futex.c 43.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
50
#include <linux/signal.h>
51
#include <linux/module.h>
52
#include <asm/futex.h>
L
Linus Torvalds 已提交
53

54 55
#include "rtmutex_common.h"

L
Linus Torvalds 已提交
56 57
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
 * The order of wakup is always to make the first condition true, then
 * wake up q->waiters, then make the second condition true.
 */
struct futex_q {
	struct list_head list;
	wait_queue_head_t waiters;

92
	/* Which hash list lock to use: */
L
Linus Torvalds 已提交
93 94
	spinlock_t *lock_ptr;

95
	/* Key which the futex is hashed on: */
L
Linus Torvalds 已提交
96 97
	union futex_key key;

98
	/* For fd, sigio sent using these: */
L
Linus Torvalds 已提交
99 100
	int fd;
	struct file *filp;
101 102 103 104

	/* Optional priority inheritance state: */
	struct futex_pi_state *pi_state;
	struct task_struct *task;
L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
};

/*
 * Split the global futex_lock into every hash list lock.
 */
struct futex_hash_bucket {
       spinlock_t              lock;
       struct list_head       chain;
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/* Futex-fs vfsmount entry: */
static struct vfsmount *futex_mnt;

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

/*
 * Get parameters which are the keys for a futex.
 *
144
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
145 146 147 148 149 150 151 152
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
 * Returns: 0, or negative error code.
 * The key words are stored in *key on success.
 *
 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
 */
153
int get_futex_key(u32 __user *uaddr, union futex_key *key)
L
Linus Torvalds 已提交
154
{
155
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
164
	key->both.offset = address % PAGE_SIZE;
L
Linus Torvalds 已提交
165 166
	if (unlikely((key->both.offset % sizeof(u32)) != 0))
		return -EINVAL;
167
	address -= key->both.offset;
L
Linus Torvalds 已提交
168 169 170 171 172

	/*
	 * The futex is hashed differently depending on whether
	 * it's in a shared or private mapping.  So check vma first.
	 */
173
	vma = find_extend_vma(mm, address);
L
Linus Torvalds 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (unlikely(!vma))
		return -EFAULT;

	/*
	 * Permissions.
	 */
	if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
		return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
	 * the object not the particular process.  Therefore we use
	 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
	 * mappings of _writable_ handles.
	 */
	if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
		key->private.mm = mm;
194
		key->private.address = address;
L
Linus Torvalds 已提交
195 196 197 198 199 200
		return 0;
	}

	/*
	 * Linear file mappings are also simple.
	 */
201
	key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
L
Linus Torvalds 已提交
202 203
	key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
	if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
204
		key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
205 206 207 208 209 210 211 212 213 214
				     + vma->vm_pgoff);
		return 0;
	}

	/*
	 * We could walk the page table to read the non-linear
	 * pte, and get the page index without fetching the page
	 * from swap.  But that's a lot of code to duplicate here
	 * for a rare case, so we simply fetch the page.
	 */
215
	err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223
	if (err >= 0) {
		key->shared.pgoff =
			page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
		put_page(page);
		return 0;
	}
	return err;
}
224
EXPORT_SYMBOL_GPL(get_futex_key);
L
Linus Torvalds 已提交
225 226 227 228 229 230 231 232

/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
 * function, if it is called at all.  mmap_sem keeps key->shared.inode valid.
 */
233
inline void get_futex_key_refs(union futex_key *key)
L
Linus Torvalds 已提交
234 235 236 237 238 239 240 241
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			atomic_inc(&key->shared.inode->i_count);
		else
			atomic_inc(&key->private.mm->mm_count);
	}
}
242
EXPORT_SYMBOL_GPL(get_futex_key_refs);
L
Linus Torvalds 已提交
243 244 245 246 247

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
248
void drop_futex_key_refs(union futex_key *key)
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			iput(key->shared.inode);
		else
			mmdrop(key->private.mm);
	}
}
257
EXPORT_SYMBOL_GPL(drop_futex_key_refs);
L
Linus Torvalds 已提交
258

259
static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
260 261 262
{
	int ret;

263
	pagefault_disable();
264
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
265
	pagefault_enable();
L
Linus Torvalds 已提交
266 267 268 269

	return ret ? -EFAULT : 0;
}

270 271 272 273 274 275 276 277
/*
 * Fault handling. Called with current->mm->mmap_sem held.
 */
static int futex_handle_fault(unsigned long address, int attempt)
{
	struct vm_area_struct * vma;
	struct mm_struct *mm = current->mm;

278
	if (attempt > 2 || !(vma = find_vma(mm, address)) ||
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	    vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
		return -EFAULT;

	switch (handle_mm_fault(mm, vma, address, 1)) {
	case VM_FAULT_MINOR:
		current->min_flt++;
		break;
	case VM_FAULT_MAJOR:
		current->maj_flt++;
		break;
	default:
		return -EFAULT;
	}
	return 0;
}

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

305
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

369
	rcu_read_lock();
370 371 372 373 374 375 376
	p = find_task_by_pid(pid);
	if (!p)
		goto out_unlock;
	if ((current->euid != p->euid) && (current->euid != p->uid)) {
		p = NULL;
		goto out_unlock;
	}
377
	if (p->exit_state != 0) {
378 379 380 381 382
		p = NULL;
		goto out_unlock;
	}
	get_task_struct(p);
out_unlock:
383
	rcu_read_unlock();
384 385 386 387 388 389 390 391 392 393 394 395 396

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
397
	struct futex_hash_bucket *hb;
398 399 400 401 402
	union futex_key key;

	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
403
	 * versus waiters unqueueing themselves:
404 405 406 407 408 409 410
	 */
	spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
411
		hb = hash_futex(&key);
412 413 414 415 416
		spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
417 418 419 420
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
421 422 423 424 425 426
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
427 428
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		pi_state->owner = NULL;
		spin_unlock_irq(&curr->pi_lock);

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
	}
	spin_unlock_irq(&curr->pi_lock);
}

static int
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
	struct list_head *head;
	struct task_struct *p;
	pid_t pid;

	head = &hb->chain;

	list_for_each_entry_safe(this, next, head, list) {
453
		if (match_futex(&this->key, &me->key)) {
454 455 456 457 458
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
459 460 461 462 463 464
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

465 466
			WARN_ON(!atomic_read(&pi_state->refcount));

467 468 469 470 471 472 473 474
			atomic_inc(&pi_state->refcount);
			me->pi_state = pi_state;

			return 0;
		}
	}

	/*
475 476 477
	 * We are the first waiter - try to look up the real owner and attach
	 * the new pi_state to it, but bail out when the owner died bit is set
	 * and TID = 0:
478 479
	 */
	pid = uval & FUTEX_TID_MASK;
480 481
	if (!pid && (uval & FUTEX_OWNER_DIED))
		return -ESRCH;
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	p = futex_find_get_task(pid);
	if (!p)
		return -ESRCH;

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
	pi_state->key = me->key;

	spin_lock_irq(&p->pi_lock);
498
	WARN_ON(!list_empty(&pi_state->list));
499 500 501 502 503 504 505 506 507 508 509
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
	spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

	me->pi_state = pi_state;

	return 0;
}

L
Linus Torvalds 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
	list_del_init(&q->list);
	if (q->filp)
		send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
	/*
	 * The lock in wake_up_all() is a crucial memory barrier after the
	 * list_del_init() and also before assigning to q->lock_ptr.
	 */
	wake_up_all(&q->waiters);
	/*
	 * The waiting task can free the futex_q as soon as this is written,
	 * without taking any locks.  This must come last.
527 528 529 530 531
	 *
	 * A memory barrier is required here to prevent the following store
	 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
	 * at the end of wake_up_all() does not prevent this store from
	 * moving.
L
Linus Torvalds 已提交
532
	 */
533
	smp_wmb();
L
Linus Torvalds 已提交
534 535 536
	q->lock_ptr = NULL;
}

537 538 539 540 541 542 543 544 545
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

546
	spin_lock(&pi_state->pi_mutex.wait_lock);
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
563 564 565
	if (!(uval & FUTEX_OWNER_DIED)) {
		newval = FUTEX_WAITERS | new_owner->pid;

566
		pagefault_disable();
567
		curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
568
		pagefault_enable();
569 570 571 572 573
		if (curval == -EFAULT)
			return -EFAULT;
		if (curval != uval)
			return -EINVAL;
	}
574

575 576 577 578 579 580 581
	spin_lock_irq(&pi_state->owner->pi_lock);
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
	spin_unlock_irq(&pi_state->owner->pi_lock);

	spin_lock_irq(&new_owner->pi_lock);
	WARN_ON(!list_empty(&pi_state->list));
582 583
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
584 585
	spin_unlock_irq(&new_owner->pi_lock);

586
	spin_unlock(&pi_state->pi_mutex.wait_lock);
587 588 589 590 591 592 593 594 595 596 597 598 599
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
600
	pagefault_disable();
601
	oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
602
	pagefault_enable();
603 604 605 606 607 608 609 610 611

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

L
Linus Torvalds 已提交
628 629 630 631
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
632
static int futex_wake(u32 __user *uaddr, int nr_wake)
L
Linus Torvalds 已提交
633
{
634
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
635
	struct futex_q *this, *next;
636 637
	struct list_head *head;
	union futex_key key;
L
Linus Torvalds 已提交
638 639 640 641 642 643 644 645
	int ret;

	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &key);
	if (unlikely(ret != 0))
		goto out;

646 647 648
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
649 650 651

	list_for_each_entry_safe(this, next, head, list) {
		if (match_futex (&this->key, &key)) {
652 653 654 655
			if (this->pi_state) {
				ret = -EINVAL;
				break;
			}
L
Linus Torvalds 已提交
656 657 658 659 660 661
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

662
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
663 664 665 666 667
out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

668 669 670 671
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
672 673 674
static int
futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
	      int nr_wake, int nr_wake2, int op)
675 676
{
	union futex_key key1, key2;
677
	struct futex_hash_bucket *hb1, *hb2;
678 679 680 681 682 683 684 685 686 687 688 689 690 691
	struct list_head *head;
	struct futex_q *this, *next;
	int ret, op_ret, attempt = 0;

retryfull:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr1, &key1);
	if (unlikely(ret != 0))
		goto out;
	ret = get_futex_key(uaddr2, &key2);
	if (unlikely(ret != 0))
		goto out;

692 693
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
694 695

retry:
I
Ingo Molnar 已提交
696
	double_lock_hb(hb1, hb2);
697

698
	op_ret = futex_atomic_op_inuser(op, uaddr2);
699
	if (unlikely(op_ret < 0)) {
700
		u32 dummy;
701

702 703 704
		spin_unlock(&hb1->lock);
		if (hb1 != hb2)
			spin_unlock(&hb2->lock);
705

706
#ifndef CONFIG_MMU
707 708 709 710
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
711 712 713 714
		ret = op_ret;
		goto out;
#endif

715 716 717 718 719
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
			goto out;
		}

720 721
		/*
		 * futex_atomic_op_inuser needs to both read and write
722 723 724
		 * *(int __user *)uaddr2, but we can't modify it
		 * non-atomically.  Therefore, if get_user below is not
		 * enough, we need to handle the fault ourselves, while
725 726
		 * still holding the mmap_sem.
		 */
727
		if (attempt++) {
728
			if (futex_handle_fault((unsigned long)uaddr2,
729 730
						attempt)) {
				ret = -EFAULT;
731
				goto out;
732
			}
733 734 735
			goto retry;
		}

736 737 738 739
		/*
		 * If we would have faulted, release mmap_sem,
		 * fault it in and start all over again.
		 */
740 741
		up_read(&current->mm->mmap_sem);

742
		ret = get_user(dummy, uaddr2);
743 744 745 746 747 748
		if (ret)
			return ret;

		goto retryfull;
	}

749
	head = &hb1->chain;
750 751 752 753 754 755 756 757 758 759

	list_for_each_entry_safe(this, next, head, list) {
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
760
		head = &hb2->chain;
761 762 763 764 765 766 767 768 769 770 771 772

		op_ret = 0;
		list_for_each_entry_safe(this, next, head, list) {
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

773 774 775
	spin_unlock(&hb1->lock);
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
776 777 778 779 780
out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

L
Linus Torvalds 已提交
781 782 783 784
/*
 * Requeue all waiters hashed on one physical page to another
 * physical page.
 */
785 786
static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
			 int nr_wake, int nr_requeue, u32 *cmpval)
L
Linus Torvalds 已提交
787 788
{
	union futex_key key1, key2;
789
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803
	struct list_head *head1;
	struct futex_q *this, *next;
	int ret, drop_count = 0;

 retry:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr1, &key1);
	if (unlikely(ret != 0))
		goto out;
	ret = get_futex_key(uaddr2, &key2);
	if (unlikely(ret != 0))
		goto out;

804 805
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
806

I
Ingo Molnar 已提交
807
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
808

809 810
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
811

812
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
813 814

		if (unlikely(ret)) {
815 816 817
			spin_unlock(&hb1->lock);
			if (hb1 != hb2)
				spin_unlock(&hb2->lock);
L
Linus Torvalds 已提交
818

819 820
			/*
			 * If we would have faulted, release mmap_sem, fault
L
Linus Torvalds 已提交
821 822 823 824
			 * it in and start all over again.
			 */
			up_read(&current->mm->mmap_sem);

825
			ret = get_user(curval, uaddr1);
L
Linus Torvalds 已提交
826 827 828 829 830 831

			if (!ret)
				goto retry;

			return ret;
		}
832
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
833 834 835 836 837
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

838
	head1 = &hb1->chain;
L
Linus Torvalds 已提交
839 840 841 842 843 844
	list_for_each_entry_safe(this, next, head1, list) {
		if (!match_futex (&this->key, &key1))
			continue;
		if (++ret <= nr_wake) {
			wake_futex(this);
		} else {
845 846 847 848 849 850 851 852
			/*
			 * If key1 and key2 hash to the same bucket, no need to
			 * requeue.
			 */
			if (likely(head1 != &hb2->chain)) {
				list_move_tail(&this->list, &hb2->chain);
				this->lock_ptr = &hb2->lock;
			}
L
Linus Torvalds 已提交
853
			this->key = key2;
854
			get_futex_key_refs(&key2);
L
Linus Torvalds 已提交
855 856 857 858 859 860 861 862
			drop_count++;

			if (ret - nr_wake >= nr_requeue)
				break;
		}
	}

out_unlock:
863 864 865
	spin_unlock(&hb1->lock);
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
L
Linus Torvalds 已提交
866

867
	/* drop_futex_key_refs() must be called outside the spinlocks. */
L
Linus Torvalds 已提交
868
	while (--drop_count >= 0)
869
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
870 871 872 873 874 875 876 877 878 879

out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *
queue_lock(struct futex_q *q, int fd, struct file *filp)
{
880
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
881 882 883 884 885 886

	q->fd = fd;
	q->filp = filp;

	init_waitqueue_head(&q->waiters);

887
	get_futex_key_refs(&q->key);
888 889
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
890

891 892
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
893 894
}

895
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
896
{
897
	list_add_tail(&q->list, &hb->chain);
898
	q->task = current;
899
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
900 901 902
}

static inline void
903
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
904
{
905
	spin_unlock(&hb->lock);
906
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
907 908 909 910 911 912 913 914 915 916
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* The key must be already stored in q->key. */
static void queue_me(struct futex_q *q, int fd, struct file *filp)
{
917 918 919 920
	struct futex_hash_bucket *hb;

	hb = queue_lock(q, fd, filp);
	__queue_me(q, hb);
L
Linus Torvalds 已提交
921 922 923 924 925 926
}

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
927
	int ret = 0;
L
Linus Torvalds 已提交
928 929 930 931

	/* In the common case we don't take the spinlock, which is nice. */
 retry:
	lock_ptr = q->lock_ptr;
932
	barrier();
L
Linus Torvalds 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	if (lock_ptr != 0) {
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
		WARN_ON(list_empty(&q->list));
		list_del(&q->list);
954 955 956

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
957 958 959 960
		spin_unlock(lock_ptr);
		ret = 1;
	}

961
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
962 963 964
	return ret;
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/*
 * PI futexes can not be requeued and must remove themself from the
 * hash bucket. The hash bucket lock is held on entry and dropped here.
 */
static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
{
	WARN_ON(list_empty(&q->list));
	list_del(&q->list);

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

	spin_unlock(&hb->lock);

980
	drop_futex_key_refs(&q->key);
981 982
}

983
static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
L
Linus Torvalds 已提交
984
{
985 986
	struct task_struct *curr = current;
	DECLARE_WAITQUEUE(wait, curr);
987
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
988
	struct futex_q q;
989 990
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
991

992
	q.pi_state = NULL;
L
Linus Torvalds 已提交
993
 retry:
994
	down_read(&curr->mm->mmap_sem);
L
Linus Torvalds 已提交
995 996 997 998 999

	ret = get_futex_key(uaddr, &q.key);
	if (unlikely(ret != 0))
		goto out_release_sem;

1000
	hb = queue_lock(&q, -1, NULL);
L
Linus Torvalds 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

	/*
	 * Access the page AFTER the futex is queued.
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 *
	 * We hold the mmap semaphore, so the mapping cannot have changed
	 * since we looked it up in get_futex_key.
	 */
1022
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1023 1024

	if (unlikely(ret)) {
1025
		queue_unlock(&q, hb);
L
Linus Torvalds 已提交
1026

1027 1028
		/*
		 * If we would have faulted, release mmap_sem, fault it in and
L
Linus Torvalds 已提交
1029 1030
		 * start all over again.
		 */
1031
		up_read(&curr->mm->mmap_sem);
L
Linus Torvalds 已提交
1032

1033
		ret = get_user(uval, uaddr);
L
Linus Torvalds 已提交
1034 1035 1036 1037 1038

		if (!ret)
			goto retry;
		return ret;
	}
1039 1040 1041
	ret = -EWOULDBLOCK;
	if (uval != val)
		goto out_unlock_release_sem;
L
Linus Torvalds 已提交
1042 1043

	/* Only actually queue if *uaddr contained val.  */
1044
	__queue_me(&q, hb);
L
Linus Torvalds 已提交
1045 1046 1047 1048

	/*
	 * Now the futex is queued and we have checked the data, we
	 * don't want to hold mmap_sem while we sleep.
1049 1050
	 */
	up_read(&curr->mm->mmap_sem);
L
Linus Torvalds 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
	 * queueing ourselves into the futex hash.  This code thus has to
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */

	/* add_wait_queue is the barrier after __set_current_state. */
	__set_current_state(TASK_INTERRUPTIBLE);
	add_wait_queue(&q.waiters, &wait);
	/*
	 * !list_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!list_empty(&q.list)))
		time = schedule_timeout(time);
	__set_current_state(TASK_RUNNING);

	/*
	 * NOTE: we don't remove ourselves from the waitqueue because
	 * we are the only user of it.
	 */

	/* If we were woken (and unqueued), we succeeded, whatever. */
	if (!unqueue_me(&q))
		return 0;
	if (time == 0)
		return -ETIMEDOUT;
1082 1083 1084 1085
	/*
	 * We expect signal_pending(current), but another thread may
	 * have handled it for us already.
	 */
L
Linus Torvalds 已提交
1086 1087
	return -EINTR;

1088 1089 1090
 out_unlock_release_sem:
	queue_unlock(&q, hb);

L
Linus Torvalds 已提交
1091
 out_release_sem:
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	up_read(&curr->mm->mmap_sem);
	return ret;
}

/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
1102 1103
static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
			 long nsec, int trylock)
1104
{
1105
	struct hrtimer_sleeper timeout, *to = NULL;
1106 1107 1108 1109 1110 1111 1112 1113 1114
	struct task_struct *curr = current;
	struct futex_hash_bucket *hb;
	u32 uval, newval, curval;
	struct futex_q q;
	int ret, attempt = 0;

	if (refill_pi_state_cache())
		return -ENOMEM;

1115 1116
	if (sec != MAX_SCHEDULE_TIMEOUT) {
		to = &timeout;
1117
		hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1118 1119 1120 1121
		hrtimer_init_sleeper(to, current);
		to->timer.expires = ktime_set(sec, nsec);
	}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	q.pi_state = NULL;
 retry:
	down_read(&curr->mm->mmap_sem);

	ret = get_futex_key(uaddr, &q.key);
	if (unlikely(ret != 0))
		goto out_release_sem;

	hb = queue_lock(&q, -1, NULL);

 retry_locked:
	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = current->pid;

1140
	pagefault_disable();
1141
	curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1142
	pagefault_enable();
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	if (unlikely(curval == -EFAULT))
		goto uaddr_faulted;

	/* We own the lock already */
	if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
		if (!detect && 0)
			force_sig(SIGKILL, current);
		ret = -EDEADLK;
		goto out_unlock_release_sem;
	}

	/*
	 * Surprise - we got the lock. Just return
	 * to userspace:
	 */
	if (unlikely(!curval))
		goto out_unlock_release_sem;

	uval = curval;
	newval = uval | FUTEX_WAITERS;

1165
	pagefault_disable();
1166
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1167
	pagefault_enable();
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

	if (unlikely(curval == -EFAULT))
		goto uaddr_faulted;
	if (unlikely(curval != uval))
		goto retry_locked;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, &q);

	if (unlikely(ret)) {
		/*
		 * There were no waiters and the owner task lookup
		 * failed. When the OWNER_DIED bit is set, then we
		 * know that this is a robust futex and we actually
		 * take the lock. This is safe as we are protected by
		 * the hash bucket lock. We also set the waiters bit
		 * unconditionally here, to simplify glibc handling of
		 * multiple tasks racing to acquire the lock and
		 * cleanup the problems which were left by the dead
		 * owner.
		 */
		if (curval & FUTEX_OWNER_DIED) {
			uval = newval;
			newval = current->pid |
				FUTEX_OWNER_DIED | FUTEX_WAITERS;

1197
			pagefault_disable();
1198 1199
			curval = futex_atomic_cmpxchg_inatomic(uaddr,
							       uval, newval);
1200
			pagefault_enable();
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

			if (unlikely(curval == -EFAULT))
				goto uaddr_faulted;
			if (unlikely(curval != uval))
				goto retry_locked;
			ret = 0;
		}
		goto out_unlock_release_sem;
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
	__queue_me(&q, hb);

	/*
	 * Now the futex is queued and we have checked the data, we
	 * don't want to hold mmap_sem while we sleep.
	 */
	up_read(&curr->mm->mmap_sem);

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

	down_read(&curr->mm->mmap_sem);
1235
	spin_lock(q.lock_ptr);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

	/*
	 * Got the lock. We might not be the anticipated owner if we
	 * did a lock-steal - fix up the PI-state in that case.
	 */
	if (!ret && q.pi_state->owner != curr) {
		u32 newtid = current->pid | FUTEX_WAITERS;

		/* Owner died? */
		if (q.pi_state->owner != NULL) {
			spin_lock_irq(&q.pi_state->owner->pi_lock);
1247
			WARN_ON(list_empty(&q.pi_state->list));
1248 1249 1250 1251 1252 1253 1254 1255
			list_del_init(&q.pi_state->list);
			spin_unlock_irq(&q.pi_state->owner->pi_lock);
		} else
			newtid |= FUTEX_OWNER_DIED;

		q.pi_state->owner = current;

		spin_lock_irq(&current->pi_lock);
1256
		WARN_ON(!list_empty(&q.pi_state->list));
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		list_add(&q.pi_state->list, &current->pi_state_list);
		spin_unlock_irq(&current->pi_lock);

		/* Unqueue and drop the lock */
		unqueue_me_pi(&q, hb);
		up_read(&curr->mm->mmap_sem);
		/*
		 * We own it, so we have to replace the pending owner
		 * TID. This must be atomic as we have preserve the
		 * owner died bit here.
		 */
		ret = get_user(uval, uaddr);
		while (!ret) {
			newval = (uval & FUTEX_OWNER_DIED) | newtid;
			curval = futex_atomic_cmpxchg_inatomic(uaddr,
							       uval, newval);
			if (curval == -EFAULT)
				ret = -EFAULT;
			if (curval == uval)
				break;
			uval = curval;
		}
	} else {
		/*
		 * Catch the rare case, where the lock was released
		 * when we were on the way back before we locked
		 * the hash bucket.
		 */
		if (ret && q.pi_state->owner == curr) {
			if (rt_mutex_trylock(&q.pi_state->pi_mutex))
				ret = 0;
		}
		/* Unqueue and drop the lock */
		unqueue_me_pi(&q, hb);
		up_read(&curr->mm->mmap_sem);
	}

	if (!detect && ret == -EDEADLK && 0)
		force_sig(SIGKILL, current);

1297
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

 out_unlock_release_sem:
	queue_unlock(&q, hb);

 out_release_sem:
	up_read(&curr->mm->mmap_sem);
	return ret;

 uaddr_faulted:
	/*
	 * We have to r/w  *(int __user *)uaddr, but we can't modify it
	 * non-atomically.  Therefore, if get_user below is not
	 * enough, we need to handle the fault ourselves, while
	 * still holding the mmap_sem.
	 */
	if (attempt++) {
1314 1315
		if (futex_handle_fault((unsigned long)uaddr, attempt)) {
			ret = -EFAULT;
1316
			goto out_unlock_release_sem;
1317
		}
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		goto retry_locked;
	}

	queue_unlock(&q, hb);
	up_read(&curr->mm->mmap_sem);

	ret = get_user(uval, uaddr);
	if (!ret && (uval != -EFAULT))
		goto retry;

	return ret;
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
static int futex_unlock_pi(u32 __user *uaddr)
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
	struct list_head *head;
	union futex_key key;
	int ret, attempt = 0;

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
	if ((uval & FUTEX_TID_MASK) != current->pid)
		return -EPERM;
	/*
	 * First take all the futex related locks:
	 */
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &key);
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

retry_locked:
	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
1371
	if (!(uval & FUTEX_OWNER_DIED)) {
1372
		pagefault_disable();
1373
		uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1374
		pagefault_enable();
1375
	}
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
	if (unlikely(uval == current->pid))
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

	list_for_each_entry_safe(this, next, head, list) {
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
1408 1409 1410 1411 1412
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

out_unlock:
	spin_unlock(&hb->lock);
out:
	up_read(&current->mm->mmap_sem);

	return ret;

pi_faulted:
	/*
	 * We have to r/w  *(int __user *)uaddr, but we can't modify it
	 * non-atomically.  Therefore, if get_user below is not
	 * enough, we need to handle the fault ourselves, while
	 * still holding the mmap_sem.
	 */
	if (attempt++) {
1429 1430
		if (futex_handle_fault((unsigned long)uaddr, attempt)) {
			ret = -EFAULT;
1431
			goto out_unlock;
1432
		}
1433 1434 1435 1436
		goto retry_locked;
	}

	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1437
	up_read(&current->mm->mmap_sem);
1438 1439 1440 1441 1442

	ret = get_user(uval, uaddr);
	if (!ret && (uval != -EFAULT))
		goto retry;

L
Linus Torvalds 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451
	return ret;
}

static int futex_close(struct inode *inode, struct file *filp)
{
	struct futex_q *q = filp->private_data;

	unqueue_me(q);
	kfree(q);
1452

L
Linus Torvalds 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	return 0;
}

/* This is one-shot: once it's gone off you need a new fd */
static unsigned int futex_poll(struct file *filp,
			       struct poll_table_struct *wait)
{
	struct futex_q *q = filp->private_data;
	int ret = 0;

	poll_wait(filp, &q->waiters, wait);

	/*
	 * list_empty() is safe here without any lock.
	 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (list_empty(&q->list))
		ret = POLLIN | POLLRDNORM;

	return ret;
}

1475
static const struct file_operations futex_fops = {
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480 1481 1482 1483
	.release	= futex_close,
	.poll		= futex_poll,
};

/*
 * Signal allows caller to avoid the race which would occur if they
 * set the sigio stuff up afterwards.
 */
1484
static int futex_fd(u32 __user *uaddr, int signal)
L
Linus Torvalds 已提交
1485 1486 1487 1488
{
	struct futex_q *q;
	struct file *filp;
	int ret, err;
1489 1490 1491 1492 1493 1494 1495
	static unsigned long printk_interval;

	if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
		printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
		    	"will be removed from the kernel in June 2007\n",
			current->comm);
	}
L
Linus Torvalds 已提交
1496 1497

	ret = -EINVAL;
1498
	if (!valid_signal(signal))
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		goto out;

	ret = get_unused_fd();
	if (ret < 0)
		goto out;
	filp = get_empty_filp();
	if (!filp) {
		put_unused_fd(ret);
		ret = -ENFILE;
		goto out;
	}
	filp->f_op = &futex_fops;
1511 1512 1513
	filp->f_path.mnt = mntget(futex_mnt);
	filp->f_path.dentry = dget(futex_mnt->mnt_root);
	filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
L
Linus Torvalds 已提交
1514 1515

	if (signal) {
1516
		err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
L
Linus Torvalds 已提交
1517
		if (err < 0) {
1518
			goto error;
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523 1524
		}
		filp->f_owner.signum = signal;
	}

	q = kmalloc(sizeof(*q), GFP_KERNEL);
	if (!q) {
1525 1526
		err = -ENOMEM;
		goto error;
L
Linus Torvalds 已提交
1527
	}
1528
	q->pi_state = NULL;
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534 1535

	down_read(&current->mm->mmap_sem);
	err = get_futex_key(uaddr, &q->key);

	if (unlikely(err != 0)) {
		up_read(&current->mm->mmap_sem);
		kfree(q);
1536
		goto error;
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	}

	/*
	 * queue_me() must be called before releasing mmap_sem, because
	 * key->shared.inode needs to be referenced while holding it.
	 */
	filp->private_data = q;

	queue_me(q, ret, filp);
	up_read(&current->mm->mmap_sem);

	/* Now we map fd to filp, so userspace can access it */
	fd_install(ret, filp);
out:
	return ret;
1552 1553 1554 1555 1556
error:
	put_unused_fd(ret);
	put_filp(filp);
	ret = err;
	goto out;
L
Linus Torvalds 已提交
1557 1558
}

1559 1560 1561 1562 1563 1564 1565
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
1566
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
 * sys_set_robust_list - set the robust-futex list head of a task
 * @head: pointer to the list-head
 * @len: length of the list-head, as userspace expects
 */
asmlinkage long
sys_set_robust_list(struct robust_list_head __user *head,
		    size_t len)
{
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
 * sys_get_robust_list - get the robust-futex list head of a task
 * @pid: pid of the process [zero for current task]
 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
 * @len_ptr: pointer to a length field, the kernel fills in the header size
 */
asmlinkage long
A
Al Viro 已提交
1601
sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1602 1603
		    size_t __user *len_ptr)
{
A
Al Viro 已提交
1604
	struct robust_list_head __user *head;
1605 1606 1607 1608 1609 1610 1611 1612
	unsigned long ret;

	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
1613
		rcu_read_lock();
1614 1615 1616 1617 1618 1619 1620 1621
		p = find_task_by_pid(pid);
		if (!p)
			goto err_unlock;
		ret = -EPERM;
		if ((current->euid != p->euid) && (current->euid != p->uid) &&
				!capable(CAP_SYS_PTRACE))
			goto err_unlock;
		head = p->robust_list;
1622
		rcu_read_unlock();
1623 1624 1625 1626 1627 1628 1629
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
1630
	rcu_read_unlock();
1631 1632 1633 1634 1635 1636 1637 1638

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
1639
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1640
{
1641
	u32 uval, nval, mval;
1642

1643 1644
retry:
	if (get_user(uval, uaddr))
1645 1646
		return -1;

1647
	if ((uval & FUTEX_TID_MASK) == curr->pid) {
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
1658 1659 1660
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

1661 1662 1663 1664
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
1665
			goto retry;
1666

1667 1668 1669 1670 1671 1672 1673 1674
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
		if (!pi) {
			if (uval & FUTEX_WAITERS)
				futex_wake(uaddr, 1);
		}
1675 1676 1677 1678
	}
	return 0;
}

1679 1680 1681 1682
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
1683 1684
				     struct robust_list __user * __user *head,
				     int *pi)
1685 1686 1687
{
	unsigned long uentry;

A
Al Viro 已提交
1688
	if (get_user(uentry, (unsigned long __user *)head))
1689 1690
		return -EFAULT;

A
Al Viro 已提交
1691
	*entry = (void __user *)(uentry & ~1UL);
1692 1693 1694 1695 1696
	*pi = uentry & 1;

	return 0;
}

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
	struct robust_list __user *entry, *pending;
1707
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1708 1709 1710 1711 1712 1713
	unsigned long futex_offset;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
1714
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
1725
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1726
		return;
1727

1728
	if (pending)
A
Al Viro 已提交
1729
		handle_futex_death((void __user *)pending + futex_offset, curr, pip);
1730 1731 1732 1733

	while (entry != &head->list) {
		/*
		 * A pending lock might already be on the list, so
1734
		 * don't process it twice:
1735 1736
		 */
		if (entry != pending)
A
Al Viro 已提交
1737
			if (handle_futex_death((void __user *)entry + futex_offset,
1738
						curr, pi))
1739 1740 1741 1742
				return;
		/*
		 * Fetch the next entry in the list:
		 */
1743
		if (fetch_robust_entry(&entry, &entry->next, &pi))
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
			return;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
}

1755 1756
long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
{
	int ret;

	switch (op) {
	case FUTEX_WAIT:
		ret = futex_wait(uaddr, val, timeout);
		break;
	case FUTEX_WAKE:
		ret = futex_wake(uaddr, val);
		break;
	case FUTEX_FD:
		/* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
		ret = futex_fd(uaddr, val);
		break;
	case FUTEX_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
		break;
	case FUTEX_CMP_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
		break;
1777 1778 1779
	case FUTEX_WAKE_OP:
		ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
		break;
1780 1781 1782 1783 1784 1785 1786 1787 1788
	case FUTEX_LOCK_PI:
		ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
		break;
	case FUTEX_UNLOCK_PI:
		ret = futex_unlock_pi(uaddr);
		break;
	case FUTEX_TRYLOCK_PI:
		ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
		break;
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793 1794 1795
	default:
		ret = -ENOSYS;
	}
	return ret;
}


1796
asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
L
Linus Torvalds 已提交
1797
			  struct timespec __user *utime, u32 __user *uaddr2,
1798
			  u32 val3)
L
Linus Torvalds 已提交
1799 1800 1801
{
	struct timespec t;
	unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1802
	u32 val2 = 0;
L
Linus Torvalds 已提交
1803

1804
	if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
L
Linus Torvalds 已提交
1805 1806
		if (copy_from_user(&t, utime, sizeof(t)) != 0)
			return -EFAULT;
1807 1808
		if (!timespec_valid(&t))
			return -EINVAL;
1809 1810 1811 1812 1813 1814
		if (op == FUTEX_WAIT)
			timeout = timespec_to_jiffies(&t) + 1;
		else {
			timeout = t.tv_sec;
			val2 = t.tv_nsec;
		}
L
Linus Torvalds 已提交
1815 1816 1817 1818
	}
	/*
	 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
	 */
1819
	if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1820
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
1821

1822
	return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
L
Linus Torvalds 已提交
1823 1824
}

1825 1826 1827
static int futexfs_get_sb(struct file_system_type *fs_type,
			  int flags, const char *dev_name, void *data,
			  struct vfsmount *mnt)
L
Linus Torvalds 已提交
1828
{
1829
	return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
}

static struct file_system_type futex_fs_type = {
	.name		= "futexfs",
	.get_sb		= futexfs_get_sb,
	.kill_sb	= kill_anon_super,
};

static int __init init(void)
{
A
Akinobu Mita 已提交
1840 1841 1842 1843
	int i = register_filesystem(&futex_fs_type);

	if (i)
		return i;
L
Linus Torvalds 已提交
1844 1845

	futex_mnt = kern_mount(&futex_fs_type);
A
Akinobu Mita 已提交
1846 1847 1848 1849
	if (IS_ERR(futex_mnt)) {
		unregister_filesystem(&futex_fs_type);
		return PTR_ERR(futex_mnt);
	}
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855 1856 1857

	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		INIT_LIST_HEAD(&futex_queues[i].chain);
		spin_lock_init(&futex_queues[i].lock);
	}
	return 0;
}
__initcall(init);