futex.c 81.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67

68
#include <asm/futex.h>
L
Linus Torvalds 已提交
69

70
#include "locking/rtmutex_common.h"
71

72
/*
73 74 75 76
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
77 78 79 80
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
81 82 83
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
84 85
 *
 * The waker side modifies the user space value of the futex and calls
86 87 88
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
89
 *
90 91 92 93 94
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
116 117 118 119 120
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
121 122 123
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
124
 *
125
 *   waiters++; (a)
126 127 128 129 130 131 132 133 134 135
 *   mb(); (A) <-- paired with -.
 *                              |
 *   lock(hash_bucket(futex));  |
 *                              |
 *   uval = *futex;             |
 *                              |        *futex = newval;
 *                              |        sys_futex(WAKE, futex);
 *                              |          futex_wake(futex);
 *                              |
 *                              `------->  mb(); (B)
136
 *   if (uval == val)
137
 *     queue();
138
 *     unlock(hash_bucket(futex));
139 140
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
141 142
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
143
 *
144 145 146 147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 * to futex and the waiters read -- this is done by the barriers in
 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
 * futex type.
149 150 151 152 153 154 155 156 157 158 159 160
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
161 162 163 164 165 166 167 168 169 170 171
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
172 173
 */

174
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175
int __read_mostly futex_cmpxchg_enabled;
176
#endif
177

178 179 180 181 182 183 184 185
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

207 208
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
209
 * @list:		priority-sorted list of tasks waiting on this futex
210 211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
219 220 221
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
222
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223
 * The order of wakeup is always to make the first condition true, then
224 225 226 227
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
228 229
 */
struct futex_q {
P
Pierre Peiffer 已提交
230
	struct plist_node list;
L
Linus Torvalds 已提交
231

232
	struct task_struct *task;
L
Linus Torvalds 已提交
233 234
	spinlock_t *lock_ptr;
	union futex_key key;
235
	struct futex_pi_state *pi_state;
236
	struct rt_mutex_waiter *rt_waiter;
237
	union futex_key *requeue_pi_key;
238
	u32 bitset;
L
Linus Torvalds 已提交
239 240
};

241 242 243 244 245 246
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
247
/*
D
Darren Hart 已提交
248 249 250
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
251 252
 */
struct futex_hash_bucket {
253
	atomic_t waiters;
P
Pierre Peiffer 已提交
254 255
	spinlock_t lock;
	struct plist_head chain;
256
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
257

258 259 260
static unsigned long __read_mostly futex_hashsize;

static struct futex_hash_bucket *futex_queues;
L
Linus Torvalds 已提交
261

262 263 264 265 266 267 268 269
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
	 * as full barrier (B), see the ordering comment above.
	 */
270
	smp_mb__after_atomic();
271 272
}

273 274 275 276
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 278
{
#ifdef CONFIG_SMP
279
	atomic_inc(&hb->waiters);
280
	/*
281
	 * Full barrier (A), see the ordering comment above.
282
	 */
283
	smp_mb__after_atomic();
284 285 286 287 288 289 290 291 292 293 294 295 296
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
297

298 299 300 301
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
302
#else
303
	return 1;
304 305 306
#endif
}

L
Linus Torvalds 已提交
307 308 309 310 311 312 313 314
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
315
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
316 317 318 319 320 321 322
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
323 324
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
325 326 327 328
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
341
		ihold(key->shared.inode); /* implies MB (B) */
342 343
		break;
	case FUT_OFF_MMSHARED:
344
		futex_get_mm(key); /* implies MB (B) */
345 346 347 348 349 350 351 352 353 354
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
355 356 357
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
358
		return;
359
	}
360 361 362 363 364 365 366 367 368 369 370

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
371
/**
372 373 374 375
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
376 377
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
378
 *
379 380
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
381
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
382
 *
A
Al Viro 已提交
383
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
384 385 386
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
387
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
388
 */
389
static int
390
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
391
{
392
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
393
	struct mm_struct *mm = current->mm;
394
	struct page *page, *page_head;
395
	int err, ro = 0;
L
Linus Torvalds 已提交
396 397 398 399

	/*
	 * The futex address must be "naturally" aligned.
	 */
400
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
401
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
402
		return -EINVAL;
403
	address -= key->both.offset;
L
Linus Torvalds 已提交
404

405 406 407
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

E
Eric Dumazet 已提交
408 409 410 411 412 413 414 415 416 417
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
418
		get_futex_key_refs(key);  /* implies MB (B) */
E
Eric Dumazet 已提交
419 420
		return 0;
	}
L
Linus Torvalds 已提交
421

422
again:
423
	err = get_user_pages_fast(address, 1, 1, &page);
424 425 426 427 428 429 430 431
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
432 433
	if (err < 0)
		return err;
434 435
	else
		err = 0;
436

437 438 439
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
440
		put_page(page);
441 442
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
443
		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
490
	if (!page_head->mapping) {
491
		int shmem_swizzled = PageSwapCache(page_head);
492 493
		unlock_page(page_head);
		put_page(page_head);
494 495 496
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
497
	}
L
Linus Torvalds 已提交
498 499 500 501 502 503

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
504
	 * the object not the particular process.
L
Linus Torvalds 已提交
505
	 */
506
	if (PageAnon(page_head)) {
507 508 509 510 511 512 513 514 515
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (ro) {
			err = -EFAULT;
			goto out;
		}

516
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
517
		key->private.mm = mm;
518
		key->private.address = address;
519 520
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521
		key->shared.inode = page_head->mapping->host;
522
		key->shared.pgoff = basepage_index(page);
L
Linus Torvalds 已提交
523 524
	}

525
	get_futex_key_refs(key); /* implies MB (B) */
L
Linus Torvalds 已提交
526

527
out:
528 529
	unlock_page(page_head);
	put_page(page_head);
530
	return err;
L
Linus Torvalds 已提交
531 532
}

533
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
534
{
535
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
536 537
}

538 539
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
540 541 542 543 544
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
545
 * We have no generic implementation of a non-destructive write to the
546 547 548 549 550 551
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
552 553 554 555
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
556 557
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
558 559
	up_read(&mm->mmap_sem);

560 561 562
	return ret < 0 ? ret : 0;
}

563 564
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
565 566
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

582 583
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
584
{
585
	int ret;
T
Thomas Gleixner 已提交
586 587

	pagefault_disable();
588
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
589 590
	pagefault_enable();

591
	return ret;
T
Thomas Gleixner 已提交
592 593 594
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
595 596 597
{
	int ret;

598
	pagefault_disable();
599
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600
	pagefault_enable();
L
Linus Torvalds 已提交
601 602 603 604

	return ret ? -EFAULT : 0;
}

605 606 607 608 609 610 611 612 613 614 615

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

616
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617 618 619 620 621 622 623 624

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
625
	pi_state->key = FUTEX_KEY_INIT;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
652
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
653
		list_del_init(&pi_state->list);
654
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

681
	rcu_read_lock();
682
	p = find_task_by_vpid(pid);
683 684
	if (p)
		get_task_struct(p);
685

686
	rcu_read_unlock();
687 688 689 690 691 692 693 694 695 696 697 698 699

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
700
	struct futex_hash_bucket *hb;
701
	union futex_key key = FUTEX_KEY_INIT;
702

703 704
	if (!futex_cmpxchg_enabled)
		return;
705 706 707
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
708
	 * versus waiters unqueueing themselves:
709
	 */
710
	raw_spin_lock_irq(&curr->pi_lock);
711 712 713 714 715
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
716
		hb = hash_futex(&key);
717
		raw_spin_unlock_irq(&curr->pi_lock);
718 719 720

		spin_lock(&hb->lock);

721
		raw_spin_lock_irq(&curr->pi_lock);
722 723 724 725
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
726 727 728 729 730 731
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
732 733
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
734
		pi_state->owner = NULL;
735
		raw_spin_unlock_irq(&curr->pi_lock);
736 737 738 739 740

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

741
		raw_spin_lock_irq(&curr->pi_lock);
742
	}
743
	raw_spin_unlock_irq(&curr->pi_lock);
744 745
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
 */
795 796 797 798 799 800 801 802

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
			      struct futex_pi_state **ps)
803
{
804
	pid_t pid = uval & FUTEX_TID_MASK;
805

806 807 808 809 810
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
811

812
	WARN_ON(!atomic_read(&pi_state->refcount));
813

814 815 816 817
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
818
		/*
819 820 821
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
822
		 */
823
		if (!pi_state->owner) {
824
			/*
825 826
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
827
			 */
828 829
			if (pid)
				return -EINVAL;
830
			/*
831
			 * Take a ref on the state and return success. [4]
832
			 */
833
			goto out_state;
834
		}
835 836

		/*
837 838 839 840 841 842 843 844 845 846 847 848 849
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
			goto out_state;
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
850
		 */
851
		if (!pi_state->owner)
852
			return -EINVAL;
853 854
	}

855 856 857 858 859 860 861 862 863 864 865 866 867
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
		return -EINVAL;
out_state:
	atomic_inc(&pi_state->refcount);
	*ps = pi_state;
	return 0;
}

868 869 870 871 872 873
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
874 875
{
	pid_t pid = uval & FUTEX_TID_MASK;
876 877
	struct futex_pi_state *pi_state;
	struct task_struct *p;
878

879
	/*
880
	 * We are the first waiter - try to look up the real owner and attach
881
	 * the new pi_state to it, but bail out when TID = 0 [1]
882
	 */
883
	if (!pid)
884
		return -ESRCH;
885
	p = futex_find_get_task(pid);
886 887
	if (!p)
		return -ESRCH;
888

889 890 891 892 893
	if (!p->mm) {
		put_task_struct(p);
		return -EPERM;
	}

894 895 896 897 898 899
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
900
	raw_spin_lock_irq(&p->pi_lock);
901 902 903 904 905 906 907 908
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

909
		raw_spin_unlock_irq(&p->pi_lock);
910 911 912
		put_task_struct(p);
		return ret;
	}
913

914 915 916
	/*
	 * No existing pi state. First waiter. [2]
	 */
917 918 919
	pi_state = alloc_pi_state();

	/*
920
	 * Initialize the pi_mutex in locked state and make @p
921 922 923 924 925
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
926
	pi_state->key = *key;
927

928
	WARN_ON(!list_empty(&pi_state->list));
929 930
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
931
	raw_spin_unlock_irq(&p->pi_lock);
932 933 934

	put_task_struct(p);

P
Pierre Peiffer 已提交
935
	*ps = pi_state;
936 937 938 939

	return 0;
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
			   union futex_key *key, struct futex_pi_state **ps)
{
	struct futex_q *match = futex_top_waiter(hb, key);

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

959 960 961 962 963 964 965 966 967 968 969
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

	/*If user space value changed, let the caller retry */
	return curval != uval ? -EAGAIN : 0;
}

970
/**
971
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
972 973 974 975 976 977 978 979
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
980
 *
981 982 983
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
984 985 986 987 988 989 990
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
991
				struct task_struct *task, int set_waiters)
992
{
993 994 995
	u32 uval, newval, vpid = task_pid_vnr(task);
	struct futex_q *match;
	int ret;
996 997

	/*
998 999
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1000
	 */
1001
	if (get_futex_value_locked(&uval, uaddr))
1002 1003 1004 1005 1006
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
1007
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1008 1009 1010
		return -EDEADLK;

	/*
1011 1012
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1013
	 */
1014 1015 1016
	match = futex_top_waiter(hb, key);
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);
1017 1018

	/*
1019 1020 1021 1022
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1023
	 */
1024
	if (!(uval & FUTEX_TID_MASK)) {
1025
		/*
1026 1027
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1028
		 */
1029 1030
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1031

1032 1033 1034 1035 1036 1037 1038 1039
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1040 1041

	/*
1042 1043 1044
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1045
	 */
1046 1047 1048 1049
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1050
	/*
1051 1052 1053
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1054
	 */
1055
	return attach_to_pi_owner(uval, key, ps);
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1068 1069
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1070 1071 1072 1073
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1074
	hb_waiters_dec(hb);
1075 1076
}

L
Linus Torvalds 已提交
1077 1078 1079 1080 1081 1082
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
1083 1084
	struct task_struct *p = q->task;

1085 1086 1087
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1088
	/*
T
Thomas Gleixner 已提交
1089
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1090 1091
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
1092 1093
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
1094
	 */
T
Thomas Gleixner 已提交
1095 1096
	get_task_struct(p);

1097
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1098
	/*
T
Thomas Gleixner 已提交
1099 1100 1101 1102
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1103
	 */
1104
	smp_wmb();
L
Linus Torvalds 已提交
1105
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
1106 1107 1108

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
1109 1110
}

1111 1112 1113 1114
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
1115
	u32 uninitialized_var(curval), newval;
1116
	int ret = 0;
1117 1118 1119 1120

	if (!pi_state)
		return -EINVAL;

1121 1122 1123 1124 1125 1126 1127
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1128
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1129 1130 1131
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1132 1133 1134
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1135 1136 1137 1138 1139
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1140 1141 1142
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1143
	 */
1144
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1145

1146 1147 1148 1149 1150 1151 1152
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
		ret = -EFAULT;
	else if (curval != uval)
		ret = -EINVAL;
	if (ret) {
		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
		return ret;
1153
	}
1154

1155
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1156 1157
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1158
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1159

1160
	raw_spin_lock_irq(&new_owner->pi_lock);
1161
	WARN_ON(!list_empty(&pi_state->list));
1162 1163
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1164
	raw_spin_unlock_irq(&new_owner->pi_lock);
1165

1166
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1167 1168 1169 1170 1171
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

I
Ingo Molnar 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1188 1189 1190
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1191
	spin_unlock(&hb1->lock);
1192 1193
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1194 1195
}

L
Linus Torvalds 已提交
1196
/*
D
Darren Hart 已提交
1197
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1198
 */
1199 1200
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1201
{
1202
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1203
	struct futex_q *this, *next;
1204
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1205 1206
	int ret;

1207 1208 1209
	if (!bitset)
		return -EINVAL;

1210
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1211 1212 1213
	if (unlikely(ret != 0))
		goto out;

1214
	hb = hash_futex(&key);
1215 1216 1217 1218 1219

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1220
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1221

J
Jason Low 已提交
1222
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1223
		if (match_futex (&this->key, &key)) {
1224
			if (this->pi_state || this->rt_waiter) {
1225 1226 1227
				ret = -EINVAL;
				break;
			}
1228 1229 1230 1231 1232

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
1233 1234 1235 1236 1237 1238
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

1239
	spin_unlock(&hb->lock);
1240
out_put_key:
1241
	put_futex_key(&key);
1242
out:
L
Linus Torvalds 已提交
1243 1244 1245
	return ret;
}

1246 1247 1248 1249
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1250
static int
1251
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1252
	      int nr_wake, int nr_wake2, int op)
1253
{
1254
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1255
	struct futex_hash_bucket *hb1, *hb2;
1256
	struct futex_q *this, *next;
D
Darren Hart 已提交
1257
	int ret, op_ret;
1258

D
Darren Hart 已提交
1259
retry:
1260
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1261 1262
	if (unlikely(ret != 0))
		goto out;
1263
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1264
	if (unlikely(ret != 0))
1265
		goto out_put_key1;
1266

1267 1268
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1269

D
Darren Hart 已提交
1270
retry_private:
T
Thomas Gleixner 已提交
1271
	double_lock_hb(hb1, hb2);
1272
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1273 1274
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1275
		double_unlock_hb(hb1, hb2);
1276

1277
#ifndef CONFIG_MMU
1278 1279 1280 1281
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1282
		ret = op_ret;
1283
		goto out_put_keys;
1284 1285
#endif

1286 1287
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1288
			goto out_put_keys;
1289 1290
		}

1291
		ret = fault_in_user_writeable(uaddr2);
1292
		if (ret)
1293
			goto out_put_keys;
1294

1295
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1296 1297
			goto retry_private;

1298 1299
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1300
		goto retry;
1301 1302
	}

J
Jason Low 已提交
1303
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1304
		if (match_futex (&this->key, &key1)) {
1305 1306 1307 1308
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1309 1310 1311 1312 1313 1314 1315 1316
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1317
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1318
			if (match_futex (&this->key, &key2)) {
1319 1320 1321 1322
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1323 1324 1325 1326 1327 1328 1329 1330
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1331
out_unlock:
D
Darren Hart 已提交
1332
	double_unlock_hb(hb1, hb2);
1333
out_put_keys:
1334
	put_futex_key(&key2);
1335
out_put_key1:
1336
	put_futex_key(&key1);
1337
out:
1338 1339 1340
	return ret;
}

D
Darren Hart 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1359
		hb_waiters_dec(hb1);
D
Darren Hart 已提交
1360
		plist_add(&q->list, &hb2->chain);
1361
		hb_waiters_inc(hb2);
D
Darren Hart 已提交
1362 1363 1364 1365 1366 1367
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1368 1369
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1370 1371 1372
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1373 1374 1375 1376 1377
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1378 1379 1380
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1381 1382
 */
static inline
1383 1384
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1385 1386 1387 1388
{
	get_futex_key_refs(key);
	q->key = *key;

1389
	__unqueue_futex(q);
1390 1391 1392 1393

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1394 1395
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1396
	wake_up_state(q->task, TASK_NORMAL);
1397 1398 1399 1400
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1401 1402 1403 1404 1405 1406 1407
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1408 1409
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1410 1411 1412
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1413
 *
1414 1415
 * Return:
 *  0 - failed to acquire the lock atomically;
1416
 * >0 - acquired the lock, return value is vpid of the top_waiter
1417 1418 1419 1420 1421 1422
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1423
				 struct futex_pi_state **ps, int set_waiters)
1424
{
1425
	struct futex_q *top_waiter = NULL;
1426
	u32 curval;
1427
	int ret, vpid;
1428 1429 1430 1431

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1440 1441 1442 1443 1444 1445
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1446 1447 1448 1449
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1450
	/*
1451 1452 1453
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1454
	 */
1455
	vpid = task_pid_vnr(top_waiter->task);
1456 1457
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1458
	if (ret == 1) {
1459
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1460 1461
		return vpid;
	}
1462 1463 1464 1465 1466
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1467
 * @uaddr1:	source futex user address
1468
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1469 1470 1471 1472 1473
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1474
 *		pi futex (pi to pi requeue is not supported)
1475 1476 1477 1478
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1479 1480
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1481
 *  <0 - on error
L
Linus Torvalds 已提交
1482
 */
1483 1484 1485
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1486
{
1487
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1488 1489
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1490
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1491
	struct futex_q *this, *next;
1492 1493

	if (requeue_pi) {
1494 1495 1496 1497 1498 1499 1500
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1520

1521
retry:
1522 1523 1524 1525 1526 1527 1528 1529 1530
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1531
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1532 1533
	if (unlikely(ret != 0))
		goto out;
1534 1535
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1536
	if (unlikely(ret != 0))
1537
		goto out_put_key1;
L
Linus Torvalds 已提交
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1548 1549
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1550

D
Darren Hart 已提交
1551
retry_private:
1552
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1553
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1554

1555 1556
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1557

1558
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1559 1560

		if (unlikely(ret)) {
D
Darren Hart 已提交
1561
			double_unlock_hb(hb1, hb2);
1562
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1563

1564
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1565 1566
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1567

1568
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1569
				goto retry_private;
L
Linus Torvalds 已提交
1570

1571 1572
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1573
			goto retry;
L
Linus Torvalds 已提交
1574
		}
1575
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1581
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1582 1583 1584 1585 1586 1587
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1588
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1589
						 &key2, &pi_state, nr_requeue);
1590 1591 1592 1593 1594

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1595 1596
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1597
		 */
1598
		if (ret > 0) {
1599
			WARN_ON(pi_state);
1600
			drop_count++;
1601
			task_count++;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
			/*
			 * If we acquired the lock, then the user
			 * space value of uaddr2 should be vpid. It
			 * cannot be changed by the top waiter as it
			 * is blocked on hb2 lock if it tries to do
			 * so. If something fiddled with it behind our
			 * back the pi state lookup might unearth
			 * it. So we rather use the known value than
			 * rereading and handing potential crap to
			 * lookup_pi_state.
			 */
1613
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1614 1615 1616 1617 1618 1619 1620
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1621
			hb_waiters_dec(hb2);
1622 1623
			put_futex_key(&key2);
			put_futex_key(&key1);
1624
			ret = fault_in_user_writeable(uaddr2);
1625 1626 1627 1628
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1629 1630 1631 1632 1633 1634
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1635
			double_unlock_hb(hb1, hb2);
1636
			hb_waiters_dec(hb2);
1637 1638
			put_futex_key(&key2);
			put_futex_key(&key1);
1639 1640 1641 1642 1643 1644 1645
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1646
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1647 1648 1649 1650
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1651
			continue;
1652

1653 1654 1655
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1656 1657 1658
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1659 1660
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1661 1662
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1663 1664 1665
			ret = -EINVAL;
			break;
		}
1666 1667 1668 1669 1670 1671 1672

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1673
			wake_futex(this);
1674 1675
			continue;
		}
L
Linus Torvalds 已提交
1676

1677 1678 1679 1680 1681 1682
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
1693
							this->task);
1694 1695
			if (ret == 1) {
				/* We got the lock. */
1696
				requeue_pi_wake_futex(this, &key2, hb2);
1697
				drop_count++;
1698 1699 1700 1701 1702 1703 1704
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1705
		}
1706 1707
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1708 1709 1710
	}

out_unlock:
D
Darren Hart 已提交
1711
	double_unlock_hb(hb1, hb2);
1712
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1713

1714 1715 1716 1717 1718 1719
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1720
	while (--drop_count >= 0)
1721
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1722

1723
out_put_keys:
1724
	put_futex_key(&key2);
1725
out_put_key1:
1726
	put_futex_key(&key1);
1727
out:
1728 1729 1730
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1731 1732 1733
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1734
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1735
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1736
{
1737
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1738

1739
	hb = hash_futex(&q->key);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

1751
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1752

1753
	spin_lock(&hb->lock); /* implies MB (A) */
1754
	return hb;
L
Linus Torvalds 已提交
1755 1756
}

1757
static inline void
J
Jason Low 已提交
1758
queue_unlock(struct futex_hash_bucket *hb)
1759
	__releases(&hb->lock)
1760 1761
{
	spin_unlock(&hb->lock);
1762
	hb_waiters_dec(hb);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1777
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1778
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1779
{
P
Pierre Peiffer 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1794
	q->task = current;
1795
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1796 1797
}

1798 1799 1800 1801 1802 1803 1804
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
1805 1806
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
1807
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1808 1809 1810 1811
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1812
	int ret = 0;
L
Linus Torvalds 已提交
1813 1814

	/* In the common case we don't take the spinlock, which is nice. */
1815
retry:
L
Linus Torvalds 已提交
1816
	lock_ptr = q->lock_ptr;
1817
	barrier();
1818
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1837
		__unqueue_futex(q);
1838 1839 1840

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1841 1842 1843 1844
		spin_unlock(lock_ptr);
		ret = 1;
	}

1845
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1846 1847 1848
	return ret;
}

1849 1850
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1851 1852
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1853
 */
P
Pierre Peiffer 已提交
1854
static void unqueue_me_pi(struct futex_q *q)
1855
	__releases(q->lock_ptr)
1856
{
1857
	__unqueue_futex(q);
1858 1859 1860 1861 1862

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1863
	spin_unlock(q->lock_ptr);
1864 1865
}

P
Pierre Peiffer 已提交
1866
/*
1867
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1868
 *
1869 1870
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1871
 */
1872
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1873
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1874
{
1875
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1876
	struct futex_pi_state *pi_state = q->pi_state;
1877
	struct task_struct *oldowner = pi_state->owner;
1878
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1879
	int ret;
P
Pierre Peiffer 已提交
1880 1881

	/* Owner died? */
1882 1883 1884 1885 1886
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
1887 1888 1889 1890
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
1891
	 *
D
Darren Hart 已提交
1892 1893 1894
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1909
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1920
	if (pi_state->owner != NULL) {
1921
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1922 1923
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1924
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1925
	}
P
Pierre Peiffer 已提交
1926

1927
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1928

1929
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1930
	WARN_ON(!list_empty(&pi_state->list));
1931
	list_add(&pi_state->list, &newowner->pi_state_list);
1932
	raw_spin_unlock_irq(&newowner->pi_lock);
1933
	return 0;
P
Pierre Peiffer 已提交
1934 1935

	/*
1936
	 * To handle the page fault we need to drop the hash bucket
1937 1938
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
1939 1940 1941 1942 1943
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1944
	 */
1945 1946
handle_fault:
	spin_unlock(q->lock_ptr);
1947

1948
	ret = fault_in_user_writeable(uaddr);
1949

1950
	spin_lock(q->lock_ptr);
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1962 1963
}

N
Nick Piggin 已提交
1964
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
1976 1977 1978
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
1979 1980
 * <0 - on error (-EFAULT)
 */
1981
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1992
			ret = fixup_pi_state_owner(uaddr, q, current);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
2014
		 * rt_mutex. Too late.
2015
		 */
2016
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2017
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2018 2019 2020
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2021
		ret = fixup_pi_state_owner(uaddr, q, owner);
2022 2023 2024 2025 2026
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2027
	 * the owner of the rt_mutex.
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

2039 2040 2041 2042 2043 2044 2045
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2046
				struct hrtimer_sleeper *timeout)
2047
{
2048 2049 2050 2051 2052 2053
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2054
	set_current_state(TASK_INTERRUPTIBLE);
2055
	queue_me(q, hb);
2056 2057 2058 2059 2060 2061 2062 2063 2064

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
2065 2066
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2067 2068 2069 2070 2071 2072 2073 2074
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2075
			freezable_schedule();
2076 2077 2078 2079
	}
	__set_current_state(TASK_RUNNING);
}

2080 2081 2082 2083
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2084
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2085 2086 2087 2088 2089 2090 2091 2092
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2093 2094
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2095
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2096
 */
2097
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2098
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2099
{
2100 2101
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2102 2103

	/*
D
Darren Hart 已提交
2104
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109 2110 2111
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2112 2113
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2114 2115
	 * cond(var) false, which would violate the guarantee.
	 *
2116 2117 2118 2119
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2120
	 */
2121
retry:
2122
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2123
	if (unlikely(ret != 0))
2124
		return ret;
2125 2126 2127 2128

retry_private:
	*hb = queue_lock(q);

2129
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2130

2131
	if (ret) {
J
Jason Low 已提交
2132
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2133

2134
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2135
		if (ret)
2136
			goto out;
L
Linus Torvalds 已提交
2137

2138
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2139 2140
			goto retry_private;

2141
		put_futex_key(&q->key);
D
Darren Hart 已提交
2142
		goto retry;
L
Linus Torvalds 已提交
2143
	}
2144

2145
	if (uval != val) {
J
Jason Low 已提交
2146
		queue_unlock(*hb);
2147
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2148
	}
L
Linus Torvalds 已提交
2149

2150 2151
out:
	if (ret)
2152
		put_futex_key(&q->key);
2153 2154 2155
	return ret;
}

2156 2157
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2158 2159 2160 2161
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2162
	struct futex_q q = futex_q_init;
2163 2164 2165 2166 2167 2168 2169 2170 2171
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2172 2173 2174
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2175 2176 2177 2178 2179
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2180
retry:
2181 2182 2183 2184
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2185
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2186 2187 2188
	if (ret)
		goto out;

2189
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2190
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2191 2192

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2193
	ret = 0;
2194
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2195
	if (!unqueue_me(&q))
2196
		goto out;
P
Peter Zijlstra 已提交
2197
	ret = -ETIMEDOUT;
2198
	if (to && !to->task)
2199
		goto out;
N
Nick Piggin 已提交
2200

2201
	/*
T
Thomas Gleixner 已提交
2202 2203
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2204
	 */
2205
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2206 2207
		goto retry;

P
Peter Zijlstra 已提交
2208
	ret = -ERESTARTSYS;
2209
	if (!abs_time)
2210
		goto out;
L
Linus Torvalds 已提交
2211

P
Peter Zijlstra 已提交
2212 2213
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
2214
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2215 2216 2217
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2218
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2219

P
Peter Zijlstra 已提交
2220 2221
	ret = -ERESTART_RESTARTBLOCK;

2222
out:
2223 2224 2225 2226
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2227 2228 2229
	return ret;
}

N
Nick Piggin 已提交
2230 2231 2232

static long futex_wait_restart(struct restart_block *restart)
{
2233
	u32 __user *uaddr = restart->futex.uaddr;
2234
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2235

2236 2237 2238 2239
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2240
	restart->fn = do_no_restart_syscall;
2241 2242 2243

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2244 2245 2246
}


2247 2248 2249 2250 2251 2252
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
2253 2254
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
2255
{
2256
	struct hrtimer_sleeper timeout, *to = NULL;
2257
	struct futex_hash_bucket *hb;
2258
	struct futex_q q = futex_q_init;
2259
	int res, ret;
2260 2261 2262 2263

	if (refill_pi_state_cache())
		return -ENOMEM;

2264
	if (time) {
2265
		to = &timeout;
2266 2267
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2268
		hrtimer_init_sleeper(to, current);
2269
		hrtimer_set_expires(&to->timer, *time);
2270 2271
	}

2272
retry:
2273
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2274
	if (unlikely(ret != 0))
2275
		goto out;
2276

D
Darren Hart 已提交
2277
retry_private:
E
Eric Sesterhenn 已提交
2278
	hb = queue_lock(&q);
2279

2280
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2281
	if (unlikely(ret)) {
2282
		switch (ret) {
2283 2284 2285 2286 2287 2288
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2289 2290
		case -EAGAIN:
			/*
2291 2292 2293 2294
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2295
			 */
J
Jason Low 已提交
2296
			queue_unlock(hb);
2297
			put_futex_key(&q.key);
2298 2299 2300
			cond_resched();
			goto retry;
		default:
2301
			goto out_unlock_put_key;
2302 2303 2304 2305 2306 2307
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2308
	queue_me(&q, hb);
2309 2310 2311 2312 2313

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
2314 2315 2316
	if (!trylock) {
		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
	} else {
2317 2318 2319 2320 2321
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2322
	spin_lock(q.lock_ptr);
2323 2324 2325 2326
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2327
	res = fixup_owner(uaddr, &q, !ret);
2328 2329 2330 2331 2332 2333
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2334

2335
	/*
2336 2337
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2338 2339 2340 2341
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2342 2343
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2344

2345
	goto out_put_key;
2346

2347
out_unlock_put_key:
J
Jason Low 已提交
2348
	queue_unlock(hb);
2349

2350
out_put_key:
2351
	put_futex_key(&q.key);
2352
out:
2353 2354
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2355
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2356

2357
uaddr_faulted:
J
Jason Low 已提交
2358
	queue_unlock(hb);
2359

2360
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2361 2362
	if (ret)
		goto out_put_key;
2363

2364
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2365 2366
		goto retry_private;

2367
	put_futex_key(&q.key);
D
Darren Hart 已提交
2368
	goto retry;
2369 2370 2371 2372 2373 2374 2375
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2376
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2377
{
2378
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2379
	union futex_key key = FUTEX_KEY_INIT;
2380 2381
	struct futex_hash_bucket *hb;
	struct futex_q *match;
D
Darren Hart 已提交
2382
	int ret;
2383 2384 2385 2386 2387 2388 2389

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2390
	if ((uval & FUTEX_TID_MASK) != vpid)
2391 2392
		return -EPERM;

2393
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2394 2395
	if (ret)
		return ret;
2396 2397 2398 2399 2400

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2401 2402 2403
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2404
	 */
2405 2406 2407
	match = futex_top_waiter(hb, &key);
	if (match) {
		ret = wake_futex_pi(uaddr, uval, match);
2408
		/*
2409 2410
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2411 2412 2413 2414 2415
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
2416

2417
	/*
2418 2419 2420 2421 2422
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2423
	 */
2424
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2425
		goto pi_faulted;
2426

2427 2428 2429 2430 2431
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2432 2433
out_unlock:
	spin_unlock(&hb->lock);
2434
	put_futex_key(&key);
2435 2436 2437
	return ret;

pi_faulted:
2438
	spin_unlock(&hb->lock);
2439
	put_futex_key(&key);
2440

2441
	ret = fault_in_user_writeable(uaddr);
2442
	if (!ret)
2443 2444
		goto retry;

L
Linus Torvalds 已提交
2445 2446 2447
	return ret;
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2460 2461 2462
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2484
		plist_del(&q->list, &hb->chain);
2485
		hb_waiters_dec(hb);
2486

T
Thomas Gleixner 已提交
2487
		/* Handle spurious wakeups gracefully */
2488
		ret = -EWOULDBLOCK;
2489 2490
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2491
		else if (signal_pending(current))
2492
			ret = -ERESTARTNOINTR;
2493 2494 2495 2496 2497 2498
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2499
 * @uaddr:	the futex we initially wait on (non-pi)
2500
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2501 2502 2503
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2504
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2505 2506 2507
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2508 2509 2510 2511 2512
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2513 2514
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2515
 * via the following--
2516
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2517 2518 2519
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2520
 *
2521
 * If 3, cleanup and return -ERESTARTNOINTR.
2522 2523 2524 2525 2526 2527 2528
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2529
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2530 2531 2532
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2533 2534
 * Return:
 *  0 - On success;
2535 2536
 * <0 - On error
 */
2537
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2538
				 u32 val, ktime_t *abs_time, u32 bitset,
2539
				 u32 __user *uaddr2)
2540 2541 2542 2543 2544
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2545 2546
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2547 2548
	int res, ret;

2549 2550 2551
	if (uaddr == uaddr2)
		return -EINVAL;

2552 2553 2554 2555 2556
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2557 2558 2559
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2570 2571
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2572 2573
	rt_waiter.task = NULL;

2574
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2575 2576 2577
	if (unlikely(ret != 0))
		goto out;

2578 2579 2580 2581
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2582 2583 2584 2585
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2586
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2587 2588
	if (ret)
		goto out_key2;
2589

2590 2591 2592 2593 2594
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
2595
		queue_unlock(hb);
2596 2597 2598 2599
		ret = -EINVAL;
		goto out_put_keys;
	}

2600
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2601
	futex_wait_queue_me(hb, &q, to);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2613 2614 2615
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2626
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2627 2628 2629 2630 2631 2632 2633 2634
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2635
		WARN_ON(!q.pi_state);
2636
		pi_mutex = &q.pi_state->pi_mutex;
2637
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2638 2639 2640 2641 2642 2643 2644
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2645
		res = fixup_owner(uaddr2, &q, !ret);
2646 2647
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2648
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2662
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2663 2664 2665
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2666 2667 2668 2669 2670
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2671
		 */
2672
		ret = -EWOULDBLOCK;
2673 2674 2675
	}

out_put_keys:
2676
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2677
out_key2:
2678
	put_futex_key(&key2);
2679 2680 2681 2682 2683 2684 2685 2686 2687

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2688 2689 2690 2691 2692 2693 2694
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2695
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2696 2697 2698 2699 2700 2701 2702 2703
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2704 2705 2706
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2707
 */
2708 2709
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2710
{
2711 2712
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2725 2726 2727 2728
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2729
 */
2730 2731 2732
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2733
{
A
Al Viro 已提交
2734
	struct robust_list_head __user *head;
2735
	unsigned long ret;
2736
	struct task_struct *p;
2737

2738 2739 2740
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2741 2742 2743
	rcu_read_lock();

	ret = -ESRCH;
2744
	if (!pid)
2745
		p = current;
2746
	else {
2747
		p = find_task_by_vpid(pid);
2748 2749 2750 2751
		if (!p)
			goto err_unlock;
	}

2752 2753 2754 2755 2756 2757 2758
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2759 2760 2761 2762 2763
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2764
	rcu_read_unlock();
2765 2766 2767 2768 2769 2770 2771 2772

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2773
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2774
{
2775
	u32 uval, uninitialized_var(nval), mval;
2776

2777 2778
retry:
	if (get_user(uval, uaddr))
2779 2780
		return -1;

2781
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2792
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2807
		if (nval != uval)
2808
			goto retry;
2809

2810 2811 2812 2813
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2814
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2815
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2816 2817 2818 2819
	}
	return 0;
}

2820 2821 2822 2823
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2824
				     struct robust_list __user * __user *head,
2825
				     unsigned int *pi)
2826 2827 2828
{
	unsigned long uentry;

A
Al Viro 已提交
2829
	if (get_user(uentry, (unsigned long __user *)head))
2830 2831
		return -EFAULT;

A
Al Viro 已提交
2832
	*entry = (void __user *)(uentry & ~1UL);
2833 2834 2835 2836 2837
	*pi = uentry & 1;

	return 0;
}

2838 2839 2840 2841 2842 2843 2844 2845 2846
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2847
	struct robust_list __user *entry, *next_entry, *pending;
2848 2849
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2850
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2851
	int rc;
2852

2853 2854 2855
	if (!futex_cmpxchg_enabled)
		return;

2856 2857 2858 2859
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2860
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2871
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2872
		return;
2873

M
Martin Schwidefsky 已提交
2874
	next_entry = NULL;	/* avoid warning with gcc */
2875
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2876 2877 2878 2879 2880
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2881 2882
		/*
		 * A pending lock might already be on the list, so
2883
		 * don't process it twice:
2884 2885
		 */
		if (entry != pending)
A
Al Viro 已提交
2886
			if (handle_futex_death((void __user *)entry + futex_offset,
2887
						curr, pi))
2888
				return;
M
Martin Schwidefsky 已提交
2889
		if (rc)
2890
			return;
M
Martin Schwidefsky 已提交
2891 2892
		entry = next_entry;
		pi = next_pi;
2893 2894 2895 2896 2897 2898 2899 2900
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2901 2902 2903 2904

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2905 2906
}

2907
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2908
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2909
{
T
Thomas Gleixner 已提交
2910
	int cmd = op & FUTEX_CMD_MASK;
2911
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2912 2913

	if (!(op & FUTEX_PRIVATE_FLAG))
2914
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2915

2916 2917 2918 2919 2920
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
2932
	switch (cmd) {
L
Linus Torvalds 已提交
2933
	case FUTEX_WAIT:
2934 2935
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
2936
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2937
	case FUTEX_WAKE:
2938 2939
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
2940
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2941
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
2942
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2943
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
2944
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2945
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
2946
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2947
	case FUTEX_LOCK_PI:
T
Thomas Gleixner 已提交
2948
		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2949
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
2950
		return futex_unlock_pi(uaddr, flags);
2951
	case FUTEX_TRYLOCK_PI:
T
Thomas Gleixner 已提交
2952
		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2953 2954
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
2955 2956
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
2957
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
2958
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
2959
	}
T
Thomas Gleixner 已提交
2960
	return -ENOSYS;
L
Linus Torvalds 已提交
2961 2962 2963
}


2964 2965 2966
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2967
{
2968 2969
	struct timespec ts;
	ktime_t t, *tp = NULL;
2970
	u32 val2 = 0;
E
Eric Dumazet 已提交
2971
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2972

2973
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2974 2975
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2976
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2977
			return -EFAULT;
2978
		if (!timespec_valid(&ts))
2979
			return -EINVAL;
2980 2981

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2982
		if (cmd == FUTEX_WAIT)
2983
			t = ktime_add_safe(ktime_get(), t);
2984
		tp = &t;
L
Linus Torvalds 已提交
2985 2986
	}
	/*
2987
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2988
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2989
	 */
2990
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2991
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2992
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2993

2994
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2995 2996
}

2997
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
2998
{
2999
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3000
	u32 curval;
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3019
	unsigned int futex_shift;
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3031 3032 3033
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3034 3035

	futex_detect_cmpxchg();
3036

3037
	for (i = 0; i < futex_hashsize; i++) {
3038
		atomic_set(&futex_queues[i].waiters, 0);
3039
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3040 3041 3042
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3043 3044
	return 0;
}
3045
__initcall(futex_init);