_gmap_notifier;
216
	gmap_register_pte_notifier(&gmap_notifier);
217 218
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
219 220
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
221 222 223 224 225
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
226
	gmap_unregister_pte_notifier(&gmap_notifier);
227
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
228 229
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
230 231
}

232 233 234 235 236
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

237 238 239
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
240
	int cc;
241 242 243 244 245 246 247 248 249 250 251 252

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

253 254
static void kvm_s390_cpu_feat_init(void)
{
255 256 257 258 259 260 261 262
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
263 264 265
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
266 267

	if (test_facility(17)) { /* MSA */
268 269 270 271 272 273 274 275 276 277
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
278 279
	}
	if (test_facility(76)) /* MSA3 */
280 281
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
282
	if (test_facility(77)) { /* MSA4 */
283 284 285 286 287 288 289 290
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
291 292
	}
	if (test_facility(57)) /* MSA5 */
293
		__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
294
			      kvm_s390_available_subfunc.ppno);
295

296 297 298 299
	if (test_facility(146)) /* MSA8 */
		__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kma);

300 301
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
302 303 304 305 306
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
307
	    !test_facility(3) || !nested)
308 309
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
310 311
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
312 313
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
314 315
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
316 317
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
318 319
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
320 321
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
322 323
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
324 325
	if (sclp.has_kss)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
344 345
}

346 347
int kvm_arch_init(void *opaque)
{
348 349 350 351 352 353 354 355 356
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

357 358
	kvm_s390_cpu_feat_init();

359 360
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
361 362
}

363 364 365 366 367
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

368 369 370 371 372 373 374 375 376
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

377
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
378
{
379 380
	int r;

381
	switch (ext) {
382
	case KVM_CAP_S390_PSW:
383
	case KVM_CAP_S390_GMAP:
384
	case KVM_CAP_SYNC_MMU:
385 386 387
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
388
	case KVM_CAP_ASYNC_PF:
389
	case KVM_CAP_SYNC_REGS:
390
	case KVM_CAP_ONE_REG:
391
	case KVM_CAP_ENABLE_CAP:
392
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
393
	case KVM_CAP_IOEVENTFD:
394
	case KVM_CAP_DEVICE_CTRL:
395
	case KVM_CAP_ENABLE_CAP_VM:
396
	case KVM_CAP_S390_IRQCHIP:
397
	case KVM_CAP_VM_ATTRIBUTES:
398
	case KVM_CAP_MP_STATE:
399
	case KVM_CAP_IMMEDIATE_EXIT:
400
	case KVM_CAP_S390_INJECT_IRQ:
401
	case KVM_CAP_S390_USER_SIGP:
402
	case KVM_CAP_S390_USER_STSI:
403
	case KVM_CAP_S390_SKEYS:
404
	case KVM_CAP_S390_IRQ_STATE:
405
	case KVM_CAP_S390_USER_INSTR0:
406
	case KVM_CAP_S390_CMMA_MIGRATION:
407
	case KVM_CAP_S390_AIS:
408
	case KVM_CAP_S390_AIS_MIGRATION:
409 410
		r = 1;
		break;
411 412 413
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
414 415
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
416
		r = KVM_S390_BSCA_CPU_SLOTS;
417 418 419
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
420
			r = KVM_S390_ESCA_CPU_SLOTS;
421
		break;
422 423 424
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
425
	case KVM_CAP_S390_COW:
426
		r = MACHINE_HAS_ESOP;
427
		break;
428 429 430
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
431 432 433
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
F
Fan Zhang 已提交
434 435 436
	case KVM_CAP_S390_GS:
		r = test_facility(133);
		break;
437
	default:
438
		r = 0;
439
	}
440
	return r;
441 442
}

443 444 445 446 447 448 449 450 451 452 453 454
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

455
		if (test_and_clear_guest_dirty(gmap->mm, address))
456
			mark_page_dirty(kvm, cur_gfn);
457 458
		if (fatal_signal_pending(current))
			return;
459
		cond_resched();
460 461 462
	}
}

463
/* Section: vm related */
464 465
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

466 467 468 469 470 471
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
472 473
	int r;
	unsigned long n;
474
	struct kvm_memslots *slots;
475 476 477
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

478 479 480
	if (kvm_is_ucontrol(kvm))
		return -EINVAL;

481 482 483 484 485 486
	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

487 488
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
507 508
}

509 510 511 512 513 514 515 516 517 518
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

519 520 521 522 523 524 525 526
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
527
	case KVM_CAP_S390_IRQCHIP:
528
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
529 530 531
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
532
	case KVM_CAP_S390_USER_SIGP:
533
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
534 535 536
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
537
	case KVM_CAP_S390_VECTOR_REGISTERS:
538
		mutex_lock(&kvm->lock);
539
		if (kvm->created_vcpus) {
540 541
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
542 543
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
544 545 546 547
			if (test_facility(134)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 134);
				set_kvm_facility(kvm->arch.model.fac_list, 134);
			}
548 549 550 551
			if (test_facility(135)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 135);
				set_kvm_facility(kvm->arch.model.fac_list, 135);
			}
552 553 554
			r = 0;
		} else
			r = -EINVAL;
555
		mutex_unlock(&kvm->lock);
556 557
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
558
		break;
559 560 561
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
562
		if (kvm->created_vcpus) {
563 564
			r = -EBUSY;
		} else if (test_facility(64)) {
565 566
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
567 568 569 570 571 572
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
573 574 575 576 577 578 579 580 581 582 583 584 585
	case KVM_CAP_S390_AIS:
		mutex_lock(&kvm->lock);
		if (kvm->created_vcpus) {
			r = -EBUSY;
		} else {
			set_kvm_facility(kvm->arch.model.fac_mask, 72);
			set_kvm_facility(kvm->arch.model.fac_list, 72);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: AIS %s",
			 r ? "(not available)" : "(success)");
		break;
F
Fan Zhang 已提交
586 587 588
	case KVM_CAP_S390_GS:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
589
		if (kvm->created_vcpus) {
F
Fan Zhang 已提交
590 591 592 593 594 595 596 597 598 599
			r = -EBUSY;
		} else if (test_facility(133)) {
			set_kvm_facility(kvm->arch.model.fac_mask, 133);
			set_kvm_facility(kvm->arch.model.fac_list, 133);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
			 r ? "(not available)" : "(success)");
		break;
600
	case KVM_CAP_S390_USER_STSI:
601
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
602 603 604
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
605 606 607 608 609 610
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
611 612 613 614 615 616 617
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

618 619 620 621 622 623 624
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
625
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
626 627
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
628 629 630 631 632 633 634 635 636 637
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
638 639 640 641 642
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
643
		ret = -ENXIO;
644
		if (!sclp.has_cmma)
645 646
			break;

647
		ret = -EBUSY;
648
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
649
		mutex_lock(&kvm->lock);
650
		if (!kvm->created_vcpus) {
651 652 653 654 655 656
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
657 658 659
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
660 661 662 663
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

664
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
665 666
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
667
		s390_reset_cmma(kvm->arch.gmap->mm);
668 669 670 671
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
672 673 674 675 676 677 678 679 680
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

681 682
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
683 684
			return -E2BIG;

685 686 687
		if (!new_limit)
			return -EINVAL;

688
		/* gmap_create takes last usable address */
689 690 691
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

692 693
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
694
		if (!kvm->created_vcpus) {
695 696
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
697 698 699 700

			if (!new) {
				ret = -ENOMEM;
			} else {
701
				gmap_remove(kvm->arch.gmap);
702 703 704 705 706 707
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
708 709 710
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
711 712
		break;
	}
713 714 715 716 717 718 719
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

720 721 722 723 724 725 726
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

727
	if (!test_kvm_facility(kvm, 76))
728 729 730 731 732 733 734 735 736
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
737
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
738 739 740 741 742 743
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
744
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
745 746 747 748 749
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
750
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
751 752 753 754 755
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
756
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
757 758 759 760 761 762 763 764 765 766 767 768 769 770
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
{
	int cx;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(cx, vcpu, kvm)
		kvm_s390_sync_request(req, vcpu);
}

/*
 * Must be called with kvm->srcu held to avoid races on memslots, and with
 * kvm->lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
 */
static int kvm_s390_vm_start_migration(struct kvm *kvm)
{
	struct kvm_s390_migration_state *mgs;
	struct kvm_memory_slot *ms;
	/* should be the only one */
	struct kvm_memslots *slots;
	unsigned long ram_pages;
	int slotnr;

	/* migration mode already enabled */
	if (kvm->arch.migration_state)
		return 0;

	slots = kvm_memslots(kvm);
	if (!slots || !slots->used_slots)
		return -EINVAL;

	mgs = kzalloc(sizeof(*mgs), GFP_KERNEL);
	if (!mgs)
		return -ENOMEM;
	kvm->arch.migration_state = mgs;

	if (kvm->arch.use_cmma) {
		/*
		 * Get the last slot. They should be sorted by base_gfn, so the
		 * last slot is also the one at the end of the address space.
		 * We have verified above that at least one slot is present.
		 */
		ms = slots->memslots + slots->used_slots - 1;
		/* round up so we only use full longs */
		ram_pages = roundup(ms->base_gfn + ms->npages, BITS_PER_LONG);
		/* allocate enough bytes to store all the bits */
		mgs->pgste_bitmap = vmalloc(ram_pages / 8);
		if (!mgs->pgste_bitmap) {
			kfree(mgs);
			kvm->arch.migration_state = NULL;
			return -ENOMEM;
		}

		mgs->bitmap_size = ram_pages;
		atomic64_set(&mgs->dirty_pages, ram_pages);
		/* mark all the pages in active slots as dirty */
		for (slotnr = 0; slotnr < slots->used_slots; slotnr++) {
			ms = slots->memslots + slotnr;
			bitmap_set(mgs->pgste_bitmap, ms->base_gfn, ms->npages);
		}

		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
	}
	return 0;
}

/*
 * Must be called with kvm->lock to avoid races with ourselves and
 * kvm_s390_vm_start_migration.
 */
static int kvm_s390_vm_stop_migration(struct kvm *kvm)
{
	struct kvm_s390_migration_state *mgs;

	/* migration mode already disabled */
	if (!kvm->arch.migration_state)
		return 0;
	mgs = kvm->arch.migration_state;
	kvm->arch.migration_state = NULL;

	if (kvm->arch.use_cmma) {
		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
		vfree(mgs->pgste_bitmap);
	}
	kfree(mgs);
	return 0;
}

static int kvm_s390_vm_set_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	int idx, res = -ENXIO;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_MIGRATION_START:
		idx = srcu_read_lock(&kvm->srcu);
		res = kvm_s390_vm_start_migration(kvm);
		srcu_read_unlock(&kvm->srcu, idx);
		break;
	case KVM_S390_VM_MIGRATION_STOP:
		res = kvm_s390_vm_stop_migration(kvm);
		break;
	default:
		break;
	}
	mutex_unlock(&kvm->lock);

	return res;
}

static int kvm_s390_vm_get_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	u64 mig = (kvm->arch.migration_state != NULL);

	if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
		return -ENXIO;

	if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
		return -EFAULT;
	return 0;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	if (test_kvm_facility(kvm, 139))
		kvm_s390_set_tod_clock_ext(kvm, &gtod);
	else if (gtod.epoch_idx == 0)
		kvm_s390_set_tod_clock(kvm, gtod.tod);
	else
		return -EINVAL;

	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);

	return 0;
}

914 915 916 917 918 919 920 921 922 923
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
924
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
925 926 927 928 929 930

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
931
	u64 gtod;
932 933 934 935

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

936
	kvm_s390_set_tod_clock(kvm, gtod);
937
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
938 939 940 941 942 943 944 945 946 947 948
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
949 950 951
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_set_tod_ext(kvm, attr);
		break;
952 953 954 955 956 957 958 959 960 961 962 963 964
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
static void kvm_s390_get_tod_clock_ext(struct kvm *kvm,
					struct kvm_s390_vm_tod_clock *gtod)
{
	struct kvm_s390_tod_clock_ext htod;

	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	gtod->tod = htod.tod + kvm->arch.epoch;
	gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx;

	if (gtod->tod < htod.tod)
		gtod->epoch_idx += 1;

	preempt_enable();
}

static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	memset(&gtod, 0, sizeof(gtod));

	if (test_kvm_facility(kvm, 139))
		kvm_s390_get_tod_clock_ext(kvm, &gtod);
	else
		gtod.tod = kvm_s390_get_tod_clock_fast(kvm);

	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);
	return 0;
}

1002 1003 1004 1005 1006 1007 1008
static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
1009
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1010 1011 1012 1013 1014 1015

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
1016
	u64 gtod;
1017

1018
	gtod = kvm_s390_get_tod_clock_fast(kvm);
1019 1020
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
1021
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
1034 1035 1036
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_get_tod_ext(kvm, attr);
		break;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

1050 1051 1052
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
1053
	u16 lowest_ibc, unblocked_ibc;
1054 1055 1056
	int ret = 0;

	mutex_lock(&kvm->lock);
1057
	if (kvm->created_vcpus) {
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
1068
		kvm->arch.model.cpuid = proc->cpuid;
1069 1070
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
1071
		if (lowest_ibc && proc->ibc) {
1072 1073 1074 1075 1076 1077 1078
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
1079
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
1080
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
1081 1082 1083 1084 1085 1086 1087
		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
			 kvm->arch.model.ibc,
			 kvm->arch.model.cpuid);
		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
			 kvm->arch.model.fac_list[0],
			 kvm->arch.model.fac_list[1],
			 kvm->arch.model.fac_list[2]);
1088 1089 1090 1091 1092 1093 1094 1095
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
1109 1110 1111
	if (kvm->created_vcpus) {
		mutex_unlock(&kvm->lock);
		return -EBUSY;
1112
	}
1113 1114
	bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
1115
	mutex_unlock(&kvm->lock);
1116 1117 1118 1119 1120
	VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
	return 0;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

1133 1134 1135 1136 1137 1138 1139 1140
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
1141 1142 1143
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
1144 1145 1146
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
1161
	proc->cpuid = kvm->arch.model.cpuid;
1162
	proc->ibc = kvm->arch.model.ibc;
1163 1164
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1165 1166 1167 1168 1169 1170 1171
	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
		 kvm->arch.model.fac_list[0],
		 kvm->arch.model.fac_list[1],
		 kvm->arch.model.fac_list[2]);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
1190
	mach->ibc = sclp.ibc;
1191
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1192
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1193
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
1194
	       sizeof(S390_lowcore.stfle_fac_list));
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_mask[0],
		 mach->fac_mask[1],
		 mach->fac_mask[2]);
	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_list[0],
		 mach->fac_list[1],
		 mach->fac_list[2]);
1206 1207 1208 1209 1210 1211 1212
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
1222 1223 1224 1225
	VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
1239 1240 1241 1242
	VM_EVENT(kvm, 3, "GET: host feat:  0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
1243 1244 1245
	return 0;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
1276 1277 1278 1279 1280 1281
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
1282 1283 1284 1285 1286 1287
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
1288 1289 1290 1291
	}
	return ret;
}

1292 1293 1294 1295 1296
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1297
	case KVM_S390_VM_MEM_CTRL:
1298
		ret = kvm_s390_set_mem_control(kvm, attr);
1299
		break;
1300 1301 1302
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1303 1304 1305
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1306 1307 1308
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1309 1310 1311
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_set_migration(kvm, attr);
		break;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1322 1323 1324 1325 1326 1327
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1328 1329 1330
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1331 1332 1333
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1334 1335 1336
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_get_migration(kvm, attr);
		break;
1337 1338 1339 1340 1341 1342
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1343 1344 1345 1346 1347 1348 1349
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1350 1351 1352 1353
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1354 1355
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1356
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1357 1358 1359 1360 1361 1362 1363
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1375 1376 1377 1378
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1379 1380
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1381
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1382 1383
			ret = 0;
			break;
1384 1385
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1386 1387 1388 1389 1390
		default:
			ret = -ENXIO;
			break;
		}
		break;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1404 1405 1406
	case KVM_S390_VM_MIGRATION:
		ret = 0;
		break;
1407 1408 1409 1410 1411 1412 1413 1414
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1415 1416 1417 1418
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1419
	int srcu_idx, i, r = 0;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1432
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1433 1434 1435
	if (!keys)
		return -ENOMEM;

1436
	down_read(&current->mm->mmap_sem);
1437
	srcu_idx = srcu_read_lock(&kvm->srcu);
1438 1439 1440 1441
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1442
			break;
1443 1444
		}

1445 1446
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1447
			break;
1448
	}
1449
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1450 1451 1452 1453 1454 1455 1456
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1467
	int srcu_idx, i, r = 0;
1468 1469 1470 1471 1472 1473 1474 1475

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1476
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1488 1489 1490
	r = s390_enable_skey();
	if (r)
		goto out;
1491

1492
	down_read(&current->mm->mmap_sem);
1493
	srcu_idx = srcu_read_lock(&kvm->srcu);
1494 1495 1496 1497
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1498
			break;
1499 1500 1501 1502 1503
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1504
			break;
1505 1506
		}

1507
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1508
		if (r)
1509
			break;
1510
	}
1511
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1512
	up_read(&current->mm->mmap_sem);
1513 1514 1515 1516 1517
out:
	kvfree(keys);
	return r;
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
/*
 * Base address and length must be sent at the start of each block, therefore
 * it's cheaper to send some clean data, as long as it's less than the size of
 * two longs.
 */
#define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
/* for consistency */
#define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)

/*
 * This function searches for the next page with dirty CMMA attributes, and
 * saves the attributes in the buffer up to either the end of the buffer or
 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
 * no trailing clean bytes are saved.
 * In case no dirty bits were found, or if CMMA was not enabled or used, the
 * output buffer will indicate 0 as length.
 */
static int kvm_s390_get_cmma_bits(struct kvm *kvm,
				  struct kvm_s390_cmma_log *args)
{
	struct kvm_s390_migration_state *s = kvm->arch.migration_state;
	unsigned long bufsize, hva, pgstev, i, next, cur;
	int srcu_idx, peek, r = 0, rr;
	u8 *res;

	cur = args->start_gfn;
	i = next = pgstev = 0;

	if (unlikely(!kvm->arch.use_cmma))
		return -ENXIO;
	/* Invalid/unsupported flags were specified */
	if (args->flags & ~KVM_S390_CMMA_PEEK)
		return -EINVAL;
	/* Migration mode query, and we are not doing a migration */
	peek = !!(args->flags & KVM_S390_CMMA_PEEK);
	if (!peek && !s)
		return -EINVAL;
	/* CMMA is disabled or was not used, or the buffer has length zero */
	bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
	if (!bufsize || !kvm->mm->context.use_cmma) {
		memset(args, 0, sizeof(*args));
		return 0;
	}

	if (!peek) {
		/* We are not peeking, and there are no dirty pages */
		if (!atomic64_read(&s->dirty_pages)) {
			memset(args, 0, sizeof(*args));
			return 0;
		}
		cur = find_next_bit(s->pgste_bitmap, s->bitmap_size,
				    args->start_gfn);
		if (cur >= s->bitmap_size)	/* nothing found, loop back */
			cur = find_next_bit(s->pgste_bitmap, s->bitmap_size, 0);
		if (cur >= s->bitmap_size) {	/* again! (very unlikely) */
			memset(args, 0, sizeof(*args));
			return 0;
		}
		next = find_next_bit(s->pgste_bitmap, s->bitmap_size, cur + 1);
	}

	res = vmalloc(bufsize);
	if (!res)
		return -ENOMEM;

	args->start_gfn = cur;

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
	while (i < bufsize) {
		hva = gfn_to_hva(kvm, cur);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			break;
		}
		/* decrement only if we actually flipped the bit to 0 */
		if (!peek && test_and_clear_bit(cur, s->pgste_bitmap))
			atomic64_dec(&s->dirty_pages);
		r = get_pgste(kvm->mm, hva, &pgstev);
		if (r < 0)
			pgstev = 0;
		/* save the value */
1600
		res[i++] = (pgstev >> 24) & 0x43;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
		/*
		 * if the next bit is too far away, stop.
		 * if we reached the previous "next", find the next one
		 */
		if (!peek) {
			if (next > cur + KVM_S390_MAX_BIT_DISTANCE)
				break;
			if (cur == next)
				next = find_next_bit(s->pgste_bitmap,
						     s->bitmap_size, cur + 1);
		/* reached the end of the bitmap or of the buffer, stop */
			if ((next >= s->bitmap_size) ||
			    (next >= args->start_gfn + bufsize))
				break;
		}
		cur++;
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);
	args->count = i;
	args->remaining = s ? atomic64_read(&s->dirty_pages) : 0;

	rr = copy_to_user((void __user *)args->values, res, args->count);
	if (rr)
		r = -EFAULT;

	vfree(res);
	return r;
}

/*
 * This function sets the CMMA attributes for the given pages. If the input
 * buffer has zero length, no action is taken, otherwise the attributes are
 * set and the mm->context.use_cmma flag is set.
 */
static int kvm_s390_set_cmma_bits(struct kvm *kvm,
				  const struct kvm_s390_cmma_log *args)
{
	unsigned long hva, mask, pgstev, i;
	uint8_t *bits;
	int srcu_idx, r = 0;

	mask = args->mask;

	if (!kvm->arch.use_cmma)
		return -ENXIO;
	/* invalid/unsupported flags */
	if (args->flags != 0)
		return -EINVAL;
	/* Enforce sane limit on memory allocation */
	if (args->count > KVM_S390_CMMA_SIZE_MAX)
		return -EINVAL;
	/* Nothing to do */
	if (args->count == 0)
		return 0;

	bits = vmalloc(sizeof(*bits) * args->count);
	if (!bits)
		return -ENOMEM;

	r = copy_from_user(bits, (void __user *)args->values, args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			break;
		}

		pgstev = bits[i];
		pgstev = pgstev << 24;
1678
		mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		set_pgste_bits(kvm->mm, hva, mask, pgstev);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);

	if (!kvm->mm->context.use_cmma) {
		down_write(&kvm->mm->mmap_sem);
		kvm->mm->context.use_cmma = 1;
		up_write(&kvm->mm->mmap_sem);
	}
out:
	vfree(bits);
	return r;
}

1694 1695 1696 1697 1698
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1699
	struct kvm_device_attr attr;
1700 1701 1702
	int r;

	switch (ioctl) {
1703 1704 1705 1706 1707 1708 1709 1710 1711
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1712 1713 1714 1715 1716 1717 1718 1719
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1720 1721 1722 1723 1724 1725 1726
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1727
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1728 1729 1730
		}
		break;
	}
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	case KVM_S390_GET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
		r = kvm_s390_get_cmma_bits(kvm, &args);
		if (!r) {
			r = copy_to_user(argp, &args, sizeof(args));
			if (r)
				r = -EFAULT;
		}
		break;
	}
	case KVM_S390_SET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
		r = kvm_s390_set_cmma_bits(kvm, &args);
		break;
	}
1795
	default:
1796
		r = -ENOTTY;
1797 1798 1799 1800 1801
	}

	return r;
}

1802 1803 1804
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1805
	u32 cc = 0;
1806

1807
	memset(config, 0, 128);
1808 1809 1810 1811
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1812
		"0: ipm %0\n"
1813
		"srl %0,28\n"
1814 1815 1816
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1829
	if (test_facility(12)) {
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1851
static u64 kvm_s390_get_initial_cpuid(void)
1852
{
1853 1854 1855 1856 1857
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1858 1859
}

1860
static void kvm_s390_crypto_init(struct kvm *kvm)
1861
{
1862
	if (!test_kvm_facility(kvm, 76))
1863
		return;
1864

1865
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1866
	kvm_s390_set_crycb_format(kvm);
1867

1868 1869 1870 1871 1872 1873 1874
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1875 1876
}

1877 1878 1879
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1880
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1881 1882 1883 1884 1885
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1886
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1887
{
1888
	gfp_t alloc_flags = GFP_KERNEL;
1889
	int i, rc;
1890
	char debug_name[16];
1891
	static unsigned long sca_offset;
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1904 1905
	rc = s390_enable_sie();
	if (rc)
1906
		goto out_err;
1907

1908 1909
	rc = -ENOMEM;

1910
	kvm->arch.use_esca = 0; /* start with basic SCA */
1911 1912
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1913
	rwlock_init(&kvm->arch.sca_lock);
1914
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1915
	if (!kvm->arch.sca)
1916
		goto out_err;
1917
	spin_lock(&kvm_lock);
1918
	sca_offset += 16;
1919
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1920
		sca_offset = 0;
1921 1922
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1923
	spin_unlock(&kvm_lock);
1924 1925 1926

	sprintf(debug_name, "kvm-%u", current->pid);

1927
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1928
	if (!kvm->arch.dbf)
1929
		goto out_err;
1930

1931 1932 1933
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1934
		goto out_err;
1935

1936
	/* Populate the facility mask initially. */
1937
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1938
	       sizeof(S390_lowcore.stfle_fac_list));
1939 1940
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1941
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1942
		else
1943
			kvm->arch.model.fac_mask[i] = 0UL;
1944 1945
	}

1946
	/* Populate the facility list initially. */
1947 1948
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1949 1950
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1951 1952 1953 1954
	/* we are always in czam mode - even on pre z14 machines */
	set_kvm_facility(kvm->arch.model.fac_mask, 138);
	set_kvm_facility(kvm->arch.model.fac_list, 138);
	/* we emulate STHYI in kvm */
J
Janosch Frank 已提交
1955 1956
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);
1957 1958 1959 1960
	if (MACHINE_HAS_TLB_GUEST) {
		set_kvm_facility(kvm->arch.model.fac_mask, 147);
		set_kvm_facility(kvm->arch.model.fac_list, 147);
	}
J
Janosch Frank 已提交
1961

1962
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1963
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1964

1965
	kvm_s390_crypto_init(kvm);
1966

1967 1968 1969
	mutex_init(&kvm->arch.float_int.ais_lock);
	kvm->arch.float_int.simm = 0;
	kvm->arch.float_int.nimm = 0;
1970
	spin_lock_init(&kvm->arch.float_int.lock);
1971 1972
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1973
	init_waitqueue_head(&kvm->arch.ipte_wq);
1974
	mutex_init(&kvm->arch.ipte_mutex);
1975

1976
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1977
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1978

1979 1980
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1981
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1982
	} else {
1983
		if (sclp.hamax == U64_MAX)
1984
			kvm->arch.mem_limit = TASK_SIZE_MAX;
1985
		else
1986
			kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
1987
						    sclp.hamax + 1);
1988
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1989
		if (!kvm->arch.gmap)
1990
			goto out_err;
1991
		kvm->arch.gmap->private = kvm;
1992
		kvm->arch.gmap->pfault_enabled = 0;
1993
	}
1994 1995

	kvm->arch.css_support = 0;
1996
	kvm->arch.use_irqchip = 0;
1997
	kvm->arch.epoch = 0;
1998

1999
	spin_lock_init(&kvm->arch.start_stop_lock);
2000
	kvm_s390_vsie_init(kvm);
2001
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
2002

2003
	return 0;
2004
out_err:
2005
	free_page((unsigned long)kvm->arch.sie_page2);
2006
	debug_unregister(kvm->arch.dbf);
2007
	sca_dispose(kvm);
2008
	KVM_EVENT(3, "creation of vm failed: %d", rc);
2009
	return rc;
2010 2011
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

2022 2023 2024
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
2025
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
2026
	kvm_s390_clear_local_irqs(vcpu);
2027
	kvm_clear_async_pf_completion_queue(vcpu);
2028
	if (!kvm_is_ucontrol(vcpu->kvm))
2029
		sca_del_vcpu(vcpu);
2030 2031

	if (kvm_is_ucontrol(vcpu->kvm))
2032
		gmap_remove(vcpu->arch.gmap);
2033

2034
	if (vcpu->kvm->arch.use_cmma)
2035
		kvm_s390_vcpu_unsetup_cmma(vcpu);
2036
	free_page((unsigned long)(vcpu->arch.sie_block));
2037

2038
	kvm_vcpu_uninit(vcpu);
2039
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2040 2041 2042 2043 2044
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
2045
	struct kvm_vcpu *vcpu;
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
2056 2057
}

2058 2059
void kvm_arch_destroy_vm(struct kvm *kvm)
{
2060
	kvm_free_vcpus(kvm);
2061
	sca_dispose(kvm);
2062
	debug_unregister(kvm->arch.dbf);
2063
	free_page((unsigned long)kvm->arch.sie_page2);
2064
	if (!kvm_is_ucontrol(kvm))
2065
		gmap_remove(kvm->arch.gmap);
2066
	kvm_s390_destroy_adapters(kvm);
2067
	kvm_s390_clear_float_irqs(kvm);
2068
	kvm_s390_vsie_destroy(kvm);
2069 2070 2071 2072
	if (kvm->arch.migration_state) {
		vfree(kvm->arch.migration_state->pgste_bitmap);
		kfree(kvm->arch.migration_state);
	}
2073
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
2074 2075 2076
}

/* Section: vcpu related */
2077 2078
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
2079
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
2080 2081 2082 2083 2084 2085 2086
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

2087 2088
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
2089 2090
	if (!kvm_s390_use_sca_entries())
		return;
2091
	read_lock(&vcpu->kvm->arch.sca_lock);
2092 2093
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2094

2095
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2096
		sca->cpu[vcpu->vcpu_id].sda = 0;
2097 2098 2099 2100
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2101
		sca->cpu[vcpu->vcpu_id].sda = 0;
2102
	}
2103
	read_unlock(&vcpu->kvm->arch.sca_lock);
2104 2105
}

2106
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
2107
{
2108 2109 2110 2111 2112 2113 2114
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
	}
2115 2116 2117
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2118

2119
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2120 2121
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
2122
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2123
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2124
	} else {
2125
		struct bsca_block *sca = vcpu->kvm->arch.sca;
2126

2127
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2128 2129
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2130
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2131
	}
2132
	read_unlock(&vcpu->kvm->arch.sca_lock);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
2176
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2177 2178 2179 2180 2181 2182 2183 2184 2185
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

2186 2187
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
2188
	return 0;
2189 2190 2191 2192
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
2193 2194
	int rc;

2195 2196 2197 2198 2199
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
2200 2201
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
2202
	if (!sclp.has_esca || !sclp.has_64bscao)
2203 2204 2205 2206 2207 2208 2209
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
2210 2211
}

2212 2213
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
2214 2215
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2216 2217
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
2218
				    KVM_SYNC_ACRS |
2219 2220 2221
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
2222
	kvm_s390_set_prefix(vcpu, 0);
2223 2224
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
F
Fan Zhang 已提交
2225 2226
	if (test_kvm_facility(vcpu->kvm, 133))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
2227 2228 2229 2230
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
2231
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
2232 2233
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
2234 2235 2236 2237

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

2238 2239 2240
	return 0;
}

2241 2242 2243 2244
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
2245
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2246
	vcpu->arch.cputm_start = get_tod_clock_fast();
2247
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2248 2249 2250 2251 2252 2253
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
2254
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2255 2256
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
2257
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

2290 2291 2292
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
2293
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2294
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2295 2296
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
2297
	vcpu->arch.sie_block->cputm = cputm;
2298
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2299
	preempt_enable();
2300 2301
}

2302
/* update and get the cpu timer - can also be called from other VCPU threads */
2303 2304
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
2305
	unsigned int seq;
2306 2307 2308 2309 2310
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
2325
	return value;
2326 2327
}

2328 2329
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
2330

2331
	gmap_enable(vcpu->arch.enabled_gmap);
2332
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
2333
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2334
		__start_cpu_timer_accounting(vcpu);
2335
	vcpu->cpu = cpu;
2336 2337 2338 2339
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
2340
	vcpu->cpu = -1;
2341
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2342
		__stop_cpu_timer_accounting(vcpu);
2343
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
2344 2345
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
2346

2347 2348 2349 2350 2351 2352 2353
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
2354
	kvm_s390_set_prefix(vcpu, 0);
2355
	kvm_s390_set_cpu_timer(vcpu, 0);
2356 2357 2358 2359 2360
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
2361 2362 2363
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
2364
	vcpu->arch.sie_block->gbea = 1;
2365
	vcpu->arch.sie_block->pp = 0;
2366 2367
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2368 2369
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
2370
	kvm_s390_clear_local_irqs(vcpu);
2371 2372
}

2373
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
2374
{
2375
	mutex_lock(&vcpu->kvm->lock);
2376
	preempt_disable();
2377
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
2378
	preempt_enable();
2379
	mutex_unlock(&vcpu->kvm->lock);
2380
	if (!kvm_is_ucontrol(vcpu->kvm)) {
2381
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
2382
		sca_add_vcpu(vcpu);
2383
	}
2384 2385
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2386 2387
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
2388 2389
}

2390 2391
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
2392
	if (!test_kvm_facility(vcpu->kvm, 76))
2393 2394
		return;

2395 2396 2397 2398 2399 2400 2401
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

2402 2403 2404
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

2417
	vcpu->arch.sie_block->ecb2 &= ~ECB2_PFMFI;
2418 2419 2420
	return 0;
}

2421 2422 2423 2424 2425
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
2426
	if (test_kvm_facility(vcpu->kvm, 7))
2427
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
2428 2429
}

2430 2431
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
2432
	int rc = 0;
2433

2434 2435
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
2436 2437
						    CPUSTAT_STOPPED);

2438
	if (test_kvm_facility(vcpu->kvm, 78))
2439
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
2440
	else if (test_kvm_facility(vcpu->kvm, 8))
2441
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
2442

2443 2444
	kvm_s390_vcpu_setup_model(vcpu);

2445 2446
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
2447
		vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
2448
	if (test_kvm_facility(vcpu->kvm, 9))
2449
		vcpu->arch.sie_block->ecb |= ECB_SRSI;
2450
	if (test_kvm_facility(vcpu->kvm, 73))
2451
		vcpu->arch.sie_block->ecb |= ECB_TE;
2452

2453
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
2454
		vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
2455
	if (test_kvm_facility(vcpu->kvm, 130))
2456 2457
		vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
	vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
2458
	if (sclp.has_cei)
2459
		vcpu->arch.sie_block->eca |= ECA_CEI;
2460
	if (sclp.has_ib)
2461
		vcpu->arch.sie_block->eca |= ECA_IB;
2462
	if (sclp.has_siif)
2463
		vcpu->arch.sie_block->eca |= ECA_SII;
2464
	if (sclp.has_sigpif)
2465
		vcpu->arch.sie_block->eca |= ECA_SIGPI;
2466
	if (test_kvm_facility(vcpu->kvm, 129)) {
2467 2468
		vcpu->arch.sie_block->eca |= ECA_VX;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
2469
	}
2470 2471 2472
	if (test_kvm_facility(vcpu->kvm, 139))
		vcpu->arch.sie_block->ecd |= ECD_MEF;

F
Fan Zhang 已提交
2473 2474
	vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx)
					| SDNXC;
2475
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
2476 2477

	if (sclp.has_kss)
2478
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
2479 2480
	else
		vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
2481

2482
	if (vcpu->kvm->arch.use_cmma) {
2483 2484 2485
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
2486
	}
2487
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2488
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2489

2490 2491
	kvm_s390_vcpu_crypto_setup(vcpu);

2492
	return rc;
2493 2494 2495 2496 2497
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
2498
	struct kvm_vcpu *vcpu;
2499
	struct sie_page *sie_page;
2500 2501
	int rc = -EINVAL;

2502
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2503 2504 2505
		goto out;

	rc = -ENOMEM;
2506

2507
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2508
	if (!vcpu)
2509
		goto out;
2510

2511
	BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
2512 2513
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
2514 2515
		goto out_free_cpu;

2516 2517 2518
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

2519 2520 2521 2522
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

2523
	vcpu->arch.sie_block->icpua = id;
2524
	spin_lock_init(&vcpu->arch.local_int.lock);
2525
	seqcount_init(&vcpu->arch.cputm_seqcount);
2526

2527 2528
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2529
		goto out_free_sie_block;
2530
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2531
		 vcpu->arch.sie_block);
2532
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2533 2534

	return vcpu;
2535 2536
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2537
out_free_cpu:
2538
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2539
out:
2540 2541 2542 2543 2544
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2545
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2546 2547
}

2548 2549
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
2550
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
2551 2552
}

2553
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2554
{
2555
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2556
	exit_sie(vcpu);
2557 2558
}

2559
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2560
{
2561
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2562 2563
}

2564 2565
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2566
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2567
	exit_sie(vcpu);
2568 2569 2570 2571
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2572
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2573 2574
}

2575 2576 2577 2578 2579 2580
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2581
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
2582 2583 2584 2585
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2586 2587
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2588
{
2589 2590
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2591 2592
}

2593 2594
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2595 2596 2597
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2598 2599
	unsigned long prefix;
	int i;
2600

2601 2602
	if (gmap_is_shadow(gmap))
		return;
2603 2604 2605
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2606 2607
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2608 2609 2610 2611
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2612
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2613 2614 2615 2616
		}
	}
}

2617 2618 2619 2620 2621 2622 2623
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2624 2625 2626 2627 2628 2629
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2630 2631 2632 2633 2634 2635 2636 2637
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2638
	case KVM_REG_S390_CPU_TIMER:
2639
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2640 2641 2642 2643 2644 2645
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2658 2659 2660 2661
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2662 2663 2664 2665
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2677
	__u64 val;
2678 2679

	switch (reg->id) {
2680 2681 2682 2683 2684 2685 2686 2687
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2688
	case KVM_REG_S390_CPU_TIMER:
2689 2690 2691
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2692 2693 2694 2695 2696
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2697 2698 2699
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2700 2701
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2702 2703 2704 2705 2706 2707 2708 2709 2710
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2711 2712 2713 2714
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2715 2716 2717 2718
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2719 2720 2721 2722 2723 2724
	default:
		break;
	}

	return r;
}
2725

2726 2727 2728 2729 2730 2731 2732 2733
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2734
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2735 2736 2737 2738 2739
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2740
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2741 2742 2743 2744 2745 2746
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2747
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2748 2749 2750 2751 2752 2753 2754
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2755
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2756 2757 2758 2759 2760 2761
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2762 2763
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2764
	vcpu->run->s.regs.fpc = fpu->fpc;
2765
	if (MACHINE_HAS_VX)
2766 2767
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2768
	else
2769
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2770 2771 2772 2773 2774
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2775 2776 2777
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
2778 2779
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
2780
	else
2781
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2782
	fpu->fpc = vcpu->run->s.regs.fpc;
2783 2784 2785 2786 2787 2788 2789
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2790
	if (!is_vcpu_stopped(vcpu))
2791
		rc = -EBUSY;
2792 2793 2794 2795
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2796 2797 2798 2799 2800 2801 2802 2803 2804
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2805 2806 2807 2808
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2809 2810
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2811
{
2812 2813 2814 2815 2816
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2817
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2818
		return -EINVAL;
2819 2820
	if (!sclp.has_gpere)
		return -EINVAL;
2821 2822 2823 2824

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2825
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
2826 2827 2828 2829

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2830
		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
2831 2832 2833 2834 2835 2836
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2837
		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
2838 2839 2840
	}

	return rc;
2841 2842
}

2843 2844 2845
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2846 2847 2848
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2849 2850 2851 2852 2853
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2874 2875
}

2876 2877
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
2878
	return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
2879 2880
}

2881 2882
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2883
retry:
2884
	kvm_s390_vcpu_request_handled(vcpu);
R
Radim Krčmář 已提交
2885
	if (!kvm_request_pending(vcpu))
2886
		return 0;
2887 2888
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2889
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2890 2891 2892 2893
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2894
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2895
		int rc;
2896 2897 2898
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2899 2900
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2901
			return rc;
2902
		}
2903
		goto retry;
2904
	}
2905

2906 2907 2908 2909 2910
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2911 2912 2913
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2914
			kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
2915 2916
		}
		goto retry;
2917
	}
2918 2919 2920 2921

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2922
			kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
2923 2924 2925 2926
		}
		goto retry;
	}

2927 2928 2929 2930 2931
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
		/*
		 * Disable CMMA virtualization; we will emulate the ESSA
		 * instruction manually, in order to provide additional
		 * functionalities needed for live migration.
		 */
		vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
		goto retry;
	}

	if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
		/*
		 * Re-enable CMMA virtualization if CMMA is available and
		 * was used.
		 */
		if ((vcpu->kvm->arch.use_cmma) &&
		    (vcpu->kvm->mm->context.use_cmma))
			vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
		goto retry;
	}

2953
	/* nothing to do, just clear the request */
2954
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
2955

2956 2957 2958
	return 0;
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
void kvm_s390_set_tod_clock_ext(struct kvm *kvm,
				 const struct kvm_s390_vm_tod_clock *gtod)
{
	struct kvm_vcpu *vcpu;
	struct kvm_s390_tod_clock_ext htod;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	kvm->arch.epoch = gtod->tod - htod.tod;
	kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx;

	if (kvm->arch.epoch > gtod->tod)
		kvm->arch.epdx -= 1;

	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
		vcpu->arch.sie_block->epdx  = kvm->arch.epdx;
	}

	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
3015
{
3016 3017
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
3018 3019
}

3020 3021 3022 3023
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
3024
	struct kvm_s390_irq irq;
3025 3026

	if (start_token) {
3027 3028 3029
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
3030 3031
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
3032
		inti.parm64 = token;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
3079
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
3080 3081 3082 3083 3084 3085
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
3086 3087 3088
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
3089 3090 3091 3092 3093 3094
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

3095
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
3096
{
3097
	int rc, cpuflags;
3098

3099 3100 3101 3102 3103 3104 3105
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

3106 3107
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
3108 3109 3110 3111

	if (need_resched())
		schedule();

3112
	if (test_cpu_flag(CIF_MCCK_PENDING))
3113 3114
		s390_handle_mcck();

3115 3116 3117 3118 3119
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
3120

3121 3122 3123 3124
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

3125 3126 3127 3128 3129
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

3130
	vcpu->arch.sie_block->icptcode = 0;
3131 3132 3133
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
3134

3135 3136 3137
	return 0;
}

3138 3139
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
3140 3141 3142 3143
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
3157
	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
3158
	ilen = insn_length(opcode);
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
3169 3170 3171
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
3172 3173
}

3174 3175
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
3176 3177 3178
	struct mcck_volatile_info *mcck_info;
	struct sie_page *sie_page;

3179 3180 3181 3182
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

3183 3184 3185
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

3186 3187
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
3188

3189 3190 3191 3192 3193 3194 3195 3196 3197
	if (exit_reason == -EINTR) {
		VCPU_EVENT(vcpu, 3, "%s", "machine check");
		sie_page = container_of(vcpu->arch.sie_block,
					struct sie_page, sie_block);
		mcck_info = &sie_page->mcck_info;
		kvm_s390_reinject_machine_check(vcpu, mcck_info);
		return 0;
	}

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
3211 3212 3213 3214 3215
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
3216
		return -EREMOTE;
3217
	} else if (current->thread.gmap_pfault) {
3218
		trace_kvm_s390_major_guest_pfault(vcpu);
3219
		current->thread.gmap_pfault = 0;
3220 3221 3222
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
3223
	}
3224
	return vcpu_post_run_fault_in_sie(vcpu);
3225 3226 3227 3228 3229 3230
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

3231 3232 3233 3234 3235 3236
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

3237 3238 3239 3240
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
3241

3242
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3243 3244 3245 3246
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
3247
		local_irq_disable();
3248
		guest_enter_irqoff();
3249
		__disable_cpu_timer_accounting(vcpu);
3250
		local_irq_enable();
3251 3252
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
3253
		local_irq_disable();
3254
		__enable_cpu_timer_accounting(vcpu);
3255
		guest_exit_irqoff();
3256
		local_irq_enable();
3257
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3258 3259

		rc = vcpu_post_run(vcpu, exit_reason);
3260
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
3261

3262
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3263
	return rc;
3264 3265
}

3266 3267
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3268
	struct runtime_instr_cb *riccb;
F
Fan Zhang 已提交
3269
	struct gs_cb *gscb;
3270 3271

	riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
F
Fan Zhang 已提交
3272
	gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
3273 3274 3275 3276 3277 3278
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
3279 3280
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3281 3282
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
3283
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
3284 3285 3286 3287 3288 3289 3290 3291 3292
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
3293 3294
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
3295
	}
F
Fan Zhang 已提交
3296 3297 3298 3299 3300
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
3301
	    test_kvm_facility(vcpu->kvm, 64) &&
3302
	    riccb->v &&
3303
	    !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
3304
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
3305
		vcpu->arch.sie_block->ecb3 |= ECB3_RI;
F
Fan Zhang 已提交
3306
	}
F
Fan Zhang 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	/*
	 * If userspace sets the gscb (e.g. after migration) to non-zero,
	 * we should enable GS here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
	    test_kvm_facility(vcpu->kvm, 133) &&
	    gscb->gssm &&
	    !vcpu->arch.gs_enabled) {
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
		vcpu->arch.sie_block->ecb |= ECB_GS;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
		vcpu->arch.gs_enabled = 1;
F
Fan Zhang 已提交
3319
	}
3320 3321
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	if (MACHINE_HAS_GS) {
		preempt_disable();
		__ctl_set_bit(2, 4);
		if (current->thread.gs_cb) {
			vcpu->arch.host_gscb = current->thread.gs_cb;
			save_gs_cb(vcpu->arch.host_gscb);
		}
		if (vcpu->arch.gs_enabled) {
			current->thread.gs_cb = (struct gs_cb *)
						&vcpu->run->s.regs.gscb;
			restore_gs_cb(current->thread.gs_cb);
		}
		preempt_enable();
	}
F
Fan Zhang 已提交
3348

3349 3350 3351 3352 3353 3354 3355 3356 3357
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
3358
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
3359 3360 3361 3362 3363 3364 3365
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
3366 3367
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
3368 3369 3370 3371 3372 3373
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
F
Fan Zhang 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	if (MACHINE_HAS_GS) {
		__ctl_set_bit(2, 4);
		if (vcpu->arch.gs_enabled)
			save_gs_cb(current->thread.gs_cb);
		preempt_disable();
		current->thread.gs_cb = vcpu->arch.host_gscb;
		restore_gs_cb(vcpu->arch.host_gscb);
		preempt_enable();
		if (!vcpu->arch.host_gscb)
			__ctl_clear_bit(2, 4);
		vcpu->arch.host_gscb = NULL;
	}
3386

3387 3388
}

3389 3390
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3391
	int rc;
3392

3393 3394 3395
	if (kvm_run->immediate_exit)
		return -EINTR;

3396 3397 3398 3399 3400
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

3401
	kvm_sigset_activate(vcpu);
3402

3403 3404 3405
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
3406
		pr_err_ratelimited("can't run stopped vcpu %d\n",
3407 3408 3409
				   vcpu->vcpu_id);
		return -EINVAL;
	}
3410

3411
	sync_regs(vcpu, kvm_run);
3412
	enable_cpu_timer_accounting(vcpu);
3413

3414
	might_fault();
3415
	rc = __vcpu_run(vcpu);
3416

3417 3418
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
3419
		rc = -EINTR;
3420
	}
3421

3422 3423 3424 3425 3426
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

3427
	if (rc == -EREMOTE) {
3428
		/* userspace support is needed, kvm_run has been prepared */
3429 3430
		rc = 0;
	}
3431

3432
	disable_cpu_timer_accounting(vcpu);
3433
	store_regs(vcpu, kvm_run);
3434

3435
	kvm_sigset_deactivate(vcpu);
3436 3437

	vcpu->stat.exit_userspace++;
3438
	return rc;
3439 3440 3441 3442 3443 3444 3445 3446
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
3447
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
3448
{
3449
	unsigned char archmode = 1;
3450
	freg_t fprs[NUM_FPRS];
3451
	unsigned int px;
3452
	u64 clkcomp, cputm;
3453
	int rc;
3454

3455
	px = kvm_s390_get_prefix(vcpu);
3456 3457
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
3458
			return -EFAULT;
3459
		gpa = 0;
3460 3461
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
3462
			return -EFAULT;
3463 3464 3465
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
3466 3467 3468

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
3469
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
3470 3471 3472 3473
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
3474
				     vcpu->run->s.regs.fprs, 128);
3475
	}
3476
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
3477
			      vcpu->run->s.regs.gprs, 128);
3478
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
3479
			      &vcpu->arch.sie_block->gpsw, 16);
3480
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
3481
			      &px, 4);
3482
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
3483
			      &vcpu->run->s.regs.fpc, 4);
3484
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
3485
			      &vcpu->arch.sie_block->todpr, 4);
3486
	cputm = kvm_s390_get_cpu_timer(vcpu);
3487
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
3488
			      &cputm, 8);
3489
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
3490
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
3491
			      &clkcomp, 8);
3492
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
3493
			      &vcpu->run->s.regs.acrs, 64);
3494
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
3495 3496
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
3497 3498
}

3499 3500 3501 3502
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
3503
	 * switch in the run ioctl. Let's update our copies before we save
3504 3505
	 * it into the save area
	 */
3506
	save_fpu_regs();
3507
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
3508 3509 3510 3511 3512
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

3513 3514 3515
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
3516
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
3531 3532
	if (!sclp.has_ibs)
		return;
3533
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
3534
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
3535 3536
}

3537 3538
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
3539 3540 3541 3542 3543
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

3544
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
3545
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3546
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

3566
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
3567 3568 3569 3570
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
3571
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3572
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3573
	return;
3574 3575 3576 3577
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
3578 3579 3580 3581 3582 3583
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

3584
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
3585
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3586
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3587 3588
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

3589
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
3590
	kvm_s390_clear_stop_irq(vcpu);
3591

3592
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

3610
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3611
	return;
3612 3613
}

3614 3615 3616 3617 3618 3619 3620 3621 3622
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
3623 3624 3625
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
3626
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3627 3628 3629 3630
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3631 3632 3633 3634 3635 3636 3637
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3664 3665
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3676 3677
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3699 3700 3701 3702 3703
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3704
	int idx;
3705
	long r;
3706

3707
	switch (ioctl) {
3708 3709 3710 3711 3712 3713 3714 3715 3716
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3717
	case KVM_S390_INTERRUPT: {
3718
		struct kvm_s390_interrupt s390int;
3719
		struct kvm_s390_irq s390irq;
3720

3721
		r = -EFAULT;
3722
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3723
			break;
3724 3725 3726
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3727
		break;
3728
	}
3729
	case KVM_S390_STORE_STATUS:
3730
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3731
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3732
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3733
		break;
3734 3735 3736
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3737
		r = -EFAULT;
3738
		if (copy_from_user(&psw, argp, sizeof(psw)))
3739 3740 3741
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3742 3743
	}
	case KVM_S390_INITIAL_RESET:
3744 3745
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3794
	case KVM_S390_VCPU_FAULT: {
3795
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3796 3797
		break;
	}
3798 3799 3800 3801 3802 3803 3804 3805 3806
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3807 3808 3809 3810 3811 3812 3813 3814 3815
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
3828
		/* do not use irq_state.flags, it will break old QEMUs */
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
3844
		/* do not use irq_state.flags, it will break old QEMUs */
3845 3846 3847 3848 3849
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3850
	default:
3851
		r = -ENOTTY;
3852
	}
3853
	return r;
3854 3855
}

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3869 3870
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3871 3872 3873 3874
{
	return 0;
}

3875
/* Section: memory related */
3876 3877
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3878
				   const struct kvm_userspace_memory_region *mem,
3879
				   enum kvm_mr_change change)
3880
{
3881 3882 3883 3884
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3885

3886
	if (mem->userspace_addr & 0xffffful)
3887 3888
		return -EINVAL;

3889
	if (mem->memory_size & 0xffffful)
3890 3891
		return -EINVAL;

3892 3893 3894
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3895 3896 3897 3898
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3899
				const struct kvm_userspace_memory_region *mem,
3900
				const struct kvm_memory_slot *old,
3901
				const struct kvm_memory_slot *new,
3902
				enum kvm_mr_change change)
3903
{
3904
	int rc;
3905

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3916 3917 3918 3919

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3920
		pr_warn("failed to commit memory region\n");
3921
	return;
3922 3923
}

3924 3925 3926 3927 3928 3929 3930
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3931 3932 3933 3934 3935
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3936 3937
static int __init kvm_s390_init(void)
{
3938 3939
	int i;

3940 3941 3942 3943 3944
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3945 3946 3947 3948
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3949
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3950 3951 3952 3953 3954 3955 3956 3957 3958
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3959 3960 3961 3962 3963 3964 3965 3966 3967

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");