kvm-s390.c 82.3 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <linux/bitmap.h>
30
#include <asm/asm-offsets.h>
31
#include <asm/lowcore.h>
32
#include <asm/etr.h>
33
#include <asm/pgtable.h>
34
#include <asm/gmap.h>
35
#include <asm/nmi.h>
36
#include <asm/switch_to.h>
37
#include <asm/isc.h>
38
#include <asm/sclp.h>
39 40
#include <asm/cpacf.h>
#include <asm/etr.h>
41
#include "kvm-s390.h"
42 43
#include "gaccess.h"

44 45 46 47
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

48 49
#define CREATE_TRACE_POINTS
#include "trace.h"
50
#include "trace-s390.h"
51

52
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
53 54 55
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
56

57 58 59 60
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
61
	{ "exit_null", VCPU_STAT(exit_null) },
62 63 64 65
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
66 67 68
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
69
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
70
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
71
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
72
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
73
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
74
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
75
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
76 77
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
78
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
79
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
80 81 82 83 84 85 86
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
87
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
88 89 90 91 92
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
93
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
94 95
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
96
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
97 98
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
99
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
100
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
101
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
102
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
103
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
104
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
105 106
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
107
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
108 109
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
110
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
111 112 113
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
114 115 116
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
117
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
118
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
119
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
120 121 122
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
123 124 125
	{ NULL }
};

126
/* upper facilities limit for kvm */
127 128 129
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
130
};
131

132
unsigned long kvm_s390_fac_list_mask_size(void)
133
{
134 135
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
136 137
}

138 139
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
140 141
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
142

143
static struct gmap_notifier gmap_notifier;
144
debug_info_t *kvm_s390_dbf;
145

146
/* Section: not file related */
147
int kvm_arch_hardware_enable(void)
148 149
{
	/* every s390 is virtualization enabled ;-) */
150
	return 0;
151 152
}

153 154
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
173 174
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
175 176 177 178 179 180 181 182 183
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

184 185
int kvm_arch_hardware_setup(void)
{
186 187
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
188 189
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
190 191 192 193 194
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
195
	gmap_unregister_ipte_notifier(&gmap_notifier);
196 197
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
198 199
}

200 201 202 203 204
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

221 222
static void kvm_s390_cpu_feat_init(void)
{
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

251 252 253 254
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
}

255 256
int kvm_arch_init(void *opaque)
{
257 258 259 260 261 262 263 264 265
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

266 267
	kvm_s390_cpu_feat_init();

268 269
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
270 271
}

272 273 274 275 276
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

277 278 279 280 281 282 283 284 285
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

286
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
287
{
288 289
	int r;

290
	switch (ext) {
291
	case KVM_CAP_S390_PSW:
292
	case KVM_CAP_S390_GMAP:
293
	case KVM_CAP_SYNC_MMU:
294 295 296
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
297
	case KVM_CAP_ASYNC_PF:
298
	case KVM_CAP_SYNC_REGS:
299
	case KVM_CAP_ONE_REG:
300
	case KVM_CAP_ENABLE_CAP:
301
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
302
	case KVM_CAP_IOEVENTFD:
303
	case KVM_CAP_DEVICE_CTRL:
304
	case KVM_CAP_ENABLE_CAP_VM:
305
	case KVM_CAP_S390_IRQCHIP:
306
	case KVM_CAP_VM_ATTRIBUTES:
307
	case KVM_CAP_MP_STATE:
308
	case KVM_CAP_S390_INJECT_IRQ:
309
	case KVM_CAP_S390_USER_SIGP:
310
	case KVM_CAP_S390_USER_STSI:
311
	case KVM_CAP_S390_SKEYS:
312
	case KVM_CAP_S390_IRQ_STATE:
313 314
		r = 1;
		break;
315 316 317
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
318 319
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
320 321
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
322
		break;
323 324 325
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
326
	case KVM_CAP_S390_COW:
327
		r = MACHINE_HAS_ESOP;
328
		break;
329 330 331
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
332 333 334
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
335
	default:
336
		r = 0;
337
	}
338
	return r;
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

353
		if (test_and_clear_guest_dirty(gmap->mm, address))
354
			mark_page_dirty(kvm, cur_gfn);
355 356
		if (fatal_signal_pending(current))
			return;
357
		cond_resched();
358 359 360
	}
}

361
/* Section: vm related */
362 363
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

364 365 366 367 368 369
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
370 371
	int r;
	unsigned long n;
372
	struct kvm_memslots *slots;
373 374 375 376 377 378 379 380 381
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

382 383
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
402 403
}

404 405 406 407 408 409 410 411
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
412
	case KVM_CAP_S390_IRQCHIP:
413
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
414 415 416
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
417
	case KVM_CAP_S390_USER_SIGP:
418
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
419 420 421
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
422
	case KVM_CAP_S390_VECTOR_REGISTERS:
423 424 425 426
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
427 428
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
429 430 431
			r = 0;
		} else
			r = -EINVAL;
432
		mutex_unlock(&kvm->lock);
433 434
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
435
		break;
436 437 438 439 440 441
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
442 443
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
444 445 446 447 448 449
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
450
	case KVM_CAP_S390_USER_STSI:
451
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
452 453 454
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
455 456 457 458 459 460 461
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

462 463 464 465 466 467 468
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
469
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
470 471
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
472 473 474 475 476 477 478 479 480 481
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
482 483 484 485 486
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
487 488 489 490 491
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

492
		ret = -EBUSY;
493
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
494 495 496 497 498 499 500 501
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
502 503 504 505
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

506
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
507 508
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
509
		s390_reset_cmma(kvm->arch.gmap->mm);
510 511 512 513
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
514 515 516 517 518 519 520 521 522
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

523 524
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
525 526
			return -E2BIG;

527 528 529 530 531 532 533
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
550 551 552
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
553 554
		break;
	}
555 556 557 558 559 560 561
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

562 563 564 565 566 567 568
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

569
	if (!test_kvm_facility(kvm, 76))
570 571 572 573 574 575 576 577 578
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
579
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
580 581 582 583 584 585
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
586
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
587 588 589 590 591
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
592
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
593 594 595 596 597
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
598
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

613 614 615 616 617 618 619 620 621 622
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
623
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
624 625 626 627 628 629

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
630
	u64 gtod;
631 632 633 634

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

635
	kvm_s390_set_tod_clock(kvm, gtod);
636
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
668
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
669 670 671 672 673 674

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
675
	u64 gtod;
676

677
	gtod = kvm_s390_get_tod_clock_fast(kvm);
678 679
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
680
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

706 707 708
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
709
	u16 lowest_ibc, unblocked_ibc;
710 711 712 713 714 715 716 717 718 719 720 721 722 723
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
724
		kvm->arch.model.cpuid = proc->cpuid;
725 726 727 728 729 730 731 732 733 734
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
735
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
736 737 738 739 740 741 742 743 744
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

768 769 770 771 772 773 774 775 776 777
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

778 779 780 781 782 783 784 785
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
786 787 788
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
789 790 791
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
792 793 794 795 796 797 798 799 800 801 802 803 804 805
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
806
	proc->cpuid = kvm->arch.model.cpuid;
807
	proc->ibc = kvm->arch.model.ibc;
808 809
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
828
	mach->ibc = sclp.ibc;
829
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
830
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
831
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
832
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
833 834 835 836 837 838 839
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
884 885 886 887 888 889 890 891 892 893 894
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
895 896 897 898 899 900
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
901 902 903 904 905 906
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
907 908 909 910
	}
	return ret;
}

911 912 913 914 915
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
916
	case KVM_S390_VM_MEM_CTRL:
917
		ret = kvm_s390_set_mem_control(kvm, attr);
918
		break;
919 920 921
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
922 923 924
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
925 926 927
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
928 929 930 931 932 933 934 935 936 937
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
938 939 940 941 942 943
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
944 945 946
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
947 948 949
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
950 951 952 953 954 955
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
956 957 958 959 960 961 962
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
963 964 965 966
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
967
		case KVM_S390_VM_MEM_LIMIT_SIZE:
968 969 970 971 972 973 974
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
975 976 977 978 979 980 981 982 983 984 985
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
986 987 988 989
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
990 991
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
992
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
993 994
			ret = 0;
			break;
995 996
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
997 998 999 1000 1001
		default:
			ret = -ENXIO;
			break;
		}
		break;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1015 1016 1017 1018 1019 1020 1021 1022
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1100 1101 1102
	r = s390_enable_skey();
	if (r)
		goto out;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

1127 1128 1129 1130 1131
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1132
	struct kvm_device_attr attr;
1133 1134 1135
	int r;

	switch (ioctl) {
1136 1137 1138 1139 1140 1141 1142 1143 1144
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1145 1146 1147 1148 1149 1150 1151 1152
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1153 1154 1155 1156 1157 1158 1159
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1160
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1161 1162 1163
		}
		break;
	}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1205
	default:
1206
		r = -ENOTTY;
1207 1208 1209 1210 1211
	}

	return r;
}

1212 1213 1214
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1215
	u32 cc = 0;
1216

1217
	memset(config, 0, 128);
1218 1219 1220 1221
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1222
		"0: ipm %0\n"
1223
		"srl %0,28\n"
1224 1225 1226
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1239
	if (test_facility(12)) {
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1261
static u64 kvm_s390_get_initial_cpuid(void)
1262
{
1263 1264 1265 1266 1267
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1268 1269
}

1270
static void kvm_s390_crypto_init(struct kvm *kvm)
1271
{
1272
	if (!test_kvm_facility(kvm, 76))
1273
		return;
1274

1275
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1276
	kvm_s390_set_crycb_format(kvm);
1277

1278 1279 1280 1281 1282 1283 1284
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1285 1286
}

1287 1288 1289
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1290
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1291 1292 1293 1294 1295
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1296
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1297
{
1298
	int i, rc;
1299
	char debug_name[16];
1300
	static unsigned long sca_offset;
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1313 1314
	rc = s390_enable_sie();
	if (rc)
1315
		goto out_err;
1316

1317 1318
	rc = -ENOMEM;

J
Janosch Frank 已提交
1319 1320
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1321
	kvm->arch.use_esca = 0; /* start with basic SCA */
1322
	rwlock_init(&kvm->arch.sca_lock);
1323
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1324
	if (!kvm->arch.sca)
1325
		goto out_err;
1326
	spin_lock(&kvm_lock);
1327
	sca_offset += 16;
1328
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1329
		sca_offset = 0;
1330 1331
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1332
	spin_unlock(&kvm_lock);
1333 1334 1335

	sprintf(debug_name, "kvm-%u", current->pid);

1336
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1337
	if (!kvm->arch.dbf)
1338
		goto out_err;
1339

1340 1341 1342
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1343
		goto out_err;
1344

1345
	/* Populate the facility mask initially. */
1346
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1347
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1348 1349
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1350
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1351
		else
1352
			kvm->arch.model.fac_mask[i] = 0UL;
1353 1354
	}

1355
	/* Populate the facility list initially. */
1356 1357
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1358 1359
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1360 1361 1362
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1363
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1364
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1365

1366
	kvm_s390_crypto_init(kvm);
1367

1368
	spin_lock_init(&kvm->arch.float_int.lock);
1369 1370
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1371
	init_waitqueue_head(&kvm->arch.ipte_wq);
1372
	mutex_init(&kvm->arch.ipte_mutex);
1373

1374
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1375
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1376

1377 1378
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1379
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1380
	} else {
1381 1382 1383 1384 1385
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1386
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1387
		if (!kvm->arch.gmap)
1388
			goto out_err;
1389
		kvm->arch.gmap->private = kvm;
1390
		kvm->arch.gmap->pfault_enabled = 0;
1391
	}
1392 1393

	kvm->arch.css_support = 0;
1394
	kvm->arch.use_irqchip = 0;
1395
	kvm->arch.epoch = 0;
1396

1397
	spin_lock_init(&kvm->arch.start_stop_lock);
1398
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1399

1400
	return 0;
1401
out_err:
1402
	free_page((unsigned long)kvm->arch.sie_page2);
1403
	debug_unregister(kvm->arch.dbf);
1404
	sca_dispose(kvm);
1405
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1406
	return rc;
1407 1408
}

1409 1410 1411
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1412
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1413
	kvm_s390_clear_local_irqs(vcpu);
1414
	kvm_clear_async_pf_completion_queue(vcpu);
1415
	if (!kvm_is_ucontrol(vcpu->kvm))
1416
		sca_del_vcpu(vcpu);
1417 1418 1419 1420

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1421
	if (vcpu->kvm->arch.use_cmma)
1422
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1423
	free_page((unsigned long)(vcpu->arch.sie_block));
1424

1425
	kvm_vcpu_uninit(vcpu);
1426
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1427 1428 1429 1430 1431
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1432
	struct kvm_vcpu *vcpu;
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1443 1444
}

1445 1446
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1447
	kvm_free_vcpus(kvm);
1448
	sca_dispose(kvm);
1449
	debug_unregister(kvm->arch.dbf);
1450
	free_page((unsigned long)kvm->arch.sie_page2);
1451 1452
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1453
	kvm_s390_destroy_adapters(kvm);
1454
	kvm_s390_clear_float_irqs(kvm);
1455
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1456 1457 1458
}

/* Section: vcpu related */
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1469 1470
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1471
	read_lock(&vcpu->kvm->arch.sca_lock);
1472 1473
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1474

1475
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1476
		sca->cpu[vcpu->vcpu_id].sda = 0;
1477 1478 1479 1480
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1481
		sca->cpu[vcpu->vcpu_id].sda = 0;
1482
	}
1483
	read_unlock(&vcpu->kvm->arch.sca_lock);
1484 1485
}

1486
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1487
{
1488 1489 1490
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1491

1492
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1493 1494
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1495
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1496
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1497
	} else {
1498
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1499

1500
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1501 1502
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1503
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1504
	}
1505
	read_unlock(&vcpu->kvm->arch.sca_lock);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1559 1560
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1561
	return 0;
1562 1563 1564 1565
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1578 1579
}

1580 1581
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1582 1583
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1584 1585
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1586
				    KVM_SYNC_ACRS |
1587 1588 1589
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1590 1591
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1592 1593 1594 1595
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1596
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1597 1598
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1599 1600 1601 1602

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1603 1604 1605
	return 0;
}

1606 1607 1608 1609
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1610
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1611
	vcpu->arch.cputm_start = get_tod_clock_fast();
1612
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1613 1614 1615 1616 1617 1618
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1619
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1620 1621
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1622
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1655 1656 1657
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1658
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1659
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1660 1661
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1662
	vcpu->arch.sie_block->cputm = cputm;
1663
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1664
	preempt_enable();
1665 1666
}

1667
/* update and get the cpu timer - can also be called from other VCPU threads */
1668 1669
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1670
	unsigned int seq;
1671 1672 1673 1674 1675
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1690
	return value;
1691 1692
}

1693 1694
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1695
	/* Save host register state */
1696
	save_fpu_regs();
1697 1698
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1699

1700 1701 1702 1703
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1704
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1705
	if (test_fp_ctl(current->thread.fpu.fpc))
1706
		/* User space provided an invalid FPC, let's clear it */
1707 1708 1709
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1710
	restore_access_regs(vcpu->run->s.regs.acrs);
1711
	gmap_enable(vcpu->arch.gmap);
1712
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1713
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1714
		__start_cpu_timer_accounting(vcpu);
1715
	vcpu->cpu = cpu;
1716 1717 1718 1719
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1720
	vcpu->cpu = -1;
1721
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1722
		__stop_cpu_timer_accounting(vcpu);
1723
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1724
	gmap_disable(vcpu->arch.gmap);
1725

1726
	/* Save guest register state */
1727
	save_fpu_regs();
1728
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1729

1730 1731 1732
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1733 1734

	save_access_regs(vcpu->run->s.regs.acrs);
1735 1736 1737 1738 1739 1740 1741 1742
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1743
	kvm_s390_set_prefix(vcpu, 0);
1744
	kvm_s390_set_cpu_timer(vcpu, 0);
1745 1746 1747 1748 1749
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1750 1751 1752
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1753
	vcpu->arch.sie_block->gbea = 1;
1754
	vcpu->arch.sie_block->pp = 0;
1755 1756
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1757 1758
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1759
	kvm_s390_clear_local_irqs(vcpu);
1760 1761
}

1762
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1763
{
1764
	mutex_lock(&vcpu->kvm->lock);
1765
	preempt_disable();
1766
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1767
	preempt_enable();
1768
	mutex_unlock(&vcpu->kvm->lock);
1769
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1770
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1771
		sca_add_vcpu(vcpu);
1772 1773
	}

1774 1775
}

1776 1777
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1778
	if (!test_kvm_facility(vcpu->kvm, 76))
1779 1780
		return;

1781 1782 1783 1784 1785 1786 1787
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1788 1789 1790
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1808 1809 1810 1811 1812
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1813
	if (test_kvm_facility(vcpu->kvm, 7))
1814
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1815 1816
}

1817 1818
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1819
	int rc = 0;
1820

1821 1822
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1823 1824
						    CPUSTAT_STOPPED);

1825
	if (test_kvm_facility(vcpu->kvm, 78))
1826
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1827
	else if (test_kvm_facility(vcpu->kvm, 8))
1828
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1829

1830 1831
	kvm_s390_vcpu_setup_model(vcpu);

1832 1833 1834
	vcpu->arch.sie_block->ecb = 0x02;
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1835
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1836 1837
		vcpu->arch.sie_block->ecb |= 0x10;

1838 1839
	if (test_kvm_facility(vcpu->kvm, 8))
		vcpu->arch.sie_block->ecb2 |= 0x08;
1840
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1841
	if (sclp.has_siif)
1842
		vcpu->arch.sie_block->eca |= 1;
1843
	if (sclp.has_sigpif)
1844
		vcpu->arch.sie_block->eca |= 0x10000000U;
1845 1846
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1847
	if (test_kvm_facility(vcpu->kvm, 129)) {
1848 1849 1850
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1851
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1852
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1853 1854
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1855

1856
	if (vcpu->kvm->arch.use_cmma) {
1857 1858 1859
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1860
	}
1861
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1862
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1863

1864 1865
	kvm_s390_vcpu_crypto_setup(vcpu);

1866
	return rc;
1867 1868 1869 1870 1871
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1872
	struct kvm_vcpu *vcpu;
1873
	struct sie_page *sie_page;
1874 1875
	int rc = -EINVAL;

1876
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1877 1878 1879
		goto out;

	rc = -ENOMEM;
1880

1881
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1882
	if (!vcpu)
1883
		goto out;
1884

1885 1886
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1887 1888
		goto out_free_cpu;

1889 1890 1891
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1892
	vcpu->arch.sie_block->icpua = id;
1893 1894
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1895
	vcpu->arch.local_int.wq = &vcpu->wq;
1896
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1897
	seqcount_init(&vcpu->arch.cputm_seqcount);
1898

1899 1900
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1901
		goto out_free_sie_block;
1902
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1903
		 vcpu->arch.sie_block);
1904
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1905 1906

	return vcpu;
1907 1908
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1909
out_free_cpu:
1910
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1911
out:
1912 1913 1914 1915 1916
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1917
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1918 1919
}

1920
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1921
{
1922
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1923
	exit_sie(vcpu);
1924 1925
}

1926
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1927
{
1928
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1929 1930
}

1931 1932
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1933
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1934
	exit_sie(vcpu);
1935 1936 1937 1938
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1939
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1940 1941
}

1942 1943 1944 1945 1946 1947
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1948
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1949 1950 1951 1952
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1953 1954
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1955
{
1956 1957
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1958 1959
}

1960 1961 1962 1963 1964 1965 1966 1967
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1968
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1969
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1970
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1971 1972 1973 1974
		}
	}
}

1975 1976 1977 1978 1979 1980 1981
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1982 1983 1984 1985 1986 1987
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1988 1989 1990 1991 1992 1993 1994 1995
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1996
	case KVM_REG_S390_CPU_TIMER:
1997
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
1998 1999 2000 2001 2002 2003
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2016 2017 2018 2019
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2020 2021 2022 2023
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2035
	__u64 val;
2036 2037

	switch (reg->id) {
2038 2039 2040 2041 2042 2043 2044 2045
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2046
	case KVM_REG_S390_CPU_TIMER:
2047 2048 2049
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2050 2051 2052 2053 2054
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2055 2056 2057
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2058 2059
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2060 2061 2062 2063 2064 2065 2066 2067 2068
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2069 2070 2071 2072
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2073 2074 2075 2076
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2077 2078 2079 2080 2081 2082
	default:
		break;
	}

	return r;
}
2083

2084 2085 2086 2087 2088 2089 2090 2091
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2092
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2093 2094 2095 2096 2097
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2098
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2099 2100 2101 2102 2103 2104
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2105
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2106
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2107
	restore_access_regs(vcpu->run->s.regs.acrs);
2108 2109 2110 2111 2112 2113
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2114
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2115 2116 2117 2118 2119 2120
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2121 2122
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2123 2124
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2125 2126 2127 2128 2129
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2130 2131 2132 2133 2134
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2135 2136 2137 2138 2139 2140 2141
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2142 2143 2144 2145 2146 2147 2148
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2149
	if (!is_vcpu_stopped(vcpu))
2150
		rc = -EBUSY;
2151 2152 2153 2154
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2155 2156 2157 2158 2159 2160 2161 2162 2163
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2164 2165 2166 2167
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2168 2169
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2170
{
2171 2172 2173 2174 2175
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2176
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2177 2178 2179 2180 2181
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2182
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2183 2184 2185 2186

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2187
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2188 2189 2190 2191 2192 2193
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2194
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2195 2196 2197
	}

	return rc;
2198 2199
}

2200 2201 2202
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2203 2204 2205
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2206 2207 2208 2209 2210
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2231 2232
}

2233 2234 2235 2236 2237
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2238 2239
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2240
retry:
2241
	kvm_s390_vcpu_request_handled(vcpu);
2242 2243
	if (!vcpu->requests)
		return 0;
2244 2245 2246 2247 2248 2249 2250
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2251
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2252 2253
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2254
				      kvm_s390_get_prefix(vcpu),
2255 2256 2257
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2258
		goto retry;
2259
	}
2260

2261 2262 2263 2264 2265
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2266 2267 2268
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2269
			atomic_or(CPUSTAT_IBS,
2270 2271 2272
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2273
	}
2274 2275 2276 2277

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2278
			atomic_andnot(CPUSTAT_IBS,
2279 2280 2281 2282 2283
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2284 2285 2286
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2287 2288 2289
	return 0;
}

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2317
{
2318 2319
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2320 2321
}

2322 2323 2324 2325
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2326
	struct kvm_s390_irq irq;
2327 2328

	if (start_token) {
2329 2330 2331
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2332 2333
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2334
		inti.parm64 = token;
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2381
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2382 2383 2384 2385 2386 2387
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2388 2389 2390
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2391 2392 2393 2394 2395 2396
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2397
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2398
{
2399
	int rc, cpuflags;
2400

2401 2402 2403 2404 2405 2406 2407
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2408 2409
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2410 2411 2412 2413

	if (need_resched())
		schedule();

2414
	if (test_cpu_flag(CIF_MCCK_PENDING))
2415 2416
		s390_handle_mcck();

2417 2418 2419 2420 2421
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2422

2423 2424 2425 2426
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2427 2428 2429 2430 2431
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2432
	vcpu->arch.sie_block->icptcode = 0;
2433 2434 2435
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2436

2437 2438 2439
	return 0;
}

2440 2441
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2442 2443 2444 2445
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2459
	rc = read_guest_instr(vcpu, &opcode, 1);
2460
	ilen = insn_length(opcode);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2471 2472 2473
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2474 2475
}

2476 2477
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2478 2479 2480 2481
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2482 2483 2484
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2485 2486
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2501 2502 2503 2504 2505
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2506
		return -EREMOTE;
2507
	} else if (current->thread.gmap_pfault) {
2508
		trace_kvm_s390_major_guest_pfault(vcpu);
2509
		current->thread.gmap_pfault = 0;
2510 2511 2512
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2513
	}
2514
	return vcpu_post_run_fault_in_sie(vcpu);
2515 2516 2517 2518 2519 2520
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2521 2522 2523 2524 2525 2526
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2527 2528 2529 2530
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2531

2532
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2533 2534 2535 2536
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2537 2538
		local_irq_disable();
		__kvm_guest_enter();
2539
		__disable_cpu_timer_accounting(vcpu);
2540
		local_irq_enable();
2541 2542
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2543
		local_irq_disable();
2544
		__enable_cpu_timer_accounting(vcpu);
2545 2546
		__kvm_guest_exit();
		local_irq_enable();
2547
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2548 2549

		rc = vcpu_post_run(vcpu, exit_reason);
2550
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2551

2552
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2553
	return rc;
2554 2555
}

2556 2557 2558 2559 2560 2561 2562 2563
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2564 2565
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2566 2567
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2568
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2569 2570 2571 2572 2573 2574 2575 2576 2577
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2578 2579
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2590
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2591 2592 2593 2594 2595 2596 2597 2598 2599
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2600 2601
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2602
	int rc;
2603 2604
	sigset_t sigsaved;

2605 2606 2607 2608 2609
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2610 2611 2612
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2613 2614 2615
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2616
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2617 2618 2619
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2620

2621
	sync_regs(vcpu, kvm_run);
2622
	enable_cpu_timer_accounting(vcpu);
2623

2624
	might_fault();
2625
	rc = __vcpu_run(vcpu);
2626

2627 2628
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2629
		rc = -EINTR;
2630
	}
2631

2632 2633 2634 2635 2636
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2637
	if (rc == -EREMOTE) {
2638
		/* userspace support is needed, kvm_run has been prepared */
2639 2640
		rc = 0;
	}
2641

2642
	disable_cpu_timer_accounting(vcpu);
2643
	store_regs(vcpu, kvm_run);
2644

2645 2646 2647 2648
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2649
	return rc;
2650 2651 2652 2653 2654 2655 2656 2657
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2658
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2659
{
2660
	unsigned char archmode = 1;
2661
	freg_t fprs[NUM_FPRS];
2662
	unsigned int px;
2663
	u64 clkcomp, cputm;
2664
	int rc;
2665

2666
	px = kvm_s390_get_prefix(vcpu);
2667 2668
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2669
			return -EFAULT;
2670
		gpa = 0;
2671 2672
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2673
			return -EFAULT;
2674 2675 2676
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2677 2678 2679

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2680
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2681 2682 2683 2684
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2685
				     vcpu->run->s.regs.fprs, 128);
2686
	}
2687
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2688
			      vcpu->run->s.regs.gprs, 128);
2689
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2690
			      &vcpu->arch.sie_block->gpsw, 16);
2691
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2692
			      &px, 4);
2693
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2694
			      &vcpu->run->s.regs.fpc, 4);
2695
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2696
			      &vcpu->arch.sie_block->todpr, 4);
2697
	cputm = kvm_s390_get_cpu_timer(vcpu);
2698
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2699
			      &cputm, 8);
2700
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2701
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2702
			      &clkcomp, 8);
2703
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2704
			      &vcpu->run->s.regs.acrs, 64);
2705
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2706 2707
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2708 2709
}

2710 2711 2712 2713 2714 2715 2716
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2717
	save_fpu_regs();
2718
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2719 2720 2721 2722 2723
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2745 2746 2747 2748 2749
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2750
	 */
2751
	save_fpu_regs();
E
Eric Farman 已提交
2752 2753 2754 2755

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2756 2757 2758
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2759
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2775
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2776 2777
}

2778 2779
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2780 2781 2782 2783 2784
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2785
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2786
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2787
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2807
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2808 2809 2810 2811
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2812
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2813
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2814
	return;
2815 2816 2817 2818
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2819 2820 2821 2822 2823 2824
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2825
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2826
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2827
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2828 2829
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2830
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2831
	kvm_s390_clear_stop_irq(vcpu);
2832

2833
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2851
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2852
	return;
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2864 2865 2866
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2867
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2868 2869 2870 2871
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2872 2873 2874 2875 2876 2877 2878
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2905 2906
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2917 2918
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2940 2941 2942 2943 2944
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2945
	int idx;
2946
	long r;
2947

2948
	switch (ioctl) {
2949 2950 2951 2952 2953 2954 2955 2956 2957
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2958
	case KVM_S390_INTERRUPT: {
2959
		struct kvm_s390_interrupt s390int;
2960
		struct kvm_s390_irq s390irq;
2961

2962
		r = -EFAULT;
2963
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2964
			break;
2965 2966 2967
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2968
		break;
2969
	}
2970
	case KVM_S390_STORE_STATUS:
2971
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2972
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2973
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2974
		break;
2975 2976 2977
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2978
		r = -EFAULT;
2979
		if (copy_from_user(&psw, argp, sizeof(psw)))
2980 2981 2982
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2983 2984
	}
	case KVM_S390_INITIAL_RESET:
2985 2986
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3035
	case KVM_S390_VCPU_FAULT: {
3036
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3037 3038
		break;
	}
3039 3040 3041 3042 3043 3044 3045 3046 3047
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3048 3049 3050 3051 3052 3053 3054 3055 3056
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3089
	default:
3090
		r = -ENOTTY;
3091
	}
3092
	return r;
3093 3094
}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3108 3109
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3110 3111 3112 3113
{
	return 0;
}

3114
/* Section: memory related */
3115 3116
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3117
				   const struct kvm_userspace_memory_region *mem,
3118
				   enum kvm_mr_change change)
3119
{
3120 3121 3122 3123
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3124

3125
	if (mem->userspace_addr & 0xffffful)
3126 3127
		return -EINVAL;

3128
	if (mem->memory_size & 0xffffful)
3129 3130
		return -EINVAL;

3131 3132 3133
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3134 3135 3136 3137
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3138
				const struct kvm_userspace_memory_region *mem,
3139
				const struct kvm_memory_slot *old,
3140
				const struct kvm_memory_slot *new,
3141
				enum kvm_mr_change change)
3142
{
3143
	int rc;
3144

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3155 3156 3157 3158

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3159
		pr_warn("failed to commit memory region\n");
3160
	return;
3161 3162
}

3163 3164 3165 3166 3167 3168 3169
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3170 3171 3172 3173 3174
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3175 3176
static int __init kvm_s390_init(void)
{
3177 3178
	int i;

3179 3180 3181 3182 3183
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3184 3185 3186 3187
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3188
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3189 3190 3191 3192 3193 3194 3195 3196 3197
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3198 3199 3200 3201 3202 3203 3204 3205 3206

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");