kvm-s390.c 102.2 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/moduleparam.h>
27
#include <linux/random.h>
28
#include <linux/slab.h>
29
#include <linux/timer.h>
30
#include <linux/vmalloc.h>
31
#include <linux/bitmap.h>
32
#include <linux/sched/signal.h>
33
#include <linux/string.h>
34

35
#include <asm/asm-offsets.h>
36
#include <asm/lowcore.h>
37
#include <asm/stp.h>
38
#include <asm/pgtable.h>
39
#include <asm/gmap.h>
40
#include <asm/nmi.h>
41
#include <asm/switch_to.h>
42
#include <asm/isc.h>
43
#include <asm/sclp.h>
44
#include <asm/cpacf.h>
45
#include <asm/timex.h>
46
#include "kvm-s390.h"
47 48
#include "gaccess.h"

49 50 51 52
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

53 54
#define CREATE_TRACE_POINTS
#include "trace.h"
55
#include "trace-s390.h"
56

57
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
58 59 60
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
61

62 63 64 65
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
66
	{ "exit_null", VCPU_STAT(exit_null) },
67 68 69 70
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
71
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
72
	{ "exit_pei", VCPU_STAT(exit_pei) },
73 74
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
75
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
76
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
77
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
78
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
79
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
80
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
81
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
82 83
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
84
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
85
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
86 87 88 89 90 91 92
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
93
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
94 95 96 97 98
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
99
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
100 101
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
102
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
103 104
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
105
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
106
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
107
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
108
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
109
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
110
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
111
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
112 113
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
114
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
115 116
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
117
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
118 119 120
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
121 122 123
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
124
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
125
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
126
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
127 128 129
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
130 131 132
	{ NULL }
};

133 134 135 136 137 138
struct kvm_s390_tod_clock_ext {
	__u8 epoch_idx;
	__u64 tod;
	__u8 reserved[7];
} __packed;

139 140 141 142 143
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

144
/* upper facilities limit for kvm */
145
unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
146

147
unsigned long kvm_s390_fac_list_mask_size(void)
148
{
149 150
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
151 152
}

153 154
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
155 156
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
157

158
static struct gmap_notifier gmap_notifier;
159
static struct gmap_notifier vsie_gmap_notifier;
160
debug_info_t *kvm_s390_dbf;
161

162
/* Section: not file related */
163
int kvm_arch_hardware_enable(void)
164 165
{
	/* every s390 is virtualization enabled ;-) */
166
	return 0;
167 168
}

169 170
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
190 191
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
192 193
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
194 195 196 197 198 199 200 201 202
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

203 204
int kvm_arch_hardware_setup(void)
{
205
	gmap_notifier.notifier_call = kvm_gmap_notifier;
206
	gmap_register_pte_notifier(&gmap_notifier);
207 208
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
209 210
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
211 212 213 214 215
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
216
	gmap_unregister_pte_notifier(&gmap_notifier);
217
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
218 219
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
220 221
}

222 223 224 225 226
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

227 228 229
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
230
	int cc;
231 232 233 234 235 236 237 238 239 240 241 242

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

243 244
static void kvm_s390_cpu_feat_init(void)
{
245 246 247 248 249 250 251 252
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
253 254 255
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
256 257

	if (test_facility(17)) { /* MSA */
258 259 260 261 262 263 264 265 266 267
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
268 269
	}
	if (test_facility(76)) /* MSA3 */
270 271
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
272
	if (test_facility(77)) { /* MSA4 */
273 274 275 276 277 278 279 280
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
281 282
	}
	if (test_facility(57)) /* MSA5 */
283
		__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
284
			      kvm_s390_available_subfunc.ppno);
285

286 287 288 289
	if (test_facility(146)) /* MSA8 */
		__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kma);

290 291
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
292 293 294 295 296
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
297
	    !test_facility(3) || !nested)
298 299
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
300 301
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
302 303
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
304 305
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
306 307
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
308 309
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
310 311
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
312 313
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
314 315
	if (sclp.has_kss)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
334 335
}

336 337
int kvm_arch_init(void *opaque)
{
338 339 340 341 342 343 344 345 346
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

347 348
	kvm_s390_cpu_feat_init();

349 350
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
351 352
}

353 354 355 356 357
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

358 359 360 361 362 363 364 365 366
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

367
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
368
{
369 370
	int r;

371
	switch (ext) {
372
	case KVM_CAP_S390_PSW:
373
	case KVM_CAP_S390_GMAP:
374
	case KVM_CAP_SYNC_MMU:
375 376 377
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
378
	case KVM_CAP_ASYNC_PF:
379
	case KVM_CAP_SYNC_REGS:
380
	case KVM_CAP_ONE_REG:
381
	case KVM_CAP_ENABLE_CAP:
382
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
383
	case KVM_CAP_IOEVENTFD:
384
	case KVM_CAP_DEVICE_CTRL:
385
	case KVM_CAP_ENABLE_CAP_VM:
386
	case KVM_CAP_S390_IRQCHIP:
387
	case KVM_CAP_VM_ATTRIBUTES:
388
	case KVM_CAP_MP_STATE:
389
	case KVM_CAP_IMMEDIATE_EXIT:
390
	case KVM_CAP_S390_INJECT_IRQ:
391
	case KVM_CAP_S390_USER_SIGP:
392
	case KVM_CAP_S390_USER_STSI:
393
	case KVM_CAP_S390_SKEYS:
394
	case KVM_CAP_S390_IRQ_STATE:
395
	case KVM_CAP_S390_USER_INSTR0:
396
	case KVM_CAP_S390_CMMA_MIGRATION:
397
	case KVM_CAP_S390_AIS:
398 399
		r = 1;
		break;
400 401 402
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
403 404
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
405
		r = KVM_S390_BSCA_CPU_SLOTS;
406 407 408
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
409
			r = KVM_S390_ESCA_CPU_SLOTS;
410
		break;
411 412 413
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
414
	case KVM_CAP_S390_COW:
415
		r = MACHINE_HAS_ESOP;
416
		break;
417 418 419
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
420 421 422
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
F
Fan Zhang 已提交
423 424 425
	case KVM_CAP_S390_GS:
		r = test_facility(133);
		break;
426
	default:
427
		r = 0;
428
	}
429
	return r;
430 431
}

432 433 434 435 436 437 438 439 440 441 442 443
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

444
		if (test_and_clear_guest_dirty(gmap->mm, address))
445
			mark_page_dirty(kvm, cur_gfn);
446 447
		if (fatal_signal_pending(current))
			return;
448
		cond_resched();
449 450 451
	}
}

452
/* Section: vm related */
453 454
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

455 456 457 458 459 460
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
461 462
	int r;
	unsigned long n;
463
	struct kvm_memslots *slots;
464 465 466
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

467 468 469
	if (kvm_is_ucontrol(kvm))
		return -EINVAL;

470 471 472 473 474 475
	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

476 477
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
496 497
}

498 499 500 501 502 503 504 505 506 507
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

508 509 510 511 512 513 514 515
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
516
	case KVM_CAP_S390_IRQCHIP:
517
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
518 519 520
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
521
	case KVM_CAP_S390_USER_SIGP:
522
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
523 524 525
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
526
	case KVM_CAP_S390_VECTOR_REGISTERS:
527
		mutex_lock(&kvm->lock);
528
		if (kvm->created_vcpus) {
529 530
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
531 532
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
533 534 535 536
			if (test_facility(134)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 134);
				set_kvm_facility(kvm->arch.model.fac_list, 134);
			}
537 538 539 540
			if (test_facility(135)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 135);
				set_kvm_facility(kvm->arch.model.fac_list, 135);
			}
541 542 543
			r = 0;
		} else
			r = -EINVAL;
544
		mutex_unlock(&kvm->lock);
545 546
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
547
		break;
548 549 550
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
551
		if (kvm->created_vcpus) {
552 553
			r = -EBUSY;
		} else if (test_facility(64)) {
554 555
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
556 557 558 559 560 561
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
562 563 564 565 566 567 568 569 570 571 572 573 574
	case KVM_CAP_S390_AIS:
		mutex_lock(&kvm->lock);
		if (kvm->created_vcpus) {
			r = -EBUSY;
		} else {
			set_kvm_facility(kvm->arch.model.fac_mask, 72);
			set_kvm_facility(kvm->arch.model.fac_list, 72);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: AIS %s",
			 r ? "(not available)" : "(success)");
		break;
F
Fan Zhang 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588
	case KVM_CAP_S390_GS:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(133)) {
			set_kvm_facility(kvm->arch.model.fac_mask, 133);
			set_kvm_facility(kvm->arch.model.fac_list, 133);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
			 r ? "(not available)" : "(success)");
		break;
589
	case KVM_CAP_S390_USER_STSI:
590
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
591 592 593
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
594 595 596 597 598 599
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
600 601 602 603 604 605 606
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

607 608 609 610 611 612 613
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
614
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
615 616
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
617 618 619 620 621 622 623 624 625 626
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
627 628 629 630 631
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
632
		ret = -ENXIO;
633
		if (!sclp.has_cmma)
634 635
			break;

636
		ret = -EBUSY;
637
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
638
		mutex_lock(&kvm->lock);
639
		if (!kvm->created_vcpus) {
640 641 642 643 644 645
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
646 647 648
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
649 650 651 652
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

653
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
654 655
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
656
		s390_reset_cmma(kvm->arch.gmap->mm);
657 658 659 660
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
661 662 663 664 665 666 667 668 669
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

670 671
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
672 673
			return -E2BIG;

674 675 676
		if (!new_limit)
			return -EINVAL;

677
		/* gmap_create takes last usable address */
678 679 680
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

681 682
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
683
		if (!kvm->created_vcpus) {
684 685
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
686 687 688 689

			if (!new) {
				ret = -ENOMEM;
			} else {
690
				gmap_remove(kvm->arch.gmap);
691 692 693 694 695 696
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
697 698 699
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
700 701
		break;
	}
702 703 704 705 706 707 708
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

709 710 711 712 713 714 715
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

716
	if (!test_kvm_facility(kvm, 76))
717 718 719 720 721 722 723 724 725
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
726
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
727 728 729 730 731 732
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
733
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
734 735 736 737 738
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
739
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
740 741 742 743 744
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
745
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
746 747 748 749 750 751 752 753 754 755 756 757 758 759
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
{
	int cx;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(cx, vcpu, kvm)
		kvm_s390_sync_request(req, vcpu);
}

/*
 * Must be called with kvm->srcu held to avoid races on memslots, and with
 * kvm->lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
 */
static int kvm_s390_vm_start_migration(struct kvm *kvm)
{
	struct kvm_s390_migration_state *mgs;
	struct kvm_memory_slot *ms;
	/* should be the only one */
	struct kvm_memslots *slots;
	unsigned long ram_pages;
	int slotnr;

	/* migration mode already enabled */
	if (kvm->arch.migration_state)
		return 0;

	slots = kvm_memslots(kvm);
	if (!slots || !slots->used_slots)
		return -EINVAL;

	mgs = kzalloc(sizeof(*mgs), GFP_KERNEL);
	if (!mgs)
		return -ENOMEM;
	kvm->arch.migration_state = mgs;

	if (kvm->arch.use_cmma) {
		/*
		 * Get the last slot. They should be sorted by base_gfn, so the
		 * last slot is also the one at the end of the address space.
		 * We have verified above that at least one slot is present.
		 */
		ms = slots->memslots + slots->used_slots - 1;
		/* round up so we only use full longs */
		ram_pages = roundup(ms->base_gfn + ms->npages, BITS_PER_LONG);
		/* allocate enough bytes to store all the bits */
		mgs->pgste_bitmap = vmalloc(ram_pages / 8);
		if (!mgs->pgste_bitmap) {
			kfree(mgs);
			kvm->arch.migration_state = NULL;
			return -ENOMEM;
		}

		mgs->bitmap_size = ram_pages;
		atomic64_set(&mgs->dirty_pages, ram_pages);
		/* mark all the pages in active slots as dirty */
		for (slotnr = 0; slotnr < slots->used_slots; slotnr++) {
			ms = slots->memslots + slotnr;
			bitmap_set(mgs->pgste_bitmap, ms->base_gfn, ms->npages);
		}

		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
	}
	return 0;
}

/*
 * Must be called with kvm->lock to avoid races with ourselves and
 * kvm_s390_vm_start_migration.
 */
static int kvm_s390_vm_stop_migration(struct kvm *kvm)
{
	struct kvm_s390_migration_state *mgs;

	/* migration mode already disabled */
	if (!kvm->arch.migration_state)
		return 0;
	mgs = kvm->arch.migration_state;
	kvm->arch.migration_state = NULL;

	if (kvm->arch.use_cmma) {
		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
		vfree(mgs->pgste_bitmap);
	}
	kfree(mgs);
	return 0;
}

static int kvm_s390_vm_set_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	int idx, res = -ENXIO;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_MIGRATION_START:
		idx = srcu_read_lock(&kvm->srcu);
		res = kvm_s390_vm_start_migration(kvm);
		srcu_read_unlock(&kvm->srcu, idx);
		break;
	case KVM_S390_VM_MIGRATION_STOP:
		res = kvm_s390_vm_stop_migration(kvm);
		break;
	default:
		break;
	}
	mutex_unlock(&kvm->lock);

	return res;
}

static int kvm_s390_vm_get_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	u64 mig = (kvm->arch.migration_state != NULL);

	if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
		return -ENXIO;

	if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
		return -EFAULT;
	return 0;
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	if (test_kvm_facility(kvm, 139))
		kvm_s390_set_tod_clock_ext(kvm, &gtod);
	else if (gtod.epoch_idx == 0)
		kvm_s390_set_tod_clock(kvm, gtod.tod);
	else
		return -EINVAL;

	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);

	return 0;
}

903 904 905 906 907 908 909 910 911 912
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
913
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
914 915 916 917 918 919

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
920
	u64 gtod;
921 922 923 924

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

925
	kvm_s390_set_tod_clock(kvm, gtod);
926
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
927 928 929 930 931 932 933 934 935 936 937
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
938 939 940
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_set_tod_ext(kvm, attr);
		break;
941 942 943 944 945 946 947 948 949 950 951 952 953
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static void kvm_s390_get_tod_clock_ext(struct kvm *kvm,
					struct kvm_s390_vm_tod_clock *gtod)
{
	struct kvm_s390_tod_clock_ext htod;

	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	gtod->tod = htod.tod + kvm->arch.epoch;
	gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx;

	if (gtod->tod < htod.tod)
		gtod->epoch_idx += 1;

	preempt_enable();
}

static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	memset(&gtod, 0, sizeof(gtod));

	if (test_kvm_facility(kvm, 139))
		kvm_s390_get_tod_clock_ext(kvm, &gtod);
	else
		gtod.tod = kvm_s390_get_tod_clock_fast(kvm);

	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);
	return 0;
}

991 992 993 994 995 996 997
static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
998
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
999 1000 1001 1002 1003 1004

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
1005
	u64 gtod;
1006

1007
	gtod = kvm_s390_get_tod_clock_fast(kvm);
1008 1009
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
1010
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
1023 1024 1025
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_get_tod_ext(kvm, attr);
		break;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

1039 1040 1041
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
1042
	u16 lowest_ibc, unblocked_ibc;
1043 1044 1045
	int ret = 0;

	mutex_lock(&kvm->lock);
1046
	if (kvm->created_vcpus) {
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
1057
		kvm->arch.model.cpuid = proc->cpuid;
1058 1059
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
1060
		if (lowest_ibc && proc->ibc) {
1061 1062 1063 1064 1065 1066 1067
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
1068
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
1069
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
1070 1071 1072 1073 1074 1075 1076
		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
			 kvm->arch.model.ibc,
			 kvm->arch.model.cpuid);
		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
			 kvm->arch.model.fac_list[0],
			 kvm->arch.model.fac_list[1],
			 kvm->arch.model.fac_list[2]);
1077 1078 1079 1080 1081 1082 1083 1084
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

1118 1119 1120 1121 1122 1123 1124 1125
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
1126 1127 1128
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
1129 1130 1131
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
1146
	proc->cpuid = kvm->arch.model.cpuid;
1147
	proc->ibc = kvm->arch.model.ibc;
1148 1149
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1150 1151 1152 1153 1154 1155 1156
	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
		 kvm->arch.model.fac_list[0],
		 kvm->arch.model.fac_list[1],
		 kvm->arch.model.fac_list[2]);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
1175
	mach->ibc = sclp.ibc;
1176
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1177
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1178
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
1179
	       sizeof(S390_lowcore.stfle_fac_list));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_mask[0],
		 mach->fac_mask[1],
		 mach->fac_mask[2]);
	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_list[0],
		 mach->fac_list[1],
		 mach->fac_list[2]);
1191 1192 1193 1194 1195 1196 1197
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
1253 1254 1255 1256 1257 1258
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
1259 1260 1261 1262 1263 1264
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
1265 1266 1267 1268
	}
	return ret;
}

1269 1270 1271 1272 1273
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1274
	case KVM_S390_VM_MEM_CTRL:
1275
		ret = kvm_s390_set_mem_control(kvm, attr);
1276
		break;
1277 1278 1279
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1280 1281 1282
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1283 1284 1285
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1286 1287 1288
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_set_migration(kvm, attr);
		break;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1299 1300 1301 1302 1303 1304
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1305 1306 1307
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1308 1309 1310
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1311 1312 1313
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_get_migration(kvm, attr);
		break;
1314 1315 1316 1317 1318 1319
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1320 1321 1322 1323 1324 1325 1326
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1327 1328 1329 1330
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1331 1332
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1333
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1334 1335 1336 1337 1338 1339 1340
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1352 1353 1354 1355
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1356 1357
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1358
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1359 1360
			ret = 0;
			break;
1361 1362
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1363 1364 1365 1366 1367
		default:
			ret = -ENXIO;
			break;
		}
		break;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1381 1382 1383
	case KVM_S390_VM_MIGRATION:
		ret = 0;
		break;
1384 1385 1386 1387 1388 1389 1390 1391
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1392 1393 1394 1395
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1396
	int srcu_idx, i, r = 0;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1409
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1410 1411 1412
	if (!keys)
		return -ENOMEM;

1413
	down_read(&current->mm->mmap_sem);
1414
	srcu_idx = srcu_read_lock(&kvm->srcu);
1415 1416 1417 1418
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1419
			break;
1420 1421
		}

1422 1423
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1424
			break;
1425
	}
1426
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1427 1428 1429 1430 1431 1432 1433
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1444
	int srcu_idx, i, r = 0;
1445 1446 1447 1448 1449 1450 1451 1452

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1453
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1465 1466 1467
	r = s390_enable_skey();
	if (r)
		goto out;
1468

1469
	down_read(&current->mm->mmap_sem);
1470
	srcu_idx = srcu_read_lock(&kvm->srcu);
1471 1472 1473 1474
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1475
			break;
1476 1477 1478 1479 1480
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1481
			break;
1482 1483
		}

1484
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1485
		if (r)
1486
			break;
1487
	}
1488
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1489
	up_read(&current->mm->mmap_sem);
1490 1491 1492 1493 1494
out:
	kvfree(keys);
	return r;
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/*
 * Base address and length must be sent at the start of each block, therefore
 * it's cheaper to send some clean data, as long as it's less than the size of
 * two longs.
 */
#define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
/* for consistency */
#define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)

/*
 * This function searches for the next page with dirty CMMA attributes, and
 * saves the attributes in the buffer up to either the end of the buffer or
 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
 * no trailing clean bytes are saved.
 * In case no dirty bits were found, or if CMMA was not enabled or used, the
 * output buffer will indicate 0 as length.
 */
static int kvm_s390_get_cmma_bits(struct kvm *kvm,
				  struct kvm_s390_cmma_log *args)
{
	struct kvm_s390_migration_state *s = kvm->arch.migration_state;
	unsigned long bufsize, hva, pgstev, i, next, cur;
	int srcu_idx, peek, r = 0, rr;
	u8 *res;

	cur = args->start_gfn;
	i = next = pgstev = 0;

	if (unlikely(!kvm->arch.use_cmma))
		return -ENXIO;
	/* Invalid/unsupported flags were specified */
	if (args->flags & ~KVM_S390_CMMA_PEEK)
		return -EINVAL;
	/* Migration mode query, and we are not doing a migration */
	peek = !!(args->flags & KVM_S390_CMMA_PEEK);
	if (!peek && !s)
		return -EINVAL;
	/* CMMA is disabled or was not used, or the buffer has length zero */
	bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
	if (!bufsize || !kvm->mm->context.use_cmma) {
		memset(args, 0, sizeof(*args));
		return 0;
	}

	if (!peek) {
		/* We are not peeking, and there are no dirty pages */
		if (!atomic64_read(&s->dirty_pages)) {
			memset(args, 0, sizeof(*args));
			return 0;
		}
		cur = find_next_bit(s->pgste_bitmap, s->bitmap_size,
				    args->start_gfn);
		if (cur >= s->bitmap_size)	/* nothing found, loop back */
			cur = find_next_bit(s->pgste_bitmap, s->bitmap_size, 0);
		if (cur >= s->bitmap_size) {	/* again! (very unlikely) */
			memset(args, 0, sizeof(*args));
			return 0;
		}
		next = find_next_bit(s->pgste_bitmap, s->bitmap_size, cur + 1);
	}

	res = vmalloc(bufsize);
	if (!res)
		return -ENOMEM;

	args->start_gfn = cur;

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
	while (i < bufsize) {
		hva = gfn_to_hva(kvm, cur);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			break;
		}
		/* decrement only if we actually flipped the bit to 0 */
		if (!peek && test_and_clear_bit(cur, s->pgste_bitmap))
			atomic64_dec(&s->dirty_pages);
		r = get_pgste(kvm->mm, hva, &pgstev);
		if (r < 0)
			pgstev = 0;
		/* save the value */
		res[i++] = (pgstev >> 24) & 0x3;
		/*
		 * if the next bit is too far away, stop.
		 * if we reached the previous "next", find the next one
		 */
		if (!peek) {
			if (next > cur + KVM_S390_MAX_BIT_DISTANCE)
				break;
			if (cur == next)
				next = find_next_bit(s->pgste_bitmap,
						     s->bitmap_size, cur + 1);
		/* reached the end of the bitmap or of the buffer, stop */
			if ((next >= s->bitmap_size) ||
			    (next >= args->start_gfn + bufsize))
				break;
		}
		cur++;
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);
	args->count = i;
	args->remaining = s ? atomic64_read(&s->dirty_pages) : 0;

	rr = copy_to_user((void __user *)args->values, res, args->count);
	if (rr)
		r = -EFAULT;

	vfree(res);
	return r;
}

/*
 * This function sets the CMMA attributes for the given pages. If the input
 * buffer has zero length, no action is taken, otherwise the attributes are
 * set and the mm->context.use_cmma flag is set.
 */
static int kvm_s390_set_cmma_bits(struct kvm *kvm,
				  const struct kvm_s390_cmma_log *args)
{
	unsigned long hva, mask, pgstev, i;
	uint8_t *bits;
	int srcu_idx, r = 0;

	mask = args->mask;

	if (!kvm->arch.use_cmma)
		return -ENXIO;
	/* invalid/unsupported flags */
	if (args->flags != 0)
		return -EINVAL;
	/* Enforce sane limit on memory allocation */
	if (args->count > KVM_S390_CMMA_SIZE_MAX)
		return -EINVAL;
	/* Nothing to do */
	if (args->count == 0)
		return 0;

	bits = vmalloc(sizeof(*bits) * args->count);
	if (!bits)
		return -ENOMEM;

	r = copy_from_user(bits, (void __user *)args->values, args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			break;
		}

		pgstev = bits[i];
		pgstev = pgstev << 24;
		mask &= _PGSTE_GPS_USAGE_MASK;
		set_pgste_bits(kvm->mm, hva, mask, pgstev);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);

	if (!kvm->mm->context.use_cmma) {
		down_write(&kvm->mm->mmap_sem);
		kvm->mm->context.use_cmma = 1;
		up_write(&kvm->mm->mmap_sem);
	}
out:
	vfree(bits);
	return r;
}

1671 1672 1673 1674 1675
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1676
	struct kvm_device_attr attr;
1677 1678 1679
	int r;

	switch (ioctl) {
1680 1681 1682 1683 1684 1685 1686 1687 1688
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1689 1690 1691 1692 1693 1694 1695 1696
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1697 1698 1699 1700 1701 1702 1703
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1704
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1705 1706 1707
		}
		break;
	}
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	case KVM_S390_GET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
		r = kvm_s390_get_cmma_bits(kvm, &args);
		if (!r) {
			r = copy_to_user(argp, &args, sizeof(args));
			if (r)
				r = -EFAULT;
		}
		break;
	}
	case KVM_S390_SET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
		r = kvm_s390_set_cmma_bits(kvm, &args);
		break;
	}
1772
	default:
1773
		r = -ENOTTY;
1774 1775 1776 1777 1778
	}

	return r;
}

1779 1780 1781
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1782
	u32 cc = 0;
1783

1784
	memset(config, 0, 128);
1785 1786 1787 1788
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1789
		"0: ipm %0\n"
1790
		"srl %0,28\n"
1791 1792 1793
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1806
	if (test_facility(12)) {
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1828
static u64 kvm_s390_get_initial_cpuid(void)
1829
{
1830 1831 1832 1833 1834
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1835 1836
}

1837
static void kvm_s390_crypto_init(struct kvm *kvm)
1838
{
1839
	if (!test_kvm_facility(kvm, 76))
1840
		return;
1841

1842
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1843
	kvm_s390_set_crycb_format(kvm);
1844

1845 1846 1847 1848 1849 1850 1851
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1852 1853
}

1854 1855 1856
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1857
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1858 1859 1860 1861 1862
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1863
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1864
{
1865
	gfp_t alloc_flags = GFP_KERNEL;
1866
	int i, rc;
1867
	char debug_name[16];
1868
	static unsigned long sca_offset;
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1881 1882
	rc = s390_enable_sie();
	if (rc)
1883
		goto out_err;
1884

1885 1886
	rc = -ENOMEM;

J
Janosch Frank 已提交
1887 1888
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1889
	kvm->arch.use_esca = 0; /* start with basic SCA */
1890 1891
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1892
	rwlock_init(&kvm->arch.sca_lock);
1893
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1894
	if (!kvm->arch.sca)
1895
		goto out_err;
1896
	spin_lock(&kvm_lock);
1897
	sca_offset += 16;
1898
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1899
		sca_offset = 0;
1900 1901
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1902
	spin_unlock(&kvm_lock);
1903 1904 1905

	sprintf(debug_name, "kvm-%u", current->pid);

1906
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1907
	if (!kvm->arch.dbf)
1908
		goto out_err;
1909

1910 1911 1912
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1913
		goto out_err;
1914

1915
	/* Populate the facility mask initially. */
1916
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1917
	       sizeof(S390_lowcore.stfle_fac_list));
1918 1919
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1920
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1921
		else
1922
			kvm->arch.model.fac_mask[i] = 0UL;
1923 1924
	}

1925
	/* Populate the facility list initially. */
1926 1927
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1928 1929
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1930 1931 1932
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1933
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1934
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1935

1936
	kvm_s390_crypto_init(kvm);
1937

1938 1939 1940
	mutex_init(&kvm->arch.float_int.ais_lock);
	kvm->arch.float_int.simm = 0;
	kvm->arch.float_int.nimm = 0;
1941
	spin_lock_init(&kvm->arch.float_int.lock);
1942 1943
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1944
	init_waitqueue_head(&kvm->arch.ipte_wq);
1945
	mutex_init(&kvm->arch.ipte_mutex);
1946

1947
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1948
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1949

1950 1951
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1952
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1953
	} else {
1954
		if (sclp.hamax == U64_MAX)
1955
			kvm->arch.mem_limit = TASK_SIZE_MAX;
1956
		else
1957
			kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
1958
						    sclp.hamax + 1);
1959
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1960
		if (!kvm->arch.gmap)
1961
			goto out_err;
1962
		kvm->arch.gmap->private = kvm;
1963
		kvm->arch.gmap->pfault_enabled = 0;
1964
	}
1965 1966

	kvm->arch.css_support = 0;
1967
	kvm->arch.use_irqchip = 0;
1968
	kvm->arch.epoch = 0;
1969

1970
	spin_lock_init(&kvm->arch.start_stop_lock);
1971
	kvm_s390_vsie_init(kvm);
1972
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1973

1974
	return 0;
1975
out_err:
1976
	free_page((unsigned long)kvm->arch.sie_page2);
1977
	debug_unregister(kvm->arch.dbf);
1978
	sca_dispose(kvm);
1979
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1980
	return rc;
1981 1982
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

1993 1994 1995
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1996
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1997
	kvm_s390_clear_local_irqs(vcpu);
1998
	kvm_clear_async_pf_completion_queue(vcpu);
1999
	if (!kvm_is_ucontrol(vcpu->kvm))
2000
		sca_del_vcpu(vcpu);
2001 2002

	if (kvm_is_ucontrol(vcpu->kvm))
2003
		gmap_remove(vcpu->arch.gmap);
2004

2005
	if (vcpu->kvm->arch.use_cmma)
2006
		kvm_s390_vcpu_unsetup_cmma(vcpu);
2007
	free_page((unsigned long)(vcpu->arch.sie_block));
2008

2009
	kvm_vcpu_uninit(vcpu);
2010
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2011 2012 2013 2014 2015
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
2016
	struct kvm_vcpu *vcpu;
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
2027 2028
}

2029 2030
void kvm_arch_destroy_vm(struct kvm *kvm)
{
2031
	kvm_free_vcpus(kvm);
2032
	sca_dispose(kvm);
2033
	debug_unregister(kvm->arch.dbf);
2034
	free_page((unsigned long)kvm->arch.sie_page2);
2035
	if (!kvm_is_ucontrol(kvm))
2036
		gmap_remove(kvm->arch.gmap);
2037
	kvm_s390_destroy_adapters(kvm);
2038
	kvm_s390_clear_float_irqs(kvm);
2039
	kvm_s390_vsie_destroy(kvm);
2040 2041 2042 2043
	if (kvm->arch.migration_state) {
		vfree(kvm->arch.migration_state->pgste_bitmap);
		kfree(kvm->arch.migration_state);
	}
2044
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
2045 2046 2047
}

/* Section: vcpu related */
2048 2049
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
2050
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
2051 2052 2053 2054 2055 2056 2057
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

2058 2059
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
2060 2061
	if (!kvm_s390_use_sca_entries())
		return;
2062
	read_lock(&vcpu->kvm->arch.sca_lock);
2063 2064
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2065

2066
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2067
		sca->cpu[vcpu->vcpu_id].sda = 0;
2068 2069 2070 2071
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2072
		sca->cpu[vcpu->vcpu_id].sda = 0;
2073
	}
2074
	read_unlock(&vcpu->kvm->arch.sca_lock);
2075 2076
}

2077
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
2078
{
2079 2080 2081 2082 2083 2084 2085
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
	}
2086 2087 2088
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2089

2090
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2091 2092
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
2093
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2094
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2095
	} else {
2096
		struct bsca_block *sca = vcpu->kvm->arch.sca;
2097

2098
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2099 2100
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2101
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2102
	}
2103
	read_unlock(&vcpu->kvm->arch.sca_lock);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
2147
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2148 2149 2150 2151 2152 2153 2154 2155 2156
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

2157 2158
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
2159
	return 0;
2160 2161 2162 2163
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
2164 2165
	int rc;

2166 2167 2168 2169 2170
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
2171 2172
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
2173
	if (!sclp.has_esca || !sclp.has_64bscao)
2174 2175 2176 2177 2178 2179 2180
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
2181 2182
}

2183 2184
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
2185 2186
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2187 2188
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
2189
				    KVM_SYNC_ACRS |
2190 2191 2192
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
2193
	kvm_s390_set_prefix(vcpu, 0);
2194 2195
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
F
Fan Zhang 已提交
2196 2197
	if (test_kvm_facility(vcpu->kvm, 133))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
2198 2199 2200 2201
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
2202
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
2203 2204
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
2205 2206 2207 2208

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

2209 2210 2211
	return 0;
}

2212 2213 2214 2215
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
2216
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2217
	vcpu->arch.cputm_start = get_tod_clock_fast();
2218
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2219 2220 2221 2222 2223 2224
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
2225
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2226 2227
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
2228
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

2261 2262 2263
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
2264
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2265
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2266 2267
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
2268
	vcpu->arch.sie_block->cputm = cputm;
2269
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2270
	preempt_enable();
2271 2272
}

2273
/* update and get the cpu timer - can also be called from other VCPU threads */
2274 2275
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
2276
	unsigned int seq;
2277 2278 2279 2280 2281
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
2296
	return value;
2297 2298
}

2299 2300
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
2301

2302
	gmap_enable(vcpu->arch.enabled_gmap);
2303
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
2304
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2305
		__start_cpu_timer_accounting(vcpu);
2306
	vcpu->cpu = cpu;
2307 2308 2309 2310
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
2311
	vcpu->cpu = -1;
2312
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2313
		__stop_cpu_timer_accounting(vcpu);
2314
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
2315 2316
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
2317

2318 2319 2320 2321 2322 2323 2324
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
2325
	kvm_s390_set_prefix(vcpu, 0);
2326
	kvm_s390_set_cpu_timer(vcpu, 0);
2327 2328 2329 2330 2331
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
2332 2333 2334
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
2335
	vcpu->arch.sie_block->gbea = 1;
2336
	vcpu->arch.sie_block->pp = 0;
2337 2338
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2339 2340
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
2341
	kvm_s390_clear_local_irqs(vcpu);
2342 2343
}

2344
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
2345
{
2346
	mutex_lock(&vcpu->kvm->lock);
2347
	preempt_disable();
2348
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
2349
	preempt_enable();
2350
	mutex_unlock(&vcpu->kvm->lock);
2351
	if (!kvm_is_ucontrol(vcpu->kvm)) {
2352
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
2353
		sca_add_vcpu(vcpu);
2354
	}
2355 2356
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2357 2358
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
2359 2360
}

2361 2362
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
2363
	if (!test_kvm_facility(vcpu->kvm, 76))
2364 2365
		return;

2366 2367 2368 2369 2370 2371 2372
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

2373 2374 2375
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

2388
	vcpu->arch.sie_block->ecb2 &= ~ECB2_PFMFI;
2389 2390 2391
	return 0;
}

2392 2393 2394 2395 2396
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
2397
	if (test_kvm_facility(vcpu->kvm, 7))
2398
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
2399 2400
}

2401 2402
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
2403
	int rc = 0;
2404

2405 2406
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
2407 2408
						    CPUSTAT_STOPPED);

2409
	if (test_kvm_facility(vcpu->kvm, 78))
2410
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
2411
	else if (test_kvm_facility(vcpu->kvm, 8))
2412
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
2413

2414 2415
	kvm_s390_vcpu_setup_model(vcpu);

2416 2417
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
2418
		vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
2419
	if (test_kvm_facility(vcpu->kvm, 9))
2420
		vcpu->arch.sie_block->ecb |= ECB_SRSI;
2421
	if (test_kvm_facility(vcpu->kvm, 73))
2422
		vcpu->arch.sie_block->ecb |= ECB_TE;
2423

2424
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
2425
		vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
2426
	if (test_kvm_facility(vcpu->kvm, 130))
2427 2428
		vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
	vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
2429
	if (sclp.has_cei)
2430
		vcpu->arch.sie_block->eca |= ECA_CEI;
2431
	if (sclp.has_ib)
2432
		vcpu->arch.sie_block->eca |= ECA_IB;
2433
	if (sclp.has_siif)
2434
		vcpu->arch.sie_block->eca |= ECA_SII;
2435
	if (sclp.has_sigpif)
2436
		vcpu->arch.sie_block->eca |= ECA_SIGPI;
2437
	if (test_kvm_facility(vcpu->kvm, 129)) {
2438 2439
		vcpu->arch.sie_block->eca |= ECA_VX;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
2440
	}
2441 2442 2443
	if (test_kvm_facility(vcpu->kvm, 139))
		vcpu->arch.sie_block->ecd |= ECD_MEF;

F
Fan Zhang 已提交
2444 2445
	vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx)
					| SDNXC;
2446
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
2447 2448 2449 2450 2451

	if (sclp.has_kss)
		atomic_or(CPUSTAT_KSS, &vcpu->arch.sie_block->cpuflags);
	else
		vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
2452

2453
	if (vcpu->kvm->arch.use_cmma) {
2454 2455 2456
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
2457
	}
2458
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2459
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2460

2461 2462
	kvm_s390_vcpu_crypto_setup(vcpu);

2463
	return rc;
2464 2465 2466 2467 2468
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
2469
	struct kvm_vcpu *vcpu;
2470
	struct sie_page *sie_page;
2471 2472
	int rc = -EINVAL;

2473
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2474 2475 2476
		goto out;

	rc = -ENOMEM;
2477

2478
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2479
	if (!vcpu)
2480
		goto out;
2481

2482
	BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
2483 2484
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
2485 2486
		goto out_free_cpu;

2487 2488 2489
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

2490 2491 2492 2493
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

2494
	vcpu->arch.sie_block->icpua = id;
2495 2496
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
2497
	vcpu->arch.local_int.wq = &vcpu->wq;
2498
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
2499
	seqcount_init(&vcpu->arch.cputm_seqcount);
2500

2501 2502
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2503
		goto out_free_sie_block;
2504
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2505
		 vcpu->arch.sie_block);
2506
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2507 2508

	return vcpu;
2509 2510
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2511
out_free_cpu:
2512
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2513
out:
2514 2515 2516 2517 2518
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2519
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2520 2521
}

2522
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2523
{
2524
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2525
	exit_sie(vcpu);
2526 2527
}

2528
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2529
{
2530
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2531 2532
}

2533 2534
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2535
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2536
	exit_sie(vcpu);
2537 2538 2539 2540
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2541
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2542 2543
}

2544 2545 2546 2547 2548 2549
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2550
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2551 2552 2553 2554
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2555 2556
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2557
{
2558 2559
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2560 2561
}

2562 2563
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2564 2565 2566
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2567 2568
	unsigned long prefix;
	int i;
2569

2570 2571
	if (gmap_is_shadow(gmap))
		return;
2572 2573 2574
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2575 2576
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2577 2578 2579 2580
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2581
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2582 2583 2584 2585
		}
	}
}

2586 2587 2588 2589 2590 2591 2592
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2593 2594 2595 2596 2597 2598
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2599 2600 2601 2602 2603 2604 2605 2606
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2607
	case KVM_REG_S390_CPU_TIMER:
2608
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2609 2610 2611 2612 2613 2614
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2627 2628 2629 2630
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2631 2632 2633 2634
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2646
	__u64 val;
2647 2648

	switch (reg->id) {
2649 2650 2651 2652 2653 2654 2655 2656
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2657
	case KVM_REG_S390_CPU_TIMER:
2658 2659 2660
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2661 2662 2663 2664 2665
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2666 2667 2668
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2669 2670
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2671 2672 2673 2674 2675 2676 2677 2678 2679
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2680 2681 2682 2683
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2684 2685 2686 2687
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2688 2689 2690 2691 2692 2693
	default:
		break;
	}

	return r;
}
2694

2695 2696 2697 2698 2699 2700 2701 2702
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2703
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2704 2705 2706 2707 2708
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2709
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2710 2711 2712 2713 2714 2715
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2716
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2717 2718 2719 2720 2721 2722 2723
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2724
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2725 2726 2727 2728 2729 2730
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2731 2732
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2733
	vcpu->run->s.regs.fpc = fpu->fpc;
2734
	if (MACHINE_HAS_VX)
2735 2736
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2737
	else
2738
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2739 2740 2741 2742 2743
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2744 2745 2746
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
2747 2748
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
2749
	else
2750
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2751
	fpu->fpc = vcpu->run->s.regs.fpc;
2752 2753 2754 2755 2756 2757 2758
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2759
	if (!is_vcpu_stopped(vcpu))
2760
		rc = -EBUSY;
2761 2762 2763 2764
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2765 2766 2767 2768 2769 2770 2771 2772 2773
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2774 2775 2776 2777
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2778 2779
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2780
{
2781 2782 2783 2784 2785
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2786
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2787
		return -EINVAL;
2788 2789
	if (!sclp.has_gpere)
		return -EINVAL;
2790 2791 2792 2793

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2794
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2795 2796 2797 2798

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2799
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2800 2801 2802 2803 2804 2805
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2806
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2807 2808 2809
	}

	return rc;
2810 2811
}

2812 2813 2814
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2815 2816 2817
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2818 2819 2820 2821 2822
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2843 2844
}

2845 2846 2847 2848 2849
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2850 2851
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2852
retry:
2853
	kvm_s390_vcpu_request_handled(vcpu);
R
Radim Krčmář 已提交
2854
	if (!kvm_request_pending(vcpu))
2855
		return 0;
2856 2857
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2858
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2859 2860 2861 2862
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2863
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2864
		int rc;
2865 2866 2867
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2868 2869
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2870
			return rc;
2871
		}
2872
		goto retry;
2873
	}
2874

2875 2876 2877 2878 2879
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2880 2881 2882
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2883
			atomic_or(CPUSTAT_IBS,
2884 2885 2886
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2887
	}
2888 2889 2890 2891

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2892
			atomic_andnot(CPUSTAT_IBS,
2893 2894 2895 2896 2897
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2898 2899 2900 2901 2902
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
		/*
		 * Disable CMMA virtualization; we will emulate the ESSA
		 * instruction manually, in order to provide additional
		 * functionalities needed for live migration.
		 */
		vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
		goto retry;
	}

	if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
		/*
		 * Re-enable CMMA virtualization if CMMA is available and
		 * was used.
		 */
		if ((vcpu->kvm->arch.use_cmma) &&
		    (vcpu->kvm->mm->context.use_cmma))
			vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
		goto retry;
	}

2924
	/* nothing to do, just clear the request */
2925
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
2926

2927 2928 2929
	return 0;
}

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
void kvm_s390_set_tod_clock_ext(struct kvm *kvm,
				 const struct kvm_s390_vm_tod_clock *gtod)
{
	struct kvm_vcpu *vcpu;
	struct kvm_s390_tod_clock_ext htod;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	kvm->arch.epoch = gtod->tod - htod.tod;
	kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx;

	if (kvm->arch.epoch > gtod->tod)
		kvm->arch.epdx -= 1;

	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
		vcpu->arch.sie_block->epdx  = kvm->arch.epdx;
	}

	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2986
{
2987 2988
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2989 2990
}

2991 2992 2993 2994
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2995
	struct kvm_s390_irq irq;
2996 2997

	if (start_token) {
2998 2999 3000
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
3001 3002
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
3003
		inti.parm64 = token;
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
3050
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
3051 3052 3053 3054 3055 3056
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
3057 3058 3059
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
3060 3061 3062 3063 3064 3065
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

3066
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
3067
{
3068
	int rc, cpuflags;
3069

3070 3071 3072 3073 3074 3075 3076
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

3077 3078
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
3079 3080 3081 3082

	if (need_resched())
		schedule();

3083
	if (test_cpu_flag(CIF_MCCK_PENDING))
3084 3085
		s390_handle_mcck();

3086 3087 3088 3089 3090
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
3091

3092 3093 3094 3095
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

3096 3097 3098 3099 3100
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

3101
	vcpu->arch.sie_block->icptcode = 0;
3102 3103 3104
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
3105

3106 3107 3108
	return 0;
}

3109 3110
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
3111 3112 3113 3114
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
3128
	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
3129
	ilen = insn_length(opcode);
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
3140 3141 3142
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
3143 3144
}

3145 3146
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
3147 3148 3149
	struct mcck_volatile_info *mcck_info;
	struct sie_page *sie_page;

3150 3151 3152 3153
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

3154 3155 3156
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

3157 3158
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168
	if (exit_reason == -EINTR) {
		VCPU_EVENT(vcpu, 3, "%s", "machine check");
		sie_page = container_of(vcpu->arch.sie_block,
					struct sie_page, sie_block);
		mcck_info = &sie_page->mcck_info;
		kvm_s390_reinject_machine_check(vcpu, mcck_info);
		return 0;
	}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
3182 3183 3184 3185 3186
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
3187
		return -EREMOTE;
3188
	} else if (current->thread.gmap_pfault) {
3189
		trace_kvm_s390_major_guest_pfault(vcpu);
3190
		current->thread.gmap_pfault = 0;
3191 3192 3193
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
3194
	}
3195
	return vcpu_post_run_fault_in_sie(vcpu);
3196 3197 3198 3199 3200 3201
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

3202 3203 3204 3205 3206 3207
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

3208 3209 3210 3211
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
3212

3213
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3214 3215 3216 3217
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
3218
		local_irq_disable();
3219
		guest_enter_irqoff();
3220
		__disable_cpu_timer_accounting(vcpu);
3221
		local_irq_enable();
3222 3223
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
3224
		local_irq_disable();
3225
		__enable_cpu_timer_accounting(vcpu);
3226
		guest_exit_irqoff();
3227
		local_irq_enable();
3228
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3229 3230

		rc = vcpu_post_run(vcpu, exit_reason);
3231
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
3232

3233
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3234
	return rc;
3235 3236
}

3237 3238
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3239
	struct runtime_instr_cb *riccb;
F
Fan Zhang 已提交
3240
	struct gs_cb *gscb;
3241 3242

	riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
F
Fan Zhang 已提交
3243
	gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
3244 3245 3246 3247 3248 3249
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
3250 3251
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3252 3253
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
3254
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
3255 3256 3257 3258 3259 3260 3261 3262 3263
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
3264 3265
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
3266
	}
F
Fan Zhang 已提交
3267 3268 3269 3270 3271
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
3272 3273
	    test_kvm_facility(vcpu->kvm, 64) &&
	    riccb->valid &&
3274
	    !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
3275
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
3276
		vcpu->arch.sie_block->ecb3 |= ECB3_RI;
F
Fan Zhang 已提交
3277
	}
F
Fan Zhang 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	/*
	 * If userspace sets the gscb (e.g. after migration) to non-zero,
	 * we should enable GS here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
	    test_kvm_facility(vcpu->kvm, 133) &&
	    gscb->gssm &&
	    !vcpu->arch.gs_enabled) {
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
		vcpu->arch.sie_block->ecb |= ECB_GS;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
		vcpu->arch.gs_enabled = 1;
F
Fan Zhang 已提交
3290
	}
3291 3292
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	if (MACHINE_HAS_GS) {
		preempt_disable();
		__ctl_set_bit(2, 4);
		if (current->thread.gs_cb) {
			vcpu->arch.host_gscb = current->thread.gs_cb;
			save_gs_cb(vcpu->arch.host_gscb);
		}
		if (vcpu->arch.gs_enabled) {
			current->thread.gs_cb = (struct gs_cb *)
						&vcpu->run->s.regs.gscb;
			restore_gs_cb(current->thread.gs_cb);
		}
		preempt_enable();
	}
F
Fan Zhang 已提交
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
3329
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
3330 3331 3332 3333 3334 3335 3336
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
3337 3338
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
3339 3340 3341 3342 3343 3344
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
F
Fan Zhang 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	if (MACHINE_HAS_GS) {
		__ctl_set_bit(2, 4);
		if (vcpu->arch.gs_enabled)
			save_gs_cb(current->thread.gs_cb);
		preempt_disable();
		current->thread.gs_cb = vcpu->arch.host_gscb;
		restore_gs_cb(vcpu->arch.host_gscb);
		preempt_enable();
		if (!vcpu->arch.host_gscb)
			__ctl_clear_bit(2, 4);
		vcpu->arch.host_gscb = NULL;
	}
3357

3358 3359
}

3360 3361
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3362
	int rc;
3363 3364
	sigset_t sigsaved;

3365 3366 3367
	if (kvm_run->immediate_exit)
		return -EINTR;

3368 3369 3370 3371 3372
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

3373 3374 3375
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

3376 3377 3378
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
3379
		pr_err_ratelimited("can't run stopped vcpu %d\n",
3380 3381 3382
				   vcpu->vcpu_id);
		return -EINVAL;
	}
3383

3384
	sync_regs(vcpu, kvm_run);
3385
	enable_cpu_timer_accounting(vcpu);
3386

3387
	might_fault();
3388
	rc = __vcpu_run(vcpu);
3389

3390 3391
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
3392
		rc = -EINTR;
3393
	}
3394

3395 3396 3397 3398 3399
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

3400
	if (rc == -EREMOTE) {
3401
		/* userspace support is needed, kvm_run has been prepared */
3402 3403
		rc = 0;
	}
3404

3405
	disable_cpu_timer_accounting(vcpu);
3406
	store_regs(vcpu, kvm_run);
3407

3408 3409 3410 3411
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
3412
	return rc;
3413 3414 3415 3416 3417 3418 3419 3420
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
3421
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
3422
{
3423
	unsigned char archmode = 1;
3424
	freg_t fprs[NUM_FPRS];
3425
	unsigned int px;
3426
	u64 clkcomp, cputm;
3427
	int rc;
3428

3429
	px = kvm_s390_get_prefix(vcpu);
3430 3431
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
3432
			return -EFAULT;
3433
		gpa = 0;
3434 3435
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
3436
			return -EFAULT;
3437 3438 3439
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
3440 3441 3442

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
3443
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
3444 3445 3446 3447
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
3448
				     vcpu->run->s.regs.fprs, 128);
3449
	}
3450
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
3451
			      vcpu->run->s.regs.gprs, 128);
3452
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
3453
			      &vcpu->arch.sie_block->gpsw, 16);
3454
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
3455
			      &px, 4);
3456
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
3457
			      &vcpu->run->s.regs.fpc, 4);
3458
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
3459
			      &vcpu->arch.sie_block->todpr, 4);
3460
	cputm = kvm_s390_get_cpu_timer(vcpu);
3461
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
3462
			      &cputm, 8);
3463
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
3464
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
3465
			      &clkcomp, 8);
3466
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
3467
			      &vcpu->run->s.regs.acrs, 64);
3468
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
3469 3470
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
3471 3472
}

3473 3474 3475 3476
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
3477
	 * switch in the run ioctl. Let's update our copies before we save
3478 3479
	 * it into the save area
	 */
3480
	save_fpu_regs();
3481
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
3482 3483 3484 3485 3486
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

3487 3488 3489
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
3490
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
3505 3506
	if (!sclp.has_ibs)
		return;
3507
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
3508
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
3509 3510
}

3511 3512
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
3513 3514 3515 3516 3517
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

3518
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
3519
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3520
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

3540
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
3541 3542 3543 3544
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
3545
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3546
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3547
	return;
3548 3549 3550 3551
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
3552 3553 3554 3555 3556 3557
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

3558
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
3559
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3560
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3561 3562
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

3563
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
3564
	kvm_s390_clear_stop_irq(vcpu);
3565

3566
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

3584
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3585
	return;
3586 3587
}

3588 3589 3590 3591 3592 3593 3594 3595 3596
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
3597 3598 3599
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
3600
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3601 3602 3603 3604
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3605 3606 3607 3608 3609 3610 3611
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3638 3639
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3650 3651
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3673 3674 3675 3676 3677
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3678
	int idx;
3679
	long r;
3680

3681
	switch (ioctl) {
3682 3683 3684 3685 3686 3687 3688 3689 3690
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3691
	case KVM_S390_INTERRUPT: {
3692
		struct kvm_s390_interrupt s390int;
3693
		struct kvm_s390_irq s390irq;
3694

3695
		r = -EFAULT;
3696
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3697
			break;
3698 3699 3700
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3701
		break;
3702
	}
3703
	case KVM_S390_STORE_STATUS:
3704
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3705
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3706
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3707
		break;
3708 3709 3710
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3711
		r = -EFAULT;
3712
		if (copy_from_user(&psw, argp, sizeof(psw)))
3713 3714 3715
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3716 3717
	}
	case KVM_S390_INITIAL_RESET:
3718 3719
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3768
	case KVM_S390_VCPU_FAULT: {
3769
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3770 3771
		break;
	}
3772 3773 3774 3775 3776 3777 3778 3779 3780
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3781 3782 3783 3784 3785 3786 3787 3788 3789
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3822
	default:
3823
		r = -ENOTTY;
3824
	}
3825
	return r;
3826 3827
}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3841 3842
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3843 3844 3845 3846
{
	return 0;
}

3847
/* Section: memory related */
3848 3849
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3850
				   const struct kvm_userspace_memory_region *mem,
3851
				   enum kvm_mr_change change)
3852
{
3853 3854 3855 3856
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3857

3858
	if (mem->userspace_addr & 0xffffful)
3859 3860
		return -EINVAL;

3861
	if (mem->memory_size & 0xffffful)
3862 3863
		return -EINVAL;

3864 3865 3866
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3867 3868 3869 3870
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3871
				const struct kvm_userspace_memory_region *mem,
3872
				const struct kvm_memory_slot *old,
3873
				const struct kvm_memory_slot *new,
3874
				enum kvm_mr_change change)
3875
{
3876
	int rc;
3877

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3888 3889 3890 3891

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3892
		pr_warn("failed to commit memory region\n");
3893
	return;
3894 3895
}

3896 3897 3898 3899 3900 3901 3902
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3903 3904 3905 3906 3907
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3908 3909
static int __init kvm_s390_init(void)
{
3910 3911
	int i;

3912 3913 3914 3915 3916
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3917 3918 3919 3920
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3921
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3922 3923 3924 3925 3926 3927 3928 3929 3930
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3931 3932 3933 3934 3935 3936 3937 3938 3939

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");