kvm-s390.c 70.6 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/nmi.h>
34
#include <asm/switch_to.h>
35
#include <asm/isc.h>
36
#include <asm/sclp.h>
37
#include "kvm-s390.h"
38 39
#include "gaccess.h"

40 41 42 43
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

44 45
#define CREATE_TRACE_POINTS
#include "trace.h"
46
#include "trace-s390.h"
47

48
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
49 50 51
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
52

53 54 55 56
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
57
	{ "exit_null", VCPU_STAT(exit_null) },
58 59 60 61
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 63 64
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
68
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 71
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
72
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 75 76 77 78 79 80
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
81
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 83 84 85 86
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 89
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
90
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
91 92
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
93
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
94
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 99
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 102
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 105 106
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 108 109
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
111
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
112
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 114 115
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
116 117 118
	{ NULL }
};

119 120
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
121
	0xffe6fffbfcfdfc40UL,
122
	0x005e800000000000UL,
123
};
124

125
unsigned long kvm_s390_fac_list_mask_size(void)
126
{
127 128
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 130
}

131
static struct gmap_notifier gmap_notifier;
132
debug_info_t *kvm_s390_dbf;
133

134
/* Section: not file related */
135
int kvm_arch_hardware_enable(void)
136 137
{
	/* every s390 is virtualization enabled ;-) */
138
	return 0;
139 140
}

141 142
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

170 171
int kvm_arch_hardware_setup(void)
{
172 173
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
174 175
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
176 177 178 179 180
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
181
	gmap_unregister_ipte_notifier(&gmap_notifier);
182 183
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
184 185 186 187
}

int kvm_arch_init(void *opaque)
{
188 189 190 191 192 193 194 195 196
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

197 198
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 200
}

201 202 203 204 205
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

206 207 208 209 210 211 212 213 214
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

215
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216
{
217 218
	int r;

219
	switch (ext) {
220
	case KVM_CAP_S390_PSW:
221
	case KVM_CAP_S390_GMAP:
222
	case KVM_CAP_SYNC_MMU:
223 224 225
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
226
	case KVM_CAP_ASYNC_PF:
227
	case KVM_CAP_SYNC_REGS:
228
	case KVM_CAP_ONE_REG:
229
	case KVM_CAP_ENABLE_CAP:
230
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
231
	case KVM_CAP_IOEVENTFD:
232
	case KVM_CAP_DEVICE_CTRL:
233
	case KVM_CAP_ENABLE_CAP_VM:
234
	case KVM_CAP_S390_IRQCHIP:
235
	case KVM_CAP_VM_ATTRIBUTES:
236
	case KVM_CAP_MP_STATE:
237
	case KVM_CAP_S390_INJECT_IRQ:
238
	case KVM_CAP_S390_USER_SIGP:
239
	case KVM_CAP_S390_USER_STSI:
240
	case KVM_CAP_S390_SKEYS:
241
	case KVM_CAP_S390_IRQ_STATE:
242 243
		r = 1;
		break;
244 245 246
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
247 248 249 250
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
251 252 253
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
254
	case KVM_CAP_S390_COW:
255
		r = MACHINE_HAS_ESOP;
256
		break;
257 258 259
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
260
	default:
261
		r = 0;
262
	}
263
	return r;
264 265
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

285 286 287 288 289 290 291
/* Section: vm related */
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
292 293
	int r;
	unsigned long n;
294
	struct kvm_memslots *slots;
295 296 297 298 299 300 301 302 303
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

304 305
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
324 325
}

326 327 328 329 330 331 332 333
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
334
	case KVM_CAP_S390_IRQCHIP:
335
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
336 337 338
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
339
	case KVM_CAP_S390_USER_SIGP:
340
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
341 342 343
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
344
	case KVM_CAP_S390_VECTOR_REGISTERS:
345 346 347 348 349 350
		if (MACHINE_HAS_VX) {
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
351 352
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
353
		break;
354
	case KVM_CAP_S390_USER_STSI:
355
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
356 357 358
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
359 360 361 362 363 364 365
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

366 367 368 369 370 371 372
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
373 374
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
			 kvm->arch.gmap->asce_end);
375 376 377 378 379 380 381 382 383 384 385
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
386 387 388 389 390
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
391 392 393 394 395
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

396
		ret = -EBUSY;
397
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
398 399 400 401 402 403 404 405
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
406 407 408 409
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

410
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
411 412
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
413
		s390_reset_cmma(kvm->arch.gmap->mm);
414 415 416 417
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
446
		VM_EVENT(kvm, 3, "SET: max guest memory: %lu bytes", new_limit);
447 448
		break;
	}
449 450 451 452 453 454 455
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

456 457 458 459 460 461 462
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

463
	if (!test_kvm_facility(kvm, 76))
464 465 466 467 468 469 470 471 472
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
473
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
474 475 476 477 478 479
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
480
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
481 482 483 484 485
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
486
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
487 488 489 490 491
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
492
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
493 494 495 496 497 498 499 500 501 502 503 504 505 506
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

507 508 509 510 511 512 513 514 515 516
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
517
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x\n", gtod_high);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *cur_vcpu;
	unsigned int vcpu_idx;
	u64 host_tod, gtod;
	int r;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	mutex_lock(&kvm->lock);
537
	preempt_disable();
538
	kvm->arch.epoch = gtod - host_tod;
539 540
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(vcpu_idx, cur_vcpu, kvm)
541
		cur_vcpu->arch.sie_block->epoch = kvm->arch.epoch;
542
	kvm_s390_vcpu_unblock_all(kvm);
543
	preempt_enable();
544
	mutex_unlock(&kvm->lock);
545
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx\n", gtod);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
577
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x\n", gtod_high);
578 579 580 581 582 583 584 585 586 587 588 589 590

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u64 host_tod, gtod;
	int r;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

591
	preempt_disable();
592
	gtod = host_tod + kvm->arch.epoch;
593
	preempt_enable();
594 595
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
596
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx\n", gtod);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
642
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
676
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
695
	mach->ibc = sclp.ibc;
696 697
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
698
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
699
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

722 723 724 725 726
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
727
	case KVM_S390_VM_MEM_CTRL:
728
		ret = kvm_s390_set_mem_control(kvm, attr);
729
		break;
730 731 732
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
733 734 735
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
736 737 738
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
739 740 741 742 743 744 745 746 747 748
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
749 750 751 752 753 754
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
755 756 757
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
758 759 760
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
761 762 763 764 765 766
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
767 768 769 770 771 772 773
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
774 775 776 777
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
778
		case KVM_S390_VM_MEM_LIMIT_SIZE:
779 780 781 782 783 784 785
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
786 787 788 789 790 791 792 793 794 795 796
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
797 798 799 800 801 802 803 804 805 806 807
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
808 809 810 811 812 813 814 815 816 817 818 819 820
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
821 822 823 824 825 826 827 828
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
906 907 908
	r = s390_enable_skey();
	if (r)
		goto out;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

933 934 935 936 937
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
938
	struct kvm_device_attr attr;
939 940 941
	int r;

	switch (ioctl) {
942 943 944 945 946 947 948 949 950
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
951 952 953 954 955 956 957 958
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
959 960 961 962 963 964 965
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
966
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
967 968 969
		}
		break;
	}
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1011
	default:
1012
		r = -ENOTTY;
1013 1014 1015 1016 1017
	}

	return r;
}

1018 1019 1020
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1021
	u32 cc = 0;
1022

1023
	memset(config, 0, 128);
1024 1025 1026 1027
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1028
		"0: ipm %0\n"
1029
		"srl %0,28\n"
1030 1031 1032
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1067 1068 1069 1070 1071 1072
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1073 1074
static int kvm_s390_crypto_init(struct kvm *kvm)
{
1075
	if (!test_kvm_facility(kvm, 76))
1076 1077 1078 1079 1080 1081 1082
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1083
	kvm_s390_set_crycb_format(kvm);
1084

1085 1086 1087 1088 1089 1090 1091
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1092

1093 1094 1095
	return 0;
}

1096
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1097
{
1098
	int i, rc;
1099
	char debug_name[16];
1100
	static unsigned long sca_offset;
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1113 1114
	rc = s390_enable_sie();
	if (rc)
1115
		goto out_err;
1116

1117 1118
	rc = -ENOMEM;

1119 1120
	kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
	if (!kvm->arch.sca)
1121
		goto out_err;
1122 1123 1124 1125
	spin_lock(&kvm_lock);
	sca_offset = (sca_offset + 16) & 0x7f0;
	kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
	spin_unlock(&kvm_lock);
1126 1127 1128

	sprintf(debug_name, "kvm-%u", current->pid);

1129
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1130
	if (!kvm->arch.dbf)
1131
		goto out_err;
1132

1133 1134 1135
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1136 1137
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1138 1139 1140
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1141
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1142
	if (!kvm->arch.model.fac)
1143
		goto out_err;
1144

1145
	/* Populate the facility mask initially. */
1146
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1147
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1148 1149
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1150
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1151
		else
1152
			kvm->arch.model.fac->mask[i] = 0UL;
1153 1154
	}

1155 1156 1157 1158
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1159
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1160
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1161

1162
	if (kvm_s390_crypto_init(kvm) < 0)
1163
		goto out_err;
1164

1165
	spin_lock_init(&kvm->arch.float_int.lock);
1166 1167
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1168
	init_waitqueue_head(&kvm->arch.ipte_wq);
1169
	mutex_init(&kvm->arch.ipte_mutex);
1170

1171
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1172
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1173

1174 1175 1176
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
1177
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1178
		if (!kvm->arch.gmap)
1179
			goto out_err;
1180
		kvm->arch.gmap->private = kvm;
1181
		kvm->arch.gmap->pfault_enabled = 0;
1182
	}
1183 1184

	kvm->arch.css_support = 0;
1185
	kvm->arch.use_irqchip = 0;
1186
	kvm->arch.epoch = 0;
1187

1188
	spin_lock_init(&kvm->arch.start_stop_lock);
1189
	KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
1190

1191
	return 0;
1192
out_err:
1193
	kfree(kvm->arch.crypto.crycb);
1194
	free_page((unsigned long)kvm->arch.model.fac);
1195
	debug_unregister(kvm->arch.dbf);
1196
	free_page((unsigned long)(kvm->arch.sca));
1197
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1198
	return rc;
1199 1200
}

1201 1202 1203
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1204
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1205
	kvm_s390_clear_local_irqs(vcpu);
1206
	kvm_clear_async_pf_completion_queue(vcpu);
C
Carsten Otte 已提交
1207 1208 1209 1210 1211 1212 1213
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		clear_bit(63 - vcpu->vcpu_id,
			  (unsigned long *) &vcpu->kvm->arch.sca->mcn);
		if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
		    (__u64) vcpu->arch.sie_block)
			vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
	}
1214
	smp_mb();
1215 1216 1217 1218

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1219
	if (vcpu->kvm->arch.use_cmma)
1220
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1221
	free_page((unsigned long)(vcpu->arch.sie_block));
1222

1223
	kvm_vcpu_uninit(vcpu);
1224
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1225 1226 1227 1228 1229
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1230
	struct kvm_vcpu *vcpu;
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1241 1242
}

1243 1244
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1245
	kvm_free_vcpus(kvm);
1246
	free_page((unsigned long)kvm->arch.model.fac);
1247
	free_page((unsigned long)(kvm->arch.sca));
1248
	debug_unregister(kvm->arch.dbf);
1249
	kfree(kvm->arch.crypto.crycb);
1250 1251
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1252
	kvm_s390_destroy_adapters(kvm);
1253
	kvm_s390_clear_float_irqs(kvm);
1254
	KVM_EVENT(3, "vm 0x%p destroyed", kvm);
1255 1256 1257
}

/* Section: vcpu related */
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1268 1269
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1270 1271
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1272 1273
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1274
				    KVM_SYNC_ACRS |
1275 1276 1277
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1278 1279
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1280 1281 1282 1283

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1284 1285 1286
	return 0;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * Backs up the current FP/VX register save area on a particular
 * destination.  Used to switch between different register save
 * areas.
 */
static inline void save_fpu_to(struct fpu *dst)
{
	dst->fpc = current->thread.fpu.fpc;
	dst->flags = current->thread.fpu.flags;
	dst->regs = current->thread.fpu.regs;
}

/*
 * Switches the FP/VX register save area from which to lazy
 * restore register contents.
 */
static inline void load_fpu_from(struct fpu *from)
{
	current->thread.fpu.fpc = from->fpc;
	current->thread.fpu.flags = from->flags;
	current->thread.fpu.regs = from->regs;
}

1310 1311
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1312
	/* Save host register state */
1313
	save_fpu_regs();
1314
	save_fpu_to(&vcpu->arch.host_fpregs);
1315

1316
	if (test_kvm_facility(vcpu->kvm, 129)) {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
		current->thread.fpu.flags = FPU_USE_VX;
		/*
		 * Use the register save area in the SIE-control block
		 * for register restore and save in kvm_arch_vcpu_put()
		 */
		current->thread.fpu.vxrs =
			(__vector128 *)&vcpu->run->s.regs.vrs;
		/* Always enable the vector extension for KVM */
		__ctl_set_vx();
	} else
		load_fpu_from(&vcpu->arch.guest_fpregs);

	if (test_fp_ctl(current->thread.fpu.fpc))
1331
		/* User space provided an invalid FPC, let's clear it */
1332 1333 1334
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1335
	restore_access_regs(vcpu->run->s.regs.acrs);
1336
	gmap_enable(vcpu->arch.gmap);
1337
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1338 1339 1340 1341
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1342
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1343
	gmap_disable(vcpu->arch.gmap);
1344

1345
	save_fpu_regs();
1346

1347
	if (test_kvm_facility(vcpu->kvm, 129))
1348 1349 1350 1351 1352 1353 1354
		/*
		 * kvm_arch_vcpu_load() set up the register save area to
		 * the &vcpu->run->s.regs.vrs and, thus, the vector registers
		 * are already saved.  Only the floating-point control must be
		 * copied.
		 */
		vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1355
	else
1356 1357 1358 1359
		save_fpu_to(&vcpu->arch.guest_fpregs);
	load_fpu_from(&vcpu->arch.host_fpregs);

	save_access_regs(vcpu->run->s.regs.acrs);
1360 1361 1362 1363 1364 1365 1366 1367
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1368
	kvm_s390_set_prefix(vcpu, 0);
1369 1370 1371 1372 1373 1374 1375 1376 1377
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1378
	vcpu->arch.sie_block->pp = 0;
1379 1380
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1381 1382
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1383
	kvm_s390_clear_local_irqs(vcpu);
1384 1385
}

1386
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1387
{
1388
	mutex_lock(&vcpu->kvm->lock);
1389
	preempt_disable();
1390
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1391
	preempt_enable();
1392
	mutex_unlock(&vcpu->kvm->lock);
1393 1394
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1395 1396
}

1397 1398
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1399
	if (!test_kvm_facility(vcpu->kvm, 76))
1400 1401
		return;

1402 1403 1404 1405 1406 1407 1408
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1409 1410 1411
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1429 1430 1431 1432 1433 1434 1435 1436 1437
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1438 1439
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1440
	int rc = 0;
1441

1442 1443
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1444 1445
						    CPUSTAT_STOPPED);

1446
	if (test_kvm_facility(vcpu->kvm, 78))
1447
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1448
	else if (test_kvm_facility(vcpu->kvm, 8))
1449
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1450

1451 1452
	kvm_s390_vcpu_setup_model(vcpu);

1453
	vcpu->arch.sie_block->ecb   = 6;
1454
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1455 1456
		vcpu->arch.sie_block->ecb |= 0x10;

1457
	vcpu->arch.sie_block->ecb2  = 8;
1458
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1459
	if (sclp.has_siif)
1460
		vcpu->arch.sie_block->eca |= 1;
1461
	if (sclp.has_sigpif)
1462
		vcpu->arch.sie_block->eca |= 0x10000000U;
1463
	if (test_kvm_facility(vcpu->kvm, 129)) {
1464 1465 1466
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1467
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1468

1469
	if (vcpu->kvm->arch.use_cmma) {
1470 1471 1472
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1473
	}
1474
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1475
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1476

1477 1478
	kvm_s390_vcpu_crypto_setup(vcpu);

1479
	return rc;
1480 1481 1482 1483 1484
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1485
	struct kvm_vcpu *vcpu;
1486
	struct sie_page *sie_page;
1487 1488 1489 1490 1491 1492
	int rc = -EINVAL;

	if (id >= KVM_MAX_VCPUS)
		goto out;

	rc = -ENOMEM;
1493

1494
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1495
	if (!vcpu)
1496
		goto out;
1497

1498 1499
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1500 1501
		goto out_free_cpu;

1502 1503 1504
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1505
	vcpu->arch.sie_block->icpua = id;
C
Carsten Otte 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	if (!kvm_is_ucontrol(kvm)) {
		if (!kvm->arch.sca) {
			WARN_ON_ONCE(1);
			goto out_free_cpu;
		}
		if (!kvm->arch.sca->cpu[id].sda)
			kvm->arch.sca->cpu[id].sda =
				(__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh =
			(__u32)(((__u64)kvm->arch.sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
		set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
	}
1519

1520 1521
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1522
	vcpu->arch.local_int.wq = &vcpu->wq;
1523
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * Allocate a save area for floating-point registers.  If the vector
	 * extension is available, register contents are saved in the SIE
	 * control block.  The allocated save area is still required in
	 * particular places, for example, in kvm_s390_vcpu_store_status().
	 */
	vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
					       GFP_KERNEL);
	if (!vcpu->arch.guest_fpregs.fprs) {
		rc = -ENOMEM;
		goto out_free_sie_block;
	}

1538 1539
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1540
		goto out_free_sie_block;
1541 1542
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1543
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1544 1545

	return vcpu;
1546 1547
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1548
out_free_cpu:
1549
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1550
out:
1551 1552 1553 1554 1555
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1556
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1557 1558
}

1559
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1560
{
1561
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1562
	exit_sie(vcpu);
1563 1564
}

1565
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1566
{
1567
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1568 1569
}

1570 1571
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1572
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1573
	exit_sie(vcpu);
1574 1575 1576 1577
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1578
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1579 1580
}

1581 1582 1583 1584 1585 1586
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1587
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1588 1589 1590 1591
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1592 1593
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1594
{
1595 1596
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1597 1598
}

1599 1600 1601 1602 1603 1604 1605 1606
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1607
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1608
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1609
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1610 1611 1612 1613
		}
	}
}

1614 1615 1616 1617 1618 1619 1620
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1621 1622 1623 1624 1625 1626
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1627 1628 1629 1630 1631 1632 1633 1634
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1635 1636 1637 1638 1639 1640 1641 1642
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1655 1656 1657 1658
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1659 1660 1661 1662
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1676 1677 1678 1679 1680 1681 1682 1683
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1684 1685 1686 1687 1688 1689 1690 1691
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1692 1693 1694
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1695 1696
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1697 1698 1699 1700 1701 1702 1703 1704 1705
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1706 1707 1708 1709
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1710 1711 1712 1713
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1714 1715 1716 1717 1718 1719
	default:
		break;
	}

	return r;
}
1720

1721 1722 1723 1724 1725 1726 1727 1728
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1729
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1730 1731 1732 1733 1734
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1735
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1736 1737 1738 1739 1740 1741
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1742
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1743
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1744
	restore_access_regs(vcpu->run->s.regs.acrs);
1745 1746 1747 1748 1749 1750
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1751
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1752 1753 1754 1755 1756 1757
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1758 1759
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1760
	memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1761
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
1762
	save_fpu_regs();
1763
	load_fpu_from(&vcpu->arch.guest_fpregs);
1764 1765 1766 1767 1768
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1769
	memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
1770 1771 1772 1773 1774 1775 1776 1777
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1778
	if (!is_vcpu_stopped(vcpu))
1779
		rc = -EBUSY;
1780 1781 1782 1783
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1784 1785 1786 1787 1788 1789 1790 1791 1792
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1793 1794 1795 1796
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1797 1798
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1799
{
1800 1801 1802 1803 1804
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1805
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1806 1807 1808 1809 1810
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
1811
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1812 1813 1814 1815

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
1816
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1817 1818 1819 1820 1821 1822
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
1823
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1824 1825 1826
	}

	return rc;
1827 1828
}

1829 1830 1831
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1832 1833 1834
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1835 1836 1837 1838 1839
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1860 1861
}

1862 1863 1864 1865 1866
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1867 1868
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1869
retry:
1870
	kvm_s390_vcpu_request_handled(vcpu);
1871 1872
	if (!vcpu->requests)
		return 0;
1873 1874 1875 1876 1877 1878 1879
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1880
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1881 1882
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1883
				      kvm_s390_get_prefix(vcpu),
1884 1885 1886
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1887
		goto retry;
1888
	}
1889

1890 1891 1892 1893 1894
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1895 1896 1897
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
1898
			atomic_or(CPUSTAT_IBS,
1899 1900 1901
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1902
	}
1903 1904 1905 1906

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
1907
			atomic_andnot(CPUSTAT_IBS,
1908 1909 1910 1911 1912
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

1913 1914 1915
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

1916 1917 1918
	return 0;
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1930
{
1931 1932
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
1933 1934
}

1935 1936 1937 1938
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
1939
	struct kvm_s390_irq irq;
1940 1941

	if (start_token) {
1942 1943 1944
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1945 1946
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
1947
		inti.parm64 = token;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
1994
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
1995 1996 1997 1998 1999 2000
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2001 2002 2003
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2004 2005 2006 2007 2008 2009
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2010
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2011
{
2012
	int rc, cpuflags;
2013

2014 2015 2016 2017 2018 2019 2020
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2021
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
2022 2023 2024 2025

	if (need_resched())
		schedule();

2026
	if (test_cpu_flag(CIF_MCCK_PENDING))
2027 2028
		s390_handle_mcck();

2029 2030 2031 2032 2033
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2034

2035 2036 2037 2038
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2039 2040 2041 2042 2043
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2044
	vcpu->arch.sie_block->icptcode = 0;
2045 2046 2047
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2048

2049 2050 2051
	return 0;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2069
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2070 2071 2072 2073 2074 2075 2076
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

2077 2078
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2079
	int rc = -1;
2080 2081 2082 2083 2084

	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2085 2086 2087
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2088
	if (exit_reason >= 0) {
2089
		rc = 0;
2090 2091 2092 2093 2094 2095
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
		rc = -EREMOTE;
2096 2097

	} else if (current->thread.gmap_pfault) {
2098
		trace_kvm_s390_major_guest_pfault(vcpu);
2099
		current->thread.gmap_pfault = 0;
2100
		if (kvm_arch_setup_async_pf(vcpu)) {
2101
			rc = 0;
2102 2103 2104 2105
		} else {
			gpa_t gpa = current->thread.gmap_addr;
			rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
		}
2106 2107
	}

2108 2109
	if (rc == -1)
		rc = vcpu_post_run_fault_in_sie(vcpu);
2110

2111
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
2112

2113 2114
	if (rc == 0) {
		if (kvm_is_ucontrol(vcpu->kvm))
2115 2116
			/* Don't exit for host interrupts. */
			rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
2117 2118 2119 2120
		else
			rc = kvm_handle_sie_intercept(vcpu);
	}

2121 2122 2123 2124 2125 2126 2127
	return rc;
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2128 2129 2130 2131 2132 2133
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2134 2135 2136 2137
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2138

2139
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2140 2141 2142 2143
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2144 2145 2146
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2147 2148
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2149 2150 2151
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2152
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2153 2154

		rc = vcpu_post_run(vcpu, exit_reason);
2155
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2156

2157
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2158
	return rc;
2159 2160
}

2161 2162 2163 2164 2165 2166 2167 2168
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2169 2170
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2183 2184
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2205 2206
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2207
	int rc;
2208 2209
	sigset_t sigsaved;

2210 2211 2212 2213 2214
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2215 2216 2217
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2218 2219 2220
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2221
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2222 2223 2224
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2225

2226
	sync_regs(vcpu, kvm_run);
2227

2228
	might_fault();
2229
	rc = __vcpu_run(vcpu);
2230

2231 2232
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2233
		rc = -EINTR;
2234
	}
2235

2236 2237 2238 2239 2240
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2241
	if (rc == -EOPNOTSUPP) {
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		/* intercept cannot be handled in-kernel, prepare kvm-run */
		kvm_run->exit_reason         = KVM_EXIT_S390_SIEIC;
		kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		kvm_run->s390_sieic.ipa      = vcpu->arch.sie_block->ipa;
		kvm_run->s390_sieic.ipb      = vcpu->arch.sie_block->ipb;
		rc = 0;
	}

	if (rc == -EREMOTE) {
		/* intercept was handled, but userspace support is needed
		 * kvm_run has been prepared by the handler */
		rc = 0;
	}
2255

2256
	store_regs(vcpu, kvm_run);
2257

2258 2259 2260 2261
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2262
	return rc;
2263 2264 2265 2266 2267 2268 2269 2270
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2271
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2272
{
2273
	unsigned char archmode = 1;
2274
	unsigned int px;
2275
	u64 clkcomp;
2276
	int rc;
2277

2278 2279
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2280
			return -EFAULT;
2281 2282 2283
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2284
			return -EFAULT;
2285 2286 2287 2288 2289 2290 2291 2292
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2293
	px = kvm_s390_get_prefix(vcpu);
2294
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2295
			      &px, 4);
2296 2297 2298 2299 2300 2301 2302
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2303
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2304 2305 2306 2307 2308 2309 2310
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2311 2312
}

2313 2314 2315 2316 2317 2318 2319
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2320
	save_fpu_regs();
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	if (test_kvm_facility(vcpu->kvm, 129)) {
		/*
		 * If the vector extension is available, the vector registers
		 * which overlaps with floating-point registers are saved in
		 * the SIE-control block.  Hence, extract the floating-point
		 * registers and the FPC value and store them in the
		 * guest_fpregs structure.
		 */
		WARN_ON(!is_vx_task(current));	  /* XXX remove later */
		vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc;
		convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs,
				 current->thread.fpu.vxrs);
	} else
		save_fpu_to(&vcpu->arch.guest_fpregs);
2335 2336 2337 2338 2339
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2361 2362 2363 2364 2365
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2366
	 */
2367
	save_fpu_regs();
E
Eric Farman 已提交
2368 2369 2370 2371

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2372 2373 2374
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2375
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2391
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2392 2393
}

2394 2395
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2396 2397 2398 2399 2400
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2401
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2402
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2403
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2423
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2424 2425 2426 2427
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2428
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2429
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2430
	return;
2431 2432 2433 2434
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2435 2436 2437 2438 2439 2440
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2441
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2442
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2443
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2444 2445
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2446
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2447
	kvm_s390_clear_stop_irq(vcpu);
2448

2449
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2467
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2468
	return;
2469 2470
}

2471 2472 2473 2474 2475 2476 2477 2478 2479
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2480 2481 2482
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2483
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2484 2485 2486 2487
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2488 2489 2490 2491 2492 2493 2494
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2554 2555 2556 2557 2558
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2559
	int idx;
2560
	long r;
2561

2562
	switch (ioctl) {
2563 2564 2565 2566 2567 2568 2569 2570 2571
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2572
	case KVM_S390_INTERRUPT: {
2573
		struct kvm_s390_interrupt s390int;
2574
		struct kvm_s390_irq s390irq;
2575

2576
		r = -EFAULT;
2577
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2578
			break;
2579 2580 2581
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2582
		break;
2583
	}
2584
	case KVM_S390_STORE_STATUS:
2585
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2586
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2587
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2588
		break;
2589 2590 2591
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2592
		r = -EFAULT;
2593
		if (copy_from_user(&psw, argp, sizeof(psw)))
2594 2595 2596
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2597 2598
	}
	case KVM_S390_INITIAL_RESET:
2599 2600
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2649
	case KVM_S390_VCPU_FAULT: {
2650
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2651 2652
		break;
	}
2653 2654 2655 2656 2657 2658 2659 2660 2661
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2662 2663 2664 2665 2666 2667 2668 2669 2670
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2703
	default:
2704
		r = -ENOTTY;
2705
	}
2706
	return r;
2707 2708
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2722 2723
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2724 2725 2726 2727
{
	return 0;
}

2728
/* Section: memory related */
2729 2730
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2731
				   const struct kvm_userspace_memory_region *mem,
2732
				   enum kvm_mr_change change)
2733
{
2734 2735 2736 2737
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2738

2739
	if (mem->userspace_addr & 0xffffful)
2740 2741
		return -EINVAL;

2742
	if (mem->memory_size & 0xffffful)
2743 2744
		return -EINVAL;

2745 2746 2747 2748
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2749
				const struct kvm_userspace_memory_region *mem,
2750
				const struct kvm_memory_slot *old,
2751
				const struct kvm_memory_slot *new,
2752
				enum kvm_mr_change change)
2753
{
2754
	int rc;
2755

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2766 2767 2768 2769

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2770
		pr_warn("failed to commit memory region\n");
2771
	return;
2772 2773 2774 2775
}

static int __init kvm_s390_init(void)
{
2776
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2777 2778 2779 2780 2781 2782 2783 2784 2785
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2786 2787 2788 2789 2790 2791 2792 2793 2794

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");