kvm-s390.c 76.8 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/gmap.h>
34
#include <asm/nmi.h>
35
#include <asm/switch_to.h>
36
#include <asm/isc.h>
37
#include <asm/sclp.h>
38
#include "kvm-s390.h"
39 40
#include "gaccess.h"

41 42 43 44
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

45 46
#define CREATE_TRACE_POINTS
#include "trace.h"
47
#include "trace-s390.h"
48

49
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
50 51 52
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
53

54 55 56 57
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
58
	{ "exit_null", VCPU_STAT(exit_null) },
59 60 61 62
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
63 64 65
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
66
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
67
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
68
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
69
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
70
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
71 72
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
73
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
74
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
75 76 77 78 79 80 81
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
82
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
83 84 85 86 87
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
88
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
89 90
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
91
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
92 93
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
94
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
95
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
96
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
97
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
98
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
99 100
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
101
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
102 103
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
104
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
105 106 107
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
108 109 110
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
111
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
112
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
113
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
114 115 116
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
117 118 119
	{ NULL }
};

120 121
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
122 123
	0xffe6ffffffffffffUL,
	0x005effffffffffffUL,
124
};
125

126
unsigned long kvm_s390_fac_list_mask_size(void)
127
{
128 129
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
130 131
}

132
static struct gmap_notifier gmap_notifier;
133
debug_info_t *kvm_s390_dbf;
134

135
/* Section: not file related */
136
int kvm_arch_hardware_enable(void)
137 138
{
	/* every s390 is virtualization enabled ;-) */
139
	return 0;
140 141
}

142 143
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
162 163
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
164 165 166 167 168 169 170 171 172
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

173 174
int kvm_arch_hardware_setup(void)
{
175 176
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
177 178
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
179 180 181 182 183
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
184
	gmap_unregister_ipte_notifier(&gmap_notifier);
185 186
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
187 188 189 190
}

int kvm_arch_init(void *opaque)
{
191 192 193 194 195 196 197 198 199
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

200 201
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
202 203
}

204 205 206 207 208
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

209 210 211 212 213 214 215 216 217
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

218
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
219
{
220 221
	int r;

222
	switch (ext) {
223
	case KVM_CAP_S390_PSW:
224
	case KVM_CAP_S390_GMAP:
225
	case KVM_CAP_SYNC_MMU:
226 227 228
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
229
	case KVM_CAP_ASYNC_PF:
230
	case KVM_CAP_SYNC_REGS:
231
	case KVM_CAP_ONE_REG:
232
	case KVM_CAP_ENABLE_CAP:
233
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
234
	case KVM_CAP_IOEVENTFD:
235
	case KVM_CAP_DEVICE_CTRL:
236
	case KVM_CAP_ENABLE_CAP_VM:
237
	case KVM_CAP_S390_IRQCHIP:
238
	case KVM_CAP_VM_ATTRIBUTES:
239
	case KVM_CAP_MP_STATE:
240
	case KVM_CAP_S390_INJECT_IRQ:
241
	case KVM_CAP_S390_USER_SIGP:
242
	case KVM_CAP_S390_USER_STSI:
243
	case KVM_CAP_S390_SKEYS:
244
	case KVM_CAP_S390_IRQ_STATE:
245 246
		r = 1;
		break;
247 248 249
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
250 251
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
252 253
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
254
		break;
255 256 257
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
258
	case KVM_CAP_S390_COW:
259
		r = MACHINE_HAS_ESOP;
260
		break;
261 262 263
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
264 265 266
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
267
	default:
268
		r = 0;
269
	}
270
	return r;
271 272
}

273 274 275 276 277 278 279 280 281 282 283 284
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

285
		if (test_and_clear_guest_dirty(gmap->mm, address))
286
			mark_page_dirty(kvm, cur_gfn);
287 288
		if (fatal_signal_pending(current))
			return;
289
		cond_resched();
290 291 292
	}
}

293
/* Section: vm related */
294 295
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

296 297 298 299 300 301
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
302 303
	int r;
	unsigned long n;
304
	struct kvm_memslots *slots;
305 306 307 308 309 310 311 312 313
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

314 315
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
334 335
}

336 337 338 339 340 341 342 343
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
344
	case KVM_CAP_S390_IRQCHIP:
345
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
346 347 348
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
349
	case KVM_CAP_S390_USER_SIGP:
350
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
351 352 353
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
354
	case KVM_CAP_S390_VECTOR_REGISTERS:
355 356 357 358
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
359 360
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
361 362 363
			r = 0;
		} else
			r = -EINVAL;
364
		mutex_unlock(&kvm->lock);
365 366
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
367
		break;
368 369 370 371 372 373
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
374 375
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
376 377 378 379 380 381
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
382
	case KVM_CAP_S390_USER_STSI:
383
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
384 385 386
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
387 388 389 390 391 392 393
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

394 395 396 397 398 399 400
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
401
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
402 403
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
404 405 406 407 408 409 410 411 412 413
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
414 415 416 417 418
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
419 420 421 422 423
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

424
		ret = -EBUSY;
425
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
426 427 428 429 430 431 432 433
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
434 435 436 437
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

438
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
439 440
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
441
		s390_reset_cmma(kvm->arch.gmap->mm);
442 443 444 445
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
446 447 448 449 450 451 452 453 454
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

455 456
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
457 458
			return -E2BIG;

459 460 461 462 463 464 465
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
482 483 484
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
485 486
		break;
	}
487 488 489 490 491 492 493
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

494 495 496 497 498 499 500
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

501
	if (!test_kvm_facility(kvm, 76))
502 503 504 505 506 507 508 509 510
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
511
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
512 513 514 515 516 517
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
518
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
519 520 521 522 523
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
524
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
525 526 527 528 529
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
530
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
531 532 533 534 535 536 537 538 539 540 541 542 543 544
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

545 546 547 548 549 550 551 552 553 554
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
555
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
556 557 558 559 560 561

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
562
	u64 gtod;
563 564 565 566

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

567
	kvm_s390_set_tod_clock(kvm, gtod);
568
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
600
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
601 602 603 604 605 606

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
607
	u64 gtod;
608

609
	gtod = kvm_s390_get_tod_clock_fast(kvm);
610 611
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
612
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

638 639 640
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
641
	u16 lowest_ibc, unblocked_ibc;
642 643 644 645 646 647 648 649 650 651 652 653 654 655
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
656
		kvm->arch.model.cpuid = proc->cpuid;
657 658 659 660 661 662 663 664 665 666
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
667
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
699
	proc->cpuid = kvm->arch.model.cpuid;
700
	proc->ibc = kvm->arch.model.ibc;
701 702
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
721
	mach->ibc = sclp.ibc;
722
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
723
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
724
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
725
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

748 749 750 751 752
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
753
	case KVM_S390_VM_MEM_CTRL:
754
		ret = kvm_s390_set_mem_control(kvm, attr);
755
		break;
756 757 758
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
759 760 761
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
762 763 764
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
765 766 767 768 769 770 771 772 773 774
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
775 776 777 778 779 780
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
781 782 783
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
784 785 786
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
787 788 789 790 791 792
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
793 794 795 796 797 798 799
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
800 801 802 803
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
804
		case KVM_S390_VM_MEM_LIMIT_SIZE:
805 806 807 808 809 810 811
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
812 813 814 815 816 817 818 819 820 821 822
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
823 824 825 826 827 828 829 830 831 832 833
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
834 835 836 837 838 839 840 841 842 843 844 845 846
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
847 848 849 850 851 852 853 854
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
932 933 934
	r = s390_enable_skey();
	if (r)
		goto out;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

959 960 961 962 963
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
964
	struct kvm_device_attr attr;
965 966 967
	int r;

	switch (ioctl) {
968 969 970 971 972 973 974 975 976
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
977 978 979 980 981 982 983 984
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
985 986 987 988 989 990 991
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
992
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
993 994 995
		}
		break;
	}
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1037
	default:
1038
		r = -ENOTTY;
1039 1040 1041 1042 1043
	}

	return r;
}

1044 1045 1046
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1047
	u32 cc = 0;
1048

1049
	memset(config, 0, 128);
1050 1051 1052 1053
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1054
		"0: ipm %0\n"
1055
		"srl %0,28\n"
1056 1057 1058
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1071
	if (test_facility(12)) {
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1093
static u64 kvm_s390_get_initial_cpuid(void)
1094
{
1095 1096 1097 1098 1099
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1100 1101
}

1102
static void kvm_s390_crypto_init(struct kvm *kvm)
1103
{
1104
	if (!test_kvm_facility(kvm, 76))
1105
		return;
1106

1107
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1108
	kvm_s390_set_crycb_format(kvm);
1109

1110 1111 1112 1113 1114 1115 1116
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1117 1118
}

1119 1120 1121
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1122
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1123 1124 1125 1126 1127
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1128
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1129
{
1130
	int i, rc;
1131
	char debug_name[16];
1132
	static unsigned long sca_offset;
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1145 1146
	rc = s390_enable_sie();
	if (rc)
1147
		goto out_err;
1148

1149 1150
	rc = -ENOMEM;

1151
	kvm->arch.use_esca = 0; /* start with basic SCA */
1152
	rwlock_init(&kvm->arch.sca_lock);
1153
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1154
	if (!kvm->arch.sca)
1155
		goto out_err;
1156
	spin_lock(&kvm_lock);
1157
	sca_offset += 16;
1158
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1159
		sca_offset = 0;
1160 1161
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1162
	spin_unlock(&kvm_lock);
1163 1164 1165

	sprintf(debug_name, "kvm-%u", current->pid);

1166
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1167
	if (!kvm->arch.dbf)
1168
		goto out_err;
1169

1170 1171 1172
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1173
		goto out_err;
1174

1175
	/* Populate the facility mask initially. */
1176
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1177
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1178 1179
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1180
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1181
		else
1182
			kvm->arch.model.fac_mask[i] = 0UL;
1183 1184
	}

1185
	/* Populate the facility list initially. */
1186 1187
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1188 1189
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1190
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1191
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1192

1193
	kvm_s390_crypto_init(kvm);
1194

1195
	spin_lock_init(&kvm->arch.float_int.lock);
1196 1197
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1198
	init_waitqueue_head(&kvm->arch.ipte_wq);
1199
	mutex_init(&kvm->arch.ipte_mutex);
1200

1201
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1202
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1203

1204 1205
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1206
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1207
	} else {
1208 1209 1210 1211 1212
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1213
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1214
		if (!kvm->arch.gmap)
1215
			goto out_err;
1216
		kvm->arch.gmap->private = kvm;
1217
		kvm->arch.gmap->pfault_enabled = 0;
1218
	}
1219 1220

	kvm->arch.css_support = 0;
1221
	kvm->arch.use_irqchip = 0;
1222
	kvm->arch.epoch = 0;
1223

1224
	spin_lock_init(&kvm->arch.start_stop_lock);
1225
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1226

1227
	return 0;
1228
out_err:
1229
	free_page((unsigned long)kvm->arch.sie_page2);
1230
	debug_unregister(kvm->arch.dbf);
1231
	sca_dispose(kvm);
1232
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1233
	return rc;
1234 1235
}

1236 1237 1238
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1239
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1240
	kvm_s390_clear_local_irqs(vcpu);
1241
	kvm_clear_async_pf_completion_queue(vcpu);
1242
	if (!kvm_is_ucontrol(vcpu->kvm))
1243
		sca_del_vcpu(vcpu);
1244 1245 1246 1247

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1248
	if (vcpu->kvm->arch.use_cmma)
1249
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1250
	free_page((unsigned long)(vcpu->arch.sie_block));
1251

1252
	kvm_vcpu_uninit(vcpu);
1253
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1254 1255 1256 1257 1258
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1259
	struct kvm_vcpu *vcpu;
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1270 1271
}

1272 1273
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1274
	kvm_free_vcpus(kvm);
1275
	sca_dispose(kvm);
1276
	debug_unregister(kvm->arch.dbf);
1277
	free_page((unsigned long)kvm->arch.sie_page2);
1278 1279
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1280
	kvm_s390_destroy_adapters(kvm);
1281
	kvm_s390_clear_float_irqs(kvm);
1282
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1283 1284 1285
}

/* Section: vcpu related */
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1296 1297
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1298
	read_lock(&vcpu->kvm->arch.sca_lock);
1299 1300
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1301

1302
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1303
		sca->cpu[vcpu->vcpu_id].sda = 0;
1304 1305 1306 1307
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1308
		sca->cpu[vcpu->vcpu_id].sda = 0;
1309
	}
1310
	read_unlock(&vcpu->kvm->arch.sca_lock);
1311 1312
}

1313
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1314
{
1315 1316 1317
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1318

1319
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1320 1321
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1322
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1323
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1324
	} else {
1325
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1326

1327
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1328 1329
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1330
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1331
	}
1332
	read_unlock(&vcpu->kvm->arch.sca_lock);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1386 1387
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1388
	return 0;
1389 1390 1391 1392
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1405 1406
}

1407 1408
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1409 1410
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1411 1412
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1413
				    KVM_SYNC_ACRS |
1414 1415 1416
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1417 1418
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1419 1420 1421 1422
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1423
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1424 1425
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1426 1427 1428 1429

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1430 1431 1432
	return 0;
}

1433 1434 1435 1436
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1437
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1438
	vcpu->arch.cputm_start = get_tod_clock_fast();
1439
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1440 1441 1442 1443 1444 1445
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1446
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1447 1448
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1449
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1482 1483 1484
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1485
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1486
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1487 1488
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1489
	vcpu->arch.sie_block->cputm = cputm;
1490
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1491
	preempt_enable();
1492 1493
}

1494
/* update and get the cpu timer - can also be called from other VCPU threads */
1495 1496
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1497
	unsigned int seq;
1498 1499 1500 1501 1502
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1517
	return value;
1518 1519
}

1520 1521
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1522
	/* Save host register state */
1523
	save_fpu_regs();
1524 1525
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1526

1527 1528 1529 1530
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1531
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1532
	if (test_fp_ctl(current->thread.fpu.fpc))
1533
		/* User space provided an invalid FPC, let's clear it */
1534 1535 1536
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1537
	restore_access_regs(vcpu->run->s.regs.acrs);
1538
	gmap_enable(vcpu->arch.gmap);
1539
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1540
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1541
		__start_cpu_timer_accounting(vcpu);
1542
	vcpu->cpu = cpu;
1543 1544 1545 1546
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1547
	vcpu->cpu = -1;
1548
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1549
		__stop_cpu_timer_accounting(vcpu);
1550
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1551
	gmap_disable(vcpu->arch.gmap);
1552

1553
	/* Save guest register state */
1554
	save_fpu_regs();
1555
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1556

1557 1558 1559
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1560 1561

	save_access_regs(vcpu->run->s.regs.acrs);
1562 1563 1564 1565 1566 1567 1568 1569
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1570
	kvm_s390_set_prefix(vcpu, 0);
1571
	kvm_s390_set_cpu_timer(vcpu, 0);
1572 1573 1574 1575 1576
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1577 1578 1579
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1580
	vcpu->arch.sie_block->gbea = 1;
1581
	vcpu->arch.sie_block->pp = 0;
1582 1583
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1584 1585
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1586
	kvm_s390_clear_local_irqs(vcpu);
1587 1588
}

1589
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1590
{
1591
	mutex_lock(&vcpu->kvm->lock);
1592
	preempt_disable();
1593
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1594
	preempt_enable();
1595
	mutex_unlock(&vcpu->kvm->lock);
1596
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1597
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1598
		sca_add_vcpu(vcpu);
1599 1600
	}

1601 1602
}

1603 1604
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1605
	if (!test_kvm_facility(vcpu->kvm, 76))
1606 1607
		return;

1608 1609 1610 1611 1612 1613 1614
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1615 1616 1617
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1635 1636 1637 1638 1639
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1640
	if (test_kvm_facility(vcpu->kvm, 7))
1641
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1642 1643
}

1644 1645
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1646
	int rc = 0;
1647

1648 1649
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1650 1651
						    CPUSTAT_STOPPED);

1652
	if (test_kvm_facility(vcpu->kvm, 78))
1653
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1654
	else if (test_kvm_facility(vcpu->kvm, 8))
1655
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1656

1657 1658
	kvm_s390_vcpu_setup_model(vcpu);

1659 1660 1661
	vcpu->arch.sie_block->ecb = 0x02;
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1662
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1663 1664
		vcpu->arch.sie_block->ecb |= 0x10;

1665 1666
	if (test_kvm_facility(vcpu->kvm, 8))
		vcpu->arch.sie_block->ecb2 |= 0x08;
1667
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1668
	if (sclp.has_siif)
1669
		vcpu->arch.sie_block->eca |= 1;
1670
	if (sclp.has_sigpif)
1671
		vcpu->arch.sie_block->eca |= 0x10000000U;
1672 1673
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1674
	if (test_kvm_facility(vcpu->kvm, 129)) {
1675 1676 1677
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1678
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1679
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1680

1681
	if (vcpu->kvm->arch.use_cmma) {
1682 1683 1684
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1685
	}
1686
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1687
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1688

1689 1690
	kvm_s390_vcpu_crypto_setup(vcpu);

1691
	return rc;
1692 1693 1694 1695 1696
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1697
	struct kvm_vcpu *vcpu;
1698
	struct sie_page *sie_page;
1699 1700
	int rc = -EINVAL;

1701
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1702 1703 1704
		goto out;

	rc = -ENOMEM;
1705

1706
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1707
	if (!vcpu)
1708
		goto out;
1709

1710 1711
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1712 1713
		goto out_free_cpu;

1714 1715 1716
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1717
	vcpu->arch.sie_block->icpua = id;
1718 1719
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1720
	vcpu->arch.local_int.wq = &vcpu->wq;
1721
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1722
	seqcount_init(&vcpu->arch.cputm_seqcount);
1723

1724 1725
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1726
		goto out_free_sie_block;
1727
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1728
		 vcpu->arch.sie_block);
1729
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1730 1731

	return vcpu;
1732 1733
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1734
out_free_cpu:
1735
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1736
out:
1737 1738 1739 1740 1741
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1742
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1743 1744
}

1745
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1746
{
1747
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1748
	exit_sie(vcpu);
1749 1750
}

1751
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1752
{
1753
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1754 1755
}

1756 1757
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1758
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1759
	exit_sie(vcpu);
1760 1761 1762 1763
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1764
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1765 1766
}

1767 1768 1769 1770 1771 1772
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1773
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1774 1775 1776 1777
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1778 1779
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1780
{
1781 1782
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1783 1784
}

1785 1786 1787 1788 1789 1790 1791 1792
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1793
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1794
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1795
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1796 1797 1798 1799
		}
	}
}

1800 1801 1802 1803 1804 1805 1806
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1807 1808 1809 1810 1811 1812
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1813 1814 1815 1816 1817 1818 1819 1820
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1821
	case KVM_REG_S390_CPU_TIMER:
1822
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
1823 1824 1825 1826 1827 1828
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1841 1842 1843 1844
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1845 1846 1847 1848
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
1860
	__u64 val;
1861 1862

	switch (reg->id) {
1863 1864 1865 1866 1867 1868 1869 1870
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1871
	case KVM_REG_S390_CPU_TIMER:
1872 1873 1874
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
1875 1876 1877 1878 1879
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1880 1881 1882
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1883 1884
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1885 1886 1887 1888 1889 1890 1891 1892 1893
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1894 1895 1896 1897
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1898 1899 1900 1901
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1902 1903 1904 1905 1906 1907
	default:
		break;
	}

	return r;
}
1908

1909 1910 1911 1912 1913 1914 1915 1916
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1917
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1918 1919 1920 1921 1922
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1923
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1924 1925 1926 1927 1928 1929
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1930
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1931
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1932
	restore_access_regs(vcpu->run->s.regs.acrs);
1933 1934 1935 1936 1937 1938
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1939
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1940 1941 1942 1943 1944 1945
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1946 1947
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
1948 1949
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1950 1951 1952 1953 1954
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
1955 1956 1957 1958 1959
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1960 1961 1962 1963 1964 1965 1966
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
1967 1968 1969 1970 1971 1972 1973
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1974
	if (!is_vcpu_stopped(vcpu))
1975
		rc = -EBUSY;
1976 1977 1978 1979
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1980 1981 1982 1983 1984 1985 1986 1987 1988
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1989 1990 1991 1992
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1993 1994
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1995
{
1996 1997 1998 1999 2000
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2001
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2002 2003 2004 2005 2006
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2007
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2008 2009 2010 2011

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2012
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2013 2014 2015 2016 2017 2018
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2019
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2020 2021 2022
	}

	return rc;
2023 2024
}

2025 2026 2027
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2028 2029 2030
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2031 2032 2033 2034 2035
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2056 2057
}

2058 2059 2060 2061 2062
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2063 2064
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2065
retry:
2066
	kvm_s390_vcpu_request_handled(vcpu);
2067 2068
	if (!vcpu->requests)
		return 0;
2069 2070 2071 2072 2073 2074 2075
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2076
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2077 2078
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2079
				      kvm_s390_get_prefix(vcpu),
2080 2081 2082
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2083
		goto retry;
2084
	}
2085

2086 2087 2088 2089 2090
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2091 2092 2093
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2094
			atomic_or(CPUSTAT_IBS,
2095 2096 2097
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2098
	}
2099 2100 2101 2102

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2103
			atomic_andnot(CPUSTAT_IBS,
2104 2105 2106 2107 2108
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2109 2110 2111
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2112 2113 2114
	return 0;
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2142
{
2143 2144
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2145 2146
}

2147 2148 2149 2150
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2151
	struct kvm_s390_irq irq;
2152 2153

	if (start_token) {
2154 2155 2156
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2157 2158
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2159
		inti.parm64 = token;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2206
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2207 2208 2209 2210 2211 2212
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2213 2214 2215
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2216 2217 2218 2219 2220 2221
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2222
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2223
{
2224
	int rc, cpuflags;
2225

2226 2227 2228 2229 2230 2231 2232
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2233 2234
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2235 2236 2237 2238

	if (need_resched())
		schedule();

2239
	if (test_cpu_flag(CIF_MCCK_PENDING))
2240 2241
		s390_handle_mcck();

2242 2243 2244 2245 2246
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2247

2248 2249 2250 2251
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2252 2253 2254 2255 2256
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2257
	vcpu->arch.sie_block->icptcode = 0;
2258 2259 2260
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2261

2262 2263 2264
	return 0;
}

2265 2266
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2267 2268 2269 2270
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2284
	rc = read_guest_instr(vcpu, &opcode, 1);
2285
	ilen = insn_length(opcode);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2296 2297 2298
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2299 2300
}

2301 2302
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2303 2304 2305 2306
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2307 2308 2309
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2310 2311
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2326 2327 2328 2329 2330
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2331
		return -EREMOTE;
2332
	} else if (current->thread.gmap_pfault) {
2333
		trace_kvm_s390_major_guest_pfault(vcpu);
2334
		current->thread.gmap_pfault = 0;
2335 2336 2337
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2338
	}
2339
	return vcpu_post_run_fault_in_sie(vcpu);
2340 2341 2342 2343 2344 2345
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2346 2347 2348 2349 2350 2351
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2352 2353 2354 2355
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2356

2357
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2358 2359 2360 2361
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2362 2363
		local_irq_disable();
		__kvm_guest_enter();
2364
		__disable_cpu_timer_accounting(vcpu);
2365
		local_irq_enable();
2366 2367
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2368
		local_irq_disable();
2369
		__enable_cpu_timer_accounting(vcpu);
2370 2371
		__kvm_guest_exit();
		local_irq_enable();
2372
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2373 2374

		rc = vcpu_post_run(vcpu, exit_reason);
2375
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2376

2377
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2378
	return rc;
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2389 2390
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2391 2392
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2393
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2394 2395 2396 2397 2398 2399 2400 2401 2402
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2403 2404
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2415
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2416 2417 2418 2419 2420 2421 2422 2423 2424
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2425 2426
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2427
	int rc;
2428 2429
	sigset_t sigsaved;

2430 2431 2432 2433 2434
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2435 2436 2437
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2438 2439 2440
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2441
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2442 2443 2444
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2445

2446
	sync_regs(vcpu, kvm_run);
2447
	enable_cpu_timer_accounting(vcpu);
2448

2449
	might_fault();
2450
	rc = __vcpu_run(vcpu);
2451

2452 2453
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2454
		rc = -EINTR;
2455
	}
2456

2457 2458 2459 2460 2461
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2462
	if (rc == -EREMOTE) {
2463
		/* userspace support is needed, kvm_run has been prepared */
2464 2465
		rc = 0;
	}
2466

2467
	disable_cpu_timer_accounting(vcpu);
2468
	store_regs(vcpu, kvm_run);
2469

2470 2471 2472 2473
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2474
	return rc;
2475 2476 2477 2478 2479 2480 2481 2482
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2483
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2484
{
2485
	unsigned char archmode = 1;
2486
	freg_t fprs[NUM_FPRS];
2487
	unsigned int px;
2488
	u64 clkcomp, cputm;
2489
	int rc;
2490

2491
	px = kvm_s390_get_prefix(vcpu);
2492 2493
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2494
			return -EFAULT;
2495
		gpa = 0;
2496 2497
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2498
			return -EFAULT;
2499 2500 2501
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2502 2503 2504

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2505
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2506 2507 2508 2509
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2510
				     vcpu->run->s.regs.fprs, 128);
2511
	}
2512
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2513
			      vcpu->run->s.regs.gprs, 128);
2514
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2515
			      &vcpu->arch.sie_block->gpsw, 16);
2516
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2517
			      &px, 4);
2518
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2519
			      &vcpu->run->s.regs.fpc, 4);
2520
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2521
			      &vcpu->arch.sie_block->todpr, 4);
2522
	cputm = kvm_s390_get_cpu_timer(vcpu);
2523
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2524
			      &cputm, 8);
2525
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2526
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2527
			      &clkcomp, 8);
2528
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2529
			      &vcpu->run->s.regs.acrs, 64);
2530
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2531 2532
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2533 2534
}

2535 2536 2537 2538 2539 2540 2541
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2542
	save_fpu_regs();
2543
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2544 2545 2546 2547 2548
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2570 2571 2572 2573 2574
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2575
	 */
2576
	save_fpu_regs();
E
Eric Farman 已提交
2577 2578 2579 2580

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2581 2582 2583
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2584
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2600
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2601 2602
}

2603 2604
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2605 2606 2607 2608 2609
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2610
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2611
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2612
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2632
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2633 2634 2635 2636
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2637
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2638
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2639
	return;
2640 2641 2642 2643
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2644 2645 2646 2647 2648 2649
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2650
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2651
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2652
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2653 2654
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2655
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2656
	kvm_s390_clear_stop_irq(vcpu);
2657

2658
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2676
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2677
	return;
2678 2679
}

2680 2681 2682 2683 2684 2685 2686 2687 2688
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2689 2690 2691
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2692
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2693 2694 2695 2696
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2697 2698 2699 2700 2701 2702 2703
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2730 2731
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2742 2743
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2765 2766 2767 2768 2769
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2770
	int idx;
2771
	long r;
2772

2773
	switch (ioctl) {
2774 2775 2776 2777 2778 2779 2780 2781 2782
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2783
	case KVM_S390_INTERRUPT: {
2784
		struct kvm_s390_interrupt s390int;
2785
		struct kvm_s390_irq s390irq;
2786

2787
		r = -EFAULT;
2788
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2789
			break;
2790 2791 2792
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2793
		break;
2794
	}
2795
	case KVM_S390_STORE_STATUS:
2796
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2797
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2798
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2799
		break;
2800 2801 2802
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2803
		r = -EFAULT;
2804
		if (copy_from_user(&psw, argp, sizeof(psw)))
2805 2806 2807
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2808 2809
	}
	case KVM_S390_INITIAL_RESET:
2810 2811
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2860
	case KVM_S390_VCPU_FAULT: {
2861
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2862 2863
		break;
	}
2864 2865 2866 2867 2868 2869 2870 2871 2872
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2873 2874 2875 2876 2877 2878 2879 2880 2881
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2914
	default:
2915
		r = -ENOTTY;
2916
	}
2917
	return r;
2918 2919
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2933 2934
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2935 2936 2937 2938
{
	return 0;
}

2939
/* Section: memory related */
2940 2941
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2942
				   const struct kvm_userspace_memory_region *mem,
2943
				   enum kvm_mr_change change)
2944
{
2945 2946 2947 2948
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2949

2950
	if (mem->userspace_addr & 0xffffful)
2951 2952
		return -EINVAL;

2953
	if (mem->memory_size & 0xffffful)
2954 2955
		return -EINVAL;

2956 2957 2958
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

2959 2960 2961 2962
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2963
				const struct kvm_userspace_memory_region *mem,
2964
				const struct kvm_memory_slot *old,
2965
				const struct kvm_memory_slot *new,
2966
				enum kvm_mr_change change)
2967
{
2968
	int rc;
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2980 2981 2982 2983

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2984
		pr_warn("failed to commit memory region\n");
2985
	return;
2986 2987 2988 2989
}

static int __init kvm_s390_init(void)
{
2990 2991 2992 2993 2994
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

2995
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2996 2997 2998 2999 3000 3001 3002 3003 3004
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3005 3006 3007 3008 3009 3010 3011 3012 3013

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");