kvm-s390.c 84.3 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128
/* upper facilities limit for kvm */
129 130 131
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
132
};
133

134
unsigned long kvm_s390_fac_list_mask_size(void)
135
{
136 137
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
138 139
}

140 141
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
142 143
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
144

145
static struct gmap_notifier gmap_notifier;
146
static struct gmap_notifier vsie_gmap_notifier;
147
debug_info_t *kvm_s390_dbf;
148

149
/* Section: not file related */
150
int kvm_arch_hardware_enable(void)
151 152
{
	/* every s390 is virtualization enabled ;-) */
153
	return 0;
154 155
}

156 157
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
177 178
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
179 180 181 182 183 184 185 186 187
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

188 189
int kvm_arch_hardware_setup(void)
{
190
	gmap_notifier.notifier_call = kvm_gmap_notifier;
191
	gmap_register_pte_notifier(&gmap_notifier);
192 193
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
194 195
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
196 197 198 199 200
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
201
	gmap_unregister_pte_notifier(&gmap_notifier);
202
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
203 204
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
205 206
}

207 208 209 210 211
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

228 229
static void kvm_s390_cpu_feat_init(void)
{
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

258 259
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
260 261 262 263 264 265 266 267
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
	    !test_facility(3))
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
268 269
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
270 271
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
272 273
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
274 275
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
276 277
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
278 279
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
280 281
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
282 283
}

284 285
int kvm_arch_init(void *opaque)
{
286 287 288 289 290 291 292 293 294
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

295 296
	kvm_s390_cpu_feat_init();

297 298
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
299 300
}

301 302 303 304 305
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

306 307 308 309 310 311 312 313 314
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

315
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
316
{
317 318
	int r;

319
	switch (ext) {
320
	case KVM_CAP_S390_PSW:
321
	case KVM_CAP_S390_GMAP:
322
	case KVM_CAP_SYNC_MMU:
323 324 325
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
326
	case KVM_CAP_ASYNC_PF:
327
	case KVM_CAP_SYNC_REGS:
328
	case KVM_CAP_ONE_REG:
329
	case KVM_CAP_ENABLE_CAP:
330
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
331
	case KVM_CAP_IOEVENTFD:
332
	case KVM_CAP_DEVICE_CTRL:
333
	case KVM_CAP_ENABLE_CAP_VM:
334
	case KVM_CAP_S390_IRQCHIP:
335
	case KVM_CAP_VM_ATTRIBUTES:
336
	case KVM_CAP_MP_STATE:
337
	case KVM_CAP_S390_INJECT_IRQ:
338
	case KVM_CAP_S390_USER_SIGP:
339
	case KVM_CAP_S390_USER_STSI:
340
	case KVM_CAP_S390_SKEYS:
341
	case KVM_CAP_S390_IRQ_STATE:
342 343
		r = 1;
		break;
344 345 346
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
347 348
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
349 350 351
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
352
		break;
353 354 355
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
356
	case KVM_CAP_S390_COW:
357
		r = MACHINE_HAS_ESOP;
358
		break;
359 360 361
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
362 363 364
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
365
	default:
366
		r = 0;
367
	}
368
	return r;
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

383
		if (test_and_clear_guest_dirty(gmap->mm, address))
384
			mark_page_dirty(kvm, cur_gfn);
385 386
		if (fatal_signal_pending(current))
			return;
387
		cond_resched();
388 389 390
	}
}

391
/* Section: vm related */
392 393
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

394 395 396 397 398 399
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
400 401
	int r;
	unsigned long n;
402
	struct kvm_memslots *slots;
403 404 405 406 407 408 409 410 411
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

412 413
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
432 433
}

434 435 436 437 438 439 440 441
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
442
	case KVM_CAP_S390_IRQCHIP:
443
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
444 445 446
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
447
	case KVM_CAP_S390_USER_SIGP:
448
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
449 450 451
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
452
	case KVM_CAP_S390_VECTOR_REGISTERS:
453
		mutex_lock(&kvm->lock);
454
		if (kvm->created_vcpus) {
455 456
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
457 458
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
459 460 461
			r = 0;
		} else
			r = -EINVAL;
462
		mutex_unlock(&kvm->lock);
463 464
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
465
		break;
466 467 468
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
469
		if (kvm->created_vcpus) {
470 471
			r = -EBUSY;
		} else if (test_facility(64)) {
472 473
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
474 475 476 477 478 479
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
480
	case KVM_CAP_S390_USER_STSI:
481
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
482 483 484
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
485 486 487 488 489 490 491
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

492 493 494 495 496 497 498
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
499
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
500 501
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
502 503 504 505 506 507 508 509 510 511
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
512 513 514 515 516
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
517
		ret = -ENXIO;
518
		if (!sclp.has_cmma)
519 520
			break;

521
		ret = -EBUSY;
522
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
523
		mutex_lock(&kvm->lock);
524
		if (!kvm->created_vcpus) {
525 526 527 528 529 530
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
531 532 533
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
534 535 536 537
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

538
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
539 540
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
541
		s390_reset_cmma(kvm->arch.gmap->mm);
542 543 544 545
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
546 547 548 549 550 551 552 553 554
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

555 556
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
557 558
			return -E2BIG;

559 560 561
		if (!new_limit)
			return -EINVAL;

562
		/* gmap_create takes last usable address */
563 564 565
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

566 567
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
568
		if (!kvm->created_vcpus) {
569 570
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
571 572 573 574

			if (!new) {
				ret = -ENOMEM;
			} else {
575
				gmap_remove(kvm->arch.gmap);
576 577 578 579 580 581
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
582 583 584
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
585 586
		break;
	}
587 588 589 590 591 592 593
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

594 595 596 597 598 599 600
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

601
	if (!test_kvm_facility(kvm, 76))
602 603 604 605 606 607 608 609 610
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
611
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
612 613 614 615 616 617
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
618
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
619 620 621 622 623
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
624
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
625 626 627 628 629
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
630
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
631 632 633 634 635 636 637 638 639 640 641 642 643 644
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

645 646 647 648 649 650 651 652 653 654
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
655
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
656 657 658 659 660 661

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
662
	u64 gtod;
663 664 665 666

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

667
	kvm_s390_set_tod_clock(kvm, gtod);
668
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
700
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
701 702 703 704 705 706

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
707
	u64 gtod;
708

709
	gtod = kvm_s390_get_tod_clock_fast(kvm);
710 711
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
712
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

738 739 740
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
741
	u16 lowest_ibc, unblocked_ibc;
742 743 744
	int ret = 0;

	mutex_lock(&kvm->lock);
745
	if (kvm->created_vcpus) {
746 747 748 749 750 751 752 753 754 755
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
756
		kvm->arch.model.cpuid = proc->cpuid;
757 758 759 760 761 762 763 764 765 766
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
767
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
768 769 770 771 772 773 774 775 776
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

800 801 802 803 804 805 806 807 808 809
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

810 811 812 813 814 815 816 817
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
818 819 820
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
821 822 823
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
824 825 826 827 828 829 830 831 832 833 834 835 836 837
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
838
	proc->cpuid = kvm->arch.model.cpuid;
839
	proc->ibc = kvm->arch.model.ibc;
840 841
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
860
	mach->ibc = sclp.ibc;
861
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
862
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
863
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
864
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
865 866 867 868 869 870 871
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
916 917 918 919 920 921 922 923 924 925 926
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
927 928 929 930 931 932
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
933 934 935 936 937 938
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
939 940 941 942
	}
	return ret;
}

943 944 945 946 947
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
948
	case KVM_S390_VM_MEM_CTRL:
949
		ret = kvm_s390_set_mem_control(kvm, attr);
950
		break;
951 952 953
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
954 955 956
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
957 958 959
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
960 961 962 963 964 965 966 967 968 969
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
970 971 972 973 974 975
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
976 977 978
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
979 980 981
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
982 983 984 985 986 987
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
988 989 990 991 992 993 994
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
995 996 997 998
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
999 1000
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1001
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1002 1003 1004 1005 1006 1007 1008
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1020 1021 1022 1023
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1024 1025
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1026
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1027 1028
			ret = 0;
			break;
1029 1030
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1031 1032 1033 1034 1035
		default:
			ret = -ENXIO;
			break;
		}
		break;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1049 1050 1051 1052 1053 1054 1055 1056
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1081
	down_read(&current->mm->mmap_sem);
1082 1083 1084 1085
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1086
			break;
1087 1088
		}

1089 1090
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1091
			break;
1092
	}
1093 1094 1095 1096 1097 1098 1099 1100
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1134 1135 1136
	r = s390_enable_skey();
	if (r)
		goto out;
1137

1138
	down_read(&current->mm->mmap_sem);
1139 1140 1141 1142
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1143
			break;
1144 1145 1146 1147 1148
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1149
			break;
1150 1151
		}

1152
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1153
		if (r)
1154
			break;
1155
	}
1156
	up_read(&current->mm->mmap_sem);
1157 1158 1159 1160 1161
out:
	kvfree(keys);
	return r;
}

1162 1163 1164 1165 1166
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1167
	struct kvm_device_attr attr;
1168 1169 1170
	int r;

	switch (ioctl) {
1171 1172 1173 1174 1175 1176 1177 1178 1179
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1180 1181 1182 1183 1184 1185 1186 1187
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1188 1189 1190 1191 1192 1193 1194
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1195
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1196 1197 1198
		}
		break;
	}
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1240
	default:
1241
		r = -ENOTTY;
1242 1243 1244 1245 1246
	}

	return r;
}

1247 1248 1249
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1250
	u32 cc = 0;
1251

1252
	memset(config, 0, 128);
1253 1254 1255 1256
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1257
		"0: ipm %0\n"
1258
		"srl %0,28\n"
1259 1260 1261
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1274
	if (test_facility(12)) {
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1296
static u64 kvm_s390_get_initial_cpuid(void)
1297
{
1298 1299 1300 1301 1302
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1303 1304
}

1305
static void kvm_s390_crypto_init(struct kvm *kvm)
1306
{
1307
	if (!test_kvm_facility(kvm, 76))
1308
		return;
1309

1310
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1311
	kvm_s390_set_crycb_format(kvm);
1312

1313 1314 1315 1316 1317 1318 1319
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1320 1321
}

1322 1323 1324
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1325
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1326 1327 1328 1329 1330
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1331
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1332
{
1333
	gfp_t alloc_flags = GFP_KERNEL;
1334
	int i, rc;
1335
	char debug_name[16];
1336
	static unsigned long sca_offset;
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1349 1350
	rc = s390_enable_sie();
	if (rc)
1351
		goto out_err;
1352

1353 1354
	rc = -ENOMEM;

J
Janosch Frank 已提交
1355 1356
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1357
	kvm->arch.use_esca = 0; /* start with basic SCA */
1358 1359
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1360
	rwlock_init(&kvm->arch.sca_lock);
1361
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1362
	if (!kvm->arch.sca)
1363
		goto out_err;
1364
	spin_lock(&kvm_lock);
1365
	sca_offset += 16;
1366
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1367
		sca_offset = 0;
1368 1369
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1370
	spin_unlock(&kvm_lock);
1371 1372 1373

	sprintf(debug_name, "kvm-%u", current->pid);

1374
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1375
	if (!kvm->arch.dbf)
1376
		goto out_err;
1377

1378 1379 1380
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1381
		goto out_err;
1382

1383
	/* Populate the facility mask initially. */
1384
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1385
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1386 1387
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1388
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1389
		else
1390
			kvm->arch.model.fac_mask[i] = 0UL;
1391 1392
	}

1393
	/* Populate the facility list initially. */
1394 1395
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1396 1397
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1398 1399 1400
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1401
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1402
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1403

1404
	kvm_s390_crypto_init(kvm);
1405

1406
	spin_lock_init(&kvm->arch.float_int.lock);
1407 1408
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1409
	init_waitqueue_head(&kvm->arch.ipte_wq);
1410
	mutex_init(&kvm->arch.ipte_mutex);
1411

1412
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1413
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1414

1415 1416
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1417
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1418
	} else {
1419 1420 1421 1422 1423
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1424
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1425
		if (!kvm->arch.gmap)
1426
			goto out_err;
1427
		kvm->arch.gmap->private = kvm;
1428
		kvm->arch.gmap->pfault_enabled = 0;
1429
	}
1430 1431

	kvm->arch.css_support = 0;
1432
	kvm->arch.use_irqchip = 0;
1433
	kvm->arch.epoch = 0;
1434

1435
	spin_lock_init(&kvm->arch.start_stop_lock);
1436
	kvm_s390_vsie_init(kvm);
1437
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1438

1439
	return 0;
1440
out_err:
1441
	free_page((unsigned long)kvm->arch.sie_page2);
1442
	debug_unregister(kvm->arch.dbf);
1443
	sca_dispose(kvm);
1444
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1445
	return rc;
1446 1447
}

1448 1449 1450
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1451
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1452
	kvm_s390_clear_local_irqs(vcpu);
1453
	kvm_clear_async_pf_completion_queue(vcpu);
1454
	if (!kvm_is_ucontrol(vcpu->kvm))
1455
		sca_del_vcpu(vcpu);
1456 1457

	if (kvm_is_ucontrol(vcpu->kvm))
1458
		gmap_remove(vcpu->arch.gmap);
1459

1460
	if (vcpu->kvm->arch.use_cmma)
1461
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1462
	free_page((unsigned long)(vcpu->arch.sie_block));
1463

1464
	kvm_vcpu_uninit(vcpu);
1465
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1466 1467 1468 1469 1470
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1471
	struct kvm_vcpu *vcpu;
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1482 1483
}

1484 1485
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1486
	kvm_free_vcpus(kvm);
1487
	sca_dispose(kvm);
1488
	debug_unregister(kvm->arch.dbf);
1489
	free_page((unsigned long)kvm->arch.sie_page2);
1490
	if (!kvm_is_ucontrol(kvm))
1491
		gmap_remove(kvm->arch.gmap);
1492
	kvm_s390_destroy_adapters(kvm);
1493
	kvm_s390_clear_float_irqs(kvm);
1494
	kvm_s390_vsie_destroy(kvm);
1495
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1496 1497 1498
}

/* Section: vcpu related */
1499 1500
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1501
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1502 1503 1504 1505 1506 1507 1508
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1509 1510
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1511
	read_lock(&vcpu->kvm->arch.sca_lock);
1512 1513
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1514

1515
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1516
		sca->cpu[vcpu->vcpu_id].sda = 0;
1517 1518 1519 1520
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1521
		sca->cpu[vcpu->vcpu_id].sda = 0;
1522
	}
1523
	read_unlock(&vcpu->kvm->arch.sca_lock);
1524 1525
}

1526
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1527
{
1528 1529 1530
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1531

1532
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1533 1534
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1535
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1536
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1537
	} else {
1538
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1539

1540
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1541 1542
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1543
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1544
	}
1545
	read_unlock(&vcpu->kvm->arch.sca_lock);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1599 1600
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1601
	return 0;
1602 1603 1604 1605
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1606 1607 1608 1609
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1610
	if (!sclp.has_esca || !sclp.has_64bscao)
1611 1612 1613 1614 1615 1616 1617
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1618 1619
}

1620 1621
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1622 1623
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1624 1625
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1626
				    KVM_SYNC_ACRS |
1627 1628 1629
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1630 1631
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1632 1633 1634 1635
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1636
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1637 1638
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1639 1640 1641 1642

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1643 1644 1645
	return 0;
}

1646 1647 1648 1649
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1650
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1651
	vcpu->arch.cputm_start = get_tod_clock_fast();
1652
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1653 1654 1655 1656 1657 1658
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1659
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1660 1661
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1662
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1695 1696 1697
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1698
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1699
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1700 1701
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1702
	vcpu->arch.sie_block->cputm = cputm;
1703
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1704
	preempt_enable();
1705 1706
}

1707
/* update and get the cpu timer - can also be called from other VCPU threads */
1708 1709
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1710
	unsigned int seq;
1711 1712 1713 1714 1715
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1730
	return value;
1731 1732
}

1733 1734
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1735
	/* Save host register state */
1736
	save_fpu_regs();
1737 1738
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1739

1740 1741 1742 1743
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1744
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1745
	if (test_fp_ctl(current->thread.fpu.fpc))
1746
		/* User space provided an invalid FPC, let's clear it */
1747 1748 1749
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1750
	restore_access_regs(vcpu->run->s.regs.acrs);
1751
	gmap_enable(vcpu->arch.enabled_gmap);
1752
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1753
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1754
		__start_cpu_timer_accounting(vcpu);
1755
	vcpu->cpu = cpu;
1756 1757 1758 1759
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1760
	vcpu->cpu = -1;
1761
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1762
		__stop_cpu_timer_accounting(vcpu);
1763
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1764 1765
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1766

1767
	/* Save guest register state */
1768
	save_fpu_regs();
1769
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1770

1771 1772 1773
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1774 1775

	save_access_regs(vcpu->run->s.regs.acrs);
1776 1777 1778 1779 1780 1781 1782 1783
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1784
	kvm_s390_set_prefix(vcpu, 0);
1785
	kvm_s390_set_cpu_timer(vcpu, 0);
1786 1787 1788 1789 1790
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1791 1792 1793
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1794
	vcpu->arch.sie_block->gbea = 1;
1795
	vcpu->arch.sie_block->pp = 0;
1796 1797
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1798 1799
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1800
	kvm_s390_clear_local_irqs(vcpu);
1801 1802
}

1803
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1804
{
1805
	mutex_lock(&vcpu->kvm->lock);
1806
	preempt_disable();
1807
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1808
	preempt_enable();
1809
	mutex_unlock(&vcpu->kvm->lock);
1810
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1811
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1812
		sca_add_vcpu(vcpu);
1813
	}
1814 1815
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1816 1817
}

1818 1819
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1820
	if (!test_kvm_facility(vcpu->kvm, 76))
1821 1822
		return;

1823 1824 1825 1826 1827 1828 1829
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1830 1831 1832
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1850 1851 1852 1853 1854
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1855
	if (test_kvm_facility(vcpu->kvm, 7))
1856
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1857 1858
}

1859 1860
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1861
	int rc = 0;
1862

1863 1864
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1865 1866
						    CPUSTAT_STOPPED);

1867
	if (test_kvm_facility(vcpu->kvm, 78))
1868
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1869
	else if (test_kvm_facility(vcpu->kvm, 8))
1870
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1871

1872 1873
	kvm_s390_vcpu_setup_model(vcpu);

1874 1875 1876
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1877 1878
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1879
	if (test_kvm_facility(vcpu->kvm, 73))
1880 1881
		vcpu->arch.sie_block->ecb |= 0x10;

1882
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1883
		vcpu->arch.sie_block->ecb2 |= 0x08;
1884 1885 1886
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1887 1888
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1889
	if (sclp.has_siif)
1890
		vcpu->arch.sie_block->eca |= 1;
1891
	if (sclp.has_sigpif)
1892
		vcpu->arch.sie_block->eca |= 0x10000000U;
1893 1894
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1895
	if (test_kvm_facility(vcpu->kvm, 129)) {
1896 1897 1898
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1899
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1900
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1901 1902
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1903

1904
	if (vcpu->kvm->arch.use_cmma) {
1905 1906 1907
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1908
	}
1909
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1910
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1911

1912 1913
	kvm_s390_vcpu_crypto_setup(vcpu);

1914
	return rc;
1915 1916 1917 1918 1919
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1920
	struct kvm_vcpu *vcpu;
1921
	struct sie_page *sie_page;
1922 1923
	int rc = -EINVAL;

1924
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1925 1926 1927
		goto out;

	rc = -ENOMEM;
1928

1929
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1930
	if (!vcpu)
1931
		goto out;
1932

1933 1934
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1935 1936
		goto out_free_cpu;

1937 1938 1939
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1940 1941 1942 1943
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1944
	vcpu->arch.sie_block->icpua = id;
1945 1946
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1947
	vcpu->arch.local_int.wq = &vcpu->wq;
1948
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1949
	seqcount_init(&vcpu->arch.cputm_seqcount);
1950

1951 1952
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1953
		goto out_free_sie_block;
1954
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1955
		 vcpu->arch.sie_block);
1956
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1957 1958

	return vcpu;
1959 1960
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1961
out_free_cpu:
1962
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1963
out:
1964 1965 1966 1967 1968
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1969
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1970 1971
}

1972
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1973
{
1974
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1975
	exit_sie(vcpu);
1976 1977
}

1978
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1979
{
1980
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1981 1982
}

1983 1984
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1985
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1986
	exit_sie(vcpu);
1987 1988 1989 1990
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1991
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1992 1993
}

1994 1995 1996 1997 1998 1999
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2000
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2001 2002 2003 2004
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2005 2006
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2007
{
2008 2009
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2010 2011
}

2012 2013
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2014 2015 2016
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2017 2018
	unsigned long prefix;
	int i;
2019

2020 2021
	if (gmap_is_shadow(gmap))
		return;
2022 2023 2024
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2025 2026
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2027 2028 2029 2030
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2031
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2032 2033 2034 2035
		}
	}
}

2036 2037 2038 2039 2040 2041 2042
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2043 2044 2045 2046 2047 2048
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2049 2050 2051 2052 2053 2054 2055 2056
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2057
	case KVM_REG_S390_CPU_TIMER:
2058
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2059 2060 2061 2062 2063 2064
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2077 2078 2079 2080
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2081 2082 2083 2084
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2096
	__u64 val;
2097 2098

	switch (reg->id) {
2099 2100 2101 2102 2103 2104 2105 2106
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2107
	case KVM_REG_S390_CPU_TIMER:
2108 2109 2110
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2111 2112 2113 2114 2115
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2116 2117 2118
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2119 2120
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2121 2122 2123 2124 2125 2126 2127 2128 2129
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2130 2131 2132 2133
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2134 2135 2136 2137
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2138 2139 2140 2141 2142 2143
	default:
		break;
	}

	return r;
}
2144

2145 2146 2147 2148 2149 2150 2151 2152
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2153
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2154 2155 2156 2157 2158
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2159
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2160 2161 2162 2163 2164 2165
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2166
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2167
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2168
	restore_access_regs(vcpu->run->s.regs.acrs);
2169 2170 2171 2172 2173 2174
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2175
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2176 2177 2178 2179 2180 2181
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2182 2183
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2184 2185
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2186 2187 2188 2189 2190
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2191 2192 2193 2194 2195
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2196 2197 2198 2199 2200 2201 2202
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2203 2204 2205 2206 2207 2208 2209
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2210
	if (!is_vcpu_stopped(vcpu))
2211
		rc = -EBUSY;
2212 2213 2214 2215
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2216 2217 2218 2219 2220 2221 2222 2223 2224
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2225 2226 2227 2228
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2229 2230
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2231
{
2232 2233 2234 2235 2236
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2237
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2238
		return -EINVAL;
2239 2240
	if (!sclp.has_gpere)
		return -EINVAL;
2241 2242 2243 2244

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2245
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2246 2247 2248 2249

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2250
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2251 2252 2253 2254 2255 2256
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2257
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2258 2259 2260
	}

	return rc;
2261 2262
}

2263 2264 2265
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2266 2267 2268
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2269 2270 2271 2272 2273
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2294 2295
}

2296 2297 2298 2299 2300
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2301 2302
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2303
retry:
2304
	kvm_s390_vcpu_request_handled(vcpu);
2305 2306
	if (!vcpu->requests)
		return 0;
2307 2308
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2309
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2310 2311 2312 2313
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2314
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2315
		int rc;
2316 2317 2318
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2319 2320
		if (rc)
			return rc;
2321
		goto retry;
2322
	}
2323

2324 2325 2326 2327 2328
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2329 2330 2331
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2332
			atomic_or(CPUSTAT_IBS,
2333 2334 2335
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2336
	}
2337 2338 2339 2340

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2341
			atomic_andnot(CPUSTAT_IBS,
2342 2343 2344 2345 2346
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2347 2348 2349
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2350 2351 2352
	return 0;
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2380
{
2381 2382
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2383 2384
}

2385 2386 2387 2388
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2389
	struct kvm_s390_irq irq;
2390 2391

	if (start_token) {
2392 2393 2394
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2395 2396
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2397
		inti.parm64 = token;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2444
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2445 2446 2447 2448 2449 2450
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2451 2452 2453
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2454 2455 2456 2457 2458 2459
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2460
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2461
{
2462
	int rc, cpuflags;
2463

2464 2465 2466 2467 2468 2469 2470
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2471 2472
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2473 2474 2475 2476

	if (need_resched())
		schedule();

2477
	if (test_cpu_flag(CIF_MCCK_PENDING))
2478 2479
		s390_handle_mcck();

2480 2481 2482 2483 2484
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2485

2486 2487 2488 2489
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2490 2491 2492 2493 2494
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2495
	vcpu->arch.sie_block->icptcode = 0;
2496 2497 2498
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2499

2500 2501 2502
	return 0;
}

2503 2504
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2505 2506 2507 2508
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2522
	rc = read_guest_instr(vcpu, &opcode, 1);
2523
	ilen = insn_length(opcode);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2534 2535 2536
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2537 2538
}

2539 2540
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2541 2542 2543 2544
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2545 2546 2547
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2548 2549
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2564 2565 2566 2567 2568
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2569
		return -EREMOTE;
2570
	} else if (current->thread.gmap_pfault) {
2571
		trace_kvm_s390_major_guest_pfault(vcpu);
2572
		current->thread.gmap_pfault = 0;
2573 2574 2575
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2576
	}
2577
	return vcpu_post_run_fault_in_sie(vcpu);
2578 2579 2580 2581 2582 2583
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2584 2585 2586 2587 2588 2589
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2590 2591 2592 2593
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2594

2595
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2596 2597 2598 2599
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2600 2601
		local_irq_disable();
		__kvm_guest_enter();
2602
		__disable_cpu_timer_accounting(vcpu);
2603
		local_irq_enable();
2604 2605
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2606
		local_irq_disable();
2607
		__enable_cpu_timer_accounting(vcpu);
2608 2609
		__kvm_guest_exit();
		local_irq_enable();
2610
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2611 2612

		rc = vcpu_post_run(vcpu, exit_reason);
2613
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2614

2615
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2616
	return rc;
2617 2618
}

2619 2620 2621 2622 2623 2624 2625 2626
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2627 2628
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2629 2630
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2631
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2632 2633 2634 2635 2636 2637 2638 2639 2640
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2641 2642
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2653
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2654 2655 2656 2657 2658 2659 2660 2661 2662
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2663 2664
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2665
	int rc;
2666 2667
	sigset_t sigsaved;

2668 2669 2670 2671 2672
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2673 2674 2675
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2676 2677 2678
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2679
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2680 2681 2682
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2683

2684
	sync_regs(vcpu, kvm_run);
2685
	enable_cpu_timer_accounting(vcpu);
2686

2687
	might_fault();
2688
	rc = __vcpu_run(vcpu);
2689

2690 2691
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2692
		rc = -EINTR;
2693
	}
2694

2695 2696 2697 2698 2699
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2700
	if (rc == -EREMOTE) {
2701
		/* userspace support is needed, kvm_run has been prepared */
2702 2703
		rc = 0;
	}
2704

2705
	disable_cpu_timer_accounting(vcpu);
2706
	store_regs(vcpu, kvm_run);
2707

2708 2709 2710 2711
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2712
	return rc;
2713 2714 2715 2716 2717 2718 2719 2720
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2721
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2722
{
2723
	unsigned char archmode = 1;
2724
	freg_t fprs[NUM_FPRS];
2725
	unsigned int px;
2726
	u64 clkcomp, cputm;
2727
	int rc;
2728

2729
	px = kvm_s390_get_prefix(vcpu);
2730 2731
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2732
			return -EFAULT;
2733
		gpa = 0;
2734 2735
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2736
			return -EFAULT;
2737 2738 2739
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2740 2741 2742

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2743
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2744 2745 2746 2747
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2748
				     vcpu->run->s.regs.fprs, 128);
2749
	}
2750
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2751
			      vcpu->run->s.regs.gprs, 128);
2752
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2753
			      &vcpu->arch.sie_block->gpsw, 16);
2754
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2755
			      &px, 4);
2756
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2757
			      &vcpu->run->s.regs.fpc, 4);
2758
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2759
			      &vcpu->arch.sie_block->todpr, 4);
2760
	cputm = kvm_s390_get_cpu_timer(vcpu);
2761
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2762
			      &cputm, 8);
2763
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2764
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2765
			      &clkcomp, 8);
2766
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2767
			      &vcpu->run->s.regs.acrs, 64);
2768
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2769 2770
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2771 2772
}

2773 2774 2775 2776 2777 2778 2779
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2780
	save_fpu_regs();
2781
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2782 2783 2784 2785 2786
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2808 2809 2810 2811 2812
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2813
	 */
2814
	save_fpu_regs();
E
Eric Farman 已提交
2815 2816 2817 2818

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2819 2820 2821
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2822
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2837 2838
	if (!sclp.has_ibs)
		return;
2839
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2840
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2841 2842
}

2843 2844
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2845 2846 2847 2848 2849
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2850
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2851
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2852
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2872
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2873 2874 2875 2876
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2877
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2878
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2879
	return;
2880 2881 2882 2883
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2884 2885 2886 2887 2888 2889
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2890
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2891
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2892
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2893 2894
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2895
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2896
	kvm_s390_clear_stop_irq(vcpu);
2897

2898
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2916
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2917
	return;
2918 2919
}

2920 2921 2922 2923 2924 2925 2926 2927 2928
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2929 2930 2931
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2932
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2933 2934 2935 2936
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2937 2938 2939 2940 2941 2942 2943
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2970 2971
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2982 2983
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3005 3006 3007 3008 3009
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3010
	int idx;
3011
	long r;
3012

3013
	switch (ioctl) {
3014 3015 3016 3017 3018 3019 3020 3021 3022
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3023
	case KVM_S390_INTERRUPT: {
3024
		struct kvm_s390_interrupt s390int;
3025
		struct kvm_s390_irq s390irq;
3026

3027
		r = -EFAULT;
3028
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3029
			break;
3030 3031 3032
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3033
		break;
3034
	}
3035
	case KVM_S390_STORE_STATUS:
3036
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3037
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3038
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3039
		break;
3040 3041 3042
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3043
		r = -EFAULT;
3044
		if (copy_from_user(&psw, argp, sizeof(psw)))
3045 3046 3047
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3048 3049
	}
	case KVM_S390_INITIAL_RESET:
3050 3051
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3100
	case KVM_S390_VCPU_FAULT: {
3101
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3102 3103
		break;
	}
3104 3105 3106 3107 3108 3109 3110 3111 3112
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3113 3114 3115 3116 3117 3118 3119 3120 3121
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3154
	default:
3155
		r = -ENOTTY;
3156
	}
3157
	return r;
3158 3159
}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3173 3174
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3175 3176 3177 3178
{
	return 0;
}

3179
/* Section: memory related */
3180 3181
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3182
				   const struct kvm_userspace_memory_region *mem,
3183
				   enum kvm_mr_change change)
3184
{
3185 3186 3187 3188
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3189

3190
	if (mem->userspace_addr & 0xffffful)
3191 3192
		return -EINVAL;

3193
	if (mem->memory_size & 0xffffful)
3194 3195
		return -EINVAL;

3196 3197 3198
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3199 3200 3201 3202
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3203
				const struct kvm_userspace_memory_region *mem,
3204
				const struct kvm_memory_slot *old,
3205
				const struct kvm_memory_slot *new,
3206
				enum kvm_mr_change change)
3207
{
3208
	int rc;
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3220 3221 3222 3223

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3224
		pr_warn("failed to commit memory region\n");
3225
	return;
3226 3227
}

3228 3229 3230 3231 3232 3233 3234
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3235 3236 3237 3238 3239
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3240 3241
static int __init kvm_s390_init(void)
{
3242 3243
	int i;

3244 3245 3246 3247 3248
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3249 3250 3251 3252
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3253
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3254 3255 3256 3257 3258 3259 3260 3261 3262
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3263 3264 3265 3266 3267 3268 3269 3270 3271

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");