futex.c 68.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

92 93
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
94
 * @list:		priority-sorted list of tasks waiting on this futex
95 96 97 98 99 100 101 102 103
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
104 105 106
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
107
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
108
 * The order of wakeup is always to make the first condition true, then
109 110 111 112
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
113 114
 */
struct futex_q {
P
Pierre Peiffer 已提交
115
	struct plist_node list;
L
Linus Torvalds 已提交
116

117
	struct task_struct *task;
L
Linus Torvalds 已提交
118 119
	spinlock_t *lock_ptr;
	union futex_key key;
120
	struct futex_pi_state *pi_state;
121
	struct rt_mutex_waiter *rt_waiter;
122
	union futex_key *requeue_pi_key;
123
	u32 bitset;
L
Linus Torvalds 已提交
124 125 126
};

/*
D
Darren Hart 已提交
127 128 129
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
130 131
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
132 133
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
154 155
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
156 157 158 159
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

160 161 162 163 164 165 166 167 168 169 170 171
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
A
Al Viro 已提交
172
		ihold(key->shared.inode);
173 174 175 176 177 178 179 180 181 182 183 184 185
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
186 187 188
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
189
		return;
190
	}
191 192 193 194 195 196 197 198 199 200 201

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
202
/**
203 204 205 206
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
E
Eric Dumazet 已提交
207 208 209
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
210
 *
211
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
212 213 214
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
215
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
216
 */
217
static int
218
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
L
Linus Torvalds 已提交
219
{
220
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
221 222 223 224 225 226 227
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
228
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
229
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
230
		return -EINVAL;
231
	address -= key->both.offset;
L
Linus Torvalds 已提交
232

E
Eric Dumazet 已提交
233 234 235 236 237 238 239 240
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
241
		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
242 243 244
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
245
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
246 247
		return 0;
	}
L
Linus Torvalds 已提交
248

249
again:
250
	err = get_user_pages_fast(address, 1, 1, &page);
251 252 253
	if (err < 0)
		return err;

254
	page = compound_head(page);
255 256 257 258 259 260
	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
L
Linus Torvalds 已提交
261 262 263 264 265 266

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
267
	 * the object not the particular process.
L
Linus Torvalds 已提交
268
	 */
269 270
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
271
		key->private.mm = mm;
272
		key->private.address = address;
273 274 275 276
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
L
Linus Torvalds 已提交
277 278
	}

279
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
280

281 282 283
	unlock_page(page);
	put_page(page);
	return 0;
L
Linus Torvalds 已提交
284 285
}

286
static inline
P
Peter Zijlstra 已提交
287
void put_futex_key(int fshared, union futex_key *key)
L
Linus Torvalds 已提交
288
{
289
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
290 291
}

292 293
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
294 295 296 297 298
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
299
 * We have no generic implementation of a non-destructive write to the
300 301 302 303 304 305
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
306 307 308 309 310 311 312 313
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
	ret = get_user_pages(current, mm, (unsigned long)uaddr,
			     1, 1, 0, NULL, NULL);
	up_read(&mm->mmap_sem);

314 315 316
	return ret < 0 ? ret : 0;
}

317 318
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
319 320
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

T
Thomas Gleixner 已提交
336 337 338 339 340 341 342 343 344 345 346 347
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
348 349 350
{
	int ret;

351
	pagefault_disable();
352
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
353
	pagefault_enable();
L
Linus Torvalds 已提交
354 355 356 357

	return ret ? -EFAULT : 0;
}

358 359 360 361 362 363 364 365 366 367 368

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

369
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
370 371 372 373 374 375 376 377

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
378
	pi_state->key = FUTEX_KEY_INIT;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
405
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
406
		list_del_init(&pi_state->list);
407
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

434
	rcu_read_lock();
435
	p = find_task_by_vpid(pid);
436 437
	if (p)
		get_task_struct(p);
438

439
	rcu_read_unlock();
440 441 442 443 444 445 446 447 448 449 450 451 452

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
453
	struct futex_hash_bucket *hb;
454
	union futex_key key = FUTEX_KEY_INIT;
455

456 457
	if (!futex_cmpxchg_enabled)
		return;
458 459 460
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
461
	 * versus waiters unqueueing themselves:
462
	 */
463
	raw_spin_lock_irq(&curr->pi_lock);
464 465 466 467 468
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
469
		hb = hash_futex(&key);
470
		raw_spin_unlock_irq(&curr->pi_lock);
471 472 473

		spin_lock(&hb->lock);

474
		raw_spin_lock_irq(&curr->pi_lock);
475 476 477 478
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
479 480 481 482 483 484
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
485 486
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
487
		pi_state->owner = NULL;
488
		raw_spin_unlock_irq(&curr->pi_lock);
489 490 491 492 493

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

494
		raw_spin_lock_irq(&curr->pi_lock);
495
	}
496
	raw_spin_unlock_irq(&curr->pi_lock);
497 498 499
}

static int
P
Pierre Peiffer 已提交
500 501
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
502 503 504
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
505
	struct plist_head *head;
506
	struct task_struct *p;
507
	pid_t pid = uval & FUTEX_TID_MASK;
508 509 510

	head = &hb->chain;

P
Pierre Peiffer 已提交
511
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
512
		if (match_futex(&this->key, key)) {
513 514 515 516 517
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
518
			/*
519
			 * Userspace might have messed up non-PI and PI futexes
520 521 522 523
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

524
			WARN_ON(!atomic_read(&pi_state->refcount));
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
544

545
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
546
			*ps = pi_state;
547 548 549 550 551 552

			return 0;
		}
	}

	/*
553
	 * We are the first waiter - try to look up the real owner and attach
554
	 * the new pi_state to it, but bail out when TID = 0
555
	 */
556
	if (!pid)
557
		return -ESRCH;
558
	p = futex_find_get_task(pid);
559 560
	if (!p)
		return -ESRCH;
561 562 563 564 565 566 567

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
568
	raw_spin_lock_irq(&p->pi_lock);
569 570 571 572 573 574 575 576
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

577
		raw_spin_unlock_irq(&p->pi_lock);
578 579 580
		put_task_struct(p);
		return ret;
	}
581 582 583 584 585 586 587 588 589 590

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
591
	pi_state->key = *key;
592

593
	WARN_ON(!list_empty(&pi_state->list));
594 595
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
596
	raw_spin_unlock_irq(&p->pi_lock);
597 598 599

	put_task_struct(p);

P
Pierre Peiffer 已提交
600
	*ps = pi_state;
601 602 603 604

	return 0;
}

605
/**
606
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
607 608 609 610 611 612 613 614
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
615 616 617 618 619 620 621 622 623 624 625
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
626
				struct task_struct *task, int set_waiters)
627 628 629 630 631 632 633 634 635 636 637 638 639
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
640 641
	if (set_waiters)
		newval |= FUTEX_WAITERS;
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
730 731 732 733 734 735
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
736 737
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
738
	/*
T
Thomas Gleixner 已提交
739
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
740 741
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
742 743
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
744
	 */
T
Thomas Gleixner 已提交
745 746 747
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
748
	/*
T
Thomas Gleixner 已提交
749 750 751 752
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
753
	 */
754
	smp_wmb();
L
Linus Torvalds 已提交
755
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
756 757 758

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
759 760
}

761 762 763 764 765 766 767 768 769
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

770 771 772 773 774 775 776
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

777
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
794
	if (!(uval & FUTEX_OWNER_DIED)) {
795 796
		int ret = 0;

797
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
798

T
Thomas Gleixner 已提交
799
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
800

801
		if (curval == -EFAULT)
802
			ret = -EFAULT;
803
		else if (curval != uval)
804 805
			ret = -EINVAL;
		if (ret) {
806
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
807 808
			return ret;
		}
809
	}
810

811
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
812 813
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
814
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
815

816
	raw_spin_lock_irq(&new_owner->pi_lock);
817
	WARN_ON(!list_empty(&pi_state->list));
818 819
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
820
	raw_spin_unlock_irq(&new_owner->pi_lock);
821

822
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
823 824 825 826 827 828 829 830 831 832 833 834 835
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
T
Thomas Gleixner 已提交
836
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
837 838 839 840 841 842 843 844 845

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
862 863 864
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
865
	spin_unlock(&hb1->lock);
866 867
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
868 869
}

L
Linus Torvalds 已提交
870
/*
D
Darren Hart 已提交
871
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
872
 */
P
Peter Zijlstra 已提交
873
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
874
{
875
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
876
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
877
	struct plist_head *head;
878
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
879 880
	int ret;

881 882 883
	if (!bitset)
		return -EINVAL;

884
	ret = get_futex_key(uaddr, fshared, &key);
L
Linus Torvalds 已提交
885 886 887
	if (unlikely(ret != 0))
		goto out;

888 889 890
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
891

P
Pierre Peiffer 已提交
892
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
893
		if (match_futex (&this->key, &key)) {
894
			if (this->pi_state || this->rt_waiter) {
895 896 897
				ret = -EINVAL;
				break;
			}
898 899 900 901 902

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
903 904 905 906 907 908
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

909
	spin_unlock(&hb->lock);
910
	put_futex_key(fshared, &key);
911
out:
L
Linus Torvalds 已提交
912 913 914
	return ret;
}

915 916 917 918
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
919
static int
P
Peter Zijlstra 已提交
920
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
921
	      int nr_wake, int nr_wake2, int op)
922
{
923
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
924
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
925
	struct plist_head *head;
926
	struct futex_q *this, *next;
D
Darren Hart 已提交
927
	int ret, op_ret;
928

D
Darren Hart 已提交
929
retry:
930
	ret = get_futex_key(uaddr1, fshared, &key1);
931 932
	if (unlikely(ret != 0))
		goto out;
933
	ret = get_futex_key(uaddr2, fshared, &key2);
934
	if (unlikely(ret != 0))
935
		goto out_put_key1;
936

937 938
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
939

D
Darren Hart 已提交
940
retry_private:
T
Thomas Gleixner 已提交
941
	double_lock_hb(hb1, hb2);
942
	op_ret = futex_atomic_op_inuser(op, uaddr2);
943 944
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
945
		double_unlock_hb(hb1, hb2);
946

947
#ifndef CONFIG_MMU
948 949 950 951
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
952
		ret = op_ret;
953
		goto out_put_keys;
954 955
#endif

956 957
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
958
			goto out_put_keys;
959 960
		}

961
		ret = fault_in_user_writeable(uaddr2);
962
		if (ret)
963
			goto out_put_keys;
964

D
Darren Hart 已提交
965 966 967
		if (!fshared)
			goto retry_private;

968 969
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
D
Darren Hart 已提交
970
		goto retry;
971 972
	}

973
	head = &hb1->chain;
974

P
Pierre Peiffer 已提交
975
	plist_for_each_entry_safe(this, next, head, list) {
976 977 978 979 980 981 982 983
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
984
		head = &hb2->chain;
985 986

		op_ret = 0;
P
Pierre Peiffer 已提交
987
		plist_for_each_entry_safe(this, next, head, list) {
988 989 990 991 992 993 994 995 996
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
997
	double_unlock_hb(hb1, hb2);
998
out_put_keys:
999
	put_futex_key(fshared, &key2);
1000
out_put_key1:
1001
	put_futex_key(fshared, &key1);
1002
out:
1003 1004 1005
	return ret;
}

D
Darren Hart 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1027
		q->list.plist.spinlock = &hb2->lock;
D
Darren Hart 已提交
1028 1029 1030 1031 1032 1033
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1034 1035
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1036 1037 1038
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1039 1040 1041 1042 1043
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1044 1045 1046
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1047 1048
 */
static inline
1049 1050
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
{
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1061 1062
	q->lock_ptr = &hb->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1063
	q->list.plist.spinlock = &hb->lock;
1064 1065
#endif

T
Thomas Gleixner 已提交
1066
	wake_up_state(q->task, TASK_NORMAL);
1067 1068 1069 1070
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1071 1072 1073 1074 1075 1076 1077
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1078 1079
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1080 1081 1082
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1093
				 struct futex_pi_state **ps, int set_waiters)
1094
{
1095
	struct futex_q *top_waiter = NULL;
1096 1097 1098 1099 1100 1101
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1102 1103 1104 1105 1106 1107 1108 1109
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1110 1111 1112 1113 1114 1115
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1116 1117 1118 1119
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1120
	/*
1121 1122 1123
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1124
	 */
1125 1126
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1127
	if (ret == 1)
1128
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1129 1130 1131 1132 1133 1134

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1135 1136 1137 1138 1139 1140 1141
 * @uaddr1:	source futex user address
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1142 1143 1144 1145 1146 1147 1148 1149
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1150
 */
P
Peter Zijlstra 已提交
1151
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1152 1153
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
L
Linus Torvalds 已提交
1154
{
1155
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1156 1157
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1158
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1159
	struct plist_head *head1;
L
Linus Torvalds 已提交
1160
	struct futex_q *this, *next;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1183

1184
retry:
1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1194
	ret = get_futex_key(uaddr1, fshared, &key1);
L
Linus Torvalds 已提交
1195 1196
	if (unlikely(ret != 0))
		goto out;
1197
	ret = get_futex_key(uaddr2, fshared, &key2);
L
Linus Torvalds 已提交
1198
	if (unlikely(ret != 0))
1199
		goto out_put_key1;
L
Linus Torvalds 已提交
1200

1201 1202
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1203

D
Darren Hart 已提交
1204
retry_private:
I
Ingo Molnar 已提交
1205
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1206

1207 1208
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1209

1210
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1211 1212

		if (unlikely(ret)) {
D
Darren Hart 已提交
1213
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1214

1215
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1216 1217
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1218

D
Darren Hart 已提交
1219 1220
			if (!fshared)
				goto retry_private;
L
Linus Torvalds 已提交
1221

D
Darren Hart 已提交
1222 1223 1224
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
L
Linus Torvalds 已提交
1225
		}
1226
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1232
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1233 1234 1235 1236 1237 1238
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1239
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1240
						 &key2, &pi_state, nr_requeue);
1241 1242 1243 1244 1245 1246 1247 1248 1249

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1250
			drop_count++;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
1265
			ret = fault_in_user_writeable(uaddr2);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1281
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1282
	plist_for_each_entry_safe(this, next, head1, list) {
1283 1284 1285 1286
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1287
			continue;
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter)) {
			ret = -EINVAL;
			break;
		}
1298 1299 1300 1301 1302 1303 1304

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1305
			wake_futex(this);
1306 1307
			continue;
		}
L
Linus Torvalds 已提交
1308

1309 1310 1311 1312 1313 1314
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1328
				requeue_pi_wake_futex(this, &key2, hb2);
1329
				drop_count++;
1330 1331 1332 1333 1334 1335 1336
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1337
		}
1338 1339
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1340 1341 1342
	}

out_unlock:
D
Darren Hart 已提交
1343
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1344

1345 1346 1347 1348 1349 1350
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1351
	while (--drop_count >= 0)
1352
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1353

1354
out_put_keys:
1355
	put_futex_key(fshared, &key2);
1356
out_put_key1:
1357
	put_futex_key(fshared, &key1);
1358
out:
1359 1360 1361
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1362 1363 1364
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1365
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1366
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1367
{
1368
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1369

1370 1371
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1372

1373 1374
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1375 1376
}

1377 1378
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1379
	__releases(&hb->lock)
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
{
	spin_unlock(&hb->lock);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1396
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1397
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1398
{
P
Pierre Peiffer 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
1413
	q->list.plist.spinlock = &hb->lock;
P
Pierre Peiffer 已提交
1414 1415
#endif
	plist_add(&q->list, &hb->chain);
1416
	q->task = current;
1417
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1418 1419
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1430 1431 1432 1433
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1434
	int ret = 0;
L
Linus Torvalds 已提交
1435 1436

	/* In the common case we don't take the spinlock, which is nice. */
1437
retry:
L
Linus Torvalds 已提交
1438
	lock_ptr = q->lock_ptr;
1439
	barrier();
1440
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1459 1460
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1461 1462 1463

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1464 1465 1466 1467
		spin_unlock(lock_ptr);
		ret = 1;
	}

1468
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1469 1470 1471
	return ret;
}

1472 1473
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1474 1475
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1476
 */
P
Pierre Peiffer 已提交
1477
static void unqueue_me_pi(struct futex_q *q)
1478
	__releases(q->lock_ptr)
1479
{
P
Pierre Peiffer 已提交
1480 1481
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1482 1483 1484 1485 1486

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1487
	spin_unlock(q->lock_ptr);
1488 1489
}

P
Pierre Peiffer 已提交
1490
/*
1491
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1492
 *
1493 1494
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1495
 */
1496
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
P
Peter Zijlstra 已提交
1497
				struct task_struct *newowner, int fshared)
P
Pierre Peiffer 已提交
1498
{
1499
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1500
	struct futex_pi_state *pi_state = q->pi_state;
1501
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1502
	u32 uval, curval, newval;
D
Darren Hart 已提交
1503
	int ret;
P
Pierre Peiffer 已提交
1504 1505

	/* Owner died? */
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1516 1517 1518
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1546
	if (pi_state->owner != NULL) {
1547
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1548 1549
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1550
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1551
	}
P
Pierre Peiffer 已提交
1552

1553
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1554

1555
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1556
	WARN_ON(!list_empty(&pi_state->list));
1557
	list_add(&pi_state->list, &newowner->pi_state_list);
1558
	raw_spin_unlock_irq(&newowner->pi_lock);
1559
	return 0;
P
Pierre Peiffer 已提交
1560 1561

	/*
1562 1563 1564 1565 1566 1567 1568 1569
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1570
	 */
1571 1572
handle_fault:
	spin_unlock(q->lock_ptr);
1573

1574
	ret = fault_in_user_writeable(uaddr);
1575

1576
	spin_lock(q->lock_ptr);
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1588 1589
}

E
Eric Dumazet 已提交
1590 1591
/*
 * In case we must use restart_block to restart a futex_wait,
1592
 * we encode in the 'flags' shared capability
E
Eric Dumazet 已提交
1593
 */
1594 1595
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1596
#define FLAGS_HAS_TIMEOUT	0x04
E
Eric Dumazet 已提交
1597

N
Nick Piggin 已提交
1598
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1673 1674 1675 1676 1677 1678 1679
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1680
				struct hrtimer_sleeper *timeout)
1681
{
1682 1683 1684 1685 1686 1687
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1688
	set_current_state(TASK_INTERRUPTIBLE);
1689
	queue_me(q, hb);
1690 1691 1692 1693 1694 1695 1696 1697 1698

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1699 1700
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1733
{
1734 1735
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1736 1737

	/*
D
Darren Hart 已提交
1738
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1754 1755
retry:
	q->key = FUTEX_KEY_INIT;
1756
	ret = get_futex_key(uaddr, fshared, &q->key);
1757
	if (unlikely(ret != 0))
1758
		return ret;
1759 1760 1761 1762

retry_private:
	*hb = queue_lock(q);

1763
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1764

1765 1766
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1767

1768
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1769
		if (ret)
1770
			goto out;
L
Linus Torvalds 已提交
1771

D
Darren Hart 已提交
1772 1773 1774
		if (!fshared)
			goto retry_private;

1775
		put_futex_key(fshared, &q->key);
D
Darren Hart 已提交
1776
		goto retry;
L
Linus Torvalds 已提交
1777
	}
1778

1779 1780 1781
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1782
	}
L
Linus Torvalds 已提交
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1804
	q.rt_waiter = NULL;
1805
	q.requeue_pi_key = NULL;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
1817
retry:
1818 1819 1820 1821
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
1822 1823 1824 1825
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1826
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1827
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1828 1829

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1830
	ret = 0;
1831
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
1832
	if (!unqueue_me(&q))
1833
		goto out;
P
Peter Zijlstra 已提交
1834
	ret = -ETIMEDOUT;
1835
	if (to && !to->task)
1836
		goto out;
N
Nick Piggin 已提交
1837

1838
	/*
T
Thomas Gleixner 已提交
1839 1840
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
1841
	 */
1842
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
1843 1844
		goto retry;

P
Peter Zijlstra 已提交
1845
	ret = -ERESTARTSYS;
1846
	if (!abs_time)
1847
		goto out;
L
Linus Torvalds 已提交
1848

P
Peter Zijlstra 已提交
1849 1850
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
1851
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
1852 1853 1854
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1855
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
P
Peter Zijlstra 已提交
1856 1857 1858 1859 1860

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1861

P
Peter Zijlstra 已提交
1862 1863
	ret = -ERESTART_RESTARTBLOCK;

1864
out:
1865 1866 1867 1868
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1869 1870 1871
	return ret;
}

N
Nick Piggin 已提交
1872 1873 1874

static long futex_wait_restart(struct restart_block *restart)
{
1875
	u32 __user *uaddr = restart->futex.uaddr;
P
Peter Zijlstra 已提交
1876
	int fshared = 0;
1877
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1878

1879 1880 1881 1882
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1883
	restart->fn = do_no_restart_syscall;
1884
	if (restart->futex.flags & FLAGS_SHARED)
P
Peter Zijlstra 已提交
1885
		fshared = 1;
1886
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1887 1888
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
N
Nick Piggin 已提交
1889 1890 1891
}


1892 1893 1894 1895 1896 1897
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
P
Peter Zijlstra 已提交
1898
static int futex_lock_pi(u32 __user *uaddr, int fshared,
E
Eric Dumazet 已提交
1899
			 int detect, ktime_t *time, int trylock)
1900
{
1901
	struct hrtimer_sleeper timeout, *to = NULL;
1902 1903
	struct futex_hash_bucket *hb;
	struct futex_q q;
1904
	int res, ret;
1905 1906 1907 1908

	if (refill_pi_state_cache())
		return -ENOMEM;

1909
	if (time) {
1910
		to = &timeout;
1911 1912
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1913
		hrtimer_init_sleeper(to, current);
1914
		hrtimer_set_expires(&to->timer, *time);
1915 1916
	}

1917
	q.pi_state = NULL;
1918
	q.rt_waiter = NULL;
1919
	q.requeue_pi_key = NULL;
1920
retry:
1921
	q.key = FUTEX_KEY_INIT;
1922
	ret = get_futex_key(uaddr, fshared, &q.key);
1923
	if (unlikely(ret != 0))
1924
		goto out;
1925

D
Darren Hart 已提交
1926
retry_private:
E
Eric Sesterhenn 已提交
1927
	hb = queue_lock(&q);
1928

1929
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1930
	if (unlikely(ret)) {
1931
		switch (ret) {
1932 1933 1934 1935 1936 1937
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1938 1939 1940 1941 1942 1943
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1944
			put_futex_key(fshared, &q.key);
1945 1946 1947
			cond_resched();
			goto retry;
		default:
1948
			goto out_unlock_put_key;
1949 1950 1951 1952 1953 1954
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1955
	queue_me(&q, hb);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1969
	spin_lock(q.lock_ptr);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1981

1982
	/*
1983 1984
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1985 1986 1987 1988
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1989 1990
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1991

1992
	goto out_put_key;
1993

1994
out_unlock_put_key:
1995 1996
	queue_unlock(&q, hb);

1997
out_put_key:
1998
	put_futex_key(fshared, &q.key);
1999
out:
2000 2001
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2002
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2003

2004
uaddr_faulted:
2005 2006
	queue_unlock(&q, hb);

2007
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2008 2009
	if (ret)
		goto out_put_key;
2010

D
Darren Hart 已提交
2011 2012 2013 2014 2015
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
2016 2017 2018 2019 2020 2021 2022
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
P
Peter Zijlstra 已提交
2023
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2024 2025 2026 2027
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
P
Pierre Peiffer 已提交
2028
	struct plist_head *head;
2029
	union futex_key key = FUTEX_KEY_INIT;
D
Darren Hart 已提交
2030
	int ret;
2031 2032 2033 2034 2035 2036 2037

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2038
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2039 2040
		return -EPERM;

2041
	ret = get_futex_key(uaddr, fshared, &key);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
T
Thomas Gleixner 已提交
2053
	if (!(uval & FUTEX_OWNER_DIED))
2054
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
T
Thomas Gleixner 已提交
2055

2056 2057 2058 2059 2060 2061 2062

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2063
	if (unlikely(uval == task_pid_vnr(current)))
2064 2065 2066 2067 2068 2069 2070 2071
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2072
	plist_for_each_entry_safe(this, next, head, list) {
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2088 2089 2090 2091 2092
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2093 2094 2095

out_unlock:
	spin_unlock(&hb->lock);
2096
	put_futex_key(fshared, &key);
2097

2098
out:
2099 2100 2101
	return ret;

pi_faulted:
2102
	spin_unlock(&hb->lock);
D
Darren Hart 已提交
2103
	put_futex_key(fshared, &key);
2104

2105
	ret = fault_in_user_writeable(uaddr);
2106
	if (!ret)
2107 2108
		goto retry;

L
Linus Torvalds 已提交
2109 2110 2111
	return ret;
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2126
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);

T
Thomas Gleixner 已提交
2150
		/* Handle spurious wakeups gracefully */
2151
		ret = -EWOULDBLOCK;
2152 2153
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2154
		else if (signal_pending(current))
2155
			ret = -ERESTARTNOINTR;
2156 2157 2158 2159 2160 2161
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2162
 * @uaddr:	the futex we initially wait on (non-pi)
2163 2164 2165 2166
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2167
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2181 2182 2183
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2184
 *
2185
 * If 3, cleanup and return -ERESTARTNOINTR.
2186 2187 2188 2189 2190 2191 2192
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2193
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

	key2 = FUTEX_KEY_INIT;
2233
	ret = get_futex_key(uaddr2, fshared, &key2);
2234 2235 2236
	if (unlikely(ret != 0))
		goto out;

2237 2238 2239 2240 2241
	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2242 2243 2244 2245
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2246
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
T
Thomas Gleixner 已提交
2247 2248
	if (ret)
		goto out_key2;
2249 2250

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2251
	futex_wait_queue_me(hb, &q, to);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2263 2264 2265
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2299
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2317 2318 2319 2320 2321
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2322
		 */
2323
		ret = -EWOULDBLOCK;
2324 2325 2326 2327
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
T
Thomas Gleixner 已提交
2328
out_key2:
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	put_futex_key(fshared, &key2);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2339 2340 2341 2342 2343 2344 2345
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2346
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2347 2348 2349 2350 2351 2352 2353 2354
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2355 2356 2357
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2358
 */
2359 2360
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2361
{
2362 2363
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2376 2377 2378 2379
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2380
 */
2381 2382 2383
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2384
{
A
Al Viro 已提交
2385
	struct robust_list_head __user *head;
2386
	unsigned long ret;
2387
	const struct cred *cred = current_cred(), *pcred;
2388

2389 2390 2391
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2392 2393 2394 2395 2396 2397
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2398
		rcu_read_lock();
2399
		p = find_task_by_vpid(pid);
2400 2401 2402
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2403 2404 2405
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2406
		    !capable(CAP_SYS_PTRACE))
2407 2408
			goto err_unlock;
		head = p->robust_list;
2409
		rcu_read_unlock();
2410 2411 2412 2413 2414 2415 2416
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2417
	rcu_read_unlock();
2418 2419 2420 2421 2422 2423 2424 2425

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2426
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2427
{
2428
	u32 uval, nval, mval;
2429

2430 2431
retry:
	if (get_user(uval, uaddr))
2432 2433
		return -1;

2434
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2445 2446 2447
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2448 2449 2450 2451
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2452
			goto retry;
2453

2454 2455 2456 2457
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2458
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2459
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2460 2461 2462 2463
	}
	return 0;
}

2464 2465 2466 2467
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2468
				     struct robust_list __user * __user *head,
2469
				     unsigned int *pi)
2470 2471 2472
{
	unsigned long uentry;

A
Al Viro 已提交
2473
	if (get_user(uentry, (unsigned long __user *)head))
2474 2475
		return -EFAULT;

A
Al Viro 已提交
2476
	*entry = (void __user *)(uentry & ~1UL);
2477 2478 2479 2480 2481
	*pi = uentry & 1;

	return 0;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2491
	struct robust_list __user *entry, *next_entry, *pending;
2492 2493
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2494
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2495
	int rc;
2496

2497 2498 2499
	if (!futex_cmpxchg_enabled)
		return;

2500 2501 2502 2503
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2504
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2515
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2516
		return;
2517

M
Martin Schwidefsky 已提交
2518
	next_entry = NULL;	/* avoid warning with gcc */
2519
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2520 2521 2522 2523 2524
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2525 2526
		/*
		 * A pending lock might already be on the list, so
2527
		 * don't process it twice:
2528 2529
		 */
		if (entry != pending)
A
Al Viro 已提交
2530
			if (handle_futex_death((void __user *)entry + futex_offset,
2531
						curr, pi))
2532
				return;
M
Martin Schwidefsky 已提交
2533
		if (rc)
2534
			return;
M
Martin Schwidefsky 已提交
2535 2536
		entry = next_entry;
		pi = next_pi;
2537 2538 2539 2540 2541 2542 2543 2544
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2545 2546 2547 2548

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2549 2550
}

2551
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2552
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2553
{
2554
	int clockrt, ret = -ENOSYS;
E
Eric Dumazet 已提交
2555
	int cmd = op & FUTEX_CMD_MASK;
P
Peter Zijlstra 已提交
2556
	int fshared = 0;
E
Eric Dumazet 已提交
2557 2558

	if (!(op & FUTEX_PRIVATE_FLAG))
P
Peter Zijlstra 已提交
2559
		fshared = 1;
L
Linus Torvalds 已提交
2560

2561
	clockrt = op & FUTEX_CLOCK_REALTIME;
2562
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2563
		return -ENOSYS;
L
Linus Torvalds 已提交
2564

E
Eric Dumazet 已提交
2565
	switch (cmd) {
L
Linus Torvalds 已提交
2566
	case FUTEX_WAIT:
2567 2568
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2569
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
L
Linus Torvalds 已提交
2570 2571
		break;
	case FUTEX_WAKE:
2572 2573 2574
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
L
Linus Torvalds 已提交
2575 2576
		break;
	case FUTEX_REQUEUE:
2577
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2578 2579
		break;
	case FUTEX_CMP_REQUEUE:
2580 2581
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
L
Linus Torvalds 已提交
2582
		break;
2583
	case FUTEX_WAKE_OP:
E
Eric Dumazet 已提交
2584
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2585
		break;
2586
	case FUTEX_LOCK_PI:
2587 2588
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2589 2590
		break;
	case FUTEX_UNLOCK_PI:
2591 2592
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2593 2594
		break;
	case FUTEX_TRYLOCK_PI:
2595 2596
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2597
		break;
2598 2599 2600 2601 2602 2603 2604 2605 2606
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
L
Linus Torvalds 已提交
2607 2608 2609 2610 2611 2612 2613
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2614 2615 2616
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2617
{
2618 2619
	struct timespec ts;
	ktime_t t, *tp = NULL;
2620
	u32 val2 = 0;
E
Eric Dumazet 已提交
2621
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2622

2623
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2624 2625
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2626
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2627
			return -EFAULT;
2628
		if (!timespec_valid(&ts))
2629
			return -EINVAL;
2630 2631

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2632
		if (cmd == FUTEX_WAIT)
2633
			t = ktime_add_safe(ktime_get(), t);
2634
		tp = &t;
L
Linus Torvalds 已提交
2635 2636
	}
	/*
2637
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2638
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2639
	 */
2640
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2641
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2642
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2643

2644
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2645 2646
}

2647
static int __init futex_init(void)
L
Linus Torvalds 已提交
2648
{
2649
	u32 curval;
T
Thomas Gleixner 已提交
2650
	int i;
A
Akinobu Mita 已提交
2651

2652 2653 2654 2655 2656 2657 2658
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
2659
	 * implementation, the non-functional ones will return
2660 2661 2662 2663 2664 2665
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2666 2667 2668 2669 2670
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2671 2672
	return 0;
}
2673
__initcall(futex_init);