kvm-s390.c 79.6 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <linux/bitmap.h>
30
#include <asm/asm-offsets.h>
31
#include <asm/lowcore.h>
32
#include <asm/etr.h>
33
#include <asm/pgtable.h>
34
#include <asm/gmap.h>
35
#include <asm/nmi.h>
36
#include <asm/switch_to.h>
37
#include <asm/isc.h>
38
#include <asm/sclp.h>
39
#include "kvm-s390.h"
40 41
#include "gaccess.h"

42 43 44 45
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

46 47
#define CREATE_TRACE_POINTS
#include "trace.h"
48
#include "trace-s390.h"
49

50
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
51 52 53
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
54

55 56 57 58
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
59
	{ "exit_null", VCPU_STAT(exit_null) },
60 61 62 63
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
64 65 66
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
67
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
68
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
69
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
70
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
71
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
72
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
73
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
74 75
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
76
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
77
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
78 79 80 81 82 83 84
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
85
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
86 87 88 89 90
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
91
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
92 93
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
94
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
95 96
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
97
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
98
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
99
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
100
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
101
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
102
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
103 104
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
105
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
106 107
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
108
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
109 110 111
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
112 113 114
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
115
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
116
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
117
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
118 119 120
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
121 122 123
	{ NULL }
};

124
/* upper facilities limit for kvm */
125 126 127
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
128
};
129

130
unsigned long kvm_s390_fac_list_mask_size(void)
131
{
132 133
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
134 135
}

136 137 138
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);

139
static struct gmap_notifier gmap_notifier;
140
debug_info_t *kvm_s390_dbf;
141

142
/* Section: not file related */
143
int kvm_arch_hardware_enable(void)
144 145
{
	/* every s390 is virtualization enabled ;-) */
146
	return 0;
147 148
}

149 150
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
169 170
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
171 172 173 174 175 176 177 178 179
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

180 181
int kvm_arch_hardware_setup(void)
{
182 183
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
184 185
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
186 187 188 189 190
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
191
	gmap_unregister_ipte_notifier(&gmap_notifier);
192 193
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
194 195
}

196 197 198 199 200 201 202 203 204 205 206
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

static void kvm_s390_cpu_feat_init(void)
{
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
}

207 208
int kvm_arch_init(void *opaque)
{
209 210 211 212 213 214 215 216 217
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

218 219
	kvm_s390_cpu_feat_init();

220 221
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
222 223
}

224 225 226 227 228
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

229 230 231 232 233 234 235 236 237
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

238
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
239
{
240 241
	int r;

242
	switch (ext) {
243
	case KVM_CAP_S390_PSW:
244
	case KVM_CAP_S390_GMAP:
245
	case KVM_CAP_SYNC_MMU:
246 247 248
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
249
	case KVM_CAP_ASYNC_PF:
250
	case KVM_CAP_SYNC_REGS:
251
	case KVM_CAP_ONE_REG:
252
	case KVM_CAP_ENABLE_CAP:
253
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
254
	case KVM_CAP_IOEVENTFD:
255
	case KVM_CAP_DEVICE_CTRL:
256
	case KVM_CAP_ENABLE_CAP_VM:
257
	case KVM_CAP_S390_IRQCHIP:
258
	case KVM_CAP_VM_ATTRIBUTES:
259
	case KVM_CAP_MP_STATE:
260
	case KVM_CAP_S390_INJECT_IRQ:
261
	case KVM_CAP_S390_USER_SIGP:
262
	case KVM_CAP_S390_USER_STSI:
263
	case KVM_CAP_S390_SKEYS:
264
	case KVM_CAP_S390_IRQ_STATE:
265 266
		r = 1;
		break;
267 268 269
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
270 271
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
272 273
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
274
		break;
275 276 277
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
278
	case KVM_CAP_S390_COW:
279
		r = MACHINE_HAS_ESOP;
280
		break;
281 282 283
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
284 285 286
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
287
	default:
288
		r = 0;
289
	}
290
	return r;
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

305
		if (test_and_clear_guest_dirty(gmap->mm, address))
306
			mark_page_dirty(kvm, cur_gfn);
307 308
		if (fatal_signal_pending(current))
			return;
309
		cond_resched();
310 311 312
	}
}

313
/* Section: vm related */
314 315
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

316 317 318 319 320 321
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
322 323
	int r;
	unsigned long n;
324
	struct kvm_memslots *slots;
325 326 327 328 329 330 331 332 333
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

334 335
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
354 355
}

356 357 358 359 360 361 362 363
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
364
	case KVM_CAP_S390_IRQCHIP:
365
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
366 367 368
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
369
	case KVM_CAP_S390_USER_SIGP:
370
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
371 372 373
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
374
	case KVM_CAP_S390_VECTOR_REGISTERS:
375 376 377 378
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
379 380
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
381 382 383
			r = 0;
		} else
			r = -EINVAL;
384
		mutex_unlock(&kvm->lock);
385 386
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
387
		break;
388 389 390 391 392 393
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
394 395
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
396 397 398 399 400 401
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
402
	case KVM_CAP_S390_USER_STSI:
403
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
404 405 406
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
407 408 409 410 411 412 413
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

414 415 416 417 418 419 420
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
421
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
422 423
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
424 425 426 427 428 429 430 431 432 433
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
434 435 436 437 438
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
439 440 441 442 443
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

444
		ret = -EBUSY;
445
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
446 447 448 449 450 451 452 453
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
454 455 456 457
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

458
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
459 460
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
461
		s390_reset_cmma(kvm->arch.gmap->mm);
462 463 464 465
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
466 467 468 469 470 471 472 473 474
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

475 476
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
477 478
			return -E2BIG;

479 480 481 482 483 484 485
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
502 503 504
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
505 506
		break;
	}
507 508 509 510 511 512 513
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

514 515 516 517 518 519 520
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

521
	if (!test_kvm_facility(kvm, 76))
522 523 524 525 526 527 528 529 530
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
531
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
532 533 534 535 536 537
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
538
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
539 540 541 542 543
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
544
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
545 546 547 548 549
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
550
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
551 552 553 554 555 556 557 558 559 560 561 562 563 564
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

565 566 567 568 569 570 571 572 573 574
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
575
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
576 577 578 579 580 581

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
582
	u64 gtod;
583 584 585 586

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

587
	kvm_s390_set_tod_clock(kvm, gtod);
588
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
620
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
621 622 623 624 625 626

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
627
	u64 gtod;
628

629
	gtod = kvm_s390_get_tod_clock_fast(kvm);
630 631
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
632
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

658 659 660
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
661
	u16 lowest_ibc, unblocked_ibc;
662 663 664 665 666 667 668 669 670 671 672 673 674 675
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
676
		kvm->arch.model.cpuid = proc->cpuid;
677 678 679 680 681 682 683 684 685 686
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
687
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
688 689 690 691 692 693 694 695 696
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

720 721 722 723 724 725 726 727
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
728 729 730
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
731 732 733 734 735 736 737 738 739 740 741 742 743 744
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
745
	proc->cpuid = kvm->arch.model.cpuid;
746
	proc->ibc = kvm->arch.model.ibc;
747 748
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
767
	mach->ibc = sclp.ibc;
768
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
769
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
770
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
771
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
772 773 774 775 776 777 778
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

804 805 806 807 808 809 810 811 812 813 814
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
815 816 817 818 819 820
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
821 822 823 824
	}
	return ret;
}

825 826 827 828 829
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
830
	case KVM_S390_VM_MEM_CTRL:
831
		ret = kvm_s390_set_mem_control(kvm, attr);
832
		break;
833 834 835
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
836 837 838
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
839 840 841
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
842 843 844 845 846 847 848 849 850 851
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
852 853 854 855 856 857
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
858 859 860
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
861 862 863
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
864 865 866 867 868 869
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
870 871 872 873 874 875 876
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
877 878 879 880
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
881
		case KVM_S390_VM_MEM_LIMIT_SIZE:
882 883 884 885 886 887 888
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
889 890 891 892 893 894 895 896 897 898 899
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
900 901 902 903
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
904 905
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
906 907 908 909 910 911 912
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
913 914 915 916 917 918 919 920 921 922 923 924 925
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
926 927 928 929 930 931 932 933
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1011 1012 1013
	r = s390_enable_skey();
	if (r)
		goto out;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

1038 1039 1040 1041 1042
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1043
	struct kvm_device_attr attr;
1044 1045 1046
	int r;

	switch (ioctl) {
1047 1048 1049 1050 1051 1052 1053 1054 1055
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1056 1057 1058 1059 1060 1061 1062 1063
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1064 1065 1066 1067 1068 1069 1070
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1071
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1072 1073 1074
		}
		break;
	}
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1116
	default:
1117
		r = -ENOTTY;
1118 1119 1120 1121 1122
	}

	return r;
}

1123 1124 1125
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1126
	u32 cc = 0;
1127

1128
	memset(config, 0, 128);
1129 1130 1131 1132
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1133
		"0: ipm %0\n"
1134
		"srl %0,28\n"
1135 1136 1137
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1150
	if (test_facility(12)) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1172
static u64 kvm_s390_get_initial_cpuid(void)
1173
{
1174 1175 1176 1177 1178
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1179 1180
}

1181
static void kvm_s390_crypto_init(struct kvm *kvm)
1182
{
1183
	if (!test_kvm_facility(kvm, 76))
1184
		return;
1185

1186
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1187
	kvm_s390_set_crycb_format(kvm);
1188

1189 1190 1191 1192 1193 1194 1195
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1196 1197
}

1198 1199 1200
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1201
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1202 1203 1204 1205 1206
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1207
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1208
{
1209
	int i, rc;
1210
	char debug_name[16];
1211
	static unsigned long sca_offset;
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1224 1225
	rc = s390_enable_sie();
	if (rc)
1226
		goto out_err;
1227

1228 1229
	rc = -ENOMEM;

J
Janosch Frank 已提交
1230 1231
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1232
	kvm->arch.use_esca = 0; /* start with basic SCA */
1233
	rwlock_init(&kvm->arch.sca_lock);
1234
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1235
	if (!kvm->arch.sca)
1236
		goto out_err;
1237
	spin_lock(&kvm_lock);
1238
	sca_offset += 16;
1239
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1240
		sca_offset = 0;
1241 1242
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1243
	spin_unlock(&kvm_lock);
1244 1245 1246

	sprintf(debug_name, "kvm-%u", current->pid);

1247
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1248
	if (!kvm->arch.dbf)
1249
		goto out_err;
1250

1251 1252 1253
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1254
		goto out_err;
1255

1256
	/* Populate the facility mask initially. */
1257
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1258
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1259 1260
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1261
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1262
		else
1263
			kvm->arch.model.fac_mask[i] = 0UL;
1264 1265
	}

1266
	/* Populate the facility list initially. */
1267 1268
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1269 1270
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1271 1272 1273
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1274
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1275
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1276

1277
	kvm_s390_crypto_init(kvm);
1278

1279
	spin_lock_init(&kvm->arch.float_int.lock);
1280 1281
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1282
	init_waitqueue_head(&kvm->arch.ipte_wq);
1283
	mutex_init(&kvm->arch.ipte_mutex);
1284

1285
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1286
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1287

1288 1289
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1290
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1291
	} else {
1292 1293 1294 1295 1296
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1297
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1298
		if (!kvm->arch.gmap)
1299
			goto out_err;
1300
		kvm->arch.gmap->private = kvm;
1301
		kvm->arch.gmap->pfault_enabled = 0;
1302
	}
1303 1304

	kvm->arch.css_support = 0;
1305
	kvm->arch.use_irqchip = 0;
1306
	kvm->arch.epoch = 0;
1307

1308
	spin_lock_init(&kvm->arch.start_stop_lock);
1309
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1310

1311
	return 0;
1312
out_err:
1313
	free_page((unsigned long)kvm->arch.sie_page2);
1314
	debug_unregister(kvm->arch.dbf);
1315
	sca_dispose(kvm);
1316
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1317
	return rc;
1318 1319
}

1320 1321 1322
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1323
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1324
	kvm_s390_clear_local_irqs(vcpu);
1325
	kvm_clear_async_pf_completion_queue(vcpu);
1326
	if (!kvm_is_ucontrol(vcpu->kvm))
1327
		sca_del_vcpu(vcpu);
1328 1329 1330 1331

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1332
	if (vcpu->kvm->arch.use_cmma)
1333
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1334
	free_page((unsigned long)(vcpu->arch.sie_block));
1335

1336
	kvm_vcpu_uninit(vcpu);
1337
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1338 1339 1340 1341 1342
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1343
	struct kvm_vcpu *vcpu;
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1354 1355
}

1356 1357
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1358
	kvm_free_vcpus(kvm);
1359
	sca_dispose(kvm);
1360
	debug_unregister(kvm->arch.dbf);
1361
	free_page((unsigned long)kvm->arch.sie_page2);
1362 1363
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1364
	kvm_s390_destroy_adapters(kvm);
1365
	kvm_s390_clear_float_irqs(kvm);
1366
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1367 1368 1369
}

/* Section: vcpu related */
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1380 1381
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1382
	read_lock(&vcpu->kvm->arch.sca_lock);
1383 1384
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1385

1386
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1387
		sca->cpu[vcpu->vcpu_id].sda = 0;
1388 1389 1390 1391
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1392
		sca->cpu[vcpu->vcpu_id].sda = 0;
1393
	}
1394
	read_unlock(&vcpu->kvm->arch.sca_lock);
1395 1396
}

1397
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1398
{
1399 1400 1401
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1402

1403
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1404 1405
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1406
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1407
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1408
	} else {
1409
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1410

1411
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1412 1413
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1414
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1415
	}
1416
	read_unlock(&vcpu->kvm->arch.sca_lock);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1470 1471
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1472
	return 0;
1473 1474 1475 1476
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1489 1490
}

1491 1492
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1493 1494
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1495 1496
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1497
				    KVM_SYNC_ACRS |
1498 1499 1500
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1501 1502
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1503 1504 1505 1506
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1507
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1508 1509
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1510 1511 1512 1513

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1514 1515 1516
	return 0;
}

1517 1518 1519 1520
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1521
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1522
	vcpu->arch.cputm_start = get_tod_clock_fast();
1523
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1524 1525 1526 1527 1528 1529
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1530
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1531 1532
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1533
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1566 1567 1568
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1569
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1570
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1571 1572
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1573
	vcpu->arch.sie_block->cputm = cputm;
1574
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1575
	preempt_enable();
1576 1577
}

1578
/* update and get the cpu timer - can also be called from other VCPU threads */
1579 1580
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1581
	unsigned int seq;
1582 1583 1584 1585 1586
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1601
	return value;
1602 1603
}

1604 1605
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1606
	/* Save host register state */
1607
	save_fpu_regs();
1608 1609
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1610

1611 1612 1613 1614
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1615
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1616
	if (test_fp_ctl(current->thread.fpu.fpc))
1617
		/* User space provided an invalid FPC, let's clear it */
1618 1619 1620
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1621
	restore_access_regs(vcpu->run->s.regs.acrs);
1622
	gmap_enable(vcpu->arch.gmap);
1623
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1624
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1625
		__start_cpu_timer_accounting(vcpu);
1626
	vcpu->cpu = cpu;
1627 1628 1629 1630
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1631
	vcpu->cpu = -1;
1632
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1633
		__stop_cpu_timer_accounting(vcpu);
1634
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1635
	gmap_disable(vcpu->arch.gmap);
1636

1637
	/* Save guest register state */
1638
	save_fpu_regs();
1639
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1640

1641 1642 1643
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1644 1645

	save_access_regs(vcpu->run->s.regs.acrs);
1646 1647 1648 1649 1650 1651 1652 1653
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1654
	kvm_s390_set_prefix(vcpu, 0);
1655
	kvm_s390_set_cpu_timer(vcpu, 0);
1656 1657 1658 1659 1660
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1661 1662 1663
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1664
	vcpu->arch.sie_block->gbea = 1;
1665
	vcpu->arch.sie_block->pp = 0;
1666 1667
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1668 1669
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1670
	kvm_s390_clear_local_irqs(vcpu);
1671 1672
}

1673
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1674
{
1675
	mutex_lock(&vcpu->kvm->lock);
1676
	preempt_disable();
1677
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1678
	preempt_enable();
1679
	mutex_unlock(&vcpu->kvm->lock);
1680
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1681
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1682
		sca_add_vcpu(vcpu);
1683 1684
	}

1685 1686
}

1687 1688
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1689
	if (!test_kvm_facility(vcpu->kvm, 76))
1690 1691
		return;

1692 1693 1694 1695 1696 1697 1698
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1699 1700 1701
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1719 1720 1721 1722 1723
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1724
	if (test_kvm_facility(vcpu->kvm, 7))
1725
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1726 1727
}

1728 1729
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1730
	int rc = 0;
1731

1732 1733
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1734 1735
						    CPUSTAT_STOPPED);

1736
	if (test_kvm_facility(vcpu->kvm, 78))
1737
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1738
	else if (test_kvm_facility(vcpu->kvm, 8))
1739
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1740

1741 1742
	kvm_s390_vcpu_setup_model(vcpu);

1743 1744 1745
	vcpu->arch.sie_block->ecb = 0x02;
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1746
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1747 1748
		vcpu->arch.sie_block->ecb |= 0x10;

1749 1750
	if (test_kvm_facility(vcpu->kvm, 8))
		vcpu->arch.sie_block->ecb2 |= 0x08;
1751
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1752
	if (sclp.has_siif)
1753
		vcpu->arch.sie_block->eca |= 1;
1754
	if (sclp.has_sigpif)
1755
		vcpu->arch.sie_block->eca |= 0x10000000U;
1756 1757
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1758
	if (test_kvm_facility(vcpu->kvm, 129)) {
1759 1760 1761
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1762
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1763
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1764 1765
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1766

1767
	if (vcpu->kvm->arch.use_cmma) {
1768 1769 1770
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1771
	}
1772
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1773
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1774

1775 1776
	kvm_s390_vcpu_crypto_setup(vcpu);

1777
	return rc;
1778 1779 1780 1781 1782
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1783
	struct kvm_vcpu *vcpu;
1784
	struct sie_page *sie_page;
1785 1786
	int rc = -EINVAL;

1787
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1788 1789 1790
		goto out;

	rc = -ENOMEM;
1791

1792
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1793
	if (!vcpu)
1794
		goto out;
1795

1796 1797
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1798 1799
		goto out_free_cpu;

1800 1801 1802
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1803
	vcpu->arch.sie_block->icpua = id;
1804 1805
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1806
	vcpu->arch.local_int.wq = &vcpu->wq;
1807
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1808
	seqcount_init(&vcpu->arch.cputm_seqcount);
1809

1810 1811
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1812
		goto out_free_sie_block;
1813
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1814
		 vcpu->arch.sie_block);
1815
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1816 1817

	return vcpu;
1818 1819
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1820
out_free_cpu:
1821
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1822
out:
1823 1824 1825 1826 1827
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1828
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1829 1830
}

1831
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1832
{
1833
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1834
	exit_sie(vcpu);
1835 1836
}

1837
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1838
{
1839
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1840 1841
}

1842 1843
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1844
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1845
	exit_sie(vcpu);
1846 1847 1848 1849
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1850
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1851 1852
}

1853 1854 1855 1856 1857 1858
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1859
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1860 1861 1862 1863
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1864 1865
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1866
{
1867 1868
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1879
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1880
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1881
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1882 1883 1884 1885
		}
	}
}

1886 1887 1888 1889 1890 1891 1892
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1893 1894 1895 1896 1897 1898
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1899 1900 1901 1902 1903 1904 1905 1906
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1907
	case KVM_REG_S390_CPU_TIMER:
1908
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
1909 1910 1911 1912 1913 1914
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1927 1928 1929 1930
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1931 1932 1933 1934
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
1946
	__u64 val;
1947 1948

	switch (reg->id) {
1949 1950 1951 1952 1953 1954 1955 1956
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1957
	case KVM_REG_S390_CPU_TIMER:
1958 1959 1960
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
1961 1962 1963 1964 1965
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1966 1967 1968
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1969 1970
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1971 1972 1973 1974 1975 1976 1977 1978 1979
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1980 1981 1982 1983
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1984 1985 1986 1987
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1988 1989 1990 1991 1992 1993
	default:
		break;
	}

	return r;
}
1994

1995 1996 1997 1998 1999 2000 2001 2002
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2003
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2004 2005 2006 2007 2008
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2009
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2010 2011 2012 2013 2014 2015
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2016
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2017
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2018
	restore_access_regs(vcpu->run->s.regs.acrs);
2019 2020 2021 2022 2023 2024
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2025
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2026 2027 2028 2029 2030 2031
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2032 2033
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2034 2035
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2036 2037 2038 2039 2040
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2041 2042 2043 2044 2045
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2046 2047 2048 2049 2050 2051 2052
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2053 2054 2055 2056 2057 2058 2059
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2060
	if (!is_vcpu_stopped(vcpu))
2061
		rc = -EBUSY;
2062 2063 2064 2065
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2066 2067 2068 2069 2070 2071 2072 2073 2074
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2075 2076 2077 2078
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2079 2080
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2081
{
2082 2083 2084 2085 2086
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2087
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2088 2089 2090 2091 2092
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2093
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2094 2095 2096 2097

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2098
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2099 2100 2101 2102 2103 2104
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2105
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2106 2107 2108
	}

	return rc;
2109 2110
}

2111 2112 2113
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2114 2115 2116
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2117 2118 2119 2120 2121
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2142 2143
}

2144 2145 2146 2147 2148
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2149 2150
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2151
retry:
2152
	kvm_s390_vcpu_request_handled(vcpu);
2153 2154
	if (!vcpu->requests)
		return 0;
2155 2156 2157 2158 2159 2160 2161
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2162
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2163 2164
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2165
				      kvm_s390_get_prefix(vcpu),
2166 2167 2168
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2169
		goto retry;
2170
	}
2171

2172 2173 2174 2175 2176
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2177 2178 2179
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2180
			atomic_or(CPUSTAT_IBS,
2181 2182 2183
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2184
	}
2185 2186 2187 2188

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2189
			atomic_andnot(CPUSTAT_IBS,
2190 2191 2192 2193 2194
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2195 2196 2197
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2198 2199 2200
	return 0;
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2228
{
2229 2230
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2231 2232
}

2233 2234 2235 2236
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2237
	struct kvm_s390_irq irq;
2238 2239

	if (start_token) {
2240 2241 2242
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2243 2244
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2245
		inti.parm64 = token;
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2292
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2293 2294 2295 2296 2297 2298
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2299 2300 2301
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2302 2303 2304 2305 2306 2307
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2308
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2309
{
2310
	int rc, cpuflags;
2311

2312 2313 2314 2315 2316 2317 2318
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2319 2320
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2321 2322 2323 2324

	if (need_resched())
		schedule();

2325
	if (test_cpu_flag(CIF_MCCK_PENDING))
2326 2327
		s390_handle_mcck();

2328 2329 2330 2331 2332
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2333

2334 2335 2336 2337
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2338 2339 2340 2341 2342
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2343
	vcpu->arch.sie_block->icptcode = 0;
2344 2345 2346
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2347

2348 2349 2350
	return 0;
}

2351 2352
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2353 2354 2355 2356
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2370
	rc = read_guest_instr(vcpu, &opcode, 1);
2371
	ilen = insn_length(opcode);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2382 2383 2384
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2385 2386
}

2387 2388
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2389 2390 2391 2392
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2393 2394 2395
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2396 2397
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2412 2413 2414 2415 2416
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2417
		return -EREMOTE;
2418
	} else if (current->thread.gmap_pfault) {
2419
		trace_kvm_s390_major_guest_pfault(vcpu);
2420
		current->thread.gmap_pfault = 0;
2421 2422 2423
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2424
	}
2425
	return vcpu_post_run_fault_in_sie(vcpu);
2426 2427 2428 2429 2430 2431
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2432 2433 2434 2435 2436 2437
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2438 2439 2440 2441
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2442

2443
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2444 2445 2446 2447
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2448 2449
		local_irq_disable();
		__kvm_guest_enter();
2450
		__disable_cpu_timer_accounting(vcpu);
2451
		local_irq_enable();
2452 2453
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2454
		local_irq_disable();
2455
		__enable_cpu_timer_accounting(vcpu);
2456 2457
		__kvm_guest_exit();
		local_irq_enable();
2458
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2459 2460

		rc = vcpu_post_run(vcpu, exit_reason);
2461
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2462

2463
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2464
	return rc;
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2475 2476
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2477 2478
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2479
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2480 2481 2482 2483 2484 2485 2486 2487 2488
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2489 2490
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2501
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2502 2503 2504 2505 2506 2507 2508 2509 2510
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2511 2512
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2513
	int rc;
2514 2515
	sigset_t sigsaved;

2516 2517 2518 2519 2520
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2521 2522 2523
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2524 2525 2526
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2527
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2528 2529 2530
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2531

2532
	sync_regs(vcpu, kvm_run);
2533
	enable_cpu_timer_accounting(vcpu);
2534

2535
	might_fault();
2536
	rc = __vcpu_run(vcpu);
2537

2538 2539
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2540
		rc = -EINTR;
2541
	}
2542

2543 2544 2545 2546 2547
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2548
	if (rc == -EREMOTE) {
2549
		/* userspace support is needed, kvm_run has been prepared */
2550 2551
		rc = 0;
	}
2552

2553
	disable_cpu_timer_accounting(vcpu);
2554
	store_regs(vcpu, kvm_run);
2555

2556 2557 2558 2559
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2560
	return rc;
2561 2562 2563 2564 2565 2566 2567 2568
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2569
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2570
{
2571
	unsigned char archmode = 1;
2572
	freg_t fprs[NUM_FPRS];
2573
	unsigned int px;
2574
	u64 clkcomp, cputm;
2575
	int rc;
2576

2577
	px = kvm_s390_get_prefix(vcpu);
2578 2579
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2580
			return -EFAULT;
2581
		gpa = 0;
2582 2583
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2584
			return -EFAULT;
2585 2586 2587
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2588 2589 2590

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2591
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2592 2593 2594 2595
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2596
				     vcpu->run->s.regs.fprs, 128);
2597
	}
2598
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2599
			      vcpu->run->s.regs.gprs, 128);
2600
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2601
			      &vcpu->arch.sie_block->gpsw, 16);
2602
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2603
			      &px, 4);
2604
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2605
			      &vcpu->run->s.regs.fpc, 4);
2606
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2607
			      &vcpu->arch.sie_block->todpr, 4);
2608
	cputm = kvm_s390_get_cpu_timer(vcpu);
2609
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2610
			      &cputm, 8);
2611
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2612
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2613
			      &clkcomp, 8);
2614
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2615
			      &vcpu->run->s.regs.acrs, 64);
2616
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2617 2618
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2619 2620
}

2621 2622 2623 2624 2625 2626 2627
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2628
	save_fpu_regs();
2629
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2630 2631 2632 2633 2634
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2656 2657 2658 2659 2660
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2661
	 */
2662
	save_fpu_regs();
E
Eric Farman 已提交
2663 2664 2665 2666

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2667 2668 2669
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2670
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2686
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2687 2688
}

2689 2690
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2691 2692 2693 2694 2695
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2696
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2697
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2698
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2718
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2719 2720 2721 2722
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2723
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2724
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2725
	return;
2726 2727 2728 2729
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2730 2731 2732 2733 2734 2735
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2736
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2737
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2738
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2739 2740
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2741
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2742
	kvm_s390_clear_stop_irq(vcpu);
2743

2744
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2762
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2763
	return;
2764 2765
}

2766 2767 2768 2769 2770 2771 2772 2773 2774
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2775 2776 2777
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2778
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2779 2780 2781 2782
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2783 2784 2785 2786 2787 2788 2789
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2816 2817
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2828 2829
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2851 2852 2853 2854 2855
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2856
	int idx;
2857
	long r;
2858

2859
	switch (ioctl) {
2860 2861 2862 2863 2864 2865 2866 2867 2868
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2869
	case KVM_S390_INTERRUPT: {
2870
		struct kvm_s390_interrupt s390int;
2871
		struct kvm_s390_irq s390irq;
2872

2873
		r = -EFAULT;
2874
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2875
			break;
2876 2877 2878
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2879
		break;
2880
	}
2881
	case KVM_S390_STORE_STATUS:
2882
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2883
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2884
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2885
		break;
2886 2887 2888
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2889
		r = -EFAULT;
2890
		if (copy_from_user(&psw, argp, sizeof(psw)))
2891 2892 2893
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2894 2895
	}
	case KVM_S390_INITIAL_RESET:
2896 2897
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2946
	case KVM_S390_VCPU_FAULT: {
2947
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2948 2949
		break;
	}
2950 2951 2952 2953 2954 2955 2956 2957 2958
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2959 2960 2961 2962 2963 2964 2965 2966 2967
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3000
	default:
3001
		r = -ENOTTY;
3002
	}
3003
	return r;
3004 3005
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3019 3020
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3021 3022 3023 3024
{
	return 0;
}

3025
/* Section: memory related */
3026 3027
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3028
				   const struct kvm_userspace_memory_region *mem,
3029
				   enum kvm_mr_change change)
3030
{
3031 3032 3033 3034
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3035

3036
	if (mem->userspace_addr & 0xffffful)
3037 3038
		return -EINVAL;

3039
	if (mem->memory_size & 0xffffful)
3040 3041
		return -EINVAL;

3042 3043 3044
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3045 3046 3047 3048
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3049
				const struct kvm_userspace_memory_region *mem,
3050
				const struct kvm_memory_slot *old,
3051
				const struct kvm_memory_slot *new,
3052
				enum kvm_mr_change change)
3053
{
3054
	int rc;
3055

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3066 3067 3068 3069

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3070
		pr_warn("failed to commit memory region\n");
3071
	return;
3072 3073
}

3074 3075 3076 3077 3078 3079 3080
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3081 3082 3083 3084 3085
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3086 3087
static int __init kvm_s390_init(void)
{
3088 3089
	int i;

3090 3091 3092 3093 3094
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3095 3096 3097 3098
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3099
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3100 3101 3102 3103 3104 3105 3106 3107 3108
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3109 3110 3111 3112 3113 3114 3115 3116 3117

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");