kvm-s390.c 84.1 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128
/* upper facilities limit for kvm */
129 130 131
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
132
};
133

134
unsigned long kvm_s390_fac_list_mask_size(void)
135
{
136 137
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
138 139
}

140 141
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
142 143
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
144

145
static struct gmap_notifier gmap_notifier;
146
static struct gmap_notifier vsie_gmap_notifier;
147
debug_info_t *kvm_s390_dbf;
148

149
/* Section: not file related */
150
int kvm_arch_hardware_enable(void)
151 152
{
	/* every s390 is virtualization enabled ;-) */
153
	return 0;
154 155
}

156 157
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
177 178
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
179 180 181 182 183 184 185 186 187
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

188 189
int kvm_arch_hardware_setup(void)
{
190
	gmap_notifier.notifier_call = kvm_gmap_notifier;
191
	gmap_register_pte_notifier(&gmap_notifier);
192 193
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
194 195
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
196 197 198 199 200
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
201
	gmap_unregister_pte_notifier(&gmap_notifier);
202
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
203 204
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
205 206
}

207 208 209 210 211
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

228 229
static void kvm_s390_cpu_feat_init(void)
{
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

258 259
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
260 261 262 263 264 265 266 267
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
	    !test_facility(3))
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
268 269
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
270 271
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
272 273
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
274 275
}

276 277
int kvm_arch_init(void *opaque)
{
278 279 280 281 282 283 284 285 286
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

287 288
	kvm_s390_cpu_feat_init();

289 290
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
291 292
}

293 294 295 296 297
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

298 299 300 301 302 303 304 305 306
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

307
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
308
{
309 310
	int r;

311
	switch (ext) {
312
	case KVM_CAP_S390_PSW:
313
	case KVM_CAP_S390_GMAP:
314
	case KVM_CAP_SYNC_MMU:
315 316 317
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
318
	case KVM_CAP_ASYNC_PF:
319
	case KVM_CAP_SYNC_REGS:
320
	case KVM_CAP_ONE_REG:
321
	case KVM_CAP_ENABLE_CAP:
322
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
323
	case KVM_CAP_IOEVENTFD:
324
	case KVM_CAP_DEVICE_CTRL:
325
	case KVM_CAP_ENABLE_CAP_VM:
326
	case KVM_CAP_S390_IRQCHIP:
327
	case KVM_CAP_VM_ATTRIBUTES:
328
	case KVM_CAP_MP_STATE:
329
	case KVM_CAP_S390_INJECT_IRQ:
330
	case KVM_CAP_S390_USER_SIGP:
331
	case KVM_CAP_S390_USER_STSI:
332
	case KVM_CAP_S390_SKEYS:
333
	case KVM_CAP_S390_IRQ_STATE:
334 335
		r = 1;
		break;
336 337 338
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
339 340
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
341 342 343
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
344
		break;
345 346 347
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
348
	case KVM_CAP_S390_COW:
349
		r = MACHINE_HAS_ESOP;
350
		break;
351 352 353
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
354 355 356
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
357
	default:
358
		r = 0;
359
	}
360
	return r;
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

375
		if (test_and_clear_guest_dirty(gmap->mm, address))
376
			mark_page_dirty(kvm, cur_gfn);
377 378
		if (fatal_signal_pending(current))
			return;
379
		cond_resched();
380 381 382
	}
}

383
/* Section: vm related */
384 385
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

386 387 388 389 390 391
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
392 393
	int r;
	unsigned long n;
394
	struct kvm_memslots *slots;
395 396 397 398 399 400 401 402 403
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

404 405
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
424 425
}

426 427 428 429 430 431 432 433
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
434
	case KVM_CAP_S390_IRQCHIP:
435
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
436 437 438
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
439
	case KVM_CAP_S390_USER_SIGP:
440
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
441 442 443
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
444
	case KVM_CAP_S390_VECTOR_REGISTERS:
445
		mutex_lock(&kvm->lock);
446
		if (kvm->created_vcpus) {
447 448
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
449 450
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
451 452 453
			r = 0;
		} else
			r = -EINVAL;
454
		mutex_unlock(&kvm->lock);
455 456
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
457
		break;
458 459 460
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
461
		if (kvm->created_vcpus) {
462 463
			r = -EBUSY;
		} else if (test_facility(64)) {
464 465
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
466 467 468 469 470 471
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
472
	case KVM_CAP_S390_USER_STSI:
473
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
474 475 476
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
477 478 479 480 481 482 483
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

484 485 486 487 488 489 490
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
491
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
492 493
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
494 495 496 497 498 499 500 501 502 503
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
504 505 506 507 508
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
509
		ret = -ENXIO;
510
		if (!sclp.has_cmma)
511 512
			break;

513
		ret = -EBUSY;
514
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
515
		mutex_lock(&kvm->lock);
516
		if (!kvm->created_vcpus) {
517 518 519 520 521 522
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
523 524 525
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
526 527 528 529
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

530
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
531 532
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
533
		s390_reset_cmma(kvm->arch.gmap->mm);
534 535 536 537
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
538 539 540 541 542 543 544 545 546
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

547 548
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
549 550
			return -E2BIG;

551 552 553
		if (!new_limit)
			return -EINVAL;

554
		/* gmap_create takes last usable address */
555 556 557
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

558 559
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
560
		if (!kvm->created_vcpus) {
561 562
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
563 564 565 566

			if (!new) {
				ret = -ENOMEM;
			} else {
567
				gmap_remove(kvm->arch.gmap);
568 569 570 571 572 573
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
574 575 576
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
577 578
		break;
	}
579 580 581 582 583 584 585
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

586 587 588 589 590 591 592
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

593
	if (!test_kvm_facility(kvm, 76))
594 595 596 597 598 599 600 601 602
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
603
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
604 605 606 607 608 609
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
610
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
611 612 613 614 615
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
616
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
617 618 619 620 621
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
622
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
623 624 625 626 627 628 629 630 631 632 633 634 635 636
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

637 638 639 640 641 642 643 644 645 646
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
647
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
648 649 650 651 652 653

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
654
	u64 gtod;
655 656 657 658

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

659
	kvm_s390_set_tod_clock(kvm, gtod);
660
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
692
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
693 694 695 696 697 698

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
699
	u64 gtod;
700

701
	gtod = kvm_s390_get_tod_clock_fast(kvm);
702 703
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
704
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

730 731 732
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
733
	u16 lowest_ibc, unblocked_ibc;
734 735 736
	int ret = 0;

	mutex_lock(&kvm->lock);
737
	if (kvm->created_vcpus) {
738 739 740 741 742 743 744 745 746 747
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
748
		kvm->arch.model.cpuid = proc->cpuid;
749 750 751 752 753 754 755 756 757 758
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
759
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
760 761 762 763 764 765 766 767 768
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

792 793 794 795 796 797 798 799 800 801
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

802 803 804 805 806 807 808 809
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
810 811 812
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
813 814 815
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
816 817 818 819 820 821 822 823 824 825 826 827 828 829
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
830
	proc->cpuid = kvm->arch.model.cpuid;
831
	proc->ibc = kvm->arch.model.ibc;
832 833
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
852
	mach->ibc = sclp.ibc;
853
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
854
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
855
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
856
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
857 858 859 860 861 862 863
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
908 909 910 911 912 913 914 915 916 917 918
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
919 920 921 922 923 924
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
925 926 927 928 929 930
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
931 932 933 934
	}
	return ret;
}

935 936 937 938 939
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
940
	case KVM_S390_VM_MEM_CTRL:
941
		ret = kvm_s390_set_mem_control(kvm, attr);
942
		break;
943 944 945
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
946 947 948
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
949 950 951
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
952 953 954 955 956 957 958 959 960 961
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
962 963 964 965 966 967
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
968 969 970
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
971 972 973
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
974 975 976 977 978 979
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
980 981 982 983 984 985 986
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
987 988 989 990
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
991 992
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
993
		case KVM_S390_VM_MEM_LIMIT_SIZE:
994 995 996 997 998 999 1000
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1012 1013 1014 1015
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1016 1017
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1018
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1019 1020
			ret = 0;
			break;
1021 1022
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1023 1024 1025 1026 1027
		default:
			ret = -ENXIO;
			break;
		}
		break;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1041 1042 1043 1044 1045 1046 1047 1048
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1073
	down_read(&current->mm->mmap_sem);
1074 1075 1076 1077
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1078
			break;
1079 1080
		}

1081 1082
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1083
			break;
1084
	}
1085 1086 1087 1088 1089 1090 1091 1092
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1126 1127 1128
	r = s390_enable_skey();
	if (r)
		goto out;
1129

1130
	down_read(&current->mm->mmap_sem);
1131 1132 1133 1134
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1135
			break;
1136 1137 1138 1139 1140
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1141
			break;
1142 1143
		}

1144
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1145
		if (r)
1146
			break;
1147
	}
1148
	up_read(&current->mm->mmap_sem);
1149 1150 1151 1152 1153
out:
	kvfree(keys);
	return r;
}

1154 1155 1156 1157 1158
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1159
	struct kvm_device_attr attr;
1160 1161 1162
	int r;

	switch (ioctl) {
1163 1164 1165 1166 1167 1168 1169 1170 1171
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1172 1173 1174 1175 1176 1177 1178 1179
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1180 1181 1182 1183 1184 1185 1186
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1187
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1188 1189 1190
		}
		break;
	}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1232
	default:
1233
		r = -ENOTTY;
1234 1235 1236 1237 1238
	}

	return r;
}

1239 1240 1241
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1242
	u32 cc = 0;
1243

1244
	memset(config, 0, 128);
1245 1246 1247 1248
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1249
		"0: ipm %0\n"
1250
		"srl %0,28\n"
1251 1252 1253
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1266
	if (test_facility(12)) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1288
static u64 kvm_s390_get_initial_cpuid(void)
1289
{
1290 1291 1292 1293 1294
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1295 1296
}

1297
static void kvm_s390_crypto_init(struct kvm *kvm)
1298
{
1299
	if (!test_kvm_facility(kvm, 76))
1300
		return;
1301

1302
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1303
	kvm_s390_set_crycb_format(kvm);
1304

1305 1306 1307 1308 1309 1310 1311
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1312 1313
}

1314 1315 1316
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1317
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1318 1319 1320 1321 1322
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1323
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1324
{
1325
	gfp_t alloc_flags = GFP_KERNEL;
1326
	int i, rc;
1327
	char debug_name[16];
1328
	static unsigned long sca_offset;
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1341 1342
	rc = s390_enable_sie();
	if (rc)
1343
		goto out_err;
1344

1345 1346
	rc = -ENOMEM;

J
Janosch Frank 已提交
1347 1348
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1349
	kvm->arch.use_esca = 0; /* start with basic SCA */
1350 1351
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1352
	rwlock_init(&kvm->arch.sca_lock);
1353
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1354
	if (!kvm->arch.sca)
1355
		goto out_err;
1356
	spin_lock(&kvm_lock);
1357
	sca_offset += 16;
1358
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1359
		sca_offset = 0;
1360 1361
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1362
	spin_unlock(&kvm_lock);
1363 1364 1365

	sprintf(debug_name, "kvm-%u", current->pid);

1366
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1367
	if (!kvm->arch.dbf)
1368
		goto out_err;
1369

1370 1371 1372
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1373
		goto out_err;
1374

1375
	/* Populate the facility mask initially. */
1376
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1377
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1378 1379
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1380
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1381
		else
1382
			kvm->arch.model.fac_mask[i] = 0UL;
1383 1384
	}

1385
	/* Populate the facility list initially. */
1386 1387
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1388 1389
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1390 1391 1392
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1393
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1394
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1395

1396
	kvm_s390_crypto_init(kvm);
1397

1398
	spin_lock_init(&kvm->arch.float_int.lock);
1399 1400
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1401
	init_waitqueue_head(&kvm->arch.ipte_wq);
1402
	mutex_init(&kvm->arch.ipte_mutex);
1403

1404
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1405
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1406

1407 1408
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1409
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1410
	} else {
1411 1412 1413 1414 1415
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1416
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1417
		if (!kvm->arch.gmap)
1418
			goto out_err;
1419
		kvm->arch.gmap->private = kvm;
1420
		kvm->arch.gmap->pfault_enabled = 0;
1421
	}
1422 1423

	kvm->arch.css_support = 0;
1424
	kvm->arch.use_irqchip = 0;
1425
	kvm->arch.epoch = 0;
1426

1427
	spin_lock_init(&kvm->arch.start_stop_lock);
1428
	kvm_s390_vsie_init(kvm);
1429
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1430

1431
	return 0;
1432
out_err:
1433
	free_page((unsigned long)kvm->arch.sie_page2);
1434
	debug_unregister(kvm->arch.dbf);
1435
	sca_dispose(kvm);
1436
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1437
	return rc;
1438 1439
}

1440 1441 1442
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1443
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1444
	kvm_s390_clear_local_irqs(vcpu);
1445
	kvm_clear_async_pf_completion_queue(vcpu);
1446
	if (!kvm_is_ucontrol(vcpu->kvm))
1447
		sca_del_vcpu(vcpu);
1448 1449

	if (kvm_is_ucontrol(vcpu->kvm))
1450
		gmap_remove(vcpu->arch.gmap);
1451

1452
	if (vcpu->kvm->arch.use_cmma)
1453
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1454
	free_page((unsigned long)(vcpu->arch.sie_block));
1455

1456
	kvm_vcpu_uninit(vcpu);
1457
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1458 1459 1460 1461 1462
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1463
	struct kvm_vcpu *vcpu;
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1474 1475
}

1476 1477
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1478
	kvm_free_vcpus(kvm);
1479
	sca_dispose(kvm);
1480
	debug_unregister(kvm->arch.dbf);
1481
	free_page((unsigned long)kvm->arch.sie_page2);
1482
	if (!kvm_is_ucontrol(kvm))
1483
		gmap_remove(kvm->arch.gmap);
1484
	kvm_s390_destroy_adapters(kvm);
1485
	kvm_s390_clear_float_irqs(kvm);
1486
	kvm_s390_vsie_destroy(kvm);
1487
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1488 1489 1490
}

/* Section: vcpu related */
1491 1492
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1493
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1494 1495 1496 1497 1498 1499 1500
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1501 1502
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1503
	read_lock(&vcpu->kvm->arch.sca_lock);
1504 1505
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1506

1507
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1508
		sca->cpu[vcpu->vcpu_id].sda = 0;
1509 1510 1511 1512
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1513
		sca->cpu[vcpu->vcpu_id].sda = 0;
1514
	}
1515
	read_unlock(&vcpu->kvm->arch.sca_lock);
1516 1517
}

1518
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1519
{
1520 1521 1522
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1523

1524
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1525 1526
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1527
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1528
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1529
	} else {
1530
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1531

1532
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1533 1534
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1535
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1536
	}
1537
	read_unlock(&vcpu->kvm->arch.sca_lock);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1591 1592
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1593
	return 0;
1594 1595 1596 1597
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1598 1599 1600 1601
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1602
	if (!sclp.has_esca || !sclp.has_64bscao)
1603 1604 1605 1606 1607 1608 1609
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1610 1611
}

1612 1613
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1614 1615
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1616 1617
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1618
				    KVM_SYNC_ACRS |
1619 1620 1621
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1622 1623
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1624 1625 1626 1627
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1628
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1629 1630
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1631 1632 1633 1634

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1635 1636 1637
	return 0;
}

1638 1639 1640 1641
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1642
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1643
	vcpu->arch.cputm_start = get_tod_clock_fast();
1644
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1645 1646 1647 1648 1649 1650
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1651
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1652 1653
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1654
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1687 1688 1689
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1690
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1691
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1692 1693
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1694
	vcpu->arch.sie_block->cputm = cputm;
1695
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1696
	preempt_enable();
1697 1698
}

1699
/* update and get the cpu timer - can also be called from other VCPU threads */
1700 1701
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1702
	unsigned int seq;
1703 1704 1705 1706 1707
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1722
	return value;
1723 1724
}

1725 1726
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1727
	/* Save host register state */
1728
	save_fpu_regs();
1729 1730
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1731

1732 1733 1734 1735
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1736
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1737
	if (test_fp_ctl(current->thread.fpu.fpc))
1738
		/* User space provided an invalid FPC, let's clear it */
1739 1740 1741
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1742
	restore_access_regs(vcpu->run->s.regs.acrs);
1743
	gmap_enable(vcpu->arch.enabled_gmap);
1744
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1745
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1746
		__start_cpu_timer_accounting(vcpu);
1747
	vcpu->cpu = cpu;
1748 1749 1750 1751
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1752
	vcpu->cpu = -1;
1753
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1754
		__stop_cpu_timer_accounting(vcpu);
1755
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1756 1757
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1758

1759
	/* Save guest register state */
1760
	save_fpu_regs();
1761
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1762

1763 1764 1765
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1766 1767

	save_access_regs(vcpu->run->s.regs.acrs);
1768 1769 1770 1771 1772 1773 1774 1775
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1776
	kvm_s390_set_prefix(vcpu, 0);
1777
	kvm_s390_set_cpu_timer(vcpu, 0);
1778 1779 1780 1781 1782
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1783 1784 1785
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1786
	vcpu->arch.sie_block->gbea = 1;
1787
	vcpu->arch.sie_block->pp = 0;
1788 1789
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1790 1791
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1792
	kvm_s390_clear_local_irqs(vcpu);
1793 1794
}

1795
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1796
{
1797
	mutex_lock(&vcpu->kvm->lock);
1798
	preempt_disable();
1799
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1800
	preempt_enable();
1801
	mutex_unlock(&vcpu->kvm->lock);
1802
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1803
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1804
		sca_add_vcpu(vcpu);
1805
	}
1806 1807
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1808 1809
}

1810 1811
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1812
	if (!test_kvm_facility(vcpu->kvm, 76))
1813 1814
		return;

1815 1816 1817 1818 1819 1820 1821
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1822 1823 1824
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1842 1843 1844 1845 1846
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1847
	if (test_kvm_facility(vcpu->kvm, 7))
1848
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1849 1850
}

1851 1852
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1853
	int rc = 0;
1854

1855 1856
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1857 1858
						    CPUSTAT_STOPPED);

1859
	if (test_kvm_facility(vcpu->kvm, 78))
1860
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1861
	else if (test_kvm_facility(vcpu->kvm, 8))
1862
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1863

1864 1865
	kvm_s390_vcpu_setup_model(vcpu);

1866 1867 1868
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1869 1870
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1871
	if (test_kvm_facility(vcpu->kvm, 73))
1872 1873
		vcpu->arch.sie_block->ecb |= 0x10;

1874
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1875
		vcpu->arch.sie_block->ecb2 |= 0x08;
1876 1877 1878
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1879 1880
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1881
	if (sclp.has_siif)
1882
		vcpu->arch.sie_block->eca |= 1;
1883
	if (sclp.has_sigpif)
1884
		vcpu->arch.sie_block->eca |= 0x10000000U;
1885 1886
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1887
	if (test_kvm_facility(vcpu->kvm, 129)) {
1888 1889 1890
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1891
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1892
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1893 1894
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1895

1896
	if (vcpu->kvm->arch.use_cmma) {
1897 1898 1899
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1900
	}
1901
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1902
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1903

1904 1905
	kvm_s390_vcpu_crypto_setup(vcpu);

1906
	return rc;
1907 1908 1909 1910 1911
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1912
	struct kvm_vcpu *vcpu;
1913
	struct sie_page *sie_page;
1914 1915
	int rc = -EINVAL;

1916
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1917 1918 1919
		goto out;

	rc = -ENOMEM;
1920

1921
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1922
	if (!vcpu)
1923
		goto out;
1924

1925 1926
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1927 1928
		goto out_free_cpu;

1929 1930 1931
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1932 1933 1934 1935
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1936
	vcpu->arch.sie_block->icpua = id;
1937 1938
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1939
	vcpu->arch.local_int.wq = &vcpu->wq;
1940
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1941
	seqcount_init(&vcpu->arch.cputm_seqcount);
1942

1943 1944
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1945
		goto out_free_sie_block;
1946
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1947
		 vcpu->arch.sie_block);
1948
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1949 1950

	return vcpu;
1951 1952
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1953
out_free_cpu:
1954
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1955
out:
1956 1957 1958 1959 1960
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1961
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1962 1963
}

1964
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1965
{
1966
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1967
	exit_sie(vcpu);
1968 1969
}

1970
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1971
{
1972
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1973 1974
}

1975 1976
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1977
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1978
	exit_sie(vcpu);
1979 1980 1981 1982
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1983
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1984 1985
}

1986 1987 1988 1989 1990 1991
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1992
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1993 1994 1995 1996
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1997 1998
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1999
{
2000 2001
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2002 2003
}

2004 2005
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2006 2007 2008
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2009 2010
	unsigned long prefix;
	int i;
2011

2012 2013
	if (gmap_is_shadow(gmap))
		return;
2014 2015 2016
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2017 2018
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2019 2020 2021 2022
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2023
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2024 2025 2026 2027
		}
	}
}

2028 2029 2030 2031 2032 2033 2034
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2035 2036 2037 2038 2039 2040
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2041 2042 2043 2044 2045 2046 2047 2048
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2049
	case KVM_REG_S390_CPU_TIMER:
2050
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2051 2052 2053 2054 2055 2056
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2069 2070 2071 2072
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2073 2074 2075 2076
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2088
	__u64 val;
2089 2090

	switch (reg->id) {
2091 2092 2093 2094 2095 2096 2097 2098
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2099
	case KVM_REG_S390_CPU_TIMER:
2100 2101 2102
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2103 2104 2105 2106 2107
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2108 2109 2110
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2111 2112
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2113 2114 2115 2116 2117 2118 2119 2120 2121
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2122 2123 2124 2125
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2126 2127 2128 2129
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2130 2131 2132 2133 2134 2135
	default:
		break;
	}

	return r;
}
2136

2137 2138 2139 2140 2141 2142 2143 2144
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2145
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2146 2147 2148 2149 2150
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2151
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2152 2153 2154 2155 2156 2157
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2158
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2159
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2160
	restore_access_regs(vcpu->run->s.regs.acrs);
2161 2162 2163 2164 2165 2166
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2167
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2168 2169 2170 2171 2172 2173
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2174 2175
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2176 2177
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2178 2179 2180 2181 2182
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2183 2184 2185 2186 2187
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2188 2189 2190 2191 2192 2193 2194
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2195 2196 2197 2198 2199 2200 2201
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2202
	if (!is_vcpu_stopped(vcpu))
2203
		rc = -EBUSY;
2204 2205 2206 2207
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2208 2209 2210 2211 2212 2213 2214 2215 2216
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2217 2218 2219 2220
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2221 2222
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2223
{
2224 2225 2226 2227 2228
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2229
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2230
		return -EINVAL;
2231 2232
	if (!sclp.has_gpere)
		return -EINVAL;
2233 2234 2235 2236

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2237
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2238 2239 2240 2241

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2242
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2243 2244 2245 2246 2247 2248
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2249
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2250 2251 2252
	}

	return rc;
2253 2254
}

2255 2256 2257
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2258 2259 2260
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2261 2262 2263 2264 2265
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2286 2287
}

2288 2289 2290 2291 2292
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2293 2294
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2295
retry:
2296
	kvm_s390_vcpu_request_handled(vcpu);
2297 2298
	if (!vcpu->requests)
		return 0;
2299 2300
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2301
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2302 2303 2304 2305
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2306
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2307
		int rc;
2308 2309 2310
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2311 2312
		if (rc)
			return rc;
2313
		goto retry;
2314
	}
2315

2316 2317 2318 2319 2320
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2321 2322 2323
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2324
			atomic_or(CPUSTAT_IBS,
2325 2326 2327
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2328
	}
2329 2330 2331 2332

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2333
			atomic_andnot(CPUSTAT_IBS,
2334 2335 2336 2337 2338
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2339 2340 2341
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2342 2343 2344
	return 0;
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2372
{
2373 2374
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2375 2376
}

2377 2378 2379 2380
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2381
	struct kvm_s390_irq irq;
2382 2383

	if (start_token) {
2384 2385 2386
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2387 2388
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2389
		inti.parm64 = token;
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2436
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2437 2438 2439 2440 2441 2442
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2443 2444 2445
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2446 2447 2448 2449 2450 2451
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2452
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2453
{
2454
	int rc, cpuflags;
2455

2456 2457 2458 2459 2460 2461 2462
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2463 2464
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2465 2466 2467 2468

	if (need_resched())
		schedule();

2469
	if (test_cpu_flag(CIF_MCCK_PENDING))
2470 2471
		s390_handle_mcck();

2472 2473 2474 2475 2476
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2477

2478 2479 2480 2481
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2482 2483 2484 2485 2486
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2487
	vcpu->arch.sie_block->icptcode = 0;
2488 2489 2490
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2491

2492 2493 2494
	return 0;
}

2495 2496
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2497 2498 2499 2500
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2514
	rc = read_guest_instr(vcpu, &opcode, 1);
2515
	ilen = insn_length(opcode);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2526 2527 2528
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2529 2530
}

2531 2532
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2533 2534 2535 2536
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2537 2538 2539
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2540 2541
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2556 2557 2558 2559 2560
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2561
		return -EREMOTE;
2562
	} else if (current->thread.gmap_pfault) {
2563
		trace_kvm_s390_major_guest_pfault(vcpu);
2564
		current->thread.gmap_pfault = 0;
2565 2566 2567
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2568
	}
2569
	return vcpu_post_run_fault_in_sie(vcpu);
2570 2571 2572 2573 2574 2575
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2576 2577 2578 2579 2580 2581
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2582 2583 2584 2585
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2586

2587
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2588 2589 2590 2591
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2592 2593
		local_irq_disable();
		__kvm_guest_enter();
2594
		__disable_cpu_timer_accounting(vcpu);
2595
		local_irq_enable();
2596 2597
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2598
		local_irq_disable();
2599
		__enable_cpu_timer_accounting(vcpu);
2600 2601
		__kvm_guest_exit();
		local_irq_enable();
2602
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2603 2604

		rc = vcpu_post_run(vcpu, exit_reason);
2605
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2606

2607
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2608
	return rc;
2609 2610
}

2611 2612 2613 2614 2615 2616 2617 2618
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2619 2620
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2621 2622
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2623
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2624 2625 2626 2627 2628 2629 2630 2631 2632
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2633 2634
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2645
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2646 2647 2648 2649 2650 2651 2652 2653 2654
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2655 2656
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2657
	int rc;
2658 2659
	sigset_t sigsaved;

2660 2661 2662 2663 2664
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2665 2666 2667
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2668 2669 2670
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2671
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2672 2673 2674
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2675

2676
	sync_regs(vcpu, kvm_run);
2677
	enable_cpu_timer_accounting(vcpu);
2678

2679
	might_fault();
2680
	rc = __vcpu_run(vcpu);
2681

2682 2683
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2684
		rc = -EINTR;
2685
	}
2686

2687 2688 2689 2690 2691
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2692
	if (rc == -EREMOTE) {
2693
		/* userspace support is needed, kvm_run has been prepared */
2694 2695
		rc = 0;
	}
2696

2697
	disable_cpu_timer_accounting(vcpu);
2698
	store_regs(vcpu, kvm_run);
2699

2700 2701 2702 2703
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2704
	return rc;
2705 2706 2707 2708 2709 2710 2711 2712
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2713
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2714
{
2715
	unsigned char archmode = 1;
2716
	freg_t fprs[NUM_FPRS];
2717
	unsigned int px;
2718
	u64 clkcomp, cputm;
2719
	int rc;
2720

2721
	px = kvm_s390_get_prefix(vcpu);
2722 2723
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2724
			return -EFAULT;
2725
		gpa = 0;
2726 2727
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2728
			return -EFAULT;
2729 2730 2731
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2732 2733 2734

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2735
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2736 2737 2738 2739
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2740
				     vcpu->run->s.regs.fprs, 128);
2741
	}
2742
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2743
			      vcpu->run->s.regs.gprs, 128);
2744
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2745
			      &vcpu->arch.sie_block->gpsw, 16);
2746
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2747
			      &px, 4);
2748
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2749
			      &vcpu->run->s.regs.fpc, 4);
2750
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2751
			      &vcpu->arch.sie_block->todpr, 4);
2752
	cputm = kvm_s390_get_cpu_timer(vcpu);
2753
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2754
			      &cputm, 8);
2755
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2756
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2757
			      &clkcomp, 8);
2758
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2759
			      &vcpu->run->s.regs.acrs, 64);
2760
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2761 2762
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2763 2764
}

2765 2766 2767 2768 2769 2770 2771
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2772
	save_fpu_regs();
2773
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2774 2775 2776 2777 2778
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2800 2801 2802 2803 2804
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2805
	 */
2806
	save_fpu_regs();
E
Eric Farman 已提交
2807 2808 2809 2810

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2811 2812 2813
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2814
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2829 2830
	if (!sclp.has_ibs)
		return;
2831
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2832
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2833 2834
}

2835 2836
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2837 2838 2839 2840 2841
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2842
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2843
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2844
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2864
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2865 2866 2867 2868
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2869
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2870
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2871
	return;
2872 2873 2874 2875
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2876 2877 2878 2879 2880 2881
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2882
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2883
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2884
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2885 2886
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2887
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2888
	kvm_s390_clear_stop_irq(vcpu);
2889

2890
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2908
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2909
	return;
2910 2911
}

2912 2913 2914 2915 2916 2917 2918 2919 2920
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2921 2922 2923
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2924
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2925 2926 2927 2928
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2929 2930 2931 2932 2933 2934 2935
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2962 2963
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2974 2975
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2997 2998 2999 3000 3001
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3002
	int idx;
3003
	long r;
3004

3005
	switch (ioctl) {
3006 3007 3008 3009 3010 3011 3012 3013 3014
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3015
	case KVM_S390_INTERRUPT: {
3016
		struct kvm_s390_interrupt s390int;
3017
		struct kvm_s390_irq s390irq;
3018

3019
		r = -EFAULT;
3020
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3021
			break;
3022 3023 3024
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3025
		break;
3026
	}
3027
	case KVM_S390_STORE_STATUS:
3028
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3029
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3030
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3031
		break;
3032 3033 3034
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3035
		r = -EFAULT;
3036
		if (copy_from_user(&psw, argp, sizeof(psw)))
3037 3038 3039
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3040 3041
	}
	case KVM_S390_INITIAL_RESET:
3042 3043
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3092
	case KVM_S390_VCPU_FAULT: {
3093
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3094 3095
		break;
	}
3096 3097 3098 3099 3100 3101 3102 3103 3104
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3105 3106 3107 3108 3109 3110 3111 3112 3113
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3146
	default:
3147
		r = -ENOTTY;
3148
	}
3149
	return r;
3150 3151
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3165 3166
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3167 3168 3169 3170
{
	return 0;
}

3171
/* Section: memory related */
3172 3173
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3174
				   const struct kvm_userspace_memory_region *mem,
3175
				   enum kvm_mr_change change)
3176
{
3177 3178 3179 3180
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3181

3182
	if (mem->userspace_addr & 0xffffful)
3183 3184
		return -EINVAL;

3185
	if (mem->memory_size & 0xffffful)
3186 3187
		return -EINVAL;

3188 3189 3190
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3191 3192 3193 3194
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3195
				const struct kvm_userspace_memory_region *mem,
3196
				const struct kvm_memory_slot *old,
3197
				const struct kvm_memory_slot *new,
3198
				enum kvm_mr_change change)
3199
{
3200
	int rc;
3201

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3212 3213 3214 3215

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3216
		pr_warn("failed to commit memory region\n");
3217
	return;
3218 3219
}

3220 3221 3222 3223 3224 3225 3226
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3227 3228 3229 3230 3231
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3232 3233
static int __init kvm_s390_init(void)
{
3234 3235
	int i;

3236 3237 3238 3239 3240
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3241 3242 3243 3244
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3245
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3246 3247 3248 3249 3250 3251 3252 3253 3254
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3255 3256 3257 3258 3259 3260 3261 3262 3263

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");