futex.c 93.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/wake_q.h>
65
#include <linux/sched/mm.h>
66
#include <linux/hugetlb.h>
C
Colin Cross 已提交
67
#include <linux/freezer.h>
68
#include <linux/bootmem.h>
69
#include <linux/fault-inject.h>
70

71
#include <asm/futex.h>
L
Linus Torvalds 已提交
72

73
#include "locking/rtmutex_common.h"
74

75
/*
76 77 78 79
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
80 81 82 83
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
84 85 86
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
87 88
 *
 * The waker side modifies the user space value of the futex and calls
89 90 91
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
92
 *
93 94 95 96 97
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
119 120 121 122 123
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
124 125 126
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
127
 *
128
 *   waiters++; (a)
129 130 131 132 133 134 135 136 137 138
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
139
 *   if (uval == val)
140
 *     queue();
141
 *     unlock(hash_bucket(futex));
142 143
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
144 145
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
146
 *
147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 150
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
151 152 153 154 155 156 157 158 159 160 161 162
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
163 164 165 166 167 168 169 170 171 172 173
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
174 175
 */

176
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177
int __read_mostly futex_cmpxchg_enabled;
178
#endif
179

180 181 182 183
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
184 185 186 187 188 189 190 191 192
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
193 194 195
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

217 218
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
219
 * @list:		priority-sorted list of tasks waiting on this futex
220 221 222 223 224 225 226 227 228
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
229 230 231
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
232
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233
 * The order of wakeup is always to make the first condition true, then
234 235 236 237
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
238 239
 */
struct futex_q {
P
Pierre Peiffer 已提交
240
	struct plist_node list;
L
Linus Torvalds 已提交
241

242
	struct task_struct *task;
L
Linus Torvalds 已提交
243 244
	spinlock_t *lock_ptr;
	union futex_key key;
245
	struct futex_pi_state *pi_state;
246
	struct rt_mutex_waiter *rt_waiter;
247
	union futex_key *requeue_pi_key;
248
	u32 bitset;
L
Linus Torvalds 已提交
249 250
};

251 252 253 254 255 256
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
257
/*
D
Darren Hart 已提交
258 259 260
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
261 262
 */
struct futex_hash_bucket {
263
	atomic_t waiters;
P
Pierre Peiffer 已提交
264 265
	spinlock_t lock;
	struct plist_head chain;
266
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
267

268 269 270 271 272 273 274 275 276 277 278
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
279

L
Linus Torvalds 已提交
280

281 282 283 284 285 286 287 288
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

289
	bool ignore_private;
290 291
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
292
	.ignore_private = false,
293 294 295 296 297 298 299 300
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

301
static bool should_fail_futex(bool fshared)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

341 342
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
343
	mmgrab(key->private.mm);
344 345 346
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
347
	 * as smp_mb(); (B), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351
}

352 353 354 355
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 357
{
#ifdef CONFIG_SMP
358
	atomic_inc(&hb->waiters);
359
	/*
360
	 * Full barrier (A), see the ordering comment above.
361
	 */
362
	smp_mb__after_atomic();
363 364 365 366 367 368 369 370 371 372 373 374 375
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
376

377 378 379 380
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
381
#else
382
	return 1;
383 384 385
#endif
}

386 387 388 389 390 391
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
392 393 394 395 396 397
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
398
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
399 400
}

401 402 403 404 405 406

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
407 408 409 410
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
411 412
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
413 414 415 416
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

417 418 419 420 421 422 423 424 425 426
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

427 428 429 430 431 432 433 434 435 436
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

437 438
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
439
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 441
		break;
	case FUT_OFF_MMSHARED:
442
		futex_get_mm(key); /* implies smp_mb(); (B) */
443
		break;
444
	default:
445 446 447 448 449
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
450
		smp_mb(); /* explicit smp_mb(); (B) */
451 452 453 454 455
	}
}

/*
 * Drop a reference to the resource addressed by a key.
456 457 458
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
459 460 461
 */
static void drop_futex_key_refs(union futex_key *key)
{
462 463 464
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
465
		return;
466
	}
467

468 469 470
	if (!IS_ENABLED(CONFIG_MMU))
		return;

471 472 473 474 475 476 477 478 479 480
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
481
/**
482 483 484 485
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
486 487
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
488
 *
489 490
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
491
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
492
 *
A
Al Viro 已提交
493
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
494 495 496
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
497
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
498
 */
499
static int
500
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
501
{
502
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
503
	struct mm_struct *mm = current->mm;
504
	struct page *page, *tail;
505
	struct address_space *mapping;
506
	int err, ro = 0;
L
Linus Torvalds 已提交
507 508 509 510

	/*
	 * The futex address must be "naturally" aligned.
	 */
511
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
512
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
513
		return -EINVAL;
514
	address -= key->both.offset;
L
Linus Torvalds 已提交
515

516 517 518
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

519 520 521
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
522 523 524 525 526 527 528 529 530 531
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
532
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
533 534
		return 0;
	}
L
Linus Torvalds 已提交
535

536
again:
537 538 539 540
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

541
	err = get_user_pages_fast(address, 1, 1, &page);
542 543 544 545 546 547 548 549
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
550 551
	if (err < 0)
		return err;
552 553
	else
		err = 0;
554

555 556 557 558 559 560 561 562 563 564
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
565 566 567 568 569 570 571
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
572
	 */
573
	tail = page;
574 575 576
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

577
	/*
578
	 * If page->mapping is NULL, then it cannot be a PageAnon
579 580 581 582 583 584 585 586 587 588 589
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
590
	 * an unlikely race, but we do need to retry for page->mapping.
591
	 */
592 593 594 595 596 597 598 599 600 601
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
602 603
		unlock_page(page);
		put_page(page);
604

605 606
		if (shmem_swizzled)
			goto again;
607

608
		return -EFAULT;
609
	}
L
Linus Torvalds 已提交
610 611 612 613

	/*
	 * Private mappings are handled in a simple way.
	 *
614 615 616
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
617 618
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
619
	 * the object not the particular process.
L
Linus Torvalds 已提交
620
	 */
621
	if (PageAnon(page)) {
622 623 624 625
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
626
		if (unlikely(should_fail_futex(fshared)) || ro) {
627 628 629 630
			err = -EFAULT;
			goto out;
		}

631
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
632
		key->private.mm = mm;
633
		key->private.address = address;
634 635 636

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

637
	} else {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
		 * truncated in parallel so warn for now if this happens.
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

695
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696
		key->shared.inode = inode;
697
		key->shared.pgoff = basepage_index(tail);
698
		rcu_read_unlock();
L
Linus Torvalds 已提交
699 700
	}

701
out:
702
	put_page(page);
703
	return err;
L
Linus Torvalds 已提交
704 705
}

706
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
707
{
708
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
709 710
}

711 712
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
713 714 715 716 717
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
718
 * We have no generic implementation of a non-destructive write to the
719 720 721 722 723 724
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
725 726 727 728
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
729
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730
			       FAULT_FLAG_WRITE, NULL);
731 732
	up_read(&mm->mmap_sem);

733 734 735
	return ret < 0 ? ret : 0;
}

736 737
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
738 739
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

755 756
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
757
{
758
	int ret;
T
Thomas Gleixner 已提交
759 760

	pagefault_disable();
761
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
762 763
	pagefault_enable();

764
	return ret;
T
Thomas Gleixner 已提交
765 766 767
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
768 769 770
{
	int ret;

771
	pagefault_disable();
772
	ret = __get_user(*dest, from);
773
	pagefault_enable();
L
Linus Torvalds 已提交
774 775 776 777

	return ret ? -EFAULT : 0;
}

778 779 780 781 782 783 784 785 786 787 788

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

789
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790 791 792 793 794 795 796 797

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
798
	pi_state->key = FUTEX_KEY_INIT;
799 800 801 802 803 804

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
805
static struct futex_pi_state *alloc_pi_state(void)
806 807 808 809 810 811 812 813 814
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
815 816 817 818 819
static void get_pi_state(struct futex_pi_state *pi_state)
{
	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
}

820
/*
821 822 823
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
 *
824 825
 * Must be called with the hb lock held.
 */
826
static void put_pi_state(struct futex_pi_state *pi_state)
827
{
828 829 830
	if (!pi_state)
		return;

831 832 833 834 835 836 837 838
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
839
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
840
		list_del_init(&pi_state->list);
841
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
P
Peter Zijlstra 已提交
864
static struct task_struct *futex_find_get_task(pid_t pid)
865 866 867
{
	struct task_struct *p;

868
	rcu_read_lock();
869
	p = find_task_by_vpid(pid);
870 871
	if (p)
		get_task_struct(p);
872

873
	rcu_read_unlock();
874 875 876 877 878 879 880 881 882 883 884 885 886

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
887
	struct futex_hash_bucket *hb;
888
	union futex_key key = FUTEX_KEY_INIT;
889

890 891
	if (!futex_cmpxchg_enabled)
		return;
892 893 894
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
895
	 * versus waiters unqueueing themselves:
896
	 */
897
	raw_spin_lock_irq(&curr->pi_lock);
898 899 900 901 902
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
903
		hb = hash_futex(&key);
904
		raw_spin_unlock_irq(&curr->pi_lock);
905 906 907

		spin_lock(&hb->lock);

908
		raw_spin_lock_irq(&curr->pi_lock);
909 910 911 912
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
913 914 915 916 917 918
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
919 920
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
921
		pi_state->owner = NULL;
922
		raw_spin_unlock_irq(&curr->pi_lock);
923

924
		get_pi_state(pi_state);
925 926
		spin_unlock(&hb->lock);

927 928 929
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

930
		raw_spin_lock_irq(&curr->pi_lock);
931
	}
932
	raw_spin_unlock_irq(&curr->pi_lock);
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1016
 */
1017 1018 1019 1020 1021 1022

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1023 1024
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1025
			      struct futex_pi_state **ps)
1026
{
1027
	pid_t pid = uval & FUTEX_TID_MASK;
1028 1029
	u32 uval2;
	int ret;
1030

1031 1032 1033 1034 1035
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1036

P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1043 1044 1045 1046 1047
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1048
	 */
1049
	WARN_ON(!atomic_read(&pi_state->refcount));
1050

P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1069 1070 1071 1072
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1073
		/*
1074 1075 1076
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1077
		 */
1078
		if (!pi_state->owner) {
1079
			/*
1080 1081
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1082
			 */
1083
			if (pid)
P
Peter Zijlstra 已提交
1084
				goto out_einval;
1085
			/*
1086
			 * Take a ref on the state and return success. [4]
1087
			 */
P
Peter Zijlstra 已提交
1088
			goto out_attach;
1089
		}
1090 1091

		/*
1092 1093 1094 1095 1096 1097 1098 1099
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1100
			goto out_attach;
1101 1102 1103 1104
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1105
		 */
1106
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1107
			goto out_einval;
1108 1109
	}

1110 1111 1112 1113 1114 1115
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1116 1117 1118
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1119
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1120
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1121 1122
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1139 1140
}

1141 1142 1143 1144 1145 1146
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
1147 1148
{
	pid_t pid = uval & FUTEX_TID_MASK;
1149 1150
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1151

1152
	/*
1153
	 * We are the first waiter - try to look up the real owner and attach
1154
	 * the new pi_state to it, but bail out when TID = 0 [1]
1155
	 */
1156
	if (!pid)
1157
		return -ESRCH;
1158
	p = futex_find_get_task(pid);
1159 1160
	if (!p)
		return -ESRCH;
1161

1162
	if (unlikely(p->flags & PF_KTHREAD)) {
1163 1164 1165 1166
		put_task_struct(p);
		return -EPERM;
	}

1167 1168 1169 1170 1171 1172
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1173
	raw_spin_lock_irq(&p->pi_lock);
1174 1175 1176 1177 1178 1179 1180 1181
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1182
		raw_spin_unlock_irq(&p->pi_lock);
1183 1184 1185
		put_task_struct(p);
		return ret;
	}
1186

1187 1188
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1189 1190 1191
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1192
	 */
1193 1194 1195
	pi_state = alloc_pi_state();

	/*
1196
	 * Initialize the pi_mutex in locked state and make @p
1197 1198 1199 1200 1201
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1202
	pi_state->key = *key;
1203

1204
	WARN_ON(!list_empty(&pi_state->list));
1205 1206
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
1207
	raw_spin_unlock_irq(&p->pi_lock);
1208 1209 1210

	put_task_struct(p);

P
Pierre Peiffer 已提交
1211
	*ps = pi_state;
1212 1213 1214 1215

	return 0;
}

P
Peter Zijlstra 已提交
1216 1217
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
1218 1219
			   union futex_key *key, struct futex_pi_state **ps)
{
1220
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1221 1222 1223 1224 1225

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1226
	if (top_waiter)
P
Peter Zijlstra 已提交
1227
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1228 1229 1230 1231 1232 1233 1234 1235

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1236 1237 1238 1239
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1240 1241 1242
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1243 1244 1245
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

P
Peter Zijlstra 已提交
1246
	/* If user space value changed, let the caller retry */
1247 1248 1249
	return curval != uval ? -EAGAIN : 0;
}

1250
/**
1251
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1252 1253 1254 1255 1256 1257 1258 1259
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1260
 *
1261 1262 1263
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
1264 1265 1266 1267 1268 1269 1270
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1271
				struct task_struct *task, int set_waiters)
1272
{
1273
	u32 uval, newval, vpid = task_pid_vnr(task);
1274
	struct futex_q *top_waiter;
1275
	int ret;
1276 1277

	/*
1278 1279
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1280
	 */
1281
	if (get_futex_value_locked(&uval, uaddr))
1282 1283
		return -EFAULT;

1284 1285 1286
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1287 1288 1289
	/*
	 * Detect deadlocks.
	 */
1290
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1291 1292
		return -EDEADLK;

1293 1294 1295
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1296
	/*
1297 1298
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1299
	 */
1300 1301
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1302
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1303 1304

	/*
1305 1306 1307 1308
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1309
	 */
1310
	if (!(uval & FUTEX_TID_MASK)) {
1311
		/*
1312 1313
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1314
		 */
1315 1316
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1317

1318 1319 1320 1321 1322 1323 1324 1325
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1326 1327

	/*
1328 1329 1330
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1331
	 */
1332 1333 1334 1335
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1336
	/*
1337 1338 1339
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1340
	 */
1341
	return attach_to_pi_owner(uval, key, ps);
1342 1343
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1354 1355
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1356 1357 1358 1359
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1360
	hb_waiters_dec(hb);
1361 1362
}

L
Linus Torvalds 已提交
1363 1364
/*
 * The hash bucket lock must be held when this is called.
1365 1366 1367
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1368
 */
1369
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1370
{
T
Thomas Gleixner 已提交
1371 1372
	struct task_struct *p = q->task;

1373 1374 1375
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1376
	/*
1377 1378
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1379
	 */
1380
	wake_q_add(wake_q, p);
1381
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1382
	/*
1383 1384 1385 1386 1387
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1388
	 */
1389
	smp_store_release(&q->lock_ptr, NULL);
L
Linus Torvalds 已提交
1390 1391
}

1392 1393 1394 1395
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1396
{
1397
	u32 uninitialized_var(curval), newval;
1398
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1399
	bool postunlock = false;
1400
	DEFINE_WAKE_Q(wake_q);
1401
	int ret = 0;
1402 1403

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1404
	if (WARN_ON_ONCE(!new_owner)) {
1405
		/*
1406
		 * As per the comment in futex_unlock_pi() this should not happen.
1407 1408 1409 1410 1411 1412 1413 1414
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1415
	}
1416 1417

	/*
1418 1419 1420
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1421
	 */
1422
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1423

1424 1425 1426
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1427
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1428
		ret = -EFAULT;
P
Peter Zijlstra 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	} else if (curval != uval) {
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1442

1443 1444
	if (ret)
		goto out_unlock;
1445

1446 1447 1448 1449 1450
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1451
	raw_spin_lock(&pi_state->owner->pi_lock);
1452 1453
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1454
	raw_spin_unlock(&pi_state->owner->pi_lock);
1455

1456
	raw_spin_lock(&new_owner->pi_lock);
1457
	WARN_ON(!list_empty(&pi_state->list));
1458 1459
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1460
	raw_spin_unlock(&new_owner->pi_lock);
1461

P
Peter Zijlstra 已提交
1462
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1463

1464
out_unlock:
1465 1466
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1467 1468
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1469

1470
	return ret;
1471 1472
}

I
Ingo Molnar 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1489 1490 1491
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1492
	spin_unlock(&hb1->lock);
1493 1494
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1495 1496
}

L
Linus Torvalds 已提交
1497
/*
D
Darren Hart 已提交
1498
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1499
 */
1500 1501
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1502
{
1503
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1504
	struct futex_q *this, *next;
1505
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1506
	int ret;
1507
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1508

1509 1510 1511
	if (!bitset)
		return -EINVAL;

1512
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1513 1514 1515
	if (unlikely(ret != 0))
		goto out;

1516
	hb = hash_futex(&key);
1517 1518 1519 1520 1521

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1522
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1523

J
Jason Low 已提交
1524
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1525
		if (match_futex (&this->key, &key)) {
1526
			if (this->pi_state || this->rt_waiter) {
1527 1528 1529
				ret = -EINVAL;
				break;
			}
1530 1531 1532 1533 1534

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1535
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540
			if (++ret >= nr_wake)
				break;
		}
	}

1541
	spin_unlock(&hb->lock);
1542
	wake_up_q(&wake_q);
1543
out_put_key:
1544
	put_futex_key(&key);
1545
out:
L
Linus Torvalds 已提交
1546 1547 1548
	return ret;
}

1549 1550 1551 1552
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1553
static int
1554
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1555
	      int nr_wake, int nr_wake2, int op)
1556
{
1557
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1558
	struct futex_hash_bucket *hb1, *hb2;
1559
	struct futex_q *this, *next;
D
Darren Hart 已提交
1560
	int ret, op_ret;
1561
	DEFINE_WAKE_Q(wake_q);
1562

D
Darren Hart 已提交
1563
retry:
1564
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1565 1566
	if (unlikely(ret != 0))
		goto out;
1567
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1568
	if (unlikely(ret != 0))
1569
		goto out_put_key1;
1570

1571 1572
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1573

D
Darren Hart 已提交
1574
retry_private:
T
Thomas Gleixner 已提交
1575
	double_lock_hb(hb1, hb2);
1576
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1577 1578
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1579
		double_unlock_hb(hb1, hb2);
1580

1581
#ifndef CONFIG_MMU
1582 1583 1584 1585
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1586
		ret = op_ret;
1587
		goto out_put_keys;
1588 1589
#endif

1590 1591
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1592
			goto out_put_keys;
1593 1594
		}

1595
		ret = fault_in_user_writeable(uaddr2);
1596
		if (ret)
1597
			goto out_put_keys;
1598

1599
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1600 1601
			goto retry_private;

1602 1603
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1604
		goto retry;
1605 1606
	}

J
Jason Low 已提交
1607
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1608
		if (match_futex (&this->key, &key1)) {
1609 1610 1611 1612
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1613
			mark_wake_futex(&wake_q, this);
1614 1615 1616 1617 1618 1619 1620
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1621
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1622
			if (match_futex (&this->key, &key2)) {
1623 1624 1625 1626
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1627
				mark_wake_futex(&wake_q, this);
1628 1629 1630 1631 1632 1633 1634
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1635
out_unlock:
D
Darren Hart 已提交
1636
	double_unlock_hb(hb1, hb2);
1637
	wake_up_q(&wake_q);
1638
out_put_keys:
1639
	put_futex_key(&key2);
1640
out_put_key1:
1641
	put_futex_key(&key1);
1642
out:
1643 1644 1645
	return ret;
}

D
Darren Hart 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1664 1665
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1666
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1667 1668 1669 1670 1671 1672
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1673 1674
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1675 1676 1677
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1678 1679 1680 1681 1682
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1683 1684 1685
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1686 1687
 */
static inline
1688 1689
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1690 1691 1692 1693
{
	get_futex_key_refs(key);
	q->key = *key;

1694
	__unqueue_futex(q);
1695 1696 1697 1698

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1699 1700
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1701
	wake_up_state(q->task, TASK_NORMAL);
1702 1703 1704 1705
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1706 1707 1708 1709 1710 1711 1712
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1713 1714
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1715 1716 1717
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1718
 *
1719 1720
 * Return:
 *  0 - failed to acquire the lock atomically;
1721
 * >0 - acquired the lock, return value is vpid of the top_waiter
1722 1723 1724 1725 1726 1727
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1728
				 struct futex_pi_state **ps, int set_waiters)
1729
{
1730
	struct futex_q *top_waiter = NULL;
1731
	u32 curval;
1732
	int ret, vpid;
1733 1734 1735 1736

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1737 1738 1739
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1740 1741 1742 1743 1744 1745 1746 1747
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1748 1749 1750 1751 1752 1753
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1754 1755 1756 1757
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1758
	/*
1759 1760 1761
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1762
	 */
1763
	vpid = task_pid_vnr(top_waiter->task);
1764 1765
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1766
	if (ret == 1) {
1767
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1768 1769
		return vpid;
	}
1770 1771 1772 1773 1774
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1775
 * @uaddr1:	source futex user address
1776
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1777 1778 1779 1780 1781
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1782
 *		pi futex (pi to pi requeue is not supported)
1783 1784 1785 1786
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1787 1788
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1789
 *  <0 - on error
L
Linus Torvalds 已提交
1790
 */
1791 1792 1793
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1794
{
1795
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1796 1797
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1798
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1799
	struct futex_q *this, *next;
1800
	DEFINE_WAKE_Q(wake_q);
1801 1802

	if (requeue_pi) {
1803 1804 1805 1806 1807 1808 1809
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1829

1830
retry:
1831
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1832 1833
	if (unlikely(ret != 0))
		goto out;
1834 1835
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1836
	if (unlikely(ret != 0))
1837
		goto out_put_key1;
L
Linus Torvalds 已提交
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1848 1849
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1850

D
Darren Hart 已提交
1851
retry_private:
1852
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1853
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1854

1855 1856
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1857

1858
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1859 1860

		if (unlikely(ret)) {
D
Darren Hart 已提交
1861
			double_unlock_hb(hb1, hb2);
1862
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1863

1864
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1865 1866
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1867

1868
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1869
				goto retry_private;
L
Linus Torvalds 已提交
1870

1871 1872
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1873
			goto retry;
L
Linus Torvalds 已提交
1874
		}
1875
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1881
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1882 1883 1884 1885 1886 1887
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1888
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1889
						 &key2, &pi_state, nr_requeue);
1890 1891 1892 1893 1894

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1895 1896
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1897 1898
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1899
		 */
1900
		if (ret > 0) {
1901
			WARN_ON(pi_state);
1902
			drop_count++;
1903
			task_count++;
1904
			/*
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1915
			 */
P
Peter Zijlstra 已提交
1916
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1917 1918 1919 1920
		}

		switch (ret) {
		case 0:
1921
			/* We hold a reference on the pi state. */
1922
			break;
1923 1924

			/* If the above failed, then pi_state is NULL */
1925 1926
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1927
			hb_waiters_dec(hb2);
1928 1929
			put_futex_key(&key2);
			put_futex_key(&key1);
1930
			ret = fault_in_user_writeable(uaddr2);
1931 1932 1933 1934
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1935 1936 1937 1938 1939 1940
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1941
			double_unlock_hb(hb1, hb2);
1942
			hb_waiters_dec(hb2);
1943 1944
			put_futex_key(&key2);
			put_futex_key(&key1);
1945 1946 1947 1948 1949 1950 1951
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1952
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1953 1954 1955 1956
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1957
			continue;
1958

1959 1960 1961
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1962 1963 1964
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1965 1966
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1967 1968
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1969 1970 1971
			ret = -EINVAL;
			break;
		}
1972 1973 1974 1975 1976 1977 1978

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
1979
			mark_wake_futex(&wake_q, this);
1980 1981
			continue;
		}
L
Linus Torvalds 已提交
1982

1983 1984 1985 1986 1987 1988
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1989 1990 1991 1992 1993
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
1994 1995 1996 1997 1998
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
1999
			get_pi_state(pi_state);
2000 2001 2002
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2003
							this->task);
2004
			if (ret == 1) {
2005 2006 2007 2008 2009 2010 2011 2012
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2013
				requeue_pi_wake_futex(this, &key2, hb2);
2014
				drop_count++;
2015 2016
				continue;
			} else if (ret) {
2017 2018 2019 2020 2021 2022 2023 2024
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2025
				this->pi_state = NULL;
2026
				put_pi_state(pi_state);
2027 2028 2029 2030 2031
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2032
			}
L
Linus Torvalds 已提交
2033
		}
2034 2035
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2036 2037
	}

2038 2039 2040 2041 2042
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2043
	put_pi_state(pi_state);
2044 2045

out_unlock:
D
Darren Hart 已提交
2046
	double_unlock_hb(hb1, hb2);
2047
	wake_up_q(&wake_q);
2048
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2049

2050 2051 2052 2053 2054 2055
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2056
	while (--drop_count >= 0)
2057
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2058

2059
out_put_keys:
2060
	put_futex_key(&key2);
2061
out_put_key1:
2062
	put_futex_key(&key1);
2063
out:
2064
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2065 2066 2067
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2068
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2069
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2070
{
2071
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2072

2073
	hb = hash_futex(&q->key);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

2085
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2086

2087
	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2088
	return hb;
L
Linus Torvalds 已提交
2089 2090
}

2091
static inline void
J
Jason Low 已提交
2092
queue_unlock(struct futex_hash_bucket *hb)
2093
	__releases(&hb->lock)
2094 2095
{
	spin_unlock(&hb->lock);
2096
	hb_waiters_dec(hb);
2097 2098
}

2099
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2100
{
P
Pierre Peiffer 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2115
	q->task = current;
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2134
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2135 2136
}

2137 2138 2139 2140 2141 2142 2143
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2144 2145
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
2146
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2147 2148 2149 2150
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2151
	int ret = 0;
L
Linus Torvalds 已提交
2152 2153

	/* In the common case we don't take the spinlock, which is nice. */
2154
retry:
2155 2156 2157 2158 2159 2160
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2161
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2180
		__unqueue_futex(q);
2181 2182 2183

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2184 2185 2186 2187
		spin_unlock(lock_ptr);
		ret = 1;
	}

2188
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2189 2190 2191
	return ret;
}

2192 2193
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2194 2195
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2196
 */
P
Pierre Peiffer 已提交
2197
static void unqueue_me_pi(struct futex_q *q)
2198
	__releases(q->lock_ptr)
2199
{
2200
	__unqueue_futex(q);
2201 2202

	BUG_ON(!q->pi_state);
2203
	put_pi_state(q->pi_state);
2204 2205
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2206
	spin_unlock(q->lock_ptr);
2207 2208
}

P
Pierre Peiffer 已提交
2209
/*
2210
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
2211
 *
2212 2213
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
2214
 */
2215
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2216
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
2217
{
2218
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
2219
	struct futex_pi_state *pi_state = q->pi_state;
2220
	u32 uval, uninitialized_var(curval), newval;
P
Peter Zijlstra 已提交
2221
	struct task_struct *oldowner;
D
Darren Hart 已提交
2222
	int ret;
P
Pierre Peiffer 已提交
2223

P
Peter Zijlstra 已提交
2224 2225 2226
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
2227
	/* Owner died? */
2228 2229 2230 2231 2232
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2233
	 * previous highest priority waiter or we are the highest priority
2234 2235
	 * waiter but have failed to get the rtmutex the first time.
	 *
2236 2237
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2238
	 *
D
Darren Hart 已提交
2239 2240 2241
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2242
	 *
P
Peter Zijlstra 已提交
2243 2244 2245 2246
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2247 2248 2249 2250 2251
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

2252
	for (;;) {
2253 2254
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2255
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2266
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2267
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2268 2269
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2270
		raw_spin_unlock(&pi_state->owner->pi_lock);
2271
	}
P
Pierre Peiffer 已提交
2272

2273
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2274

P
Peter Zijlstra 已提交
2275
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2276
	WARN_ON(!list_empty(&pi_state->list));
2277
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2278 2279 2280
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2281
	return 0;
P
Pierre Peiffer 已提交
2282 2283

	/*
P
Peter Zijlstra 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	 * To handle the page fault we need to drop the locks here. That gives
	 * the other task (either the highest priority waiter itself or the
	 * task which stole the rtmutex) the chance to try the fixup of the
	 * pi_state. So once we are back from handling the fault we need to
	 * check the pi_state after reacquiring the locks and before trying to
	 * do another fixup. When the fixup has been done already we simply
	 * return.
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2295
	 */
2296
handle_fault:
P
Peter Zijlstra 已提交
2297
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2298
	spin_unlock(q->lock_ptr);
2299

2300
	ret = fault_in_user_writeable(uaddr);
2301

2302
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2303
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2304

2305 2306 2307
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2308 2309 2310 2311
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2312 2313

	if (ret)
P
Peter Zijlstra 已提交
2314
		goto out_unlock;
2315 2316

	goto retry;
P
Peter Zijlstra 已提交
2317 2318 2319 2320

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2321 2322
}

N
Nick Piggin 已提交
2323
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2324

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2335 2336 2337
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
2338 2339
 * <0 - on error (-EFAULT)
 */
2340
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2341 2342 2343 2344 2345 2346 2347
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2348 2349 2350 2351
		 *
		 * We can safely read pi_state->owner without holding wait_lock
		 * because we now own the rt_mutex, only the owner will attempt
		 * to change it.
2352 2353
		 */
		if (q->pi_state->owner != current)
2354
			ret = fixup_pi_state_owner(uaddr, q, current);
2355 2356 2357 2358 2359
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2360
	 * the owner of the rt_mutex.
2361
	 */
2362
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2363 2364 2365 2366
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2367
	}
2368 2369 2370 2371 2372

out:
	return ret ? ret : locked;
}

2373 2374 2375 2376 2377 2378 2379
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2380
				struct hrtimer_sleeper *timeout)
2381
{
2382 2383
	/*
	 * The task state is guaranteed to be set before another task can
2384
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2385 2386 2387
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2388
	set_current_state(TASK_INTERRUPTIBLE);
2389
	queue_me(q, hb);
2390 2391

	/* Arm the timer */
2392
	if (timeout)
2393 2394 2395
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2396 2397
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2398 2399 2400 2401 2402 2403 2404 2405
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2406
			freezable_schedule();
2407 2408 2409 2410
	}
	__set_current_state(TASK_RUNNING);
}

2411 2412 2413 2414
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2415
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2416 2417 2418 2419 2420 2421 2422 2423
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2424 2425
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2426
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2427
 */
2428
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2429
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2430
{
2431 2432
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2433 2434

	/*
D
Darren Hart 已提交
2435
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2443 2444
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2445 2446
	 * cond(var) false, which would violate the guarantee.
	 *
2447 2448 2449 2450
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2451
	 */
2452
retry:
2453
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2454
	if (unlikely(ret != 0))
2455
		return ret;
2456 2457 2458 2459

retry_private:
	*hb = queue_lock(q);

2460
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2461

2462
	if (ret) {
J
Jason Low 已提交
2463
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2464

2465
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2466
		if (ret)
2467
			goto out;
L
Linus Torvalds 已提交
2468

2469
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2470 2471
			goto retry_private;

2472
		put_futex_key(&q->key);
D
Darren Hart 已提交
2473
		goto retry;
L
Linus Torvalds 已提交
2474
	}
2475

2476
	if (uval != val) {
J
Jason Low 已提交
2477
		queue_unlock(*hb);
2478
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2479
	}
L
Linus Torvalds 已提交
2480

2481 2482
out:
	if (ret)
2483
		put_futex_key(&q->key);
2484 2485 2486
	return ret;
}

2487 2488
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2489 2490 2491 2492
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2493
	struct futex_q q = futex_q_init;
2494 2495 2496 2497 2498 2499 2500 2501 2502
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2503 2504 2505
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2506 2507 2508 2509 2510
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2511
retry:
2512 2513 2514 2515
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2516
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2517 2518 2519
	if (ret)
		goto out;

2520
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2521
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2522 2523

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2524
	ret = 0;
2525
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2526
	if (!unqueue_me(&q))
2527
		goto out;
P
Peter Zijlstra 已提交
2528
	ret = -ETIMEDOUT;
2529
	if (to && !to->task)
2530
		goto out;
N
Nick Piggin 已提交
2531

2532
	/*
T
Thomas Gleixner 已提交
2533 2534
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2535
	 */
2536
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2537 2538
		goto retry;

P
Peter Zijlstra 已提交
2539
	ret = -ERESTARTSYS;
2540
	if (!abs_time)
2541
		goto out;
L
Linus Torvalds 已提交
2542

2543
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2544
	restart->fn = futex_wait_restart;
2545
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2546
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2547
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2548
	restart->futex.bitset = bitset;
2549
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2550

P
Peter Zijlstra 已提交
2551 2552
	ret = -ERESTART_RESTARTBLOCK;

2553
out:
2554 2555 2556 2557
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2558 2559 2560
	return ret;
}

N
Nick Piggin 已提交
2561 2562 2563

static long futex_wait_restart(struct restart_block *restart)
{
2564
	u32 __user *uaddr = restart->futex.uaddr;
2565
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2566

2567
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2568
		t = restart->futex.time;
2569 2570
		tp = &t;
	}
N
Nick Piggin 已提交
2571
	restart->fn = do_no_restart_syscall;
2572 2573 2574

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2575 2576 2577
}


2578 2579 2580
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2581 2582 2583 2584 2585
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2586
 */
2587
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2588
			 ktime_t *time, int trylock)
2589
{
2590
	struct hrtimer_sleeper timeout, *to = NULL;
2591
	struct futex_pi_state *pi_state = NULL;
2592
	struct rt_mutex_waiter rt_waiter;
2593
	struct futex_hash_bucket *hb;
2594
	struct futex_q q = futex_q_init;
2595
	int res, ret;
2596 2597 2598 2599

	if (refill_pi_state_cache())
		return -ENOMEM;

2600
	if (time) {
2601
		to = &timeout;
2602 2603
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2604
		hrtimer_init_sleeper(to, current);
2605
		hrtimer_set_expires(&to->timer, *time);
2606 2607
	}

2608
retry:
2609
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2610
	if (unlikely(ret != 0))
2611
		goto out;
2612

D
Darren Hart 已提交
2613
retry_private:
E
Eric Sesterhenn 已提交
2614
	hb = queue_lock(&q);
2615

2616
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2617
	if (unlikely(ret)) {
2618 2619 2620 2621
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2622
		switch (ret) {
2623 2624 2625 2626 2627 2628
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2629 2630
		case -EAGAIN:
			/*
2631 2632 2633 2634
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2635
			 */
J
Jason Low 已提交
2636
			queue_unlock(hb);
2637
			put_futex_key(&q.key);
2638 2639 2640
			cond_resched();
			goto retry;
		default:
2641
			goto out_unlock_put_key;
2642 2643 2644
		}
	}

2645 2646
	WARN_ON(!q.pi_state);

2647 2648 2649
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2650
	__queue_me(&q, hb);
2651

2652
	if (trylock) {
2653
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2654 2655
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2656
		goto no_block;
2657 2658
	}

2659 2660
	rt_mutex_init_waiter(&rt_waiter);

2661
	/*
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
	 * latter before calling rt_mutex_start_proxy_lock(). This still fully
	 * serializes against futex_unlock_pi() as that does the exact same
	 * lock handoff sequence.
2672
	 */
2673 2674 2675 2676 2677
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2678 2679 2680 2681
	if (ret) {
		if (ret == 1)
			ret = 0;

2682
		spin_lock(q.lock_ptr);
2683 2684 2685 2686 2687 2688 2689 2690 2691
		goto no_block;
	}


	if (unlikely(to))
		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2692
	spin_lock(q.lock_ptr);
2693 2694 2695 2696 2697
	/*
	 * If we failed to acquire the lock (signal/timeout), we must
	 * first acquire the hb->lock before removing the lock from the
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
	 * wait lists consistent.
2698 2699 2700
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2701 2702 2703 2704 2705
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2706 2707 2708 2709
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2710
	res = fixup_owner(uaddr, &q, !ret);
2711 2712 2713 2714 2715 2716
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2717

2718
	/*
2719 2720
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2721
	 */
2722 2723 2724 2725
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2726

2727 2728
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2729

2730 2731 2732 2733 2734
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

2735
	goto out_put_key;
2736

2737
out_unlock_put_key:
J
Jason Low 已提交
2738
	queue_unlock(hb);
2739

2740
out_put_key:
2741
	put_futex_key(&q.key);
2742
out:
2743 2744
	if (to) {
		hrtimer_cancel(&to->timer);
2745
		destroy_hrtimer_on_stack(&to->timer);
2746
	}
2747
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2748

2749
uaddr_faulted:
J
Jason Low 已提交
2750
	queue_unlock(hb);
2751

2752
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2753 2754
	if (ret)
		goto out_put_key;
2755

2756
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2757 2758
		goto retry_private;

2759
	put_futex_key(&q.key);
D
Darren Hart 已提交
2760
	goto retry;
2761 2762 2763 2764 2765 2766 2767
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2768
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2769
{
2770
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2771
	union futex_key key = FUTEX_KEY_INIT;
2772
	struct futex_hash_bucket *hb;
2773
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2774
	int ret;
2775 2776 2777 2778 2779 2780 2781

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2782
	if ((uval & FUTEX_TID_MASK) != vpid)
2783 2784
		return -EPERM;

2785
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2786 2787
	if (ret)
		return ret;
2788 2789 2790 2791 2792

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2793 2794 2795
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2796
	 */
2797 2798
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

2812
		get_pi_state(pi_state);
2813
		/*
2814 2815 2816 2817
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
2818
		 */
2819
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2820 2821 2822 2823 2824 2825 2826 2827
		spin_unlock(&hb->lock);

		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
2828 2829 2830
		 */
		if (!ret)
			goto out_putkey;
2831
		/*
2832 2833
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2834 2835 2836
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2837 2838 2839 2840 2841 2842 2843 2844
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
		if (ret == -EAGAIN) {
			put_futex_key(&key);
			goto retry;
		}
2845 2846 2847 2848
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2849
		goto out_putkey;
2850
	}
2851

2852
	/*
2853 2854 2855 2856 2857
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2858
	 */
2859 2860
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
		spin_unlock(&hb->lock);
2861
		goto pi_faulted;
2862
	}
2863

2864 2865 2866 2867 2868
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2869 2870
out_unlock:
	spin_unlock(&hb->lock);
2871
out_putkey:
2872
	put_futex_key(&key);
2873 2874 2875
	return ret;

pi_faulted:
2876
	put_futex_key(&key);
2877

2878
	ret = fault_in_user_writeable(uaddr);
2879
	if (!ret)
2880 2881
		goto retry;

L
Linus Torvalds 已提交
2882 2883 2884
	return ret;
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2897 2898 2899
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2921
		plist_del(&q->list, &hb->chain);
2922
		hb_waiters_dec(hb);
2923

T
Thomas Gleixner 已提交
2924
		/* Handle spurious wakeups gracefully */
2925
		ret = -EWOULDBLOCK;
2926 2927
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2928
		else if (signal_pending(current))
2929
			ret = -ERESTARTNOINTR;
2930 2931 2932 2933 2934 2935
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2936
 * @uaddr:	the futex we initially wait on (non-pi)
2937
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2938
 *		the same type, no requeueing from private to shared, etc.
2939 2940
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2941
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2942 2943 2944
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2945 2946 2947 2948 2949
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2950 2951
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2952
 * via the following--
2953
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2954 2955 2956
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2957
 *
2958
 * If 3, cleanup and return -ERESTARTNOINTR.
2959 2960 2961 2962 2963 2964 2965
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2966
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2967 2968 2969
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2970 2971
 * Return:
 *  0 - On success;
2972 2973
 * <0 - On error
 */
2974
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2975
				 u32 val, ktime_t *abs_time, u32 bitset,
2976
				 u32 __user *uaddr2)
2977 2978
{
	struct hrtimer_sleeper timeout, *to = NULL;
2979
	struct futex_pi_state *pi_state = NULL;
2980 2981
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
2982 2983
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2984 2985
	int res, ret;

2986 2987 2988
	if (uaddr == uaddr2)
		return -EINVAL;

2989 2990 2991 2992 2993
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2994 2995 2996
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2997 2998 2999 3000 3001 3002 3003 3004 3005
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3006
	rt_mutex_init_waiter(&rt_waiter);
3007

3008
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3009 3010 3011
	if (unlikely(ret != 0))
		goto out;

3012 3013 3014 3015
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3016 3017 3018 3019
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3020
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3021 3022
	if (ret)
		goto out_key2;
3023

3024 3025 3026 3027 3028
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3029
		queue_unlock(hb);
3030 3031 3032 3033
		ret = -EINVAL;
		goto out_put_keys;
	}

3034
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3035
	futex_wait_queue_me(hb, &q, to);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3047 3048 3049
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3060
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3061 3062 3063 3064
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3065 3066 3067 3068
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3069
			put_pi_state(q.pi_state);
3070 3071 3072
			spin_unlock(q.lock_ptr);
		}
	} else {
3073 3074
		struct rt_mutex *pi_mutex;

3075 3076 3077 3078 3079
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3080
		WARN_ON(!q.pi_state);
3081
		pi_mutex = &q.pi_state->pi_mutex;
3082
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3083 3084

		spin_lock(q.lock_ptr);
3085 3086 3087 3088
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3089 3090 3091 3092
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3093
		res = fixup_owner(uaddr2, &q, !ret);
3094 3095
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3096
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3097 3098 3099 3100
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3101 3102 3103 3104 3105
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3106 3107 3108 3109
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3110

3111 3112 3113 3114
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3115 3116 3117 3118 3119
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3120
	if (ret == -EINTR) {
3121
		/*
3122 3123 3124 3125 3126
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3127
		 */
3128
		ret = -EWOULDBLOCK;
3129 3130 3131
	}

out_put_keys:
3132
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3133
out_key2:
3134
	put_futex_key(&key2);
3135 3136 3137 3138 3139 3140 3141 3142 3143

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3144 3145 3146 3147 3148 3149 3150
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3151
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3152 3153 3154 3155 3156 3157 3158 3159
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3160 3161 3162
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3163
 */
3164 3165
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3166
{
3167 3168
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3181 3182 3183 3184
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3185
 */
3186 3187 3188
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3189
{
A
Al Viro 已提交
3190
	struct robust_list_head __user *head;
3191
	unsigned long ret;
3192
	struct task_struct *p;
3193

3194 3195 3196
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3197 3198 3199
	rcu_read_lock();

	ret = -ESRCH;
3200
	if (!pid)
3201
		p = current;
3202
	else {
3203
		p = find_task_by_vpid(pid);
3204 3205 3206 3207
		if (!p)
			goto err_unlock;
	}

3208
	ret = -EPERM;
3209
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3210 3211 3212 3213 3214
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3215 3216 3217 3218 3219
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3220
	rcu_read_unlock();
3221 3222 3223 3224 3225 3226 3227 3228

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3229
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3230
{
3231
	u32 uval, uninitialized_var(nval), mval;
3232

3233 3234
retry:
	if (get_user(uval, uaddr))
3235 3236
		return -1;

3237
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
3248
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
3263
		if (nval != uval)
3264
			goto retry;
3265

3266 3267 3268 3269
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
3270
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
3271
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3272 3273 3274 3275
	}
	return 0;
}

3276 3277 3278 3279
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3280
				     struct robust_list __user * __user *head,
3281
				     unsigned int *pi)
3282 3283 3284
{
	unsigned long uentry;

A
Al Viro 已提交
3285
	if (get_user(uentry, (unsigned long __user *)head))
3286 3287
		return -EFAULT;

A
Al Viro 已提交
3288
	*entry = (void __user *)(uentry & ~1UL);
3289 3290 3291 3292 3293
	*pi = uentry & 1;

	return 0;
}

3294 3295 3296 3297 3298 3299 3300 3301 3302
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3303
	struct robust_list __user *entry, *next_entry, *pending;
3304 3305
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3306
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3307
	int rc;
3308

3309 3310 3311
	if (!futex_cmpxchg_enabled)
		return;

3312 3313 3314 3315
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3316
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3327
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3328
		return;
3329

M
Martin Schwidefsky 已提交
3330
	next_entry = NULL;	/* avoid warning with gcc */
3331
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3332 3333 3334 3335 3336
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3337 3338
		/*
		 * A pending lock might already be on the list, so
3339
		 * don't process it twice:
3340 3341
		 */
		if (entry != pending)
A
Al Viro 已提交
3342
			if (handle_futex_death((void __user *)entry + futex_offset,
3343
						curr, pi))
3344
				return;
M
Martin Schwidefsky 已提交
3345
		if (rc)
3346
			return;
M
Martin Schwidefsky 已提交
3347 3348
		entry = next_entry;
		pi = next_pi;
3349 3350 3351 3352 3353 3354 3355 3356
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3357 3358 3359 3360

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3361 3362
}

3363
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3364
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3365
{
T
Thomas Gleixner 已提交
3366
	int cmd = op & FUTEX_CMD_MASK;
3367
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3368 3369

	if (!(op & FUTEX_PRIVATE_FLAG))
3370
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3371

3372 3373
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3374 3375
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3376 3377
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3378

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3389
	switch (cmd) {
L
Linus Torvalds 已提交
3390
	case FUTEX_WAIT:
3391 3392
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3393
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3394
	case FUTEX_WAKE:
3395 3396
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3397
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3398
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3399
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3400
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3401
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3402
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3403
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3404
	case FUTEX_LOCK_PI:
3405
		return futex_lock_pi(uaddr, flags, timeout, 0);
3406
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3407
		return futex_unlock_pi(uaddr, flags);
3408
	case FUTEX_TRYLOCK_PI:
3409
		return futex_lock_pi(uaddr, flags, NULL, 1);
3410 3411
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3412 3413
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3414
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3415
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3416
	}
T
Thomas Gleixner 已提交
3417
	return -ENOSYS;
L
Linus Torvalds 已提交
3418 3419 3420
}


3421 3422 3423
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3424
{
3425 3426
	struct timespec ts;
	ktime_t t, *tp = NULL;
3427
	u32 val2 = 0;
E
Eric Dumazet 已提交
3428
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3429

3430
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3431 3432
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3433 3434
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3435
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3436
			return -EFAULT;
3437
		if (!timespec_valid(&ts))
3438
			return -EINVAL;
3439 3440

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3441
		if (cmd == FUTEX_WAIT)
3442
			t = ktime_add_safe(ktime_get(), t);
3443
		tp = &t;
L
Linus Torvalds 已提交
3444 3445
	}
	/*
3446
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3447
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3448
	 */
3449
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3450
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3451
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3452

3453
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3454 3455
}

3456
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3457
{
3458
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3459
	u32 curval;
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3478
	unsigned int futex_shift;
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3490 3491 3492
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3493 3494

	futex_detect_cmpxchg();
3495

3496
	for (i = 0; i < futex_hashsize; i++) {
3497
		atomic_set(&futex_queues[i].waiters, 0);
3498
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3499 3500 3501
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3502 3503
	return 0;
}
3504
core_initcall(futex_init);