kvm-s390.c 87.8 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/moduleparam.h>
27
#include <linux/random.h>
28
#include <linux/slab.h>
29
#include <linux/timer.h>
30
#include <linux/vmalloc.h>
31
#include <linux/bitmap.h>
32
#include <asm/asm-offsets.h>
33
#include <asm/lowcore.h>
34
#include <asm/stp.h>
35
#include <asm/pgtable.h>
36
#include <asm/gmap.h>
37
#include <asm/nmi.h>
38
#include <asm/switch_to.h>
39
#include <asm/isc.h>
40
#include <asm/sclp.h>
41
#include <asm/cpacf.h>
42
#include <asm/timex.h>
43
#include "kvm-s390.h"
44 45
#include "gaccess.h"

46 47 48 49
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

50 51
#define CREATE_TRACE_POINTS
#include "trace.h"
52
#include "trace-s390.h"
53

54
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
55 56 57
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
58

59 60 61 62
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
63
	{ "exit_null", VCPU_STAT(exit_null) },
64 65 66 67
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
68
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
69
	{ "exit_pei", VCPU_STAT(exit_pei) },
70 71
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
72
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
73
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
74
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
75
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
76
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
77
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
78
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
79 80
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
81
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
82
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
83 84 85 86 87 88 89
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
90
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
91 92 93 94 95
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
96
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
97 98
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
99
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
100 101
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
102
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
103
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
104
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
105
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
106
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
107
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
108
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
109 110
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
111
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
112 113
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
114
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
115 116 117
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
118 119 120
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
121
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
122
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
123
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
124 125 126
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
127 128 129
	{ NULL }
};

130 131 132 133 134
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

135
/* upper facilities limit for kvm */
136
unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
137

138
unsigned long kvm_s390_fac_list_mask_size(void)
139
{
140 141
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
142 143
}

144 145
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
146 147
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
148

149
static struct gmap_notifier gmap_notifier;
150
static struct gmap_notifier vsie_gmap_notifier;
151
debug_info_t *kvm_s390_dbf;
152

153
/* Section: not file related */
154
int kvm_arch_hardware_enable(void)
155 156
{
	/* every s390 is virtualization enabled ;-) */
157
	return 0;
158 159
}

160 161
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
181 182
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
183 184
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
185 186 187 188 189 190 191 192 193
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

194 195
int kvm_arch_hardware_setup(void)
{
196
	gmap_notifier.notifier_call = kvm_gmap_notifier;
197
	gmap_register_pte_notifier(&gmap_notifier);
198 199
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
200 201
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
202 203 204 205 206
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
207
	gmap_unregister_pte_notifier(&gmap_notifier);
208
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
209 210
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
211 212
}

213 214 215 216 217
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

218 219 220
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
221
	int cc;
222 223 224 225 226 227 228 229 230 231 232 233

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

234 235
static void kvm_s390_cpu_feat_init(void)
{
236 237 238 239 240 241 242 243
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
244 245 246
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
247 248

	if (test_facility(17)) { /* MSA */
249 250 251 252 253 254 255 256 257 258
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
259 260
	}
	if (test_facility(76)) /* MSA3 */
261 262
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
263
	if (test_facility(77)) { /* MSA4 */
264 265 266 267 268 269 270 271
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
272 273
	}
	if (test_facility(57)) /* MSA5 */
274 275
		__cpacf_query(CPACF_PPNO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.ppno);
276

277 278
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
279 280 281 282 283
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
284
	    !test_facility(3) || !nested)
285 286
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
287 288
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
289 290
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
291 292
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
293 294
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
295 296
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
297 298
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
299 300
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
319 320
}

321 322
int kvm_arch_init(void *opaque)
{
323 324 325 326 327 328 329 330 331
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

332 333
	kvm_s390_cpu_feat_init();

334 335
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
336 337
}

338 339 340 341 342
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

343 344 345 346 347 348 349 350 351
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

352
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
353
{
354 355
	int r;

356
	switch (ext) {
357
	case KVM_CAP_S390_PSW:
358
	case KVM_CAP_S390_GMAP:
359
	case KVM_CAP_SYNC_MMU:
360 361 362
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
363
	case KVM_CAP_ASYNC_PF:
364
	case KVM_CAP_SYNC_REGS:
365
	case KVM_CAP_ONE_REG:
366
	case KVM_CAP_ENABLE_CAP:
367
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
368
	case KVM_CAP_IOEVENTFD:
369
	case KVM_CAP_DEVICE_CTRL:
370
	case KVM_CAP_ENABLE_CAP_VM:
371
	case KVM_CAP_S390_IRQCHIP:
372
	case KVM_CAP_VM_ATTRIBUTES:
373
	case KVM_CAP_MP_STATE:
374
	case KVM_CAP_IMMEDIATE_EXIT:
375
	case KVM_CAP_S390_INJECT_IRQ:
376
	case KVM_CAP_S390_USER_SIGP:
377
	case KVM_CAP_S390_USER_STSI:
378
	case KVM_CAP_S390_SKEYS:
379
	case KVM_CAP_S390_IRQ_STATE:
380
	case KVM_CAP_S390_USER_INSTR0:
381 382
		r = 1;
		break;
383 384 385
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
386 387
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
388
		r = KVM_S390_BSCA_CPU_SLOTS;
389 390 391
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
392
			r = KVM_S390_ESCA_CPU_SLOTS;
393
		break;
394 395 396
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
397
	case KVM_CAP_S390_COW:
398
		r = MACHINE_HAS_ESOP;
399
		break;
400 401 402
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
403 404 405
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
406
	default:
407
		r = 0;
408
	}
409
	return r;
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

424
		if (test_and_clear_guest_dirty(gmap->mm, address))
425
			mark_page_dirty(kvm, cur_gfn);
426 427
		if (fatal_signal_pending(current))
			return;
428
		cond_resched();
429 430 431
	}
}

432
/* Section: vm related */
433 434
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

435 436 437 438 439 440
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
441 442
	int r;
	unsigned long n;
443
	struct kvm_memslots *slots;
444 445 446
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

447 448 449
	if (kvm_is_ucontrol(kvm))
		return -EINVAL;

450 451 452 453 454 455
	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

456 457
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
476 477
}

478 479 480 481 482 483 484 485 486 487
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

488 489 490 491 492 493 494 495
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
496
	case KVM_CAP_S390_IRQCHIP:
497
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
498 499 500
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
501
	case KVM_CAP_S390_USER_SIGP:
502
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
503 504 505
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
506
	case KVM_CAP_S390_VECTOR_REGISTERS:
507
		mutex_lock(&kvm->lock);
508
		if (kvm->created_vcpus) {
509 510
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
511 512
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
513 514 515 516
			if (test_facility(134)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 134);
				set_kvm_facility(kvm->arch.model.fac_list, 134);
			}
517 518 519 520
			if (test_facility(135)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 135);
				set_kvm_facility(kvm->arch.model.fac_list, 135);
			}
521 522 523
			r = 0;
		} else
			r = -EINVAL;
524
		mutex_unlock(&kvm->lock);
525 526
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
527
		break;
528 529 530
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
531
		if (kvm->created_vcpus) {
532 533
			r = -EBUSY;
		} else if (test_facility(64)) {
534 535
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
536 537 538 539 540 541
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
542
	case KVM_CAP_S390_USER_STSI:
543
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
544 545 546
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
547 548 549 550 551 552
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
553 554 555 556 557 558 559
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

560 561 562 563 564 565 566
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
567
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
568 569
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
570 571 572 573 574 575 576 577 578 579
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
580 581 582 583 584
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
585
		ret = -ENXIO;
586
		if (!sclp.has_cmma)
587 588
			break;

589
		ret = -EBUSY;
590
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
591
		mutex_lock(&kvm->lock);
592
		if (!kvm->created_vcpus) {
593 594 595 596 597 598
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
599 600 601
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
602 603 604 605
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

606
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
607 608
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
609
		s390_reset_cmma(kvm->arch.gmap->mm);
610 611 612 613
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
614 615 616 617 618 619 620 621 622
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

623 624
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
625 626
			return -E2BIG;

627 628 629
		if (!new_limit)
			return -EINVAL;

630
		/* gmap_create takes last usable address */
631 632 633
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

634 635
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
636
		if (!kvm->created_vcpus) {
637 638
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
639 640 641 642

			if (!new) {
				ret = -ENOMEM;
			} else {
643
				gmap_remove(kvm->arch.gmap);
644 645 646 647 648 649
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
650 651 652
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
653 654
		break;
	}
655 656 657 658 659 660 661
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

662 663 664 665 666 667 668
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

669
	if (!test_kvm_facility(kvm, 76))
670 671 672 673 674 675 676 677 678
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
679
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
680 681 682 683 684 685
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
686
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
687 688 689 690 691
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
692
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
693 694 695 696 697
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
698
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
699 700 701 702 703 704 705 706 707 708 709 710 711 712
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

713 714 715 716 717 718 719 720 721 722
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
723
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
724 725 726 727 728 729

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
730
	u64 gtod;
731 732 733 734

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

735
	kvm_s390_set_tod_clock(kvm, gtod);
736
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
768
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
769 770 771 772 773 774

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
775
	u64 gtod;
776

777
	gtod = kvm_s390_get_tod_clock_fast(kvm);
778 779
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
780
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

806 807 808
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
809
	u16 lowest_ibc, unblocked_ibc;
810 811 812
	int ret = 0;

	mutex_lock(&kvm->lock);
813
	if (kvm->created_vcpus) {
814 815 816 817 818 819 820 821 822 823
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
824
		kvm->arch.model.cpuid = proc->cpuid;
825 826
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
827
		if (lowest_ibc && proc->ibc) {
828 829 830 831 832 833 834
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
835
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
836
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
837 838 839 840 841 842 843
		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
			 kvm->arch.model.ibc,
			 kvm->arch.model.cpuid);
		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
			 kvm->arch.model.fac_list[0],
			 kvm->arch.model.fac_list[1],
			 kvm->arch.model.fac_list[2]);
844 845 846 847 848 849 850 851
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

875 876 877 878 879 880 881 882 883 884
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

885 886 887 888 889 890 891 892
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
893 894 895
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
896 897 898
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
899 900 901 902 903 904 905 906 907 908 909 910 911 912
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
913
	proc->cpuid = kvm->arch.model.cpuid;
914
	proc->ibc = kvm->arch.model.ibc;
915 916
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
917 918 919 920 921 922 923
	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
		 kvm->arch.model.fac_list[0],
		 kvm->arch.model.fac_list[1],
		 kvm->arch.model.fac_list[2]);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
942
	mach->ibc = sclp.ibc;
943
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
944
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
945
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
946
	       sizeof(S390_lowcore.stfle_fac_list));
947 948 949 950 951 952 953 954 955 956 957
	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_mask[0],
		 mach->fac_mask[1],
		 mach->fac_mask[2]);
	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_list[0],
		 mach->fac_list[1],
		 mach->fac_list[2]);
958 959 960 961 962 963 964
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
1020 1021 1022 1023 1024 1025
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
1026 1027 1028 1029 1030 1031
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
1032 1033 1034 1035
	}
	return ret;
}

1036 1037 1038 1039 1040
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1041
	case KVM_S390_VM_MEM_CTRL:
1042
		ret = kvm_s390_set_mem_control(kvm, attr);
1043
		break;
1044 1045 1046
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1047 1048 1049
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1050 1051 1052
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1063 1064 1065 1066 1067 1068
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1069 1070 1071
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1072 1073 1074
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1075 1076 1077 1078 1079 1080
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1081 1082 1083 1084 1085 1086 1087
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1088 1089 1090 1091
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1092 1093
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1094
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1095 1096 1097 1098 1099 1100 1101
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1113 1114 1115 1116
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1117 1118
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1119
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1120 1121
			ret = 0;
			break;
1122 1123
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1124 1125 1126 1127 1128
		default:
			ret = -ENXIO;
			break;
		}
		break;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1142 1143 1144 1145 1146 1147 1148 1149
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1174
	down_read(&current->mm->mmap_sem);
1175 1176 1177 1178
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1179
			break;
1180 1181
		}

1182 1183
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1184
			break;
1185
	}
1186 1187 1188 1189 1190 1191 1192
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1227 1228 1229
	r = s390_enable_skey();
	if (r)
		goto out;
1230

1231
	down_read(&current->mm->mmap_sem);
1232 1233 1234 1235
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1236
			break;
1237 1238 1239 1240 1241
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1242
			break;
1243 1244
		}

1245
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1246
		if (r)
1247
			break;
1248
	}
1249
	up_read(&current->mm->mmap_sem);
1250 1251 1252 1253 1254
out:
	kvfree(keys);
	return r;
}

1255 1256 1257 1258 1259
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1260
	struct kvm_device_attr attr;
1261 1262 1263
	int r;

	switch (ioctl) {
1264 1265 1266 1267 1268 1269 1270 1271 1272
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1273 1274 1275 1276 1277 1278 1279 1280
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1281 1282 1283 1284 1285 1286 1287
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1288
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1289 1290 1291
		}
		break;
	}
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1333
	default:
1334
		r = -ENOTTY;
1335 1336 1337 1338 1339
	}

	return r;
}

1340 1341 1342
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1343
	u32 cc = 0;
1344

1345
	memset(config, 0, 128);
1346 1347 1348 1349
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1350
		"0: ipm %0\n"
1351
		"srl %0,28\n"
1352 1353 1354
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1367
	if (test_facility(12)) {
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1389
static u64 kvm_s390_get_initial_cpuid(void)
1390
{
1391 1392 1393 1394 1395
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1396 1397
}

1398
static void kvm_s390_crypto_init(struct kvm *kvm)
1399
{
1400
	if (!test_kvm_facility(kvm, 76))
1401
		return;
1402

1403
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1404
	kvm_s390_set_crycb_format(kvm);
1405

1406 1407 1408 1409 1410 1411 1412
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1413 1414
}

1415 1416 1417
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1418
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1419 1420 1421 1422 1423
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1424
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1425
{
1426
	gfp_t alloc_flags = GFP_KERNEL;
1427
	int i, rc;
1428
	char debug_name[16];
1429
	static unsigned long sca_offset;
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1442 1443
	rc = s390_enable_sie();
	if (rc)
1444
		goto out_err;
1445

1446 1447
	rc = -ENOMEM;

J
Janosch Frank 已提交
1448 1449
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1450
	kvm->arch.use_esca = 0; /* start with basic SCA */
1451 1452
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1453
	rwlock_init(&kvm->arch.sca_lock);
1454
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1455
	if (!kvm->arch.sca)
1456
		goto out_err;
1457
	spin_lock(&kvm_lock);
1458
	sca_offset += 16;
1459
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1460
		sca_offset = 0;
1461 1462
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1463
	spin_unlock(&kvm_lock);
1464 1465 1466

	sprintf(debug_name, "kvm-%u", current->pid);

1467
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1468
	if (!kvm->arch.dbf)
1469
		goto out_err;
1470

1471 1472 1473
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1474
		goto out_err;
1475

1476
	/* Populate the facility mask initially. */
1477
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1478
	       sizeof(S390_lowcore.stfle_fac_list));
1479 1480
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1481
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1482
		else
1483
			kvm->arch.model.fac_mask[i] = 0UL;
1484 1485
	}

1486
	/* Populate the facility list initially. */
1487 1488
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1489 1490
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1491 1492 1493
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1494
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1495
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1496

1497
	kvm_s390_crypto_init(kvm);
1498

1499
	spin_lock_init(&kvm->arch.float_int.lock);
1500 1501
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1502
	init_waitqueue_head(&kvm->arch.ipte_wq);
1503
	mutex_init(&kvm->arch.ipte_mutex);
1504

1505
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1506
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1507

1508 1509
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1510
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1511
	} else {
1512 1513 1514 1515 1516
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1517
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1518
		if (!kvm->arch.gmap)
1519
			goto out_err;
1520
		kvm->arch.gmap->private = kvm;
1521
		kvm->arch.gmap->pfault_enabled = 0;
1522
	}
1523 1524

	kvm->arch.css_support = 0;
1525
	kvm->arch.use_irqchip = 0;
1526
	kvm->arch.epoch = 0;
1527

1528
	spin_lock_init(&kvm->arch.start_stop_lock);
1529
	kvm_s390_vsie_init(kvm);
1530
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1531

1532
	return 0;
1533
out_err:
1534
	free_page((unsigned long)kvm->arch.sie_page2);
1535
	debug_unregister(kvm->arch.dbf);
1536
	sca_dispose(kvm);
1537
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1538
	return rc;
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

1551 1552 1553
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1554
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1555
	kvm_s390_clear_local_irqs(vcpu);
1556
	kvm_clear_async_pf_completion_queue(vcpu);
1557
	if (!kvm_is_ucontrol(vcpu->kvm))
1558
		sca_del_vcpu(vcpu);
1559 1560

	if (kvm_is_ucontrol(vcpu->kvm))
1561
		gmap_remove(vcpu->arch.gmap);
1562

1563
	if (vcpu->kvm->arch.use_cmma)
1564
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1565
	free_page((unsigned long)(vcpu->arch.sie_block));
1566

1567
	kvm_vcpu_uninit(vcpu);
1568
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1569 1570 1571 1572 1573
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1574
	struct kvm_vcpu *vcpu;
1575

1576 1577 1578 1579 1580 1581 1582 1583 1584
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1585 1586
}

1587 1588
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1589
	kvm_free_vcpus(kvm);
1590
	sca_dispose(kvm);
1591
	debug_unregister(kvm->arch.dbf);
1592
	free_page((unsigned long)kvm->arch.sie_page2);
1593
	if (!kvm_is_ucontrol(kvm))
1594
		gmap_remove(kvm->arch.gmap);
1595
	kvm_s390_destroy_adapters(kvm);
1596
	kvm_s390_clear_float_irqs(kvm);
1597
	kvm_s390_vsie_destroy(kvm);
1598
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1599 1600 1601
}

/* Section: vcpu related */
1602 1603
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1604
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1605 1606 1607 1608 1609 1610 1611
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1612 1613
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1614 1615
	if (!kvm_s390_use_sca_entries())
		return;
1616
	read_lock(&vcpu->kvm->arch.sca_lock);
1617 1618
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1619

1620
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1621
		sca->cpu[vcpu->vcpu_id].sda = 0;
1622 1623 1624 1625
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1626
		sca->cpu[vcpu->vcpu_id].sda = 0;
1627
	}
1628
	read_unlock(&vcpu->kvm->arch.sca_lock);
1629 1630
}

1631
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1632
{
1633 1634 1635 1636 1637 1638 1639
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
	}
1640 1641 1642
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1643

1644
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1645 1646
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1647
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1648
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1649
	} else {
1650
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1651

1652
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1653 1654
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1655
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1656
	}
1657
	read_unlock(&vcpu->kvm->arch.sca_lock);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1711 1712
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1713
	return 0;
1714 1715 1716 1717
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1718 1719
	int rc;

1720 1721 1722 1723 1724
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
1725 1726
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1727
	if (!sclp.has_esca || !sclp.has_64bscao)
1728 1729 1730 1731 1732 1733 1734
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1735 1736
}

1737 1738
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1739 1740
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1741 1742
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1743
				    KVM_SYNC_ACRS |
1744 1745 1746
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1747
	kvm_s390_set_prefix(vcpu, 0);
1748 1749
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1750 1751 1752 1753
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1754
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1755 1756
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1757 1758 1759 1760

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1761 1762 1763
	return 0;
}

1764 1765 1766 1767
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1768
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1769
	vcpu->arch.cputm_start = get_tod_clock_fast();
1770
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1771 1772 1773 1774 1775 1776
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1777
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1778 1779
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1780
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1813 1814 1815
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1816
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1817
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1818 1819
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1820
	vcpu->arch.sie_block->cputm = cputm;
1821
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1822
	preempt_enable();
1823 1824
}

1825
/* update and get the cpu timer - can also be called from other VCPU threads */
1826 1827
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1828
	unsigned int seq;
1829 1830 1831 1832 1833
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1848
	return value;
1849 1850
}

1851 1852
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1853

1854
	gmap_enable(vcpu->arch.enabled_gmap);
1855
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1856
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1857
		__start_cpu_timer_accounting(vcpu);
1858
	vcpu->cpu = cpu;
1859 1860 1861 1862
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1863
	vcpu->cpu = -1;
1864
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1865
		__stop_cpu_timer_accounting(vcpu);
1866
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1867 1868
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1869

1870 1871 1872 1873 1874 1875 1876
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1877
	kvm_s390_set_prefix(vcpu, 0);
1878
	kvm_s390_set_cpu_timer(vcpu, 0);
1879 1880 1881 1882 1883
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1884 1885 1886
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1887
	vcpu->arch.sie_block->gbea = 1;
1888
	vcpu->arch.sie_block->pp = 0;
1889 1890
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1891 1892
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1893
	kvm_s390_clear_local_irqs(vcpu);
1894 1895
}

1896
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1897
{
1898
	mutex_lock(&vcpu->kvm->lock);
1899
	preempt_disable();
1900
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1901
	preempt_enable();
1902
	mutex_unlock(&vcpu->kvm->lock);
1903
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1904
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1905
		sca_add_vcpu(vcpu);
1906
	}
1907 1908
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1909 1910
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1911 1912
}

1913 1914
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1915
	if (!test_kvm_facility(vcpu->kvm, 76))
1916 1917
		return;

1918 1919 1920 1921 1922 1923 1924
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1925 1926 1927
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1945 1946 1947 1948 1949
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1950
	if (test_kvm_facility(vcpu->kvm, 7))
1951
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1952 1953
}

1954 1955
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1956
	int rc = 0;
1957

1958 1959
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1960 1961
						    CPUSTAT_STOPPED);

1962
	if (test_kvm_facility(vcpu->kvm, 78))
1963
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1964
	else if (test_kvm_facility(vcpu->kvm, 8))
1965
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1966

1967 1968
	kvm_s390_vcpu_setup_model(vcpu);

1969 1970 1971
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1972 1973
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1974
	if (test_kvm_facility(vcpu->kvm, 73))
1975 1976
		vcpu->arch.sie_block->ecb |= 0x10;

1977
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1978
		vcpu->arch.sie_block->ecb2 |= 0x08;
1979 1980
	if (test_kvm_facility(vcpu->kvm, 130))
		vcpu->arch.sie_block->ecb2 |= 0x20;
1981 1982 1983
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1984 1985
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1986
	if (sclp.has_siif)
1987
		vcpu->arch.sie_block->eca |= 1;
1988
	if (sclp.has_sigpif)
1989
		vcpu->arch.sie_block->eca |= 0x10000000U;
1990
	if (test_kvm_facility(vcpu->kvm, 129)) {
1991 1992 1993
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1994
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1995
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1996

1997
	if (vcpu->kvm->arch.use_cmma) {
1998 1999 2000
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
2001
	}
2002
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2003
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2004

2005 2006
	kvm_s390_vcpu_crypto_setup(vcpu);

2007
	return rc;
2008 2009 2010 2011 2012
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
2013
	struct kvm_vcpu *vcpu;
2014
	struct sie_page *sie_page;
2015 2016
	int rc = -EINVAL;

2017
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2018 2019 2020
		goto out;

	rc = -ENOMEM;
2021

2022
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2023
	if (!vcpu)
2024
		goto out;
2025

2026 2027
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
2028 2029
		goto out_free_cpu;

2030 2031 2032
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

2033 2034 2035 2036
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

2037
	vcpu->arch.sie_block->icpua = id;
2038 2039
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
2040
	vcpu->arch.local_int.wq = &vcpu->wq;
2041
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
2042
	seqcount_init(&vcpu->arch.cputm_seqcount);
2043

2044 2045
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2046
		goto out_free_sie_block;
2047
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2048
		 vcpu->arch.sie_block);
2049
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2050 2051

	return vcpu;
2052 2053
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2054
out_free_cpu:
2055
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2056
out:
2057 2058 2059 2060 2061
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2062
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2063 2064
}

2065
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2066
{
2067
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2068
	exit_sie(vcpu);
2069 2070
}

2071
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2072
{
2073
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2074 2075
}

2076 2077
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2078
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2079
	exit_sie(vcpu);
2080 2081 2082 2083
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2084
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2085 2086
}

2087 2088 2089 2090 2091 2092
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2093
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2094 2095 2096 2097
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2098 2099
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2100
{
2101 2102
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2103 2104
}

2105 2106
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2107 2108 2109
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2110 2111
	unsigned long prefix;
	int i;
2112

2113 2114
	if (gmap_is_shadow(gmap))
		return;
2115 2116 2117
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2118 2119
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2120 2121 2122 2123
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2124
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2125 2126 2127 2128
		}
	}
}

2129 2130 2131 2132 2133 2134 2135
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2136 2137 2138 2139 2140 2141
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2142 2143 2144 2145 2146 2147 2148 2149
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2150
	case KVM_REG_S390_CPU_TIMER:
2151
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2152 2153 2154 2155 2156 2157
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2170 2171 2172 2173
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2174 2175 2176 2177
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2189
	__u64 val;
2190 2191

	switch (reg->id) {
2192 2193 2194 2195 2196 2197 2198 2199
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2200
	case KVM_REG_S390_CPU_TIMER:
2201 2202 2203
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2204 2205 2206 2207 2208
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2209 2210 2211
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2212 2213
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2214 2215 2216 2217 2218 2219 2220 2221 2222
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2223 2224 2225 2226
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2227 2228 2229 2230
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2231 2232 2233 2234 2235 2236
	default:
		break;
	}

	return r;
}
2237

2238 2239 2240 2241 2242 2243 2244 2245
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2246
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2247 2248 2249 2250 2251
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2252
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2253 2254 2255 2256 2257 2258
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2259
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2260 2261 2262 2263 2264 2265 2266
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2267
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2268 2269 2270 2271 2272 2273
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2274 2275
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2276
	vcpu->run->s.regs.fpc = fpu->fpc;
2277
	if (MACHINE_HAS_VX)
2278 2279
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2280
	else
2281
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2282 2283 2284 2285 2286
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2287 2288 2289
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
2290 2291
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
2292
	else
2293
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2294
	fpu->fpc = vcpu->run->s.regs.fpc;
2295 2296 2297 2298 2299 2300 2301
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2302
	if (!is_vcpu_stopped(vcpu))
2303
		rc = -EBUSY;
2304 2305 2306 2307
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2308 2309 2310 2311 2312 2313 2314 2315 2316
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2317 2318 2319 2320
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2321 2322
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2323
{
2324 2325 2326 2327 2328
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2329
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2330
		return -EINVAL;
2331 2332
	if (!sclp.has_gpere)
		return -EINVAL;
2333 2334 2335 2336

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2337
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2338 2339 2340 2341

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2342
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2343 2344 2345 2346 2347 2348
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2349
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2350 2351 2352
	}

	return rc;
2353 2354
}

2355 2356 2357
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2358 2359 2360
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2361 2362 2363 2364 2365
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2386 2387
}

2388 2389 2390 2391 2392
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2393 2394
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2395
retry:
2396
	kvm_s390_vcpu_request_handled(vcpu);
2397 2398
	if (!vcpu->requests)
		return 0;
2399 2400
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2401
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2402 2403 2404 2405
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2406
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2407
		int rc;
2408 2409 2410
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2411 2412
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2413
			return rc;
2414
		}
2415
		goto retry;
2416
	}
2417

2418 2419 2420 2421 2422
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2423 2424 2425
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2426
			atomic_or(CPUSTAT_IBS,
2427 2428 2429
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2430
	}
2431 2432 2433 2434

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2435
			atomic_andnot(CPUSTAT_IBS,
2436 2437 2438 2439 2440
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2441 2442 2443 2444 2445
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2446 2447 2448
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2449 2450 2451
	return 0;
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2479
{
2480 2481
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2482 2483
}

2484 2485 2486 2487
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2488
	struct kvm_s390_irq irq;
2489 2490

	if (start_token) {
2491 2492 2493
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2494 2495
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2496
		inti.parm64 = token;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2543
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2544 2545 2546 2547 2548 2549
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2550 2551 2552
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2553 2554 2555 2556 2557 2558
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2559
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2560
{
2561
	int rc, cpuflags;
2562

2563 2564 2565 2566 2567 2568 2569
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2570 2571
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2572 2573 2574 2575

	if (need_resched())
		schedule();

2576
	if (test_cpu_flag(CIF_MCCK_PENDING))
2577 2578
		s390_handle_mcck();

2579 2580 2581 2582 2583
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2584

2585 2586 2587 2588
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2589 2590 2591 2592 2593
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2594
	vcpu->arch.sie_block->icptcode = 0;
2595 2596 2597
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2598

2599 2600 2601
	return 0;
}

2602 2603
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2604 2605 2606 2607
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2621
	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
2622
	ilen = insn_length(opcode);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2633 2634 2635
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2636 2637
}

2638 2639
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2640 2641 2642 2643
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2644 2645 2646
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2647 2648
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2663 2664 2665 2666 2667
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2668
		return -EREMOTE;
2669
	} else if (current->thread.gmap_pfault) {
2670
		trace_kvm_s390_major_guest_pfault(vcpu);
2671
		current->thread.gmap_pfault = 0;
2672 2673 2674
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2675
	}
2676
	return vcpu_post_run_fault_in_sie(vcpu);
2677 2678 2679 2680 2681 2682
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2683 2684 2685 2686 2687 2688
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2689 2690 2691 2692
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2693

2694
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2695 2696 2697 2698
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2699
		local_irq_disable();
2700
		guest_enter_irqoff();
2701
		__disable_cpu_timer_accounting(vcpu);
2702
		local_irq_enable();
2703 2704
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2705
		local_irq_disable();
2706
		__enable_cpu_timer_accounting(vcpu);
2707
		guest_exit_irqoff();
2708
		local_irq_enable();
2709
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2710 2711

		rc = vcpu_post_run(vcpu, exit_reason);
2712
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2713

2714
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2715
	return rc;
2716 2717
}

2718 2719 2720 2721 2722 2723 2724 2725
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2726 2727
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2728 2729
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2730
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2731 2732 2733 2734 2735 2736 2737 2738 2739
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2740 2741
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2742
	}
F
Fan Zhang 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
	    test_kvm_facility(vcpu->kvm, 64)) {
		struct runtime_instr_cb *riccb =
			(struct runtime_instr_cb *) &kvm_run->s.regs.riccb;

		if (riccb->valid)
			vcpu->arch.sie_block->ecb3 |= 0x01;
	}
2755 2756
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2779
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2780 2781 2782 2783 2784 2785 2786
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2787 2788
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
2789 2790 2791 2792 2793 2794 2795
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;

2796 2797
}

2798 2799
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2800
	int rc;
2801 2802
	sigset_t sigsaved;

2803 2804 2805
	if (kvm_run->immediate_exit)
		return -EINTR;

2806 2807 2808 2809 2810
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2811 2812 2813
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2814 2815 2816
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2817
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2818 2819 2820
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2821

2822
	sync_regs(vcpu, kvm_run);
2823
	enable_cpu_timer_accounting(vcpu);
2824

2825
	might_fault();
2826
	rc = __vcpu_run(vcpu);
2827

2828 2829
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2830
		rc = -EINTR;
2831
	}
2832

2833 2834 2835 2836 2837
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2838
	if (rc == -EREMOTE) {
2839
		/* userspace support is needed, kvm_run has been prepared */
2840 2841
		rc = 0;
	}
2842

2843
	disable_cpu_timer_accounting(vcpu);
2844
	store_regs(vcpu, kvm_run);
2845

2846 2847 2848 2849
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2850
	return rc;
2851 2852 2853 2854 2855 2856 2857 2858
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2859
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2860
{
2861
	unsigned char archmode = 1;
2862
	freg_t fprs[NUM_FPRS];
2863
	unsigned int px;
2864
	u64 clkcomp, cputm;
2865
	int rc;
2866

2867
	px = kvm_s390_get_prefix(vcpu);
2868 2869
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2870
			return -EFAULT;
2871
		gpa = 0;
2872 2873
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2874
			return -EFAULT;
2875 2876 2877
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2878 2879 2880

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2881
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2882 2883 2884 2885
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2886
				     vcpu->run->s.regs.fprs, 128);
2887
	}
2888
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2889
			      vcpu->run->s.regs.gprs, 128);
2890
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2891
			      &vcpu->arch.sie_block->gpsw, 16);
2892
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2893
			      &px, 4);
2894
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2895
			      &vcpu->run->s.regs.fpc, 4);
2896
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2897
			      &vcpu->arch.sie_block->todpr, 4);
2898
	cputm = kvm_s390_get_cpu_timer(vcpu);
2899
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2900
			      &cputm, 8);
2901
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2902
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2903
			      &clkcomp, 8);
2904
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2905
			      &vcpu->run->s.regs.acrs, 64);
2906
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2907 2908
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2909 2910
}

2911 2912 2913 2914
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2915
	 * switch in the run ioctl. Let's update our copies before we save
2916 2917
	 * it into the save area
	 */
2918
	save_fpu_regs();
2919
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2920 2921 2922 2923 2924
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

2925 2926 2927
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2928
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2943 2944
	if (!sclp.has_ibs)
		return;
2945
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2946
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2947 2948
}

2949 2950
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2951 2952 2953 2954 2955
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2956
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2957
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2958
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2978
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2979 2980 2981 2982
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2983
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2984
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2985
	return;
2986 2987 2988 2989
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2990 2991 2992 2993 2994 2995
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2996
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2997
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2998
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2999 3000
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

3001
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
3002
	kvm_s390_clear_stop_irq(vcpu);
3003

3004
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

3022
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3023
	return;
3024 3025
}

3026 3027 3028 3029 3030 3031 3032 3033 3034
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
3035 3036 3037
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
3038
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3039 3040 3041 3042
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3043 3044 3045 3046 3047 3048 3049
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3076 3077
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3088 3089
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3111 3112 3113 3114 3115
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3116
	int idx;
3117
	long r;
3118

3119
	switch (ioctl) {
3120 3121 3122 3123 3124 3125 3126 3127 3128
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3129
	case KVM_S390_INTERRUPT: {
3130
		struct kvm_s390_interrupt s390int;
3131
		struct kvm_s390_irq s390irq;
3132

3133
		r = -EFAULT;
3134
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3135
			break;
3136 3137 3138
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3139
		break;
3140
	}
3141
	case KVM_S390_STORE_STATUS:
3142
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3143
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3144
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3145
		break;
3146 3147 3148
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3149
		r = -EFAULT;
3150
		if (copy_from_user(&psw, argp, sizeof(psw)))
3151 3152 3153
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3154 3155
	}
	case KVM_S390_INITIAL_RESET:
3156 3157
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3206
	case KVM_S390_VCPU_FAULT: {
3207
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3208 3209
		break;
	}
3210 3211 3212 3213 3214 3215 3216 3217 3218
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3219 3220 3221 3222 3223 3224 3225 3226 3227
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3260
	default:
3261
		r = -ENOTTY;
3262
	}
3263
	return r;
3264 3265
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3279 3280
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3281 3282 3283 3284
{
	return 0;
}

3285
/* Section: memory related */
3286 3287
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3288
				   const struct kvm_userspace_memory_region *mem,
3289
				   enum kvm_mr_change change)
3290
{
3291 3292 3293 3294
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3295

3296
	if (mem->userspace_addr & 0xffffful)
3297 3298
		return -EINVAL;

3299
	if (mem->memory_size & 0xffffful)
3300 3301
		return -EINVAL;

3302 3303 3304
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3305 3306 3307 3308
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3309
				const struct kvm_userspace_memory_region *mem,
3310
				const struct kvm_memory_slot *old,
3311
				const struct kvm_memory_slot *new,
3312
				enum kvm_mr_change change)
3313
{
3314
	int rc;
3315

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3326 3327 3328 3329

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3330
		pr_warn("failed to commit memory region\n");
3331
	return;
3332 3333
}

3334 3335 3336 3337 3338 3339 3340
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3341 3342 3343 3344 3345
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3346 3347
static int __init kvm_s390_init(void)
{
3348 3349
	int i;

3350 3351 3352 3353 3354
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3355 3356 3357 3358
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3359
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3360 3361 3362 3363 3364 3365 3366 3367 3368
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3369 3370 3371 3372 3373 3374 3375 3376 3377

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");