kvm-s390.c 79.3 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <linux/bitmap.h>
30
#include <asm/asm-offsets.h>
31
#include <asm/lowcore.h>
32
#include <asm/etr.h>
33
#include <asm/pgtable.h>
34
#include <asm/gmap.h>
35
#include <asm/nmi.h>
36
#include <asm/switch_to.h>
37
#include <asm/isc.h>
38
#include <asm/sclp.h>
39
#include "kvm-s390.h"
40 41
#include "gaccess.h"

42 43 44 45
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

46 47
#define CREATE_TRACE_POINTS
#include "trace.h"
48
#include "trace-s390.h"
49

50
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
51 52 53
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
54

55 56 57 58
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
59
	{ "exit_null", VCPU_STAT(exit_null) },
60 61 62 63
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
64 65 66
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
67
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
68
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
69
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
70
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
71
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
72
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
73
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
74 75
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
76
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
77
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
78 79 80 81 82 83 84
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
85
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
86 87 88 89 90
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
91
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
92 93
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
94
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
95 96
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
97
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
98
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
99
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
100
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
101
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
102
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
103 104
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
105
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
106 107
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
108
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
109 110 111
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
112 113 114
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
115
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
116
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
117
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
118 119 120
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
121 122 123
	{ NULL }
};

124
/* upper facilities limit for kvm */
125 126 127
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
128
};
129

130
unsigned long kvm_s390_fac_list_mask_size(void)
131
{
132 133
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
134 135
}

136 137 138
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);

139
static struct gmap_notifier gmap_notifier;
140
debug_info_t *kvm_s390_dbf;
141

142
/* Section: not file related */
143
int kvm_arch_hardware_enable(void)
144 145
{
	/* every s390 is virtualization enabled ;-) */
146
	return 0;
147 148
}

149 150
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
169 170
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
171 172 173 174 175 176 177 178 179
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

180 181
int kvm_arch_hardware_setup(void)
{
182 183
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
184 185
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
186 187 188 189 190
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
191
	gmap_unregister_ipte_notifier(&gmap_notifier);
192 193
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
194 195 196 197
}

int kvm_arch_init(void *opaque)
{
198 199 200 201 202 203 204 205 206
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

207 208
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
209 210
}

211 212 213 214 215
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

216 217 218 219 220 221 222 223 224
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

225
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
226
{
227 228
	int r;

229
	switch (ext) {
230
	case KVM_CAP_S390_PSW:
231
	case KVM_CAP_S390_GMAP:
232
	case KVM_CAP_SYNC_MMU:
233 234 235
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
236
	case KVM_CAP_ASYNC_PF:
237
	case KVM_CAP_SYNC_REGS:
238
	case KVM_CAP_ONE_REG:
239
	case KVM_CAP_ENABLE_CAP:
240
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
241
	case KVM_CAP_IOEVENTFD:
242
	case KVM_CAP_DEVICE_CTRL:
243
	case KVM_CAP_ENABLE_CAP_VM:
244
	case KVM_CAP_S390_IRQCHIP:
245
	case KVM_CAP_VM_ATTRIBUTES:
246
	case KVM_CAP_MP_STATE:
247
	case KVM_CAP_S390_INJECT_IRQ:
248
	case KVM_CAP_S390_USER_SIGP:
249
	case KVM_CAP_S390_USER_STSI:
250
	case KVM_CAP_S390_SKEYS:
251
	case KVM_CAP_S390_IRQ_STATE:
252 253
		r = 1;
		break;
254 255 256
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
257 258
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
259 260
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
261
		break;
262 263 264
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
265
	case KVM_CAP_S390_COW:
266
		r = MACHINE_HAS_ESOP;
267
		break;
268 269 270
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
271 272 273
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
274
	default:
275
		r = 0;
276
	}
277
	return r;
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

292
		if (test_and_clear_guest_dirty(gmap->mm, address))
293
			mark_page_dirty(kvm, cur_gfn);
294 295
		if (fatal_signal_pending(current))
			return;
296
		cond_resched();
297 298 299
	}
}

300
/* Section: vm related */
301 302
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

303 304 305 306 307 308
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
309 310
	int r;
	unsigned long n;
311
	struct kvm_memslots *slots;
312 313 314 315 316 317 318 319 320
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

321 322
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
341 342
}

343 344 345 346 347 348 349 350
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
351
	case KVM_CAP_S390_IRQCHIP:
352
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
353 354 355
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
356
	case KVM_CAP_S390_USER_SIGP:
357
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
358 359 360
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
361
	case KVM_CAP_S390_VECTOR_REGISTERS:
362 363 364 365
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
366 367
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
368 369 370
			r = 0;
		} else
			r = -EINVAL;
371
		mutex_unlock(&kvm->lock);
372 373
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
374
		break;
375 376 377 378 379 380
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
381 382
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
383 384 385 386 387 388
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
389
	case KVM_CAP_S390_USER_STSI:
390
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
391 392 393
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
394 395 396 397 398 399 400
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

401 402 403 404 405 406 407
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
408
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
409 410
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
411 412 413 414 415 416 417 418 419 420
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
421 422 423 424 425
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
426 427 428 429 430
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

431
		ret = -EBUSY;
432
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
433 434 435 436 437 438 439 440
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
441 442 443 444
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

445
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
446 447
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
448
		s390_reset_cmma(kvm->arch.gmap->mm);
449 450 451 452
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
453 454 455 456 457 458 459 460 461
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

462 463
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
464 465
			return -E2BIG;

466 467 468 469 470 471 472
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
489 490 491
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
492 493
		break;
	}
494 495 496 497 498 499 500
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

501 502 503 504 505 506 507
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

508
	if (!test_kvm_facility(kvm, 76))
509 510 511 512 513 514 515 516 517
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
518
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
519 520 521 522 523 524
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
525
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
526 527 528 529 530
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
531
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
532 533 534 535 536
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
537
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
538 539 540 541 542 543 544 545 546 547 548 549 550 551
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

552 553 554 555 556 557 558 559 560 561
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
562
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
563 564 565 566 567 568

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
569
	u64 gtod;
570 571 572 573

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

574
	kvm_s390_set_tod_clock(kvm, gtod);
575
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
607
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
608 609 610 611 612 613

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
614
	u64 gtod;
615

616
	gtod = kvm_s390_get_tod_clock_fast(kvm);
617 618
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
619
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

645 646 647
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
648
	u16 lowest_ibc, unblocked_ibc;
649 650 651 652 653 654 655 656 657 658 659 660 661 662
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
663
		kvm->arch.model.cpuid = proc->cpuid;
664 665 666 667 668 669 670 671 672 673
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
674
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
675 676 677 678 679 680 681 682 683
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

707 708 709 710 711 712 713 714
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
715 716 717
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
718 719 720 721 722 723 724 725 726 727 728 729 730 731
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
732
	proc->cpuid = kvm->arch.model.cpuid;
733
	proc->ibc = kvm->arch.model.ibc;
734 735
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
754
	mach->ibc = sclp.ibc;
755
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
756
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
757
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
758
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
759 760 761 762 763 764 765
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

791 792 793 794 795 796 797 798 799 800 801
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
802 803 804 805 806 807
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
808 809 810 811
	}
	return ret;
}

812 813 814 815 816
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
817
	case KVM_S390_VM_MEM_CTRL:
818
		ret = kvm_s390_set_mem_control(kvm, attr);
819
		break;
820 821 822
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
823 824 825
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
826 827 828
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
829 830 831 832 833 834 835 836 837 838
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
839 840 841 842 843 844
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
845 846 847
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
848 849 850
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
851 852 853 854 855 856
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
857 858 859 860 861 862 863
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
864 865 866 867
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
868
		case KVM_S390_VM_MEM_LIMIT_SIZE:
869 870 871 872 873 874 875
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
876 877 878 879 880 881 882 883 884 885 886
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
887 888 889 890
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
891 892
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
893 894 895 896 897 898 899
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
900 901 902 903 904 905 906 907 908 909 910 911 912
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
913 914 915 916 917 918 919 920
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
998 999 1000
	r = s390_enable_skey();
	if (r)
		goto out;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

1025 1026 1027 1028 1029
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1030
	struct kvm_device_attr attr;
1031 1032 1033
	int r;

	switch (ioctl) {
1034 1035 1036 1037 1038 1039 1040 1041 1042
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1043 1044 1045 1046 1047 1048 1049 1050
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1051 1052 1053 1054 1055 1056 1057
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1058
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1059 1060 1061
		}
		break;
	}
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1103
	default:
1104
		r = -ENOTTY;
1105 1106 1107 1108 1109
	}

	return r;
}

1110 1111 1112
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1113
	u32 cc = 0;
1114

1115
	memset(config, 0, 128);
1116 1117 1118 1119
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1120
		"0: ipm %0\n"
1121
		"srl %0,28\n"
1122 1123 1124
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1137
	if (test_facility(12)) {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1159
static u64 kvm_s390_get_initial_cpuid(void)
1160
{
1161 1162 1163 1164 1165
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1166 1167
}

1168
static void kvm_s390_crypto_init(struct kvm *kvm)
1169
{
1170
	if (!test_kvm_facility(kvm, 76))
1171
		return;
1172

1173
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1174
	kvm_s390_set_crycb_format(kvm);
1175

1176 1177 1178 1179 1180 1181 1182
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1183 1184
}

1185 1186 1187
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1188
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1189 1190 1191 1192 1193
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1194
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1195
{
1196
	int i, rc;
1197
	char debug_name[16];
1198
	static unsigned long sca_offset;
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1211 1212
	rc = s390_enable_sie();
	if (rc)
1213
		goto out_err;
1214

1215 1216
	rc = -ENOMEM;

J
Janosch Frank 已提交
1217 1218
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1219
	kvm->arch.use_esca = 0; /* start with basic SCA */
1220
	rwlock_init(&kvm->arch.sca_lock);
1221
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1222
	if (!kvm->arch.sca)
1223
		goto out_err;
1224
	spin_lock(&kvm_lock);
1225
	sca_offset += 16;
1226
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1227
		sca_offset = 0;
1228 1229
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1230
	spin_unlock(&kvm_lock);
1231 1232 1233

	sprintf(debug_name, "kvm-%u", current->pid);

1234
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1235
	if (!kvm->arch.dbf)
1236
		goto out_err;
1237

1238 1239 1240
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1241
		goto out_err;
1242

1243
	/* Populate the facility mask initially. */
1244
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1245
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1246 1247
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1248
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1249
		else
1250
			kvm->arch.model.fac_mask[i] = 0UL;
1251 1252
	}

1253
	/* Populate the facility list initially. */
1254 1255
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1256 1257
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1258 1259 1260
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1261
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1262
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1263

1264
	kvm_s390_crypto_init(kvm);
1265

1266
	spin_lock_init(&kvm->arch.float_int.lock);
1267 1268
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1269
	init_waitqueue_head(&kvm->arch.ipte_wq);
1270
	mutex_init(&kvm->arch.ipte_mutex);
1271

1272
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1273
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1274

1275 1276
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1277
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1278
	} else {
1279 1280 1281 1282 1283
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1284
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1285
		if (!kvm->arch.gmap)
1286
			goto out_err;
1287
		kvm->arch.gmap->private = kvm;
1288
		kvm->arch.gmap->pfault_enabled = 0;
1289
	}
1290 1291

	kvm->arch.css_support = 0;
1292
	kvm->arch.use_irqchip = 0;
1293
	kvm->arch.epoch = 0;
1294

1295
	spin_lock_init(&kvm->arch.start_stop_lock);
1296
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1297

1298
	return 0;
1299
out_err:
1300
	free_page((unsigned long)kvm->arch.sie_page2);
1301
	debug_unregister(kvm->arch.dbf);
1302
	sca_dispose(kvm);
1303
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1304
	return rc;
1305 1306
}

1307 1308 1309
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1310
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1311
	kvm_s390_clear_local_irqs(vcpu);
1312
	kvm_clear_async_pf_completion_queue(vcpu);
1313
	if (!kvm_is_ucontrol(vcpu->kvm))
1314
		sca_del_vcpu(vcpu);
1315 1316 1317 1318

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1319
	if (vcpu->kvm->arch.use_cmma)
1320
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1321
	free_page((unsigned long)(vcpu->arch.sie_block));
1322

1323
	kvm_vcpu_uninit(vcpu);
1324
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1325 1326 1327 1328 1329
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1330
	struct kvm_vcpu *vcpu;
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1341 1342
}

1343 1344
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1345
	kvm_free_vcpus(kvm);
1346
	sca_dispose(kvm);
1347
	debug_unregister(kvm->arch.dbf);
1348
	free_page((unsigned long)kvm->arch.sie_page2);
1349 1350
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1351
	kvm_s390_destroy_adapters(kvm);
1352
	kvm_s390_clear_float_irqs(kvm);
1353
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1354 1355 1356
}

/* Section: vcpu related */
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1367 1368
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1369
	read_lock(&vcpu->kvm->arch.sca_lock);
1370 1371
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1372

1373
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1374
		sca->cpu[vcpu->vcpu_id].sda = 0;
1375 1376 1377 1378
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1379
		sca->cpu[vcpu->vcpu_id].sda = 0;
1380
	}
1381
	read_unlock(&vcpu->kvm->arch.sca_lock);
1382 1383
}

1384
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1385
{
1386 1387 1388
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1389

1390
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1391 1392
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1393
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1394
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1395
	} else {
1396
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1397

1398
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1399 1400
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1401
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1402
	}
1403
	read_unlock(&vcpu->kvm->arch.sca_lock);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1457 1458
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1459
	return 0;
1460 1461 1462 1463
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1476 1477
}

1478 1479
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1480 1481
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1482 1483
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1484
				    KVM_SYNC_ACRS |
1485 1486 1487
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1488 1489
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1490 1491 1492 1493
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1494
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1495 1496
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1497 1498 1499 1500

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1501 1502 1503
	return 0;
}

1504 1505 1506 1507
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1508
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1509
	vcpu->arch.cputm_start = get_tod_clock_fast();
1510
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1511 1512 1513 1514 1515 1516
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1517
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1518 1519
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1520
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1553 1554 1555
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1556
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1557
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1558 1559
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1560
	vcpu->arch.sie_block->cputm = cputm;
1561
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1562
	preempt_enable();
1563 1564
}

1565
/* update and get the cpu timer - can also be called from other VCPU threads */
1566 1567
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1568
	unsigned int seq;
1569 1570 1571 1572 1573
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1588
	return value;
1589 1590
}

1591 1592
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1593
	/* Save host register state */
1594
	save_fpu_regs();
1595 1596
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1597

1598 1599 1600 1601
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1602
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1603
	if (test_fp_ctl(current->thread.fpu.fpc))
1604
		/* User space provided an invalid FPC, let's clear it */
1605 1606 1607
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1608
	restore_access_regs(vcpu->run->s.regs.acrs);
1609
	gmap_enable(vcpu->arch.gmap);
1610
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1611
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1612
		__start_cpu_timer_accounting(vcpu);
1613
	vcpu->cpu = cpu;
1614 1615 1616 1617
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1618
	vcpu->cpu = -1;
1619
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1620
		__stop_cpu_timer_accounting(vcpu);
1621
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1622
	gmap_disable(vcpu->arch.gmap);
1623

1624
	/* Save guest register state */
1625
	save_fpu_regs();
1626
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1627

1628 1629 1630
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1631 1632

	save_access_regs(vcpu->run->s.regs.acrs);
1633 1634 1635 1636 1637 1638 1639 1640
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1641
	kvm_s390_set_prefix(vcpu, 0);
1642
	kvm_s390_set_cpu_timer(vcpu, 0);
1643 1644 1645 1646 1647
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1648 1649 1650
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1651
	vcpu->arch.sie_block->gbea = 1;
1652
	vcpu->arch.sie_block->pp = 0;
1653 1654
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1655 1656
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1657
	kvm_s390_clear_local_irqs(vcpu);
1658 1659
}

1660
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1661
{
1662
	mutex_lock(&vcpu->kvm->lock);
1663
	preempt_disable();
1664
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1665
	preempt_enable();
1666
	mutex_unlock(&vcpu->kvm->lock);
1667
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1668
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1669
		sca_add_vcpu(vcpu);
1670 1671
	}

1672 1673
}

1674 1675
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1676
	if (!test_kvm_facility(vcpu->kvm, 76))
1677 1678
		return;

1679 1680 1681 1682 1683 1684 1685
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1686 1687 1688
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1706 1707 1708 1709 1710
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1711
	if (test_kvm_facility(vcpu->kvm, 7))
1712
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1713 1714
}

1715 1716
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1717
	int rc = 0;
1718

1719 1720
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1721 1722
						    CPUSTAT_STOPPED);

1723
	if (test_kvm_facility(vcpu->kvm, 78))
1724
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1725
	else if (test_kvm_facility(vcpu->kvm, 8))
1726
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1727

1728 1729
	kvm_s390_vcpu_setup_model(vcpu);

1730 1731 1732
	vcpu->arch.sie_block->ecb = 0x02;
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1733
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1734 1735
		vcpu->arch.sie_block->ecb |= 0x10;

1736 1737
	if (test_kvm_facility(vcpu->kvm, 8))
		vcpu->arch.sie_block->ecb2 |= 0x08;
1738
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1739
	if (sclp.has_siif)
1740
		vcpu->arch.sie_block->eca |= 1;
1741
	if (sclp.has_sigpif)
1742
		vcpu->arch.sie_block->eca |= 0x10000000U;
1743 1744
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1745
	if (test_kvm_facility(vcpu->kvm, 129)) {
1746 1747 1748
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1749
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1750
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1751 1752
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1753

1754
	if (vcpu->kvm->arch.use_cmma) {
1755 1756 1757
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1758
	}
1759
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1760
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1761

1762 1763
	kvm_s390_vcpu_crypto_setup(vcpu);

1764
	return rc;
1765 1766 1767 1768 1769
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1770
	struct kvm_vcpu *vcpu;
1771
	struct sie_page *sie_page;
1772 1773
	int rc = -EINVAL;

1774
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1775 1776 1777
		goto out;

	rc = -ENOMEM;
1778

1779
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1780
	if (!vcpu)
1781
		goto out;
1782

1783 1784
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1785 1786
		goto out_free_cpu;

1787 1788 1789
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1790
	vcpu->arch.sie_block->icpua = id;
1791 1792
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1793
	vcpu->arch.local_int.wq = &vcpu->wq;
1794
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1795
	seqcount_init(&vcpu->arch.cputm_seqcount);
1796

1797 1798
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1799
		goto out_free_sie_block;
1800
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1801
		 vcpu->arch.sie_block);
1802
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1803 1804

	return vcpu;
1805 1806
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1807
out_free_cpu:
1808
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1809
out:
1810 1811 1812 1813 1814
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1815
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1816 1817
}

1818
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1819
{
1820
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1821
	exit_sie(vcpu);
1822 1823
}

1824
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1825
{
1826
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1827 1828
}

1829 1830
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1831
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1832
	exit_sie(vcpu);
1833 1834 1835 1836
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1837
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1838 1839
}

1840 1841 1842 1843 1844 1845
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1846
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1847 1848 1849 1850
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1851 1852
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1853
{
1854 1855
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1856 1857
}

1858 1859 1860 1861 1862 1863 1864 1865
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1866
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1867
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1868
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1869 1870 1871 1872
		}
	}
}

1873 1874 1875 1876 1877 1878 1879
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1880 1881 1882 1883 1884 1885
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1886 1887 1888 1889 1890 1891 1892 1893
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1894
	case KVM_REG_S390_CPU_TIMER:
1895
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
1896 1897 1898 1899 1900 1901
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1914 1915 1916 1917
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1918 1919 1920 1921
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
1933
	__u64 val;
1934 1935

	switch (reg->id) {
1936 1937 1938 1939 1940 1941 1942 1943
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1944
	case KVM_REG_S390_CPU_TIMER:
1945 1946 1947
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
1948 1949 1950 1951 1952
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1953 1954 1955
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1956 1957
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1958 1959 1960 1961 1962 1963 1964 1965 1966
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1967 1968 1969 1970
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1971 1972 1973 1974
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1975 1976 1977 1978 1979 1980
	default:
		break;
	}

	return r;
}
1981

1982 1983 1984 1985 1986 1987 1988 1989
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1990
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1991 1992 1993 1994 1995
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1996
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1997 1998 1999 2000 2001 2002
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2003
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2004
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2005
	restore_access_regs(vcpu->run->s.regs.acrs);
2006 2007 2008 2009 2010 2011
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2012
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2013 2014 2015 2016 2017 2018
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2019 2020
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2021 2022
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2023 2024 2025 2026 2027
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2028 2029 2030 2031 2032
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2033 2034 2035 2036 2037 2038 2039
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2040 2041 2042 2043 2044 2045 2046
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2047
	if (!is_vcpu_stopped(vcpu))
2048
		rc = -EBUSY;
2049 2050 2051 2052
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2053 2054 2055 2056 2057 2058 2059 2060 2061
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2062 2063 2064 2065
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2066 2067
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2068
{
2069 2070 2071 2072 2073
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2074
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2075 2076 2077 2078 2079
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2080
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2081 2082 2083 2084

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2085
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2086 2087 2088 2089 2090 2091
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2092
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2093 2094 2095
	}

	return rc;
2096 2097
}

2098 2099 2100
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2101 2102 2103
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2104 2105 2106 2107 2108
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2129 2130
}

2131 2132 2133 2134 2135
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2136 2137
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2138
retry:
2139
	kvm_s390_vcpu_request_handled(vcpu);
2140 2141
	if (!vcpu->requests)
		return 0;
2142 2143 2144 2145 2146 2147 2148
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2149
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2150 2151
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2152
				      kvm_s390_get_prefix(vcpu),
2153 2154 2155
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2156
		goto retry;
2157
	}
2158

2159 2160 2161 2162 2163
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2164 2165 2166
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2167
			atomic_or(CPUSTAT_IBS,
2168 2169 2170
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2171
	}
2172 2173 2174 2175

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2176
			atomic_andnot(CPUSTAT_IBS,
2177 2178 2179 2180 2181
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2182 2183 2184
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2185 2186 2187
	return 0;
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2215
{
2216 2217
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2218 2219
}

2220 2221 2222 2223
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2224
	struct kvm_s390_irq irq;
2225 2226

	if (start_token) {
2227 2228 2229
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2230 2231
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2232
		inti.parm64 = token;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2279
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2280 2281 2282 2283 2284 2285
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2286 2287 2288
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2289 2290 2291 2292 2293 2294
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2295
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2296
{
2297
	int rc, cpuflags;
2298

2299 2300 2301 2302 2303 2304 2305
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2306 2307
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2308 2309 2310 2311

	if (need_resched())
		schedule();

2312
	if (test_cpu_flag(CIF_MCCK_PENDING))
2313 2314
		s390_handle_mcck();

2315 2316 2317 2318 2319
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2320

2321 2322 2323 2324
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2325 2326 2327 2328 2329
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2330
	vcpu->arch.sie_block->icptcode = 0;
2331 2332 2333
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2334

2335 2336 2337
	return 0;
}

2338 2339
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2340 2341 2342 2343
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2357
	rc = read_guest_instr(vcpu, &opcode, 1);
2358
	ilen = insn_length(opcode);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2369 2370 2371
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2372 2373
}

2374 2375
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2376 2377 2378 2379
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2380 2381 2382
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2383 2384
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2399 2400 2401 2402 2403
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2404
		return -EREMOTE;
2405
	} else if (current->thread.gmap_pfault) {
2406
		trace_kvm_s390_major_guest_pfault(vcpu);
2407
		current->thread.gmap_pfault = 0;
2408 2409 2410
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2411
	}
2412
	return vcpu_post_run_fault_in_sie(vcpu);
2413 2414 2415 2416 2417 2418
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2419 2420 2421 2422 2423 2424
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2425 2426 2427 2428
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2429

2430
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2431 2432 2433 2434
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2435 2436
		local_irq_disable();
		__kvm_guest_enter();
2437
		__disable_cpu_timer_accounting(vcpu);
2438
		local_irq_enable();
2439 2440
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2441
		local_irq_disable();
2442
		__enable_cpu_timer_accounting(vcpu);
2443 2444
		__kvm_guest_exit();
		local_irq_enable();
2445
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2446 2447

		rc = vcpu_post_run(vcpu, exit_reason);
2448
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2449

2450
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2451
	return rc;
2452 2453
}

2454 2455 2456 2457 2458 2459 2460 2461
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2462 2463
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2464 2465
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2466
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2467 2468 2469 2470 2471 2472 2473 2474 2475
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2476 2477
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2488
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2489 2490 2491 2492 2493 2494 2495 2496 2497
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2498 2499
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2500
	int rc;
2501 2502
	sigset_t sigsaved;

2503 2504 2505 2506 2507
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2508 2509 2510
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2511 2512 2513
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2514
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2515 2516 2517
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2518

2519
	sync_regs(vcpu, kvm_run);
2520
	enable_cpu_timer_accounting(vcpu);
2521

2522
	might_fault();
2523
	rc = __vcpu_run(vcpu);
2524

2525 2526
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2527
		rc = -EINTR;
2528
	}
2529

2530 2531 2532 2533 2534
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2535
	if (rc == -EREMOTE) {
2536
		/* userspace support is needed, kvm_run has been prepared */
2537 2538
		rc = 0;
	}
2539

2540
	disable_cpu_timer_accounting(vcpu);
2541
	store_regs(vcpu, kvm_run);
2542

2543 2544 2545 2546
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2547
	return rc;
2548 2549 2550 2551 2552 2553 2554 2555
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2556
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2557
{
2558
	unsigned char archmode = 1;
2559
	freg_t fprs[NUM_FPRS];
2560
	unsigned int px;
2561
	u64 clkcomp, cputm;
2562
	int rc;
2563

2564
	px = kvm_s390_get_prefix(vcpu);
2565 2566
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2567
			return -EFAULT;
2568
		gpa = 0;
2569 2570
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2571
			return -EFAULT;
2572 2573 2574
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2575 2576 2577

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2578
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2579 2580 2581 2582
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2583
				     vcpu->run->s.regs.fprs, 128);
2584
	}
2585
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2586
			      vcpu->run->s.regs.gprs, 128);
2587
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2588
			      &vcpu->arch.sie_block->gpsw, 16);
2589
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2590
			      &px, 4);
2591
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2592
			      &vcpu->run->s.regs.fpc, 4);
2593
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2594
			      &vcpu->arch.sie_block->todpr, 4);
2595
	cputm = kvm_s390_get_cpu_timer(vcpu);
2596
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2597
			      &cputm, 8);
2598
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2599
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2600
			      &clkcomp, 8);
2601
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2602
			      &vcpu->run->s.regs.acrs, 64);
2603
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2604 2605
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2606 2607
}

2608 2609 2610 2611 2612 2613 2614
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2615
	save_fpu_regs();
2616
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2617 2618 2619 2620 2621
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2643 2644 2645 2646 2647
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2648
	 */
2649
	save_fpu_regs();
E
Eric Farman 已提交
2650 2651 2652 2653

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2654 2655 2656
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2657
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2673
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2674 2675
}

2676 2677
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2678 2679 2680 2681 2682
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2683
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2684
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2685
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2705
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2706 2707 2708 2709
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2710
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2711
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2712
	return;
2713 2714 2715 2716
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2717 2718 2719 2720 2721 2722
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2723
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2724
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2725
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2726 2727
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2728
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2729
	kvm_s390_clear_stop_irq(vcpu);
2730

2731
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2749
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2750
	return;
2751 2752
}

2753 2754 2755 2756 2757 2758 2759 2760 2761
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2762 2763 2764
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2765
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2766 2767 2768 2769
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2770 2771 2772 2773 2774 2775 2776
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2803 2804
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2815 2816
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2838 2839 2840 2841 2842
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2843
	int idx;
2844
	long r;
2845

2846
	switch (ioctl) {
2847 2848 2849 2850 2851 2852 2853 2854 2855
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2856
	case KVM_S390_INTERRUPT: {
2857
		struct kvm_s390_interrupt s390int;
2858
		struct kvm_s390_irq s390irq;
2859

2860
		r = -EFAULT;
2861
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2862
			break;
2863 2864 2865
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2866
		break;
2867
	}
2868
	case KVM_S390_STORE_STATUS:
2869
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2870
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2871
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2872
		break;
2873 2874 2875
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2876
		r = -EFAULT;
2877
		if (copy_from_user(&psw, argp, sizeof(psw)))
2878 2879 2880
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2881 2882
	}
	case KVM_S390_INITIAL_RESET:
2883 2884
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2933
	case KVM_S390_VCPU_FAULT: {
2934
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2935 2936
		break;
	}
2937 2938 2939 2940 2941 2942 2943 2944 2945
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2946 2947 2948 2949 2950 2951 2952 2953 2954
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2987
	default:
2988
		r = -ENOTTY;
2989
	}
2990
	return r;
2991 2992
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3006 3007
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3008 3009 3010 3011
{
	return 0;
}

3012
/* Section: memory related */
3013 3014
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3015
				   const struct kvm_userspace_memory_region *mem,
3016
				   enum kvm_mr_change change)
3017
{
3018 3019 3020 3021
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3022

3023
	if (mem->userspace_addr & 0xffffful)
3024 3025
		return -EINVAL;

3026
	if (mem->memory_size & 0xffffful)
3027 3028
		return -EINVAL;

3029 3030 3031
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3032 3033 3034 3035
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3036
				const struct kvm_userspace_memory_region *mem,
3037
				const struct kvm_memory_slot *old,
3038
				const struct kvm_memory_slot *new,
3039
				enum kvm_mr_change change)
3040
{
3041
	int rc;
3042

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3053 3054 3055 3056

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3057
		pr_warn("failed to commit memory region\n");
3058
	return;
3059 3060
}

3061 3062 3063 3064 3065 3066 3067
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3068 3069 3070 3071 3072
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3073 3074
static int __init kvm_s390_init(void)
{
3075 3076
	int i;

3077 3078 3079 3080 3081
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3082 3083 3084 3085
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3086
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3087 3088 3089 3090 3091 3092 3093 3094 3095
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3096 3097 3098 3099 3100 3101 3102 3103 3104

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");