futex.c 87.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67
#include <linux/fault-inject.h>
68

69
#include <asm/futex.h>
L
Linus Torvalds 已提交
70

71
#include "locking/rtmutex_common.h"
72

73
/*
74 75 76 77
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
78 79 80 81
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
82 83 84
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
85 86
 *
 * The waker side modifies the user space value of the futex and calls
87 88 89
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
90
 *
91 92 93 94 95
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
117 118 119 120 121
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
122 123 124
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
125
 *
126
 *   waiters++; (a)
127 128 129 130 131 132 133 134 135 136
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
137
 *   if (uval == val)
138
 *     queue();
139
 *     unlock(hash_bucket(futex));
140 141
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
142 143
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
144
 *
145 146
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 148
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
149 150 151 152 153 154 155 156 157 158 159 160
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
161 162 163 164 165 166 167 168 169 170 171
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
172 173
 */

174
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175
int __read_mostly futex_cmpxchg_enabled;
176
#endif
177

178 179 180 181 182 183 184 185
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

207 208
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
209
 * @list:		priority-sorted list of tasks waiting on this futex
210 211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
219 220 221
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
222
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223
 * The order of wakeup is always to make the first condition true, then
224 225 226 227
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
228 229
 */
struct futex_q {
P
Pierre Peiffer 已提交
230
	struct plist_node list;
L
Linus Torvalds 已提交
231

232
	struct task_struct *task;
L
Linus Torvalds 已提交
233 234
	spinlock_t *lock_ptr;
	union futex_key key;
235
	struct futex_pi_state *pi_state;
236
	struct rt_mutex_waiter *rt_waiter;
237
	union futex_key *requeue_pi_key;
238
	u32 bitset;
L
Linus Torvalds 已提交
239 240
};

241 242 243 244 245 246
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
247
/*
D
Darren Hart 已提交
248 249 250
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
251 252
 */
struct futex_hash_bucket {
253
	atomic_t waiters;
P
Pierre Peiffer 已提交
254 255
	spinlock_t lock;
	struct plist_head chain;
256
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
257

258 259 260 261 262 263 264 265 266 267 268
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
269

L
Linus Torvalds 已提交
270

271 272 273 274 275 276 277 278
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

279
	bool ignore_private;
280 281
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
282
	.ignore_private = false,
283 284 285 286 287 288 289 290
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

291
static bool should_fail_futex(bool fshared)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

331 332 333 334 335 336
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
337
	 * as smp_mb(); (B), see the ordering comment above.
338
	 */
339
	smp_mb__after_atomic();
340 341
}

342 343 344 345
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 347
{
#ifdef CONFIG_SMP
348
	atomic_inc(&hb->waiters);
349
	/*
350
	 * Full barrier (A), see the ordering comment above.
351
	 */
352
	smp_mb__after_atomic();
353 354 355 356 357 358 359 360 361 362 363 364 365
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
366

367 368 369 370
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
371
#else
372
	return 1;
373 374 375
#endif
}

L
Linus Torvalds 已提交
376 377 378 379 380 381 382 383
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
384
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
385 386 387 388 389 390 391
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
392 393
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
394 395 396 397
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

398 399 400 401 402 403 404 405 406 407 408 409
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
410
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
411 412
		break;
	case FUT_OFF_MMSHARED:
413
		futex_get_mm(key); /* implies smp_mb(); (B) */
414
		break;
415
	default:
416 417 418 419 420
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
421
		smp_mb(); /* explicit smp_mb(); (B) */
422 423 424 425 426
	}
}

/*
 * Drop a reference to the resource addressed by a key.
427 428 429
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
430 431 432
 */
static void drop_futex_key_refs(union futex_key *key)
{
433 434 435
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
436
		return;
437
	}
438 439 440 441 442 443 444 445 446 447 448

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
449
/**
450 451 452 453
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
454 455
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
456
 *
457 458
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
459
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
460
 *
A
Al Viro 已提交
461
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
462 463 464
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
465
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
466
 */
467
static int
468
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
469
{
470
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
471
	struct mm_struct *mm = current->mm;
472 473
	struct page *page;
	struct address_space *mapping;
474
	int err, ro = 0;
L
Linus Torvalds 已提交
475 476 477 478

	/*
	 * The futex address must be "naturally" aligned.
	 */
479
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
480
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
481
		return -EINVAL;
482
	address -= key->both.offset;
L
Linus Torvalds 已提交
483

484 485 486
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

487 488 489
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
490 491 492 493 494 495 496 497 498 499
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
500
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
501 502
		return 0;
	}
L
Linus Torvalds 已提交
503

504
again:
505 506 507 508
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

509
	err = get_user_pages_fast(address, 1, 1, &page);
510 511 512 513 514 515 516 517
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
518 519
	if (err < 0)
		return err;
520 521
	else
		err = 0;
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
	 */
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

537
	/*
538
	 * If page->mapping is NULL, then it cannot be a PageAnon
539 540 541 542 543 544 545 546 547 548 549
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
550
	 * an unlikely race, but we do need to retry for page->mapping.
551
	 */
552 553 554 555 556 557 558 559 560 561
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
562 563
		unlock_page(page);
		put_page(page);
564

565 566
		if (shmem_swizzled)
			goto again;
567

568
		return -EFAULT;
569
	}
L
Linus Torvalds 已提交
570 571 572 573

	/*
	 * Private mappings are handled in a simple way.
	 *
574 575 576
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
577 578
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
579
	 * the object not the particular process.
L
Linus Torvalds 已提交
580
	 */
581
	if (PageAnon(page)) {
582 583 584 585
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
586
		if (unlikely(should_fail_futex(fshared)) || ro) {
587 588 589 590
			err = -EFAULT;
			goto out;
		}

591
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
592
		key->private.mm = mm;
593
		key->private.address = address;
594 595 596

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

597
	} else {
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
		 * truncated in parallel so warn for now if this happens.
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

655
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
656
		key->shared.inode = inode;
657
		key->shared.pgoff = basepage_index(page);
658
		rcu_read_unlock();
L
Linus Torvalds 已提交
659 660
	}

661
out:
662
	put_page(page);
663
	return err;
L
Linus Torvalds 已提交
664 665
}

666
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
667
{
668
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
669 670
}

671 672
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
673 674 675 676 677
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
678
 * We have no generic implementation of a non-destructive write to the
679 680 681 682 683 684
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
685 686 687 688
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
689
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
690
			       FAULT_FLAG_WRITE, NULL);
691 692
	up_read(&mm->mmap_sem);

693 694 695
	return ret < 0 ? ret : 0;
}

696 697
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
698 699
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

715 716
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
717
{
718
	int ret;
T
Thomas Gleixner 已提交
719 720

	pagefault_disable();
721
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
722 723
	pagefault_enable();

724
	return ret;
T
Thomas Gleixner 已提交
725 726 727
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
728 729 730
{
	int ret;

731
	pagefault_disable();
732
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
733
	pagefault_enable();
L
Linus Torvalds 已提交
734 735 736 737

	return ret ? -EFAULT : 0;
}

738 739 740 741 742 743 744 745 746 747 748

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

749
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
750 751 752 753 754 755 756 757

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
758
	pi_state->key = FUTEX_KEY_INIT;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

775
/*
776 777 778
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
 *
779 780
 * Must be called with the hb lock held.
 */
781
static void put_pi_state(struct futex_pi_state *pi_state)
782
{
783 784 785
	if (!pi_state)
		return;

786 787 788 789 790 791 792 793
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
794
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
795
		list_del_init(&pi_state->list);
796
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

823
	rcu_read_lock();
824
	p = find_task_by_vpid(pid);
825 826
	if (p)
		get_task_struct(p);
827

828
	rcu_read_unlock();
829 830 831 832 833 834 835 836 837 838 839 840 841

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
842
	struct futex_hash_bucket *hb;
843
	union futex_key key = FUTEX_KEY_INIT;
844

845 846
	if (!futex_cmpxchg_enabled)
		return;
847 848 849
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
850
	 * versus waiters unqueueing themselves:
851
	 */
852
	raw_spin_lock_irq(&curr->pi_lock);
853 854 855 856 857
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
858
		hb = hash_futex(&key);
859
		raw_spin_unlock_irq(&curr->pi_lock);
860 861 862

		spin_lock(&hb->lock);

863
		raw_spin_lock_irq(&curr->pi_lock);
864 865 866 867
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
868 869 870 871 872 873
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
874 875
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
876
		pi_state->owner = NULL;
877
		raw_spin_unlock_irq(&curr->pi_lock);
878 879 880 881 882

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

883
		raw_spin_lock_irq(&curr->pi_lock);
884
	}
885
	raw_spin_unlock_irq(&curr->pi_lock);
886 887
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
 */
937 938 939 940 941 942 943 944

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
			      struct futex_pi_state **ps)
945
{
946
	pid_t pid = uval & FUTEX_TID_MASK;
947

948 949 950 951 952
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
953

954
	WARN_ON(!atomic_read(&pi_state->refcount));
955

956 957 958 959
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
960
		/*
961 962 963
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
964
		 */
965
		if (!pi_state->owner) {
966
			/*
967 968
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
969
			 */
970 971
			if (pid)
				return -EINVAL;
972
			/*
973
			 * Take a ref on the state and return success. [4]
974
			 */
975
			goto out_state;
976
		}
977 978

		/*
979 980 981 982 983 984 985 986 987 988 989 990 991
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
			goto out_state;
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
992
		 */
993
		if (!pi_state->owner)
994
			return -EINVAL;
995 996
	}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
		return -EINVAL;
out_state:
	atomic_inc(&pi_state->refcount);
	*ps = pi_state;
	return 0;
}

1010 1011 1012 1013 1014 1015
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
1016 1017
{
	pid_t pid = uval & FUTEX_TID_MASK;
1018 1019
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1020

1021
	/*
1022
	 * We are the first waiter - try to look up the real owner and attach
1023
	 * the new pi_state to it, but bail out when TID = 0 [1]
1024
	 */
1025
	if (!pid)
1026
		return -ESRCH;
1027
	p = futex_find_get_task(pid);
1028 1029
	if (!p)
		return -ESRCH;
1030

1031
	if (unlikely(p->flags & PF_KTHREAD)) {
1032 1033 1034 1035
		put_task_struct(p);
		return -EPERM;
	}

1036 1037 1038 1039 1040 1041
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1042
	raw_spin_lock_irq(&p->pi_lock);
1043 1044 1045 1046 1047 1048 1049 1050
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1051
		raw_spin_unlock_irq(&p->pi_lock);
1052 1053 1054
		put_task_struct(p);
		return ret;
	}
1055

1056 1057 1058
	/*
	 * No existing pi state. First waiter. [2]
	 */
1059 1060 1061
	pi_state = alloc_pi_state();

	/*
1062
	 * Initialize the pi_mutex in locked state and make @p
1063 1064 1065 1066 1067
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1068
	pi_state->key = *key;
1069

1070
	WARN_ON(!list_empty(&pi_state->list));
1071 1072
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
1073
	raw_spin_unlock_irq(&p->pi_lock);
1074 1075 1076

	put_task_struct(p);

P
Pierre Peiffer 已提交
1077
	*ps = pi_state;
1078 1079 1080 1081

	return 0;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
			   union futex_key *key, struct futex_pi_state **ps)
{
	struct futex_q *match = futex_top_waiter(hb, key);

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1101 1102 1103 1104
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1105 1106 1107
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1108 1109 1110 1111 1112 1113 1114
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

	/*If user space value changed, let the caller retry */
	return curval != uval ? -EAGAIN : 0;
}

1115
/**
1116
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1117 1118 1119 1120 1121 1122 1123 1124
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1125
 *
1126 1127 1128
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
1129 1130 1131 1132 1133 1134 1135
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1136
				struct task_struct *task, int set_waiters)
1137
{
1138 1139 1140
	u32 uval, newval, vpid = task_pid_vnr(task);
	struct futex_q *match;
	int ret;
1141 1142

	/*
1143 1144
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1145
	 */
1146
	if (get_futex_value_locked(&uval, uaddr))
1147 1148
		return -EFAULT;

1149 1150 1151
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1152 1153 1154
	/*
	 * Detect deadlocks.
	 */
1155
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1156 1157
		return -EDEADLK;

1158 1159 1160
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1161
	/*
1162 1163
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1164
	 */
1165 1166 1167
	match = futex_top_waiter(hb, key);
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);
1168 1169

	/*
1170 1171 1172 1173
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1174
	 */
1175
	if (!(uval & FUTEX_TID_MASK)) {
1176
		/*
1177 1178
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1179
		 */
1180 1181
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1182

1183 1184 1185 1186 1187 1188 1189 1190
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1191 1192

	/*
1193 1194 1195
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1196
	 */
1197 1198 1199 1200
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1201
	/*
1202 1203 1204
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1205
	 */
1206
	return attach_to_pi_owner(uval, key, ps);
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1219 1220
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1221 1222 1223 1224
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1225
	hb_waiters_dec(hb);
1226 1227
}

L
Linus Torvalds 已提交
1228 1229
/*
 * The hash bucket lock must be held when this is called.
1230 1231 1232
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1233
 */
1234
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1235
{
T
Thomas Gleixner 已提交
1236 1237
	struct task_struct *p = q->task;

1238 1239 1240
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1241
	/*
1242 1243
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1244
	 */
1245
	wake_q_add(wake_q, p);
1246
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1247
	/*
T
Thomas Gleixner 已提交
1248 1249 1250 1251
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1252
	 */
1253
	smp_wmb();
L
Linus Torvalds 已提交
1254 1255 1256
	q->lock_ptr = NULL;
}

1257 1258
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
			 struct futex_hash_bucket *hb)
1259 1260 1261
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
1262
	u32 uninitialized_var(curval), newval;
1263 1264
	WAKE_Q(wake_q);
	bool deboost;
1265
	int ret = 0;
1266 1267 1268 1269

	if (!pi_state)
		return -EINVAL;

1270 1271 1272 1273 1274 1275 1276
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1277
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1278 1279 1280
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1281 1282 1283
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1284 1285 1286 1287 1288
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1289 1290 1291
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1292
	 */
1293
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1294

1295 1296 1297
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1298 1299 1300 1301 1302
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
		ret = -EFAULT;
	else if (curval != uval)
		ret = -EINVAL;
	if (ret) {
1303
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1304
		return ret;
1305
	}
1306

1307
	raw_spin_lock(&pi_state->owner->pi_lock);
1308 1309
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1310
	raw_spin_unlock(&pi_state->owner->pi_lock);
1311

1312
	raw_spin_lock(&new_owner->pi_lock);
1313
	WARN_ON(!list_empty(&pi_state->list));
1314 1315
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1316
	raw_spin_unlock(&new_owner->pi_lock);
1317

1318
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);

	/*
	 * First unlock HB so the waiter does not spin on it once he got woken
	 * up. Second wake up the waiter before the priority is adjusted. If we
	 * deboost first (and lose our higher priority), then the task might get
	 * scheduled away before the wake up can take place.
	 */
	spin_unlock(&hb->lock);
	wake_up_q(&wake_q);
	if (deboost)
		rt_mutex_adjust_prio(current);
1332 1333 1334 1335

	return 0;
}

I
Ingo Molnar 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1352 1353 1354
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1355
	spin_unlock(&hb1->lock);
1356 1357
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1358 1359
}

L
Linus Torvalds 已提交
1360
/*
D
Darren Hart 已提交
1361
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1362
 */
1363 1364
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1365
{
1366
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1367
	struct futex_q *this, *next;
1368
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1369
	int ret;
1370
	WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1371

1372 1373 1374
	if (!bitset)
		return -EINVAL;

1375
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1376 1377 1378
	if (unlikely(ret != 0))
		goto out;

1379
	hb = hash_futex(&key);
1380 1381 1382 1383 1384

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1385
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1386

J
Jason Low 已提交
1387
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1388
		if (match_futex (&this->key, &key)) {
1389
			if (this->pi_state || this->rt_waiter) {
1390 1391 1392
				ret = -EINVAL;
				break;
			}
1393 1394 1395 1396 1397

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1398
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403
			if (++ret >= nr_wake)
				break;
		}
	}

1404
	spin_unlock(&hb->lock);
1405
	wake_up_q(&wake_q);
1406
out_put_key:
1407
	put_futex_key(&key);
1408
out:
L
Linus Torvalds 已提交
1409 1410 1411
	return ret;
}

1412 1413 1414 1415
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1416
static int
1417
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1418
	      int nr_wake, int nr_wake2, int op)
1419
{
1420
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1421
	struct futex_hash_bucket *hb1, *hb2;
1422
	struct futex_q *this, *next;
D
Darren Hart 已提交
1423
	int ret, op_ret;
1424
	WAKE_Q(wake_q);
1425

D
Darren Hart 已提交
1426
retry:
1427
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1428 1429
	if (unlikely(ret != 0))
		goto out;
1430
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1431
	if (unlikely(ret != 0))
1432
		goto out_put_key1;
1433

1434 1435
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1436

D
Darren Hart 已提交
1437
retry_private:
T
Thomas Gleixner 已提交
1438
	double_lock_hb(hb1, hb2);
1439
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1440 1441
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1442
		double_unlock_hb(hb1, hb2);
1443

1444
#ifndef CONFIG_MMU
1445 1446 1447 1448
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1449
		ret = op_ret;
1450
		goto out_put_keys;
1451 1452
#endif

1453 1454
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1455
			goto out_put_keys;
1456 1457
		}

1458
		ret = fault_in_user_writeable(uaddr2);
1459
		if (ret)
1460
			goto out_put_keys;
1461

1462
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1463 1464
			goto retry_private;

1465 1466
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1467
		goto retry;
1468 1469
	}

J
Jason Low 已提交
1470
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1471
		if (match_futex (&this->key, &key1)) {
1472 1473 1474 1475
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1476
			mark_wake_futex(&wake_q, this);
1477 1478 1479 1480 1481 1482 1483
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1484
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1485
			if (match_futex (&this->key, &key2)) {
1486 1487 1488 1489
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1490
				mark_wake_futex(&wake_q, this);
1491 1492 1493 1494 1495 1496 1497
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1498
out_unlock:
D
Darren Hart 已提交
1499
	double_unlock_hb(hb1, hb2);
1500
	wake_up_q(&wake_q);
1501
out_put_keys:
1502
	put_futex_key(&key2);
1503
out_put_key1:
1504
	put_futex_key(&key1);
1505
out:
1506 1507 1508
	return ret;
}

D
Darren Hart 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1527
		hb_waiters_dec(hb1);
D
Darren Hart 已提交
1528
		plist_add(&q->list, &hb2->chain);
1529
		hb_waiters_inc(hb2);
D
Darren Hart 已提交
1530 1531 1532 1533 1534 1535
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1536 1537
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1538 1539 1540
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1541 1542 1543 1544 1545
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1546 1547 1548
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1549 1550
 */
static inline
1551 1552
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1553 1554 1555 1556
{
	get_futex_key_refs(key);
	q->key = *key;

1557
	__unqueue_futex(q);
1558 1559 1560 1561

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1562 1563
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1564
	wake_up_state(q->task, TASK_NORMAL);
1565 1566 1567 1568
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1569 1570 1571 1572 1573 1574 1575
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1576 1577
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1578 1579 1580
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1581
 *
1582 1583
 * Return:
 *  0 - failed to acquire the lock atomically;
1584
 * >0 - acquired the lock, return value is vpid of the top_waiter
1585 1586 1587 1588 1589 1590
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1591
				 struct futex_pi_state **ps, int set_waiters)
1592
{
1593
	struct futex_q *top_waiter = NULL;
1594
	u32 curval;
1595
	int ret, vpid;
1596 1597 1598 1599

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1600 1601 1602
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1603 1604 1605 1606 1607 1608 1609 1610
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1611 1612 1613 1614 1615 1616
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1617 1618 1619 1620
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1621
	/*
1622 1623 1624
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1625
	 */
1626
	vpid = task_pid_vnr(top_waiter->task);
1627 1628
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1629
	if (ret == 1) {
1630
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1631 1632
		return vpid;
	}
1633 1634 1635 1636 1637
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1638
 * @uaddr1:	source futex user address
1639
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1640 1641 1642 1643 1644
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1645
 *		pi futex (pi to pi requeue is not supported)
1646 1647 1648 1649
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1650 1651
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1652
 *  <0 - on error
L
Linus Torvalds 已提交
1653
 */
1654 1655 1656
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1657
{
1658
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1659 1660
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1661
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1662
	struct futex_q *this, *next;
1663
	WAKE_Q(wake_q);
1664 1665

	if (requeue_pi) {
1666 1667 1668 1669 1670 1671 1672
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1692

1693
retry:
1694
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1695 1696
	if (unlikely(ret != 0))
		goto out;
1697 1698
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1699
	if (unlikely(ret != 0))
1700
		goto out_put_key1;
L
Linus Torvalds 已提交
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1711 1712
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1713

D
Darren Hart 已提交
1714
retry_private:
1715
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1716
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1717

1718 1719
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1720

1721
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1722 1723

		if (unlikely(ret)) {
D
Darren Hart 已提交
1724
			double_unlock_hb(hb1, hb2);
1725
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1726

1727
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1728 1729
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1730

1731
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1732
				goto retry_private;
L
Linus Torvalds 已提交
1733

1734 1735
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1736
			goto retry;
L
Linus Torvalds 已提交
1737
		}
1738
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1744
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1745 1746 1747 1748 1749 1750
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1751
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1752
						 &key2, &pi_state, nr_requeue);
1753 1754 1755 1756 1757

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1758 1759
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1760 1761
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1762
		 */
1763
		if (ret > 0) {
1764
			WARN_ON(pi_state);
1765
			drop_count++;
1766
			task_count++;
1767
			/*
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1778
			 */
1779
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1780 1781 1782 1783
		}

		switch (ret) {
		case 0:
1784
			/* We hold a reference on the pi state. */
1785
			break;
1786 1787

			/* If the above failed, then pi_state is NULL */
1788 1789
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1790
			hb_waiters_dec(hb2);
1791 1792
			put_futex_key(&key2);
			put_futex_key(&key1);
1793
			ret = fault_in_user_writeable(uaddr2);
1794 1795 1796 1797
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1798 1799 1800 1801 1802 1803
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1804
			double_unlock_hb(hb1, hb2);
1805
			hb_waiters_dec(hb2);
1806 1807
			put_futex_key(&key2);
			put_futex_key(&key1);
1808 1809 1810 1811 1812 1813 1814
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1815
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1816 1817 1818 1819
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1820
			continue;
1821

1822 1823 1824
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1825 1826 1827
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1828 1829
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1830 1831
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1832 1833 1834
			ret = -EINVAL;
			break;
		}
1835 1836 1837 1838 1839 1840 1841

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
1842
			mark_wake_futex(&wake_q, this);
1843 1844
			continue;
		}
L
Linus Torvalds 已提交
1845

1846 1847 1848 1849 1850 1851
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1852 1853 1854 1855 1856
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
1857 1858 1859 1860 1861
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
1862 1863 1864 1865
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
1866
							this->task);
1867
			if (ret == 1) {
1868 1869 1870 1871 1872 1873 1874 1875
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
1876
				requeue_pi_wake_futex(this, &key2, hb2);
1877
				drop_count++;
1878 1879
				continue;
			} else if (ret) {
1880 1881 1882 1883 1884 1885 1886 1887
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
1888
				this->pi_state = NULL;
1889
				put_pi_state(pi_state);
1890 1891 1892 1893 1894
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
1895
			}
L
Linus Torvalds 已提交
1896
		}
1897 1898
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1899 1900
	}

1901 1902 1903 1904 1905
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
1906
	put_pi_state(pi_state);
1907 1908

out_unlock:
D
Darren Hart 已提交
1909
	double_unlock_hb(hb1, hb2);
1910
	wake_up_q(&wake_q);
1911
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1912

1913 1914 1915 1916 1917 1918
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1919
	while (--drop_count >= 0)
1920
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1921

1922
out_put_keys:
1923
	put_futex_key(&key2);
1924
out_put_key1:
1925
	put_futex_key(&key1);
1926
out:
1927
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1928 1929 1930
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1931
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1932
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1933
{
1934
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1935

1936
	hb = hash_futex(&q->key);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

1948
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1949

1950
	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1951
	return hb;
L
Linus Torvalds 已提交
1952 1953
}

1954
static inline void
J
Jason Low 已提交
1955
queue_unlock(struct futex_hash_bucket *hb)
1956
	__releases(&hb->lock)
1957 1958
{
	spin_unlock(&hb->lock);
1959
	hb_waiters_dec(hb);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1974
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1975
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1976
{
P
Pierre Peiffer 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1991
	q->task = current;
1992
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1993 1994
}

1995 1996 1997 1998 1999 2000 2001
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2002 2003
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
2004
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2005 2006 2007 2008
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2009
	int ret = 0;
L
Linus Torvalds 已提交
2010 2011

	/* In the common case we don't take the spinlock, which is nice. */
2012
retry:
2013 2014 2015 2016 2017 2018
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2019
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2038
		__unqueue_futex(q);
2039 2040 2041

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2042 2043 2044 2045
		spin_unlock(lock_ptr);
		ret = 1;
	}

2046
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2047 2048 2049
	return ret;
}

2050 2051
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2052 2053
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2054
 */
P
Pierre Peiffer 已提交
2055
static void unqueue_me_pi(struct futex_q *q)
2056
	__releases(q->lock_ptr)
2057
{
2058
	__unqueue_futex(q);
2059 2060

	BUG_ON(!q->pi_state);
2061
	put_pi_state(q->pi_state);
2062 2063
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2064
	spin_unlock(q->lock_ptr);
2065 2066
}

P
Pierre Peiffer 已提交
2067
/*
2068
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
2069
 *
2070 2071
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
2072
 */
2073
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2074
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
2075
{
2076
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
2077
	struct futex_pi_state *pi_state = q->pi_state;
2078
	struct task_struct *oldowner = pi_state->owner;
2079
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
2080
	int ret;
P
Pierre Peiffer 已提交
2081 2082

	/* Owner died? */
2083 2084 2085 2086 2087
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2088 2089 2090 2091
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2092
	 *
D
Darren Hart 已提交
2093 2094 2095
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2110
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2121
	if (pi_state->owner != NULL) {
2122
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2123 2124
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
2125
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2126
	}
P
Pierre Peiffer 已提交
2127

2128
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2129

2130
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2131
	WARN_ON(!list_empty(&pi_state->list));
2132
	list_add(&pi_state->list, &newowner->pi_state_list);
2133
	raw_spin_unlock_irq(&newowner->pi_lock);
2134
	return 0;
P
Pierre Peiffer 已提交
2135 2136

	/*
2137
	 * To handle the page fault we need to drop the hash bucket
2138 2139
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
2140 2141 2142 2143 2144
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
2145
	 */
2146 2147
handle_fault:
	spin_unlock(q->lock_ptr);
2148

2149
	ret = fault_in_user_writeable(uaddr);
2150

2151
	spin_lock(q->lock_ptr);
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
2163 2164
}

N
Nick Piggin 已提交
2165
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2166

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2177 2178 2179
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
2180 2181
 * <0 - on error (-EFAULT)
 */
2182
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
2193
			ret = fixup_pi_state_owner(uaddr, q, current);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
2215
		 * rt_mutex. Too late.
2216
		 */
2217
		raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2218
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2219 2220
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2221
		raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2222
		ret = fixup_pi_state_owner(uaddr, q, owner);
2223 2224 2225 2226 2227
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2228
	 * the owner of the rt_mutex.
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

2240 2241 2242 2243 2244 2245 2246
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2247
				struct hrtimer_sleeper *timeout)
2248
{
2249 2250
	/*
	 * The task state is guaranteed to be set before another task can
2251
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2252 2253 2254
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2255
	set_current_state(TASK_INTERRUPTIBLE);
2256
	queue_me(q, hb);
2257 2258

	/* Arm the timer */
2259
	if (timeout)
2260 2261 2262
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2263 2264
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2265 2266 2267 2268 2269 2270 2271 2272
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2273
			freezable_schedule();
2274 2275 2276 2277
	}
	__set_current_state(TASK_RUNNING);
}

2278 2279 2280 2281
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2282
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2283 2284 2285 2286 2287 2288 2289 2290
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2291 2292
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2293
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2294
 */
2295
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2296
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2297
{
2298 2299
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2300 2301

	/*
D
Darren Hart 已提交
2302
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308 2309
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2310 2311
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2312 2313
	 * cond(var) false, which would violate the guarantee.
	 *
2314 2315 2316 2317
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2318
	 */
2319
retry:
2320
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2321
	if (unlikely(ret != 0))
2322
		return ret;
2323 2324 2325 2326

retry_private:
	*hb = queue_lock(q);

2327
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2328

2329
	if (ret) {
J
Jason Low 已提交
2330
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2331

2332
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2333
		if (ret)
2334
			goto out;
L
Linus Torvalds 已提交
2335

2336
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2337 2338
			goto retry_private;

2339
		put_futex_key(&q->key);
D
Darren Hart 已提交
2340
		goto retry;
L
Linus Torvalds 已提交
2341
	}
2342

2343
	if (uval != val) {
J
Jason Low 已提交
2344
		queue_unlock(*hb);
2345
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2346
	}
L
Linus Torvalds 已提交
2347

2348 2349
out:
	if (ret)
2350
		put_futex_key(&q->key);
2351 2352 2353
	return ret;
}

2354 2355
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2356 2357 2358 2359
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2360
	struct futex_q q = futex_q_init;
2361 2362 2363 2364 2365 2366 2367 2368 2369
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2370 2371 2372
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2373 2374 2375 2376 2377
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2378
retry:
2379 2380 2381 2382
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2383
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2384 2385 2386
	if (ret)
		goto out;

2387
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2388
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2389 2390

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2391
	ret = 0;
2392
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2393
	if (!unqueue_me(&q))
2394
		goto out;
P
Peter Zijlstra 已提交
2395
	ret = -ETIMEDOUT;
2396
	if (to && !to->task)
2397
		goto out;
N
Nick Piggin 已提交
2398

2399
	/*
T
Thomas Gleixner 已提交
2400 2401
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2402
	 */
2403
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2404 2405
		goto retry;

P
Peter Zijlstra 已提交
2406
	ret = -ERESTARTSYS;
2407
	if (!abs_time)
2408
		goto out;
L
Linus Torvalds 已提交
2409

2410
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2411
	restart->fn = futex_wait_restart;
2412
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2413 2414 2415
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2416
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2417

P
Peter Zijlstra 已提交
2418 2419
	ret = -ERESTART_RESTARTBLOCK;

2420
out:
2421 2422 2423 2424
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2425 2426 2427
	return ret;
}

N
Nick Piggin 已提交
2428 2429 2430

static long futex_wait_restart(struct restart_block *restart)
{
2431
	u32 __user *uaddr = restart->futex.uaddr;
2432
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2433

2434 2435 2436 2437
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2438
	restart->fn = do_no_restart_syscall;
2439 2440 2441

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2442 2443 2444
}


2445 2446 2447
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2448 2449 2450 2451 2452
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2453
 */
2454
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2455
			 ktime_t *time, int trylock)
2456
{
2457
	struct hrtimer_sleeper timeout, *to = NULL;
2458
	struct futex_hash_bucket *hb;
2459
	struct futex_q q = futex_q_init;
2460
	int res, ret;
2461 2462 2463 2464

	if (refill_pi_state_cache())
		return -ENOMEM;

2465
	if (time) {
2466
		to = &timeout;
2467 2468
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2469
		hrtimer_init_sleeper(to, current);
2470
		hrtimer_set_expires(&to->timer, *time);
2471 2472
	}

2473
retry:
2474
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2475
	if (unlikely(ret != 0))
2476
		goto out;
2477

D
Darren Hart 已提交
2478
retry_private:
E
Eric Sesterhenn 已提交
2479
	hb = queue_lock(&q);
2480

2481
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2482
	if (unlikely(ret)) {
2483 2484 2485 2486
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2487
		switch (ret) {
2488 2489 2490 2491 2492 2493
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2494 2495
		case -EAGAIN:
			/*
2496 2497 2498 2499
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2500
			 */
J
Jason Low 已提交
2501
			queue_unlock(hb);
2502
			put_futex_key(&q.key);
2503 2504 2505
			cond_resched();
			goto retry;
		default:
2506
			goto out_unlock_put_key;
2507 2508 2509 2510 2511 2512
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2513
	queue_me(&q, hb);
2514 2515 2516 2517 2518

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
2519 2520 2521
	if (!trylock) {
		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
	} else {
2522 2523 2524 2525 2526
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2527
	spin_lock(q.lock_ptr);
2528 2529 2530 2531
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2532
	res = fixup_owner(uaddr, &q, !ret);
2533 2534 2535 2536 2537 2538
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2539

2540
	/*
2541 2542
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2543 2544 2545 2546
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2547 2548
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2549

2550
	goto out_put_key;
2551

2552
out_unlock_put_key:
J
Jason Low 已提交
2553
	queue_unlock(hb);
2554

2555
out_put_key:
2556
	put_futex_key(&q.key);
2557
out:
2558 2559
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2560
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2561

2562
uaddr_faulted:
J
Jason Low 已提交
2563
	queue_unlock(hb);
2564

2565
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2566 2567
	if (ret)
		goto out_put_key;
2568

2569
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2570 2571
		goto retry_private;

2572
	put_futex_key(&q.key);
D
Darren Hart 已提交
2573
	goto retry;
2574 2575 2576 2577 2578 2579 2580
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2581
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2582
{
2583
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2584
	union futex_key key = FUTEX_KEY_INIT;
2585 2586
	struct futex_hash_bucket *hb;
	struct futex_q *match;
D
Darren Hart 已提交
2587
	int ret;
2588 2589 2590 2591 2592 2593 2594

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2595
	if ((uval & FUTEX_TID_MASK) != vpid)
2596 2597
		return -EPERM;

2598
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2599 2600
	if (ret)
		return ret;
2601 2602 2603 2604 2605

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2606 2607 2608
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2609
	 */
2610 2611
	match = futex_top_waiter(hb, &key);
	if (match) {
2612 2613 2614 2615 2616 2617 2618
		ret = wake_futex_pi(uaddr, uval, match, hb);
		/*
		 * In case of success wake_futex_pi dropped the hash
		 * bucket lock.
		 */
		if (!ret)
			goto out_putkey;
2619
		/*
2620 2621
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2622 2623 2624
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2625 2626 2627 2628
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2629 2630
		goto out_unlock;
	}
2631

2632
	/*
2633 2634 2635 2636 2637
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2638
	 */
2639
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2640
		goto pi_faulted;
2641

2642 2643 2644 2645 2646
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2647 2648
out_unlock:
	spin_unlock(&hb->lock);
2649
out_putkey:
2650
	put_futex_key(&key);
2651 2652 2653
	return ret;

pi_faulted:
2654
	spin_unlock(&hb->lock);
2655
	put_futex_key(&key);
2656

2657
	ret = fault_in_user_writeable(uaddr);
2658
	if (!ret)
2659 2660
		goto retry;

L
Linus Torvalds 已提交
2661 2662 2663
	return ret;
}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2676 2677 2678
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2700
		plist_del(&q->list, &hb->chain);
2701
		hb_waiters_dec(hb);
2702

T
Thomas Gleixner 已提交
2703
		/* Handle spurious wakeups gracefully */
2704
		ret = -EWOULDBLOCK;
2705 2706
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2707
		else if (signal_pending(current))
2708
			ret = -ERESTARTNOINTR;
2709 2710 2711 2712 2713 2714
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2715
 * @uaddr:	the futex we initially wait on (non-pi)
2716
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2717
 *		the same type, no requeueing from private to shared, etc.
2718 2719
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2720
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2721 2722 2723
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2724 2725 2726 2727 2728
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2729 2730
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2731
 * via the following--
2732
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2733 2734 2735
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2736
 *
2737
 * If 3, cleanup and return -ERESTARTNOINTR.
2738 2739 2740 2741 2742 2743 2744
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2745
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2746 2747 2748
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2749 2750
 * Return:
 *  0 - On success;
2751 2752
 * <0 - On error
 */
2753
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2754
				 u32 val, ktime_t *abs_time, u32 bitset,
2755
				 u32 __user *uaddr2)
2756 2757 2758 2759 2760
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2761 2762
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2763 2764
	int res, ret;

2765 2766 2767
	if (uaddr == uaddr2)
		return -EINVAL;

2768 2769 2770 2771 2772
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2773 2774 2775
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2786 2787
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2788 2789
	rt_waiter.task = NULL;

2790
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2791 2792 2793
	if (unlikely(ret != 0))
		goto out;

2794 2795 2796 2797
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2798 2799 2800 2801
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2802
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2803 2804
	if (ret)
		goto out_key2;
2805

2806 2807 2808 2809 2810
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
2811
		queue_unlock(hb);
2812 2813 2814 2815
		ret = -EINVAL;
		goto out_put_keys;
	}

2816
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2817
	futex_wait_queue_me(hb, &q, to);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2829 2830 2831
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2842
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2843 2844 2845 2846
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
2847
			put_pi_state(q.pi_state);
2848 2849 2850 2851 2852 2853 2854 2855
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2856
		WARN_ON(!q.pi_state);
2857
		pi_mutex = &q.pi_state->pi_mutex;
2858
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2859 2860 2861 2862 2863 2864 2865
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2866
		res = fixup_owner(uaddr2, &q, !ret);
2867 2868
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2869
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2883
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2884 2885 2886
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2887 2888 2889 2890 2891
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2892
		 */
2893
		ret = -EWOULDBLOCK;
2894 2895 2896
	}

out_put_keys:
2897
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2898
out_key2:
2899
	put_futex_key(&key2);
2900 2901 2902 2903 2904 2905 2906 2907 2908

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2909 2910 2911 2912 2913 2914 2915
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2916
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2917 2918 2919 2920 2921 2922 2923 2924
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2925 2926 2927
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2928
 */
2929 2930
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2931
{
2932 2933
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2946 2947 2948 2949
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2950
 */
2951 2952 2953
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2954
{
A
Al Viro 已提交
2955
	struct robust_list_head __user *head;
2956
	unsigned long ret;
2957
	struct task_struct *p;
2958

2959 2960 2961
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2962 2963 2964
	rcu_read_lock();

	ret = -ESRCH;
2965
	if (!pid)
2966
		p = current;
2967
	else {
2968
		p = find_task_by_vpid(pid);
2969 2970 2971 2972
		if (!p)
			goto err_unlock;
	}

2973
	ret = -EPERM;
2974
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2975 2976 2977 2978 2979
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2980 2981 2982 2983 2984
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2985
	rcu_read_unlock();
2986 2987 2988 2989 2990 2991 2992 2993

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2994
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2995
{
2996
	u32 uval, uninitialized_var(nval), mval;
2997

2998 2999
retry:
	if (get_user(uval, uaddr))
3000 3001
		return -1;

3002
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
3013
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
3028
		if (nval != uval)
3029
			goto retry;
3030

3031 3032 3033 3034
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
3035
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
3036
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3037 3038 3039 3040
	}
	return 0;
}

3041 3042 3043 3044
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3045
				     struct robust_list __user * __user *head,
3046
				     unsigned int *pi)
3047 3048 3049
{
	unsigned long uentry;

A
Al Viro 已提交
3050
	if (get_user(uentry, (unsigned long __user *)head))
3051 3052
		return -EFAULT;

A
Al Viro 已提交
3053
	*entry = (void __user *)(uentry & ~1UL);
3054 3055 3056 3057 3058
	*pi = uentry & 1;

	return 0;
}

3059 3060 3061 3062 3063 3064 3065 3066 3067
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3068
	struct robust_list __user *entry, *next_entry, *pending;
3069 3070
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3071
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3072
	int rc;
3073

3074 3075 3076
	if (!futex_cmpxchg_enabled)
		return;

3077 3078 3079 3080
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3081
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3092
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3093
		return;
3094

M
Martin Schwidefsky 已提交
3095
	next_entry = NULL;	/* avoid warning with gcc */
3096
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3097 3098 3099 3100 3101
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3102 3103
		/*
		 * A pending lock might already be on the list, so
3104
		 * don't process it twice:
3105 3106
		 */
		if (entry != pending)
A
Al Viro 已提交
3107
			if (handle_futex_death((void __user *)entry + futex_offset,
3108
						curr, pi))
3109
				return;
M
Martin Schwidefsky 已提交
3110
		if (rc)
3111
			return;
M
Martin Schwidefsky 已提交
3112 3113
		entry = next_entry;
		pi = next_pi;
3114 3115 3116 3117 3118 3119 3120 3121
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3122 3123 3124 3125

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3126 3127
}

3128
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3129
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3130
{
T
Thomas Gleixner 已提交
3131
	int cmd = op & FUTEX_CMD_MASK;
3132
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3133 3134

	if (!(op & FUTEX_PRIVATE_FLAG))
3135
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3136

3137 3138
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3139 3140
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3141 3142
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3154
	switch (cmd) {
L
Linus Torvalds 已提交
3155
	case FUTEX_WAIT:
3156 3157
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3158
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3159
	case FUTEX_WAKE:
3160 3161
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3162
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3163
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3164
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3165
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3166
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3167
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3168
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3169
	case FUTEX_LOCK_PI:
3170
		return futex_lock_pi(uaddr, flags, timeout, 0);
3171
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3172
		return futex_unlock_pi(uaddr, flags);
3173
	case FUTEX_TRYLOCK_PI:
3174
		return futex_lock_pi(uaddr, flags, NULL, 1);
3175 3176
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3177 3178
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3179
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3180
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3181
	}
T
Thomas Gleixner 已提交
3182
	return -ENOSYS;
L
Linus Torvalds 已提交
3183 3184 3185
}


3186 3187 3188
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3189
{
3190 3191
	struct timespec ts;
	ktime_t t, *tp = NULL;
3192
	u32 val2 = 0;
E
Eric Dumazet 已提交
3193
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3194

3195
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3196 3197
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3198 3199
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3200
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3201
			return -EFAULT;
3202
		if (!timespec_valid(&ts))
3203
			return -EINVAL;
3204 3205

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3206
		if (cmd == FUTEX_WAIT)
3207
			t = ktime_add_safe(ktime_get(), t);
3208
		tp = &t;
L
Linus Torvalds 已提交
3209 3210
	}
	/*
3211
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3212
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3213
	 */
3214
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3215
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3216
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3217

3218
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3219 3220
}

3221
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3222
{
3223
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3224
	u32 curval;
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3243
	unsigned int futex_shift;
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3255 3256 3257
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3258 3259

	futex_detect_cmpxchg();
3260

3261
	for (i = 0; i < futex_hashsize; i++) {
3262
		atomic_set(&futex_queues[i].waiters, 0);
3263
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3264 3265 3266
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3267 3268
	return 0;
}
3269
__initcall(futex_init);