futex.c 95.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/wake_q.h>
65
#include <linux/sched/mm.h>
66
#include <linux/hugetlb.h>
C
Colin Cross 已提交
67
#include <linux/freezer.h>
68
#include <linux/bootmem.h>
69
#include <linux/fault-inject.h>
70

71
#include <asm/futex.h>
L
Linus Torvalds 已提交
72

73
#include "locking/rtmutex_common.h"
74

75
/*
76 77 78 79
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
80 81 82 83
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
84 85 86
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
87 88
 *
 * The waker side modifies the user space value of the futex and calls
89 90 91
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
92
 *
93 94 95 96 97
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
119 120 121 122 123
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
124 125 126
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
127
 *
128
 *   waiters++; (a)
129 130 131 132 133 134 135 136 137 138
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
139
 *   if (uval == val)
140
 *     queue();
141
 *     unlock(hash_bucket(futex));
142 143
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
144 145
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
146
 *
147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 150
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
151 152 153 154 155 156 157 158 159 160 161 162
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
163 164 165 166 167 168 169 170 171 172 173
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
174 175
 */

176
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177
int __read_mostly futex_cmpxchg_enabled;
178
#endif
179

180 181 182 183
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
184 185 186 187 188 189 190 191 192
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
193 194 195
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
215
} __randomize_layout;
216

217 218
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
219
 * @list:		priority-sorted list of tasks waiting on this futex
220 221 222 223 224 225 226 227
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
228
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
L
Linus Torvalds 已提交
229 230 231
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
232
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233
 * The order of wakeup is always to make the first condition true, then
234 235 236 237
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
238 239
 */
struct futex_q {
P
Pierre Peiffer 已提交
240
	struct plist_node list;
L
Linus Torvalds 已提交
241

242
	struct task_struct *task;
L
Linus Torvalds 已提交
243 244
	spinlock_t *lock_ptr;
	union futex_key key;
245
	struct futex_pi_state *pi_state;
246
	struct rt_mutex_waiter *rt_waiter;
247
	union futex_key *requeue_pi_key;
248
	u32 bitset;
249
} __randomize_layout;
L
Linus Torvalds 已提交
250

251 252 253 254 255 256
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
257
/*
D
Darren Hart 已提交
258 259 260
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
261 262
 */
struct futex_hash_bucket {
263
	atomic_t waiters;
P
Pierre Peiffer 已提交
264 265
	spinlock_t lock;
	struct plist_head chain;
266
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
267

268 269 270 271 272 273 274 275 276 277 278
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
279

L
Linus Torvalds 已提交
280

281 282 283 284 285 286 287 288
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

289
	bool ignore_private;
290 291
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
292
	.ignore_private = false,
293 294 295 296 297 298 299 300
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

301
static bool should_fail_futex(bool fshared)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

341 342
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
343
	mmgrab(key->private.mm);
344 345 346
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
347
	 * as smp_mb(); (B), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351
}

352 353 354 355
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 357
{
#ifdef CONFIG_SMP
358
	atomic_inc(&hb->waiters);
359
	/*
360
	 * Full barrier (A), see the ordering comment above.
361
	 */
362
	smp_mb__after_atomic();
363 364 365 366 367 368 369 370 371 372 373 374 375
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
376

377 378 379 380
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
381
#else
382
	return 1;
383 384 385
#endif
}

386 387 388 389 390 391
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
392 393 394 395 396 397
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
398
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
399 400
}

401 402 403 404 405 406

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
407 408 409 410
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
411 412
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
413 414 415 416
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

417 418 419 420 421 422 423 424 425 426
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

427 428 429 430 431 432 433 434 435 436
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

437 438
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
439
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 441
		break;
	case FUT_OFF_MMSHARED:
442
		futex_get_mm(key); /* implies smp_mb(); (B) */
443
		break;
444
	default:
445 446 447 448 449
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
450
		smp_mb(); /* explicit smp_mb(); (B) */
451 452 453 454 455
	}
}

/*
 * Drop a reference to the resource addressed by a key.
456 457 458
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
459 460 461
 */
static void drop_futex_key_refs(union futex_key *key)
{
462 463 464
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
465
		return;
466
	}
467

468 469 470
	if (!IS_ENABLED(CONFIG_MMU))
		return;

471 472 473 474 475 476 477 478 479 480
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
481
/**
482 483 484 485
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
486 487
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
488
 *
489 490
 * Return: a negative error code or 0
 *
491
 * The key words are stored in @key on success.
L
Linus Torvalds 已提交
492
 *
A
Al Viro 已提交
493
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
494 495 496
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
497
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
498
 */
499
static int
500
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
501
{
502
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
503
	struct mm_struct *mm = current->mm;
504
	struct page *page, *tail;
505
	struct address_space *mapping;
506
	int err, ro = 0;
L
Linus Torvalds 已提交
507 508 509 510

	/*
	 * The futex address must be "naturally" aligned.
	 */
511
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
512
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
513
		return -EINVAL;
514
	address -= key->both.offset;
L
Linus Torvalds 已提交
515

516 517 518
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

519 520 521
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
522 523 524 525 526 527 528 529 530 531
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
532
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
533 534
		return 0;
	}
L
Linus Torvalds 已提交
535

536
again:
537 538 539 540
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

541
	err = get_user_pages_fast(address, 1, 1, &page);
542 543 544 545 546 547 548 549
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
550 551
	if (err < 0)
		return err;
552 553
	else
		err = 0;
554

555 556 557 558 559 560 561 562 563 564
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
565 566 567 568 569 570 571
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
572
	 */
573
	tail = page;
574 575 576
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

577
	/*
578
	 * If page->mapping is NULL, then it cannot be a PageAnon
579 580 581 582 583 584 585 586 587 588 589
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
590
	 * an unlikely race, but we do need to retry for page->mapping.
591
	 */
592 593 594 595 596 597 598 599 600 601
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
602 603
		unlock_page(page);
		put_page(page);
604

605 606
		if (shmem_swizzled)
			goto again;
607

608
		return -EFAULT;
609
	}
L
Linus Torvalds 已提交
610 611 612 613

	/*
	 * Private mappings are handled in a simple way.
	 *
614 615 616
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
617 618
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
619
	 * the object not the particular process.
L
Linus Torvalds 已提交
620
	 */
621
	if (PageAnon(page)) {
622 623 624 625
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
626
		if (unlikely(should_fail_futex(fshared)) || ro) {
627 628 629 630
			err = -EFAULT;
			goto out;
		}

631
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
632
		key->private.mm = mm;
633
		key->private.address = address;
634 635 636

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

637
	} else {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
673 674
		 * truncated in parallel which is almost certainly an
		 * application bug. In such a case, just retry.
675 676 677 678 679
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
680
		if (!atomic_inc_not_zero(&inode->i_count)) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

696
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697
		key->shared.inode = inode;
698
		key->shared.pgoff = basepage_index(tail);
699
		rcu_read_unlock();
L
Linus Torvalds 已提交
700 701
	}

702
out:
703
	put_page(page);
704
	return err;
L
Linus Torvalds 已提交
705 706
}

707
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
708
{
709
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
710 711
}

712 713
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
714 715 716 717 718
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
719
 * We have no generic implementation of a non-destructive write to the
720 721 722 723 724 725
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
726 727 728 729
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
730
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731
			       FAULT_FLAG_WRITE, NULL);
732 733
	up_read(&mm->mmap_sem);

734 735 736
	return ret < 0 ? ret : 0;
}

737 738
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
739 740
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

756 757
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
758
{
759
	int ret;
T
Thomas Gleixner 已提交
760 761

	pagefault_disable();
762
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
763 764
	pagefault_enable();

765
	return ret;
T
Thomas Gleixner 已提交
766 767 768
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
769 770 771
{
	int ret;

772
	pagefault_disable();
773
	ret = __get_user(*dest, from);
774
	pagefault_enable();
L
Linus Torvalds 已提交
775 776 777 778

	return ret ? -EFAULT : 0;
}

779 780 781 782 783 784 785 786 787 788 789

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

790
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791 792 793 794 795 796 797 798

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
799
	pi_state->key = FUTEX_KEY_INIT;
800 801 802 803 804 805

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
806
static struct futex_pi_state *alloc_pi_state(void)
807 808 809 810 811 812 813 814 815
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
816 817 818 819 820
static void get_pi_state(struct futex_pi_state *pi_state)
{
	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
}

821
/*
822 823
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
824
 */
825
static void put_pi_state(struct futex_pi_state *pi_state)
826
{
827 828 829
	if (!pi_state)
		return;

830 831 832 833 834 835 836 837
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
838
		struct task_struct *owner;
839

840 841 842 843 844 845 846 847 848
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		owner = pi_state->owner;
		if (owner) {
			raw_spin_lock(&owner->pi_lock);
			list_del_init(&pi_state->list);
			raw_spin_unlock(&owner->pi_lock);
		}
		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 850
	}

851
	if (current->pi_state_cache) {
852
		kfree(pi_state);
853
	} else {
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
P
Peter Zijlstra 已提交
869
static struct task_struct *futex_find_get_task(pid_t pid)
870 871 872
{
	struct task_struct *p;

873
	rcu_read_lock();
874
	p = find_task_by_vpid(pid);
875 876
	if (p)
		get_task_struct(p);
877

878
	rcu_read_unlock();
879 880 881 882

	return p;
}

883 884
#ifdef CONFIG_FUTEX_PI

885 886 887 888 889 890 891 892 893
/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
894
	struct futex_hash_bucket *hb;
895
	union futex_key key = FUTEX_KEY_INIT;
896

897 898
	if (!futex_cmpxchg_enabled)
		return;
899 900 901
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
902
	 * versus waiters unqueueing themselves:
903
	 */
904
	raw_spin_lock_irq(&curr->pi_lock);
905 906 907 908 909
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
910
		hb = hash_futex(&key);
911
		raw_spin_unlock_irq(&curr->pi_lock);
912 913

		spin_lock(&hb->lock);
914 915
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
916 917 918 919
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
920
		if (head->next != next) {
921
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
922 923 924 925 926
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
927 928
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
929
		pi_state->owner = NULL;
930
		raw_spin_unlock(&curr->pi_lock);
931

932
		get_pi_state(pi_state);
933
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
934 935
		spin_unlock(&hb->lock);

936 937 938
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

939
		raw_spin_lock_irq(&curr->pi_lock);
940
	}
941
	raw_spin_unlock_irq(&curr->pi_lock);
942 943
}

944 945
#endif

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1027
 */
1028 1029 1030 1031 1032 1033

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1034 1035
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1036
			      struct futex_pi_state **ps)
1037
{
1038
	pid_t pid = uval & FUTEX_TID_MASK;
1039 1040
	u32 uval2;
	int ret;
1041

1042 1043 1044 1045 1046
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1047

P
Peter Zijlstra 已提交
1048 1049 1050 1051 1052 1053
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1054 1055 1056 1057 1058
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1059
	 */
1060
	WARN_ON(!atomic_read(&pi_state->refcount));
1061

P
Peter Zijlstra 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1080 1081 1082 1083
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1084
		/*
1085 1086 1087
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1088
		 */
1089
		if (!pi_state->owner) {
1090
			/*
1091 1092
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1093
			 */
1094
			if (pid)
P
Peter Zijlstra 已提交
1095
				goto out_einval;
1096
			/*
1097
			 * Take a ref on the state and return success. [4]
1098
			 */
P
Peter Zijlstra 已提交
1099
			goto out_attach;
1100
		}
1101 1102

		/*
1103 1104 1105 1106 1107 1108 1109 1110
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1111
			goto out_attach;
1112 1113 1114 1115
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1116
		 */
1117
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1118
			goto out_einval;
1119 1120
	}

1121 1122 1123 1124 1125 1126
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1127 1128 1129
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1130
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1131
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1132 1133
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1150 1151
}

1152 1153 1154 1155 1156 1157
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
1158 1159
{
	pid_t pid = uval & FUTEX_TID_MASK;
1160 1161
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1162

1163
	/*
1164
	 * We are the first waiter - try to look up the real owner and attach
1165
	 * the new pi_state to it, but bail out when TID = 0 [1]
1166
	 */
1167
	if (!pid)
1168
		return -ESRCH;
1169
	p = futex_find_get_task(pid);
1170 1171
	if (!p)
		return -ESRCH;
1172

1173
	if (unlikely(p->flags & PF_KTHREAD)) {
1174 1175 1176 1177
		put_task_struct(p);
		return -EPERM;
	}

1178 1179 1180 1181 1182 1183
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1184
	raw_spin_lock_irq(&p->pi_lock);
1185 1186 1187 1188 1189 1190 1191 1192
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1193
		raw_spin_unlock_irq(&p->pi_lock);
1194 1195 1196
		put_task_struct(p);
		return ret;
	}
1197

1198 1199
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1200 1201 1202
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1203
	 */
1204 1205 1206
	pi_state = alloc_pi_state();

	/*
1207
	 * Initialize the pi_mutex in locked state and make @p
1208 1209 1210 1211 1212
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1213
	pi_state->key = *key;
1214

1215
	WARN_ON(!list_empty(&pi_state->list));
1216
	list_add(&pi_state->list, &p->pi_state_list);
1217 1218 1219 1220
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
1221
	pi_state->owner = p;
1222
	raw_spin_unlock_irq(&p->pi_lock);
1223 1224 1225

	put_task_struct(p);

P
Pierre Peiffer 已提交
1226
	*ps = pi_state;
1227 1228 1229 1230

	return 0;
}

P
Peter Zijlstra 已提交
1231 1232
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
1233 1234
			   union futex_key *key, struct futex_pi_state **ps)
{
1235
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1236 1237 1238 1239 1240

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1241
	if (top_waiter)
P
Peter Zijlstra 已提交
1242
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1243 1244 1245 1246 1247 1248 1249 1250

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1251 1252 1253 1254
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1255 1256 1257
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1258 1259 1260
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

P
Peter Zijlstra 已提交
1261
	/* If user space value changed, let the caller retry */
1262 1263 1264
	return curval != uval ? -EAGAIN : 0;
}

1265
/**
1266
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1267 1268 1269 1270 1271 1272 1273 1274
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1275
 *
1276
 * Return:
1277 1278 1279
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
1280 1281 1282 1283 1284 1285
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1286
				struct task_struct *task, int set_waiters)
1287
{
1288
	u32 uval, newval, vpid = task_pid_vnr(task);
1289
	struct futex_q *top_waiter;
1290
	int ret;
1291 1292

	/*
1293 1294
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1295
	 */
1296
	if (get_futex_value_locked(&uval, uaddr))
1297 1298
		return -EFAULT;

1299 1300 1301
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1302 1303 1304
	/*
	 * Detect deadlocks.
	 */
1305
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1306 1307
		return -EDEADLK;

1308 1309 1310
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1311
	/*
1312 1313
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1314
	 */
1315 1316
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1317
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1318 1319

	/*
1320 1321 1322 1323
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1324
	 */
1325
	if (!(uval & FUTEX_TID_MASK)) {
1326
		/*
1327 1328
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1329
		 */
1330 1331
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1332

1333 1334 1335 1336 1337 1338 1339 1340
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1341 1342

	/*
1343 1344 1345
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1346
	 */
1347 1348 1349 1350
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1351
	/*
1352 1353 1354
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1355
	 */
1356
	return attach_to_pi_owner(uval, key, ps);
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1369 1370
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1371 1372 1373 1374
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1375
	hb_waiters_dec(hb);
1376 1377
}

L
Linus Torvalds 已提交
1378 1379
/*
 * The hash bucket lock must be held when this is called.
1380 1381 1382
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1383
 */
1384
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1385
{
T
Thomas Gleixner 已提交
1386 1387
	struct task_struct *p = q->task;

1388 1389 1390
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1391
	/*
1392 1393
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1394
	 */
1395
	wake_q_add(wake_q, p);
1396
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1397
	/*
1398 1399 1400 1401 1402
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1403
	 */
1404
	smp_store_release(&q->lock_ptr, NULL);
L
Linus Torvalds 已提交
1405 1406
}

1407 1408 1409 1410
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1411
{
1412
	u32 uninitialized_var(curval), newval;
1413
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1414
	bool postunlock = false;
1415
	DEFINE_WAKE_Q(wake_q);
1416
	int ret = 0;
1417 1418

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1419
	if (WARN_ON_ONCE(!new_owner)) {
1420
		/*
1421
		 * As per the comment in futex_unlock_pi() this should not happen.
1422 1423 1424 1425 1426 1427 1428 1429
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1430
	}
1431 1432

	/*
1433 1434 1435
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1436
	 */
1437
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1438

1439 1440 1441
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1442
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1443
		ret = -EFAULT;
P
Peter Zijlstra 已提交
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	} else if (curval != uval) {
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1457

1458 1459
	if (ret)
		goto out_unlock;
1460

1461 1462 1463 1464 1465
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1466
	raw_spin_lock(&pi_state->owner->pi_lock);
1467 1468
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1469
	raw_spin_unlock(&pi_state->owner->pi_lock);
1470

1471
	raw_spin_lock(&new_owner->pi_lock);
1472
	WARN_ON(!list_empty(&pi_state->list));
1473 1474
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1475
	raw_spin_unlock(&new_owner->pi_lock);
1476

P
Peter Zijlstra 已提交
1477
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1478

1479
out_unlock:
1480 1481
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1482 1483
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1484

1485
	return ret;
1486 1487
}

I
Ingo Molnar 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1504 1505 1506
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1507
	spin_unlock(&hb1->lock);
1508 1509
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1510 1511
}

L
Linus Torvalds 已提交
1512
/*
D
Darren Hart 已提交
1513
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1514
 */
1515 1516
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1517
{
1518
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1519
	struct futex_q *this, *next;
1520
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1521
	int ret;
1522
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1523

1524 1525 1526
	if (!bitset)
		return -EINVAL;

1527
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1528 1529 1530
	if (unlikely(ret != 0))
		goto out;

1531
	hb = hash_futex(&key);
1532 1533 1534 1535 1536

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1537
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1538

J
Jason Low 已提交
1539
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1540
		if (match_futex (&this->key, &key)) {
1541
			if (this->pi_state || this->rt_waiter) {
1542 1543 1544
				ret = -EINVAL;
				break;
			}
1545 1546 1547 1548 1549

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1550
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1551 1552 1553 1554 1555
			if (++ret >= nr_wake)
				break;
		}
	}

1556
	spin_unlock(&hb->lock);
1557
	wake_up_q(&wake_q);
1558
out_put_key:
1559
	put_futex_key(&key);
1560
out:
L
Linus Torvalds 已提交
1561 1562 1563
	return ret;
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
		if (oparg < 0 || oparg > 31)
			return -EINVAL;
		oparg = 1 << oparg;
	}

	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
		return -EFAULT;

	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

1603 1604 1605 1606
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1607
static int
1608
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1609
	      int nr_wake, int nr_wake2, int op)
1610
{
1611
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1612
	struct futex_hash_bucket *hb1, *hb2;
1613
	struct futex_q *this, *next;
D
Darren Hart 已提交
1614
	int ret, op_ret;
1615
	DEFINE_WAKE_Q(wake_q);
1616

D
Darren Hart 已提交
1617
retry:
1618
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1619 1620
	if (unlikely(ret != 0))
		goto out;
1621
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1622
	if (unlikely(ret != 0))
1623
		goto out_put_key1;
1624

1625 1626
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1627

D
Darren Hart 已提交
1628
retry_private:
T
Thomas Gleixner 已提交
1629
	double_lock_hb(hb1, hb2);
1630
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1631 1632
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1633
		double_unlock_hb(hb1, hb2);
1634

1635
#ifndef CONFIG_MMU
1636 1637 1638 1639
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1640
		ret = op_ret;
1641
		goto out_put_keys;
1642 1643
#endif

1644 1645
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1646
			goto out_put_keys;
1647 1648
		}

1649
		ret = fault_in_user_writeable(uaddr2);
1650
		if (ret)
1651
			goto out_put_keys;
1652

1653
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1654 1655
			goto retry_private;

1656 1657
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1658
		goto retry;
1659 1660
	}

J
Jason Low 已提交
1661
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1662
		if (match_futex (&this->key, &key1)) {
1663 1664 1665 1666
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1667
			mark_wake_futex(&wake_q, this);
1668 1669 1670 1671 1672 1673 1674
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1675
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1676
			if (match_futex (&this->key, &key2)) {
1677 1678 1679 1680
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1681
				mark_wake_futex(&wake_q, this);
1682 1683 1684 1685 1686 1687 1688
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1689
out_unlock:
D
Darren Hart 已提交
1690
	double_unlock_hb(hb1, hb2);
1691
	wake_up_q(&wake_q);
1692
out_put_keys:
1693
	put_futex_key(&key2);
1694
out_put_key1:
1695
	put_futex_key(&key1);
1696
out:
1697 1698 1699
	return ret;
}

D
Darren Hart 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1718 1719
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1720
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1721 1722 1723 1724 1725 1726
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1727 1728
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1729 1730 1731
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1732 1733 1734 1735 1736
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1737 1738 1739
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1740 1741
 */
static inline
1742 1743
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1744 1745 1746 1747
{
	get_futex_key_refs(key);
	q->key = *key;

1748
	__unqueue_futex(q);
1749 1750 1751 1752

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1753 1754
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1755
	wake_up_state(q->task, TASK_NORMAL);
1756 1757 1758 1759
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1760 1761 1762 1763 1764 1765 1766
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1767 1768
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1769 1770 1771
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1772
 *
1773
 * Return:
1774 1775 1776
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
1777 1778 1779 1780 1781
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1782
				 struct futex_pi_state **ps, int set_waiters)
1783
{
1784
	struct futex_q *top_waiter = NULL;
1785
	u32 curval;
1786
	int ret, vpid;
1787 1788 1789 1790

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1791 1792 1793
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1794 1795 1796 1797 1798 1799 1800 1801
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1802 1803 1804 1805 1806 1807
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1808 1809 1810 1811
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1812
	/*
1813 1814 1815
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1816
	 */
1817
	vpid = task_pid_vnr(top_waiter->task);
1818 1819
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1820
	if (ret == 1) {
1821
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1822 1823
		return vpid;
	}
1824 1825 1826 1827 1828
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1829
 * @uaddr1:	source futex user address
1830
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1831 1832 1833 1834 1835
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1836
 *		pi futex (pi to pi requeue is not supported)
1837 1838 1839 1840
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1841
 * Return:
1842 1843
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
L
Linus Torvalds 已提交
1844
 */
1845 1846 1847
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1848
{
1849
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1850 1851
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1852
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1853
	struct futex_q *this, *next;
1854
	DEFINE_WAKE_Q(wake_q);
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864
	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

1865
	if (requeue_pi) {
1866 1867 1868 1869 1870 1871 1872
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1892

1893
retry:
1894
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1895 1896
	if (unlikely(ret != 0))
		goto out;
1897 1898
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1899
	if (unlikely(ret != 0))
1900
		goto out_put_key1;
L
Linus Torvalds 已提交
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1911 1912
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1913

D
Darren Hart 已提交
1914
retry_private:
1915
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1916
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1917

1918 1919
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1920

1921
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1922 1923

		if (unlikely(ret)) {
D
Darren Hart 已提交
1924
			double_unlock_hb(hb1, hb2);
1925
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1926

1927
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1928 1929
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1930

1931
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1932
				goto retry_private;
L
Linus Torvalds 已提交
1933

1934 1935
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1936
			goto retry;
L
Linus Torvalds 已提交
1937
		}
1938
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1944
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1945 1946 1947 1948 1949 1950
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1951
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1952
						 &key2, &pi_state, nr_requeue);
1953 1954 1955 1956 1957

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1958 1959
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1960 1961
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1962
		 */
1963
		if (ret > 0) {
1964
			WARN_ON(pi_state);
1965
			drop_count++;
1966
			task_count++;
1967
			/*
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1978
			 */
P
Peter Zijlstra 已提交
1979
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1980 1981 1982 1983
		}

		switch (ret) {
		case 0:
1984
			/* We hold a reference on the pi state. */
1985
			break;
1986 1987

			/* If the above failed, then pi_state is NULL */
1988 1989
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1990
			hb_waiters_dec(hb2);
1991 1992
			put_futex_key(&key2);
			put_futex_key(&key1);
1993
			ret = fault_in_user_writeable(uaddr2);
1994 1995 1996 1997
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1998 1999 2000 2001 2002 2003
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
2004
			double_unlock_hb(hb1, hb2);
2005
			hb_waiters_dec(hb2);
2006 2007
			put_futex_key(&key2);
			put_futex_key(&key1);
2008 2009 2010 2011 2012 2013 2014
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
2015
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2016 2017 2018 2019
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
2020
			continue;
2021

2022 2023 2024
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
2025 2026 2027
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
2028 2029
		 */
		if ((requeue_pi && !this->rt_waiter) ||
2030 2031
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
2032 2033 2034
			ret = -EINVAL;
			break;
		}
2035 2036 2037 2038 2039 2040 2041

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
2042
			mark_wake_futex(&wake_q, this);
2043 2044
			continue;
		}
L
Linus Torvalds 已提交
2045

2046 2047 2048 2049 2050 2051
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

2052 2053 2054 2055 2056
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
2057 2058 2059 2060 2061
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
2062
			get_pi_state(pi_state);
2063 2064 2065
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2066
							this->task);
2067
			if (ret == 1) {
2068 2069 2070 2071 2072 2073 2074 2075
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2076
				requeue_pi_wake_futex(this, &key2, hb2);
2077
				drop_count++;
2078 2079
				continue;
			} else if (ret) {
2080 2081 2082 2083 2084 2085 2086 2087
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2088
				this->pi_state = NULL;
2089
				put_pi_state(pi_state);
2090 2091 2092 2093 2094
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2095
			}
L
Linus Torvalds 已提交
2096
		}
2097 2098
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2099 2100
	}

2101 2102 2103 2104 2105
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2106
	put_pi_state(pi_state);
2107 2108

out_unlock:
D
Darren Hart 已提交
2109
	double_unlock_hb(hb1, hb2);
2110
	wake_up_q(&wake_q);
2111
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2112

2113 2114 2115 2116 2117 2118
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2119
	while (--drop_count >= 0)
2120
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2121

2122
out_put_keys:
2123
	put_futex_key(&key2);
2124
out_put_key1:
2125
	put_futex_key(&key1);
2126
out:
2127
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2128 2129 2130
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2131
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2132
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2133
{
2134
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2135

2136
	hb = hash_futex(&q->key);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

2148
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2149

2150
	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2151
	return hb;
L
Linus Torvalds 已提交
2152 2153
}

2154
static inline void
J
Jason Low 已提交
2155
queue_unlock(struct futex_hash_bucket *hb)
2156
	__releases(&hb->lock)
2157 2158
{
	spin_unlock(&hb->lock);
2159
	hb_waiters_dec(hb);
2160 2161
}

2162
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2163
{
P
Pierre Peiffer 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2178
	q->task = current;
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2197
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2198 2199
}

2200 2201 2202 2203 2204 2205 2206
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2207
 * Return:
2208 2209
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2210 2211 2212 2213
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2214
	int ret = 0;
L
Linus Torvalds 已提交
2215 2216

	/* In the common case we don't take the spinlock, which is nice. */
2217
retry:
2218 2219 2220 2221 2222 2223
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2224
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2243
		__unqueue_futex(q);
2244 2245 2246

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2247 2248 2249 2250
		spin_unlock(lock_ptr);
		ret = 1;
	}

2251
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2252 2253 2254
	return ret;
}

2255 2256
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2257 2258
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2259
 */
P
Pierre Peiffer 已提交
2260
static void unqueue_me_pi(struct futex_q *q)
2261
	__releases(q->lock_ptr)
2262
{
2263
	__unqueue_futex(q);
2264 2265

	BUG_ON(!q->pi_state);
2266
	put_pi_state(q->pi_state);
2267 2268
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2269
	spin_unlock(q->lock_ptr);
2270 2271
}

P
Pierre Peiffer 已提交
2272
/*
2273
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
2274
 *
2275 2276
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
2277
 */
2278
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2279
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
2280
{
2281
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
2282
	struct futex_pi_state *pi_state = q->pi_state;
2283
	u32 uval, uninitialized_var(curval), newval;
P
Peter Zijlstra 已提交
2284
	struct task_struct *oldowner;
D
Darren Hart 已提交
2285
	int ret;
P
Pierre Peiffer 已提交
2286

P
Peter Zijlstra 已提交
2287 2288 2289
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
2290
	/* Owner died? */
2291 2292 2293 2294 2295
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2296
	 * previous highest priority waiter or we are the highest priority
2297 2298
	 * waiter but have failed to get the rtmutex the first time.
	 *
2299 2300
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2301
	 *
D
Darren Hart 已提交
2302 2303 2304
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2305
	 *
P
Peter Zijlstra 已提交
2306 2307 2308 2309
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2310 2311 2312 2313 2314
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

2315
	for (;;) {
2316 2317
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2318
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2329
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2330
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2331 2332
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2333
		raw_spin_unlock(&pi_state->owner->pi_lock);
2334
	}
P
Pierre Peiffer 已提交
2335

2336
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2337

P
Peter Zijlstra 已提交
2338
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2339
	WARN_ON(!list_empty(&pi_state->list));
2340
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2341 2342 2343
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2344
	return 0;
P
Pierre Peiffer 已提交
2345 2346

	/*
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	 * To handle the page fault we need to drop the locks here. That gives
	 * the other task (either the highest priority waiter itself or the
	 * task which stole the rtmutex) the chance to try the fixup of the
	 * pi_state. So once we are back from handling the fault we need to
	 * check the pi_state after reacquiring the locks and before trying to
	 * do another fixup. When the fixup has been done already we simply
	 * return.
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2358
	 */
2359
handle_fault:
P
Peter Zijlstra 已提交
2360
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2361
	spin_unlock(q->lock_ptr);
2362

2363
	ret = fault_in_user_writeable(uaddr);
2364

2365
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2366
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2367

2368 2369 2370
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2371 2372 2373 2374
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2375 2376

	if (ret)
P
Peter Zijlstra 已提交
2377
		goto out_unlock;
2378 2379

	goto retry;
P
Peter Zijlstra 已提交
2380 2381 2382 2383

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2384 2385
}

N
Nick Piggin 已提交
2386
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2398
 * Return:
2399 2400 2401
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
2402
 */
2403
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2404 2405 2406 2407 2408 2409 2410
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2411 2412 2413 2414
		 *
		 * We can safely read pi_state->owner without holding wait_lock
		 * because we now own the rt_mutex, only the owner will attempt
		 * to change it.
2415 2416
		 */
		if (q->pi_state->owner != current)
2417
			ret = fixup_pi_state_owner(uaddr, q, current);
2418 2419 2420 2421 2422
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2423
	 * the owner of the rt_mutex.
2424
	 */
2425
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2426 2427 2428 2429
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2430
	}
2431 2432 2433 2434 2435

out:
	return ret ? ret : locked;
}

2436 2437 2438 2439 2440 2441 2442
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2443
				struct hrtimer_sleeper *timeout)
2444
{
2445 2446
	/*
	 * The task state is guaranteed to be set before another task can
2447
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2448 2449 2450
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2451
	set_current_state(TASK_INTERRUPTIBLE);
2452
	queue_me(q, hb);
2453 2454

	/* Arm the timer */
2455
	if (timeout)
2456 2457 2458
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2459 2460
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2461 2462 2463 2464 2465 2466 2467 2468
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2469
			freezable_schedule();
2470 2471 2472 2473
	}
	__set_current_state(TASK_RUNNING);
}

2474 2475 2476 2477
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2478
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2479 2480 2481 2482 2483 2484 2485 2486
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2487
 * Return:
2488 2489
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2490
 */
2491
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2492
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2493
{
2494 2495
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2496 2497

	/*
D
Darren Hart 已提交
2498
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503 2504 2505
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2506 2507
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2508 2509
	 * cond(var) false, which would violate the guarantee.
	 *
2510 2511 2512 2513
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2514
	 */
2515
retry:
2516
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2517
	if (unlikely(ret != 0))
2518
		return ret;
2519 2520 2521 2522

retry_private:
	*hb = queue_lock(q);

2523
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2524

2525
	if (ret) {
J
Jason Low 已提交
2526
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2527

2528
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2529
		if (ret)
2530
			goto out;
L
Linus Torvalds 已提交
2531

2532
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2533 2534
			goto retry_private;

2535
		put_futex_key(&q->key);
D
Darren Hart 已提交
2536
		goto retry;
L
Linus Torvalds 已提交
2537
	}
2538

2539
	if (uval != val) {
J
Jason Low 已提交
2540
		queue_unlock(*hb);
2541
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2542
	}
L
Linus Torvalds 已提交
2543

2544 2545
out:
	if (ret)
2546
		put_futex_key(&q->key);
2547 2548 2549
	return ret;
}

2550 2551
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2552 2553 2554 2555
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2556
	struct futex_q q = futex_q_init;
2557 2558 2559 2560 2561 2562 2563 2564 2565
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2566 2567 2568
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2569 2570 2571 2572 2573
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2574
retry:
2575 2576 2577 2578
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2579
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2580 2581 2582
	if (ret)
		goto out;

2583
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2584
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2585 2586

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2587
	ret = 0;
2588
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2589
	if (!unqueue_me(&q))
2590
		goto out;
P
Peter Zijlstra 已提交
2591
	ret = -ETIMEDOUT;
2592
	if (to && !to->task)
2593
		goto out;
N
Nick Piggin 已提交
2594

2595
	/*
T
Thomas Gleixner 已提交
2596 2597
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2598
	 */
2599
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2600 2601
		goto retry;

P
Peter Zijlstra 已提交
2602
	ret = -ERESTARTSYS;
2603
	if (!abs_time)
2604
		goto out;
L
Linus Torvalds 已提交
2605

2606
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2607
	restart->fn = futex_wait_restart;
2608
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2609
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2610
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2611
	restart->futex.bitset = bitset;
2612
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2613

P
Peter Zijlstra 已提交
2614 2615
	ret = -ERESTART_RESTARTBLOCK;

2616
out:
2617 2618 2619 2620
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2621 2622 2623
	return ret;
}

N
Nick Piggin 已提交
2624 2625 2626

static long futex_wait_restart(struct restart_block *restart)
{
2627
	u32 __user *uaddr = restart->futex.uaddr;
2628
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2629

2630
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2631
		t = restart->futex.time;
2632 2633
		tp = &t;
	}
N
Nick Piggin 已提交
2634
	restart->fn = do_no_restart_syscall;
2635 2636 2637

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2638 2639 2640
}


2641 2642 2643
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2644 2645 2646 2647 2648
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2649
 */
2650
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2651
			 ktime_t *time, int trylock)
2652
{
2653
	struct hrtimer_sleeper timeout, *to = NULL;
2654
	struct futex_pi_state *pi_state = NULL;
2655
	struct rt_mutex_waiter rt_waiter;
2656
	struct futex_hash_bucket *hb;
2657
	struct futex_q q = futex_q_init;
2658
	int res, ret;
2659

2660 2661 2662
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2663 2664 2665
	if (refill_pi_state_cache())
		return -ENOMEM;

2666
	if (time) {
2667
		to = &timeout;
2668 2669
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2670
		hrtimer_init_sleeper(to, current);
2671
		hrtimer_set_expires(&to->timer, *time);
2672 2673
	}

2674
retry:
2675
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2676
	if (unlikely(ret != 0))
2677
		goto out;
2678

D
Darren Hart 已提交
2679
retry_private:
E
Eric Sesterhenn 已提交
2680
	hb = queue_lock(&q);
2681

2682
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2683
	if (unlikely(ret)) {
2684 2685 2686 2687
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2688
		switch (ret) {
2689 2690 2691 2692 2693 2694
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2695 2696
		case -EAGAIN:
			/*
2697 2698 2699 2700
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2701
			 */
J
Jason Low 已提交
2702
			queue_unlock(hb);
2703
			put_futex_key(&q.key);
2704 2705 2706
			cond_resched();
			goto retry;
		default:
2707
			goto out_unlock_put_key;
2708 2709 2710
		}
	}

2711 2712
	WARN_ON(!q.pi_state);

2713 2714 2715
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2716
	__queue_me(&q, hb);
2717

2718
	if (trylock) {
2719
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2720 2721
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2722
		goto no_block;
2723 2724
	}

2725 2726
	rt_mutex_init_waiter(&rt_waiter);

2727
	/*
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
	 * latter before calling rt_mutex_start_proxy_lock(). This still fully
	 * serializes against futex_unlock_pi() as that does the exact same
	 * lock handoff sequence.
2738
	 */
2739 2740 2741 2742 2743
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2744 2745 2746 2747
	if (ret) {
		if (ret == 1)
			ret = 0;

2748
		spin_lock(q.lock_ptr);
2749 2750 2751 2752 2753 2754 2755 2756 2757
		goto no_block;
	}


	if (unlikely(to))
		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2758
	spin_lock(q.lock_ptr);
2759 2760 2761 2762 2763
	/*
	 * If we failed to acquire the lock (signal/timeout), we must
	 * first acquire the hb->lock before removing the lock from the
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
	 * wait lists consistent.
2764 2765 2766
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2767 2768 2769 2770 2771
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2772 2773 2774 2775
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2776
	res = fixup_owner(uaddr, &q, !ret);
2777 2778 2779 2780 2781 2782
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2783

2784
	/*
2785 2786
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2787
	 */
2788 2789 2790 2791
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2792

2793 2794
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2795

2796 2797 2798 2799 2800
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

2801
	goto out_put_key;
2802

2803
out_unlock_put_key:
J
Jason Low 已提交
2804
	queue_unlock(hb);
2805

2806
out_put_key:
2807
	put_futex_key(&q.key);
2808
out:
2809 2810
	if (to) {
		hrtimer_cancel(&to->timer);
2811
		destroy_hrtimer_on_stack(&to->timer);
2812
	}
2813
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2814

2815
uaddr_faulted:
J
Jason Low 已提交
2816
	queue_unlock(hb);
2817

2818
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2819 2820
	if (ret)
		goto out_put_key;
2821

2822
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2823 2824
		goto retry_private;

2825
	put_futex_key(&q.key);
D
Darren Hart 已提交
2826
	goto retry;
2827 2828 2829 2830 2831 2832 2833
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2834
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2835
{
2836
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2837
	union futex_key key = FUTEX_KEY_INIT;
2838
	struct futex_hash_bucket *hb;
2839
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2840
	int ret;
2841

2842 2843 2844
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2845 2846 2847 2848 2849 2850
retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2851
	if ((uval & FUTEX_TID_MASK) != vpid)
2852 2853
		return -EPERM;

2854
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2855 2856
	if (ret)
		return ret;
2857 2858 2859 2860 2861

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2862 2863 2864
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2865
	 */
2866 2867
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

2881
		get_pi_state(pi_state);
2882
		/*
2883 2884 2885 2886
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
2887
		 */
2888
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2889 2890
		spin_unlock(&hb->lock);

2891
		/* drops pi_state->pi_mutex.wait_lock */
2892 2893 2894 2895 2896 2897
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
2898 2899 2900
		 */
		if (!ret)
			goto out_putkey;
2901
		/*
2902 2903
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2904 2905 2906
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2907 2908 2909 2910 2911 2912 2913 2914
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
		if (ret == -EAGAIN) {
			put_futex_key(&key);
			goto retry;
		}
2915 2916 2917 2918
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2919
		goto out_putkey;
2920
	}
2921

2922
	/*
2923 2924 2925 2926 2927
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2928
	 */
2929 2930
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
		spin_unlock(&hb->lock);
2931
		goto pi_faulted;
2932
	}
2933

2934 2935 2936 2937 2938
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2939 2940
out_unlock:
	spin_unlock(&hb->lock);
2941
out_putkey:
2942
	put_futex_key(&key);
2943 2944 2945
	return ret;

pi_faulted:
2946
	put_futex_key(&key);
2947

2948
	ret = fault_in_user_writeable(uaddr);
2949
	if (!ret)
2950 2951
		goto retry;

L
Linus Torvalds 已提交
2952 2953 2954
	return ret;
}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2967
 * Return:
2968 2969
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2991
		plist_del(&q->list, &hb->chain);
2992
		hb_waiters_dec(hb);
2993

T
Thomas Gleixner 已提交
2994
		/* Handle spurious wakeups gracefully */
2995
		ret = -EWOULDBLOCK;
2996 2997
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2998
		else if (signal_pending(current))
2999
			ret = -ERESTARTNOINTR;
3000 3001 3002 3003 3004 3005
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3006
 * @uaddr:	the futex we initially wait on (non-pi)
3007
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3008
 *		the same type, no requeueing from private to shared, etc.
3009 3010
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
3011
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3012 3013 3014
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3015 3016 3017 3018 3019
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
3020 3021
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3022
 * via the following--
3023
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3024 3025 3026
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
3027
 *
3028
 * If 3, cleanup and return -ERESTARTNOINTR.
3029 3030 3031 3032 3033 3034 3035
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
3036
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3037 3038 3039
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
3040
 * Return:
3041 3042
 *  -  0 - On success;
 *  - <0 - On error
3043
 */
3044
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3045
				 u32 val, ktime_t *abs_time, u32 bitset,
3046
				 u32 __user *uaddr2)
3047 3048
{
	struct hrtimer_sleeper timeout, *to = NULL;
3049
	struct futex_pi_state *pi_state = NULL;
3050 3051
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
3052 3053
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
3054 3055
	int res, ret;

3056 3057 3058
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3059 3060 3061
	if (uaddr == uaddr2)
		return -EINVAL;

3062 3063 3064 3065 3066
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
3067 3068 3069
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
3070 3071 3072 3073 3074 3075 3076 3077 3078
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3079
	rt_mutex_init_waiter(&rt_waiter);
3080

3081
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3082 3083 3084
	if (unlikely(ret != 0))
		goto out;

3085 3086 3087 3088
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3089 3090 3091 3092
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3093
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3094 3095
	if (ret)
		goto out_key2;
3096

3097 3098 3099 3100 3101
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3102
		queue_unlock(hb);
3103 3104 3105 3106
		ret = -EINVAL;
		goto out_put_keys;
	}

3107
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3108
	futex_wait_queue_me(hb, &q, to);
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3120 3121 3122
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3133
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3134 3135 3136 3137
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3138 3139 3140 3141
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3142
			put_pi_state(q.pi_state);
3143 3144 3145
			spin_unlock(q.lock_ptr);
		}
	} else {
3146 3147
		struct rt_mutex *pi_mutex;

3148 3149 3150 3151 3152
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3153
		WARN_ON(!q.pi_state);
3154
		pi_mutex = &q.pi_state->pi_mutex;
3155
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3156 3157

		spin_lock(q.lock_ptr);
3158 3159 3160 3161
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3162 3163 3164 3165
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3166
		res = fixup_owner(uaddr2, &q, !ret);
3167 3168
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3169
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3170 3171 3172 3173
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3174 3175 3176 3177 3178
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3179 3180 3181 3182
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3183

3184 3185 3186 3187
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3188 3189 3190 3191 3192
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3193
	if (ret == -EINTR) {
3194
		/*
3195 3196 3197 3198 3199
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3200
		 */
3201
		ret = -EWOULDBLOCK;
3202 3203 3204
	}

out_put_keys:
3205
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3206
out_key2:
3207
	put_futex_key(&key2);
3208 3209 3210 3211 3212 3213 3214 3215 3216

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3217 3218 3219 3220 3221 3222 3223
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3224
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3225 3226 3227 3228 3229 3230 3231 3232
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3233 3234 3235
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3236
 */
3237 3238
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3239
{
3240 3241
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3254 3255 3256 3257
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3258
 */
3259 3260 3261
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3262
{
A
Al Viro 已提交
3263
	struct robust_list_head __user *head;
3264
	unsigned long ret;
3265
	struct task_struct *p;
3266

3267 3268 3269
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3270 3271 3272
	rcu_read_lock();

	ret = -ESRCH;
3273
	if (!pid)
3274
		p = current;
3275
	else {
3276
		p = find_task_by_vpid(pid);
3277 3278 3279 3280
		if (!p)
			goto err_unlock;
	}

3281
	ret = -EPERM;
3282
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3283 3284 3285 3286 3287
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3288 3289 3290 3291 3292
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3293
	rcu_read_unlock();
3294 3295 3296 3297 3298 3299 3300 3301

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3302
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3303
{
3304
	u32 uval, uninitialized_var(nval), mval;
3305

3306 3307
retry:
	if (get_user(uval, uaddr))
3308 3309
		return -1;

3310
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
3321
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
3336
		if (nval != uval)
3337
			goto retry;
3338

3339 3340 3341 3342
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
3343
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
3344
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3345 3346 3347 3348
	}
	return 0;
}

3349 3350 3351 3352
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3353
				     struct robust_list __user * __user *head,
3354
				     unsigned int *pi)
3355 3356 3357
{
	unsigned long uentry;

A
Al Viro 已提交
3358
	if (get_user(uentry, (unsigned long __user *)head))
3359 3360
		return -EFAULT;

A
Al Viro 已提交
3361
	*entry = (void __user *)(uentry & ~1UL);
3362 3363 3364 3365 3366
	*pi = uentry & 1;

	return 0;
}

3367 3368 3369 3370 3371 3372 3373 3374 3375
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3376
	struct robust_list __user *entry, *next_entry, *pending;
3377 3378
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3379
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3380
	int rc;
3381

3382 3383 3384
	if (!futex_cmpxchg_enabled)
		return;

3385 3386 3387 3388
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3389
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3400
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3401
		return;
3402

M
Martin Schwidefsky 已提交
3403
	next_entry = NULL;	/* avoid warning with gcc */
3404
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3405 3406 3407 3408 3409
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3410 3411
		/*
		 * A pending lock might already be on the list, so
3412
		 * don't process it twice:
3413 3414
		 */
		if (entry != pending)
A
Al Viro 已提交
3415
			if (handle_futex_death((void __user *)entry + futex_offset,
3416
						curr, pi))
3417
				return;
M
Martin Schwidefsky 已提交
3418
		if (rc)
3419
			return;
M
Martin Schwidefsky 已提交
3420 3421
		entry = next_entry;
		pi = next_pi;
3422 3423 3424 3425 3426 3427 3428 3429
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3430 3431 3432 3433

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3434 3435
}

3436
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3437
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3438
{
T
Thomas Gleixner 已提交
3439
	int cmd = op & FUTEX_CMD_MASK;
3440
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3441 3442

	if (!(op & FUTEX_PRIVATE_FLAG))
3443
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3444

3445 3446
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3447 3448
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3449 3450
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3462
	switch (cmd) {
L
Linus Torvalds 已提交
3463
	case FUTEX_WAIT:
3464 3465
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3466
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3467
	case FUTEX_WAKE:
3468 3469
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3470
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3471
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3472
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3473
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3474
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3475
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3476
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3477
	case FUTEX_LOCK_PI:
3478
		return futex_lock_pi(uaddr, flags, timeout, 0);
3479
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3480
		return futex_unlock_pi(uaddr, flags);
3481
	case FUTEX_TRYLOCK_PI:
3482
		return futex_lock_pi(uaddr, flags, NULL, 1);
3483 3484
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3485 3486
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3487
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3488
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3489
	}
T
Thomas Gleixner 已提交
3490
	return -ENOSYS;
L
Linus Torvalds 已提交
3491 3492 3493
}


3494 3495 3496
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3497
{
3498 3499
	struct timespec ts;
	ktime_t t, *tp = NULL;
3500
	u32 val2 = 0;
E
Eric Dumazet 已提交
3501
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3502

3503
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3504 3505
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3506 3507
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3508
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3509
			return -EFAULT;
3510
		if (!timespec_valid(&ts))
3511
			return -EINVAL;
3512 3513

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3514
		if (cmd == FUTEX_WAIT)
3515
			t = ktime_add_safe(ktime_get(), t);
3516
		tp = &t;
L
Linus Torvalds 已提交
3517 3518
	}
	/*
3519
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3520
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3521
	 */
3522
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3523
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3524
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3525

3526
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3527 3528
}

3529
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3530
{
3531
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3532
	u32 curval;
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3551
	unsigned int futex_shift;
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3563 3564 3565
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3566 3567

	futex_detect_cmpxchg();
3568

3569
	for (i = 0; i < futex_hashsize; i++) {
3570
		atomic_set(&futex_queues[i].waiters, 0);
3571
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3572 3573 3574
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3575 3576
	return 0;
}
3577
core_initcall(futex_init);