kvm-s390.c 64.5 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30 31
#include <asm/lowcore.h>
#include <asm/pgtable.h>
32
#include <asm/nmi.h>
33
#include <asm/switch_to.h>
34
#include <asm/isc.h>
35
#include <asm/sclp.h>
36
#include "kvm-s390.h"
37 38
#include "gaccess.h"

39 40
#define CREATE_TRACE_POINTS
#include "trace.h"
41
#include "trace-s390.h"
42

43 44
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */

45 46 47 48
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
49
	{ "exit_null", VCPU_STAT(exit_null) },
50 51 52 53
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
54 55 56
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
57
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
58
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
59
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
60
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
61 62
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
63
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
64
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
65 66 67 68 69 70 71
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
72
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
73 74 75 76 77
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
78
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
79 80
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
81
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
82 83
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
84
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
85
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
86
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
87
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
88
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
89 90
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
91
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
92 93
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
94
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
95 96 97
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
98 99 100
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
101
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
102
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
103
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
104 105 106
	{ NULL }
};

107 108
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
109 110
	0xffe6fffbfcfdfc40UL,
	0x205c800000000000UL,
111
};
112

113
unsigned long kvm_s390_fac_list_mask_size(void)
114
{
115 116
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
117 118
}

119 120
static struct gmap_notifier gmap_notifier;

121
/* Section: not file related */
122
int kvm_arch_hardware_enable(void)
123 124
{
	/* every s390 is virtualization enabled ;-) */
125
	return 0;
126 127
}

128 129
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

130 131
int kvm_arch_hardware_setup(void)
{
132 133
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
134 135 136 137 138
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
139
	gmap_unregister_ipte_notifier(&gmap_notifier);
140 141 142 143
}

int kvm_arch_init(void *opaque)
{
144 145
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
146 147 148 149 150 151 152 153 154 155 156
}

/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

157
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
158
{
159 160
	int r;

161
	switch (ext) {
162
	case KVM_CAP_S390_PSW:
163
	case KVM_CAP_S390_GMAP:
164
	case KVM_CAP_SYNC_MMU:
165 166 167
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
168
	case KVM_CAP_ASYNC_PF:
169
	case KVM_CAP_SYNC_REGS:
170
	case KVM_CAP_ONE_REG:
171
	case KVM_CAP_ENABLE_CAP:
172
	case KVM_CAP_S390_CSS_SUPPORT:
173
	case KVM_CAP_IRQFD:
C
Cornelia Huck 已提交
174
	case KVM_CAP_IOEVENTFD:
175
	case KVM_CAP_DEVICE_CTRL:
176
	case KVM_CAP_ENABLE_CAP_VM:
177
	case KVM_CAP_S390_IRQCHIP:
178
	case KVM_CAP_VM_ATTRIBUTES:
179
	case KVM_CAP_MP_STATE:
180
	case KVM_CAP_S390_USER_SIGP:
181
	case KVM_CAP_S390_USER_STSI:
182
	case KVM_CAP_S390_SKEYS:
183 184
		r = 1;
		break;
185 186 187
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
188 189 190 191
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
192 193 194
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
195
	case KVM_CAP_S390_COW:
196
		r = MACHINE_HAS_ESOP;
197
		break;
198 199 200
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
201
	default:
202
		r = 0;
203
	}
204
	return r;
205 206
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

226 227 228 229 230 231 232
/* Section: vm related */
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	int r;
	unsigned long n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
263 264
}

265 266 267 268 269 270 271 272
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
273 274 275 276
	case KVM_CAP_S390_IRQCHIP:
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
277 278 279 280
	case KVM_CAP_S390_USER_SIGP:
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
281
	case KVM_CAP_S390_VECTOR_REGISTERS:
282 283 284 285 286 287
		if (MACHINE_HAS_VX) {
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
288
		break;
289 290 291 292
	case KVM_CAP_S390_USER_STSI:
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
293 294 295 296 297 298 299
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
334
		s390_reset_cmma(kvm->arch.gmap->mm);
335 336 337 338
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
		break;
	}
369 370 371 372 373 374 375
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

376 377 378 379 380 381 382
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

383
	if (!test_kvm_facility(kvm, 76))
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *cur_vcpu;
	unsigned int vcpu_idx;
	u64 host_tod, gtod;
	int r;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	mutex_lock(&kvm->lock);
	kvm->arch.epoch = gtod - host_tod;
	kvm_for_each_vcpu(vcpu_idx, cur_vcpu, kvm) {
		cur_vcpu->arch.sie_block->epoch = kvm->arch.epoch;
		exit_sie(cur_vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u64 host_tod, gtod;
	int r;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	gtod = host_tod + kvm->arch.epoch;
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
550
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
584
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
	mach->ibc = sclp_get_ibc();
604 605
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
606
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
607
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

630 631 632 633 634
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
635
	case KVM_S390_VM_MEM_CTRL:
636
		ret = kvm_s390_set_mem_control(kvm, attr);
637
		break;
638 639 640
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
641 642 643
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
644 645 646
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
647 648 649 650 651 652 653 654 655 656
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
657 658 659 660 661 662
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
663 664 665
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
666 667 668
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
669 670 671 672 673 674
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
675 676 677 678 679 680 681
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
682 683 684 685
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
686
		case KVM_S390_VM_MEM_LIMIT_SIZE:
687 688 689 690 691 692 693
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
694 695 696 697 698 699 700 701 702 703 704
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
705 706 707 708 709 710 711 712 713 714 715
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
716 717 718 719 720 721 722 723 724 725 726 727 728
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
729 730 731 732 733 734 735 736
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
	s390_enable_skey();

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

839 840 841 842 843
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
844
	struct kvm_device_attr attr;
845 846 847
	int r;

	switch (ioctl) {
848 849 850 851 852 853 854 855 856
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
857 858 859 860 861 862 863 864
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
865 866 867 868 869 870 871 872 873 874 875 876
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
			kvm_set_irq_routing(kvm, &routing, 0, 0);
			r = 0;
		}
		break;
	}
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
918
	default:
919
		r = -ENOTTY;
920 921 922 923 924
	}

	return r;
}

925 926 927
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
928
	u32 cc = 0;
929

930
	memset(config, 0, 128);
931 932 933 934
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
935
		"0: ipm %0\n"
936
		"srl %0,28\n"
937 938 939
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

974 975 976 977 978 979
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

980 981
static int kvm_s390_crypto_init(struct kvm *kvm)
{
982
	if (!test_kvm_facility(kvm, 76))
983 984 985 986 987 988 989
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

990
	kvm_s390_set_crycb_format(kvm);
991

992 993 994 995 996 997 998
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
999

1000 1001 1002
	return 0;
}

1003
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1004
{
1005
	int i, rc;
1006
	char debug_name[16];
1007
	static unsigned long sca_offset;
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1020 1021
	rc = s390_enable_sie();
	if (rc)
1022
		goto out_err;
1023

1024 1025
	rc = -ENOMEM;

1026 1027
	kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
	if (!kvm->arch.sca)
1028
		goto out_err;
1029 1030 1031 1032
	spin_lock(&kvm_lock);
	sca_offset = (sca_offset + 16) & 0x7f0;
	kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
	spin_unlock(&kvm_lock);
1033 1034 1035 1036 1037

	sprintf(debug_name, "kvm-%u", current->pid);

	kvm->arch.dbf = debug_register(debug_name, 8, 2, 8 * sizeof(long));
	if (!kvm->arch.dbf)
1038
		goto out_err;
1039

1040 1041 1042
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1043 1044
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1045 1046 1047
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1048
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1049
	if (!kvm->arch.model.fac)
1050
		goto out_err;
1051

1052
	/* Populate the facility mask initially. */
1053
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1054
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1055 1056
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1057
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1058
		else
1059
			kvm->arch.model.fac->mask[i] = 0UL;
1060 1061
	}

1062 1063 1064 1065
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1066
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1067
	kvm->arch.model.ibc = sclp_get_ibc() & 0x0fff;
1068

1069
	if (kvm_s390_crypto_init(kvm) < 0)
1070
		goto out_err;
1071

1072
	spin_lock_init(&kvm->arch.float_int.lock);
1073 1074
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1075
	init_waitqueue_head(&kvm->arch.ipte_wq);
1076
	mutex_init(&kvm->arch.ipte_mutex);
1077

1078 1079 1080
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
	VM_EVENT(kvm, 3, "%s", "vm created");

1081 1082 1083
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
1084
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1085
		if (!kvm->arch.gmap)
1086
			goto out_err;
1087
		kvm->arch.gmap->private = kvm;
1088
		kvm->arch.gmap->pfault_enabled = 0;
1089
	}
1090 1091

	kvm->arch.css_support = 0;
1092
	kvm->arch.use_irqchip = 0;
1093
	kvm->arch.epoch = 0;
1094

1095 1096
	spin_lock_init(&kvm->arch.start_stop_lock);

1097
	return 0;
1098
out_err:
1099
	kfree(kvm->arch.crypto.crycb);
1100
	free_page((unsigned long)kvm->arch.model.fac);
1101
	debug_unregister(kvm->arch.dbf);
1102
	free_page((unsigned long)(kvm->arch.sca));
1103
	return rc;
1104 1105
}

1106 1107 1108
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1109
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1110
	kvm_s390_clear_local_irqs(vcpu);
1111
	kvm_clear_async_pf_completion_queue(vcpu);
C
Carsten Otte 已提交
1112 1113 1114 1115 1116 1117 1118
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		clear_bit(63 - vcpu->vcpu_id,
			  (unsigned long *) &vcpu->kvm->arch.sca->mcn);
		if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
		    (__u64) vcpu->arch.sie_block)
			vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
	}
1119
	smp_mb();
1120 1121 1122 1123

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1124 1125
	if (kvm_s390_cmma_enabled(vcpu->kvm))
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1126
	free_page((unsigned long)(vcpu->arch.sie_block));
1127

1128
	kvm_vcpu_uninit(vcpu);
1129
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1130 1131 1132 1133 1134
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1135
	struct kvm_vcpu *vcpu;
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1146 1147
}

1148 1149
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1150
	kvm_free_vcpus(kvm);
1151
	free_page((unsigned long)kvm->arch.model.fac);
1152
	free_page((unsigned long)(kvm->arch.sca));
1153
	debug_unregister(kvm->arch.dbf);
1154
	kfree(kvm->arch.crypto.crycb);
1155 1156
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1157
	kvm_s390_destroy_adapters(kvm);
1158
	kvm_s390_clear_float_irqs(kvm);
1159 1160 1161
}

/* Section: vcpu related */
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1172 1173
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1174 1175
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1176 1177
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1178
				    KVM_SYNC_ACRS |
1179 1180 1181
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1182 1183
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1184 1185 1186 1187

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1188 1189 1190 1191 1192
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1193
	save_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1194
	if (test_kvm_facility(vcpu->kvm, 129))
1195 1196 1197
		save_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		save_fp_regs(vcpu->arch.host_fpregs.fprs);
1198
	save_access_regs(vcpu->arch.host_acrs);
1199
	if (test_kvm_facility(vcpu->kvm, 129)) {
1200 1201 1202 1203 1204 1205
		restore_fp_ctl(&vcpu->run->s.regs.fpc);
		restore_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1206
	restore_access_regs(vcpu->run->s.regs.acrs);
1207
	gmap_enable(vcpu->arch.gmap);
1208
	atomic_set_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1209 1210 1211 1212
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1213
	atomic_clear_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1214
	gmap_disable(vcpu->arch.gmap);
1215
	if (test_kvm_facility(vcpu->kvm, 129)) {
1216 1217 1218 1219 1220 1221
		save_fp_ctl(&vcpu->run->s.regs.fpc);
		save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1222
	save_access_regs(vcpu->run->s.regs.acrs);
1223
	restore_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1224
	if (test_kvm_facility(vcpu->kvm, 129))
1225 1226 1227
		restore_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		restore_fp_regs(vcpu->arch.host_fpregs.fprs);
1228 1229 1230 1231 1232 1233 1234 1235
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1236
	kvm_s390_set_prefix(vcpu, 0);
1237 1238 1239 1240 1241 1242 1243 1244 1245
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1246
	vcpu->arch.sie_block->pp = 0;
1247 1248
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1249 1250
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1251
	kvm_s390_clear_local_irqs(vcpu);
1252 1253
}

1254
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1255
{
1256 1257 1258
	mutex_lock(&vcpu->kvm->lock);
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
	mutex_unlock(&vcpu->kvm->lock);
1259 1260
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1261 1262
}

1263 1264
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1265
	if (!test_kvm_facility(vcpu->kvm, 76))
1266 1267
		return;

1268 1269 1270 1271 1272 1273 1274
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1275 1276 1277
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1304 1305
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1306
	int rc = 0;
1307

1308 1309
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1310 1311
						    CPUSTAT_STOPPED |
						    CPUSTAT_GED);
1312 1313
	kvm_s390_vcpu_setup_model(vcpu);

1314
	vcpu->arch.sie_block->ecb   = 6;
1315
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1316 1317
		vcpu->arch.sie_block->ecb |= 0x10;

1318
	vcpu->arch.sie_block->ecb2  = 8;
1319
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1320 1321
	if (sclp_has_siif())
		vcpu->arch.sie_block->eca |= 1;
1322 1323
	if (sclp_has_sigpif())
		vcpu->arch.sie_block->eca |= 0x10000000U;
1324
	if (test_kvm_facility(vcpu->kvm, 129)) {
1325 1326 1327
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1328
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1329

1330 1331 1332 1333
	if (kvm_s390_cmma_enabled(vcpu->kvm)) {
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1334
	}
1335
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1336
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1337

1338 1339
	kvm_s390_vcpu_crypto_setup(vcpu);

1340
	return rc;
1341 1342 1343 1344 1345
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1346
	struct kvm_vcpu *vcpu;
1347
	struct sie_page *sie_page;
1348 1349 1350 1351 1352 1353
	int rc = -EINVAL;

	if (id >= KVM_MAX_VCPUS)
		goto out;

	rc = -ENOMEM;
1354

1355
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1356
	if (!vcpu)
1357
		goto out;
1358

1359 1360
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1361 1362
		goto out_free_cpu;

1363 1364
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1365
	vcpu->arch.host_vregs = &sie_page->vregs;
1366

1367
	vcpu->arch.sie_block->icpua = id;
C
Carsten Otte 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	if (!kvm_is_ucontrol(kvm)) {
		if (!kvm->arch.sca) {
			WARN_ON_ONCE(1);
			goto out_free_cpu;
		}
		if (!kvm->arch.sca->cpu[id].sda)
			kvm->arch.sca->cpu[id].sda =
				(__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh =
			(__u32)(((__u64)kvm->arch.sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
		set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
	}
1381

1382 1383
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1384
	vcpu->arch.local_int.wq = &vcpu->wq;
1385
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1386

1387 1388
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1389
		goto out_free_sie_block;
1390 1391
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1392
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1393 1394

	return vcpu;
1395 1396
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1397
out_free_cpu:
1398
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1399
out:
1400 1401 1402 1403 1404
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1405
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1406 1407
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
void s390_vcpu_block(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

void s390_vcpu_unblock(struct kvm_vcpu *vcpu)
{
	atomic_clear_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

/* Kick a guest cpu out of SIE and prevent SIE-reentry */
void exit_sie_sync(struct kvm_vcpu *vcpu)
{
	s390_vcpu_block(vcpu);
	exit_sie(vcpu);
}

1436 1437 1438 1439 1440 1441 1442 1443
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1444
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1445 1446 1447 1448 1449 1450 1451
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
			exit_sie_sync(vcpu);
		}
	}
}

1452 1453 1454 1455 1456 1457 1458
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1459 1460 1461 1462 1463 1464
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1465 1466 1467 1468 1469 1470 1471 1472
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1473 1474 1475 1476 1477 1478 1479 1480
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1493 1494 1495 1496
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1497 1498 1499 1500
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1514 1515 1516 1517 1518 1519 1520 1521
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1522 1523 1524 1525 1526 1527 1528 1529
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1530 1531 1532
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1533 1534
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1535 1536 1537 1538 1539 1540 1541 1542 1543
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1544 1545 1546 1547
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1548 1549 1550 1551
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1552 1553 1554 1555 1556 1557
	default:
		break;
	}

	return r;
}
1558

1559 1560 1561 1562 1563 1564 1565 1566
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1567
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1568 1569 1570 1571 1572
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1573
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1574 1575 1576 1577 1578 1579
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1580
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1581
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1582
	restore_access_regs(vcpu->run->s.regs.acrs);
1583 1584 1585 1586 1587 1588
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1589
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1590 1591 1592 1593 1594 1595
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1596 1597
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1598
	memcpy(&vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1599 1600 1601
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
	restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	memcpy(&fpu->fprs, &vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1616
	if (!is_vcpu_stopped(vcpu))
1617
		rc = -EBUSY;
1618 1619 1620 1621
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1622 1623 1624 1625 1626 1627 1628 1629 1630
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1631 1632 1633 1634
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1635 1636
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1637
{
1638 1639 1640 1641 1642
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1643
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
		atomic_set_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
	}

	return rc;
1665 1666
}

1667 1668 1669
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1670 1671 1672
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1673 1674 1675 1676 1677
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
bool kvm_s390_cmma_enabled(struct kvm *kvm)
{
	if (!MACHINE_IS_LPAR)
		return false;
	/* only enable for z10 and later */
	if (!MACHINE_HAS_EDAT1)
		return false;
	if (!kvm->arch.use_cmma)
		return false;
	return true;
}

1712 1713 1714 1715 1716
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1717 1718
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1719 1720
retry:
	s390_vcpu_unblock(vcpu);
1721 1722 1723 1724 1725 1726 1727
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1728
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1729 1730
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1731
				      kvm_s390_get_prefix(vcpu),
1732 1733 1734
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1735
		goto retry;
1736
	}
1737

1738 1739 1740 1741 1742
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1743 1744 1745 1746 1747 1748 1749
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
			atomic_set_mask(CPUSTAT_IBS,
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1750
	}
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
			atomic_clear_mask(CPUSTAT_IBS,
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

1761 1762 1763
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

1764 1765 1766
	return 0;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1778
{
1779 1780
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
1781 1782
}

1783 1784 1785 1786
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
1787
	struct kvm_s390_irq irq;
1788 1789

	if (start_token) {
1790 1791 1792
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1793 1794
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
1795
		inti.parm64 = token;
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
1842
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
1843 1844 1845 1846 1847 1848
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
1849 1850 1851
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
1852 1853 1854 1855 1856 1857
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

1858
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
1859
{
1860
	int rc, cpuflags;
1861

1862 1863 1864 1865 1866 1867 1868
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

1869
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
1870 1871 1872 1873

	if (need_resched())
		schedule();

1874
	if (test_cpu_flag(CIF_MCCK_PENDING))
1875 1876
		s390_handle_mcck();

1877 1878 1879 1880 1881
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
1882

1883 1884 1885 1886
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

1887 1888 1889 1890 1891
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

1892
	vcpu->arch.sie_block->icptcode = 0;
1893 1894 1895
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
1896

1897 1898 1899
	return 0;
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
1917
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
1918 1919 1920 1921 1922 1923 1924
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

1925 1926
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
1927
	int rc = -1;
1928 1929 1930 1931 1932

	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

1933 1934 1935
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

1936
	if (exit_reason >= 0) {
1937
		rc = 0;
1938 1939 1940 1941 1942 1943
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
		rc = -EREMOTE;
1944 1945

	} else if (current->thread.gmap_pfault) {
1946
		trace_kvm_s390_major_guest_pfault(vcpu);
1947
		current->thread.gmap_pfault = 0;
1948
		if (kvm_arch_setup_async_pf(vcpu)) {
1949
			rc = 0;
1950 1951 1952 1953
		} else {
			gpa_t gpa = current->thread.gmap_addr;
			rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
		}
1954 1955
	}

1956 1957
	if (rc == -1)
		rc = vcpu_post_run_fault_in_sie(vcpu);
1958

1959
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
1960

1961 1962
	if (rc == 0) {
		if (kvm_is_ucontrol(vcpu->kvm))
1963 1964
			/* Don't exit for host interrupts. */
			rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
1965 1966 1967 1968
		else
			rc = kvm_handle_sie_intercept(vcpu);
	}

1969 1970 1971 1972 1973 1974 1975
	return rc;
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

1976 1977 1978 1979 1980 1981
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1982 1983 1984 1985
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
1986

1987
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
		preempt_disable();
		kvm_guest_enter();
		preempt_enable();
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
		kvm_guest_exit();
1998
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1999 2000

		rc = vcpu_post_run(vcpu, exit_reason);
2001
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2002

2003
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2004
	return rc;
2005 2006
}

2007 2008 2009 2010 2011 2012 2013 2014
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2015 2016
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2029 2030
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2051 2052
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2053
	int rc;
2054 2055
	sigset_t sigsaved;

2056 2057 2058 2059 2060
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2061 2062 2063
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2064 2065 2066 2067 2068 2069 2070
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
		pr_err_ratelimited("kvm-s390: can't run stopped vcpu %d\n",
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2071

2072
	sync_regs(vcpu, kvm_run);
2073

2074
	might_fault();
2075
	rc = __vcpu_run(vcpu);
2076

2077 2078
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2079
		rc = -EINTR;
2080
	}
2081

2082 2083 2084 2085 2086
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2087
	if (rc == -EOPNOTSUPP) {
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		/* intercept cannot be handled in-kernel, prepare kvm-run */
		kvm_run->exit_reason         = KVM_EXIT_S390_SIEIC;
		kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		kvm_run->s390_sieic.ipa      = vcpu->arch.sie_block->ipa;
		kvm_run->s390_sieic.ipb      = vcpu->arch.sie_block->ipb;
		rc = 0;
	}

	if (rc == -EREMOTE) {
		/* intercept was handled, but userspace support is needed
		 * kvm_run has been prepared by the handler */
		rc = 0;
	}
2101

2102
	store_regs(vcpu, kvm_run);
2103

2104 2105 2106 2107
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2108
	return rc;
2109 2110 2111 2112 2113 2114 2115 2116
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2117
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2118
{
2119
	unsigned char archmode = 1;
2120
	unsigned int px;
2121
	u64 clkcomp;
2122
	int rc;
2123

2124 2125
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2126
			return -EFAULT;
2127 2128 2129
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2130
			return -EFAULT;
2131 2132 2133 2134 2135 2136 2137 2138
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2139
	px = kvm_s390_get_prefix(vcpu);
2140
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2141
			      &px, 4);
2142 2143 2144 2145 2146 2147 2148
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2149
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2150 2151 2152 2153 2154 2155 2156
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2157 2158
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
	save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
	 * copying in vcpu load/put. Let's update our copies before we save
	 * it into the save area.
	 */
	save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
	kvm_make_request(KVM_REQ_DISABLE_IBS, vcpu);
	exit_sie_sync(vcpu);
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
	kvm_make_request(KVM_REQ_ENABLE_IBS, vcpu);
	exit_sie_sync(vcpu);
}

2226 2227
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2228 2229 2230 2231 2232
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2233
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2234
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2235
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2255
	atomic_clear_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2256 2257 2258 2259
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2260
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2261
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2262
	return;
2263 2264 2265 2266
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2267 2268 2269 2270 2271 2272
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2273
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2274
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2275
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2276 2277
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2278
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2279
	kvm_s390_clear_stop_irq(vcpu);
2280

2281
	atomic_set_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2299
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2300
	return;
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2312 2313 2314 2315 2316 2317 2318
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2319 2320 2321 2322 2323 2324 2325
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2385 2386 2387 2388 2389
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2390
	int idx;
2391
	long r;
2392

2393 2394
	switch (ioctl) {
	case KVM_S390_INTERRUPT: {
2395
		struct kvm_s390_interrupt s390int;
2396
		struct kvm_s390_irq s390irq;
2397

2398
		r = -EFAULT;
2399
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2400
			break;
2401 2402 2403
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2404
		break;
2405
	}
2406
	case KVM_S390_STORE_STATUS:
2407
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2408
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2409
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2410
		break;
2411 2412 2413
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2414
		r = -EFAULT;
2415
		if (copy_from_user(&psw, argp, sizeof(psw)))
2416 2417 2418
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2419 2420
	}
	case KVM_S390_INITIAL_RESET:
2421 2422
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2471
	case KVM_S390_VCPU_FAULT: {
2472
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2473 2474
		break;
	}
2475 2476 2477 2478 2479 2480 2481 2482 2483
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2484 2485 2486 2487 2488 2489 2490 2491 2492
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2493
	default:
2494
		r = -ENOTTY;
2495
	}
2496
	return r;
2497 2498
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2512 2513
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2514 2515 2516 2517
{
	return 0;
}

2518
/* Section: memory related */
2519 2520
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2521 2522
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
2523
{
2524 2525 2526 2527
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2528

2529
	if (mem->userspace_addr & 0xffffful)
2530 2531
		return -EINVAL;

2532
	if (mem->memory_size & 0xffffful)
2533 2534
		return -EINVAL;

2535 2536 2537 2538 2539
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
2540 2541
				const struct kvm_memory_slot *old,
				enum kvm_mr_change change)
2542
{
2543
	int rc;
2544

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2555 2556 2557 2558

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2559
		printk(KERN_WARNING "kvm-s390: failed to commit memory region\n");
2560
	return;
2561 2562 2563 2564
}

static int __init kvm_s390_init(void)
{
2565
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2566 2567 2568 2569 2570 2571 2572 2573 2574
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2575 2576 2577 2578 2579 2580 2581 2582 2583

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");