futex.c 71.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64

65
#include <asm/futex.h>
L
Linus Torvalds 已提交
66

67 68
#include "rtmutex_common.h"

69 70
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
71 72
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

73 74 75 76 77 78 79 80
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

102 103
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
104
 * @list:		priority-sorted list of tasks waiting on this futex
105 106 107 108 109 110 111 112 113
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
114 115 116
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
117
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118
 * The order of wakeup is always to make the first condition true, then
119 120 121 122
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
123 124
 */
struct futex_q {
P
Pierre Peiffer 已提交
125
	struct plist_node list;
L
Linus Torvalds 已提交
126

127
	struct task_struct *task;
L
Linus Torvalds 已提交
128 129
	spinlock_t *lock_ptr;
	union futex_key key;
130
	struct futex_pi_state *pi_state;
131
	struct rt_mutex_waiter *rt_waiter;
132
	union futex_key *requeue_pi_key;
133
	u32 bitset;
L
Linus Torvalds 已提交
134 135
};

136 137 138 139 140 141
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
142
/*
D
Darren Hart 已提交
143 144 145
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
146 147
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
148 149
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
170 171
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
172 173 174 175
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

176 177 178 179 180 181 182 183 184 185 186 187
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
A
Al Viro 已提交
188
		ihold(key->shared.inode);
189 190 191 192 193 194 195 196 197 198 199 200 201
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
202 203 204
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
205
		return;
206
	}
207 208 209 210 211 212 213 214 215 216 217

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
218
/**
219 220 221 222
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
223 224
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
225 226 227
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
228
 *
229
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
230 231 232
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
233
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
234
 */
235
static int
236
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
237
{
238
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
239
	struct mm_struct *mm = current->mm;
240
	struct page *page, *page_head;
241
	int err, ro = 0;
L
Linus Torvalds 已提交
242 243 244 245

	/*
	 * The futex address must be "naturally" aligned.
	 */
246
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
247
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
248
		return -EINVAL;
249
	address -= key->both.offset;
L
Linus Torvalds 已提交
250

E
Eric Dumazet 已提交
251 252 253 254 255 256 257 258
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
259
		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
260 261 262
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
263
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
264 265
		return 0;
	}
L
Linus Torvalds 已提交
266

267
again:
268
	err = get_user_pages_fast(address, 1, 1, &page);
269 270 271 272 273 274 275 276
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
277 278
	if (err < 0)
		return err;
279 280
	else
		err = 0;
281

282 283 284
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
285
		put_page(page);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
335
	if (!page_head->mapping) {
336
		int shmem_swizzled = PageSwapCache(page_head);
337 338
		unlock_page(page_head);
		put_page(page_head);
339 340 341
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
342
	}
L
Linus Torvalds 已提交
343 344 345 346 347 348

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
349
	 * the object not the particular process.
L
Linus Torvalds 已提交
350
	 */
351
	if (PageAnon(page_head)) {
352 353 354 355 356 357 358 359 360
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (ro) {
			err = -EFAULT;
			goto out;
		}

361
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
362
		key->private.mm = mm;
363
		key->private.address = address;
364 365
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
366 367
		key->shared.inode = page_head->mapping->host;
		key->shared.pgoff = page_head->index;
L
Linus Torvalds 已提交
368 369
	}

370
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
371

372
out:
373 374
	unlock_page(page_head);
	put_page(page_head);
375
	return err;
L
Linus Torvalds 已提交
376 377
}

378
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
379
{
380
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
381 382
}

383 384
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
385 386 387 388 389
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
390
 * We have no generic implementation of a non-destructive write to the
391 392 393 394 395 396
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
397 398 399 400
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
401 402
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
403 404
	up_read(&mm->mmap_sem);

405 406 407
	return ret < 0 ? ret : 0;
}

408 409
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
410 411
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

427 428
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
429
{
430
	int ret;
T
Thomas Gleixner 已提交
431 432

	pagefault_disable();
433
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
434 435
	pagefault_enable();

436
	return ret;
T
Thomas Gleixner 已提交
437 438 439
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
440 441 442
{
	int ret;

443
	pagefault_disable();
444
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
445
	pagefault_enable();
L
Linus Torvalds 已提交
446 447 448 449

	return ret ? -EFAULT : 0;
}

450 451 452 453 454 455 456 457 458 459 460

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

461
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
462 463 464 465 466 467 468 469

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
470
	pi_state->key = FUTEX_KEY_INIT;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
497
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
498
		list_del_init(&pi_state->list);
499
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

526
	rcu_read_lock();
527
	p = find_task_by_vpid(pid);
528 529
	if (p)
		get_task_struct(p);
530

531
	rcu_read_unlock();
532 533 534 535 536 537 538 539 540 541 542 543 544

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
545
	struct futex_hash_bucket *hb;
546
	union futex_key key = FUTEX_KEY_INIT;
547

548 549
	if (!futex_cmpxchg_enabled)
		return;
550 551 552
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
553
	 * versus waiters unqueueing themselves:
554
	 */
555
	raw_spin_lock_irq(&curr->pi_lock);
556 557 558 559 560
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
561
		hb = hash_futex(&key);
562
		raw_spin_unlock_irq(&curr->pi_lock);
563 564 565

		spin_lock(&hb->lock);

566
		raw_spin_lock_irq(&curr->pi_lock);
567 568 569 570
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
571 572 573 574 575 576
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
577 578
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
579
		pi_state->owner = NULL;
580
		raw_spin_unlock_irq(&curr->pi_lock);
581 582 583 584 585

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

586
		raw_spin_lock_irq(&curr->pi_lock);
587
	}
588
	raw_spin_unlock_irq(&curr->pi_lock);
589 590 591
}

static int
P
Pierre Peiffer 已提交
592 593
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
594 595 596
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
597
	struct plist_head *head;
598
	struct task_struct *p;
599
	pid_t pid = uval & FUTEX_TID_MASK;
600 601 602

	head = &hb->chain;

P
Pierre Peiffer 已提交
603
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
604
		if (match_futex(&this->key, key)) {
605 606 607 608 609
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
610
			/*
611
			 * Userspace might have messed up non-PI and PI futexes
612 613 614 615
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

616
			WARN_ON(!atomic_read(&pi_state->refcount));
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
636

637
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
638
			*ps = pi_state;
639 640 641 642 643 644

			return 0;
		}
	}

	/*
645
	 * We are the first waiter - try to look up the real owner and attach
646
	 * the new pi_state to it, but bail out when TID = 0
647
	 */
648
	if (!pid)
649
		return -ESRCH;
650
	p = futex_find_get_task(pid);
651 652
	if (!p)
		return -ESRCH;
653 654 655 656 657 658 659

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
660
	raw_spin_lock_irq(&p->pi_lock);
661 662 663 664 665 666 667 668
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

669
		raw_spin_unlock_irq(&p->pi_lock);
670 671 672
		put_task_struct(p);
		return ret;
	}
673 674 675 676 677 678 679 680 681 682

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
683
	pi_state->key = *key;
684

685
	WARN_ON(!list_empty(&pi_state->list));
686 687
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
688
	raw_spin_unlock_irq(&p->pi_lock);
689 690 691

	put_task_struct(p);

P
Pierre Peiffer 已提交
692
	*ps = pi_state;
693 694 695 696

	return 0;
}

697
/**
698
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
699 700 701 702 703 704 705 706
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
707 708 709 710 711 712 713 714 715 716 717
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
718
				struct task_struct *task, int set_waiters)
719
{
720
	int lock_taken, ret, force_take = 0;
721
	u32 uval, newval, curval, vpid = task_pid_vnr(task);
722 723 724 725 726 727 728 729 730

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
731
	newval = vpid;
732 733
	if (set_waiters)
		newval |= FUTEX_WAITERS;
734

735
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
736 737 738 739 740
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
741
	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
759
	 * Should we force take the futex? See below.
760
	 */
761 762 763 764 765
	if (unlikely(force_take)) {
		/*
		 * Keep the OWNER_DIED and the WAITERS bit and set the
		 * new TID value.
		 */
766
		newval = (curval & ~FUTEX_TID_MASK) | vpid;
767
		force_take = 0;
768 769 770
		lock_taken = 1;
	}

771
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
772 773 774 775 776
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
777
	 * We took the lock due to forced take over.
778 779 780 781 782 783 784 785 786 787 788 789 790 791
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
792 793 794 795 796 797 798 799
			 * We failed to find an owner for this
			 * futex. So we have no pi_state to block
			 * on. This can happen in two cases:
			 *
			 * 1) The owner died
			 * 2) A stale FUTEX_WAITERS bit
			 *
			 * Re-read the futex value.
800 801 802 803 804
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
805 806 807
			 * If the owner died or we have a stale
			 * WAITERS bit the owner TID in the user space
			 * futex is 0.
808
			 */
809 810
			if (!(curval & FUTEX_TID_MASK)) {
				force_take = 1;
811 812 813 814 815 816 817 818 819 820
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

821 822 823 824 825 826 827 828 829 830
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

831 832
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
833 834 835 836 837 838
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
}

L
Linus Torvalds 已提交
839 840 841 842 843 844
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
845 846
	struct task_struct *p = q->task;

847 848 849
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
850
	/*
T
Thomas Gleixner 已提交
851
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
852 853
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
854 855
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
856
	 */
T
Thomas Gleixner 已提交
857 858
	get_task_struct(p);

859
	__unqueue_futex(q);
L
Linus Torvalds 已提交
860
	/*
T
Thomas Gleixner 已提交
861 862 863 864
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
865
	 */
866
	smp_wmb();
L
Linus Torvalds 已提交
867
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
868 869 870

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
871 872
}

873 874 875 876
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
877
	u32 uninitialized_var(curval), newval;
878 879 880 881

	if (!pi_state)
		return -EINVAL;

882 883 884 885 886 887 888
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

889
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
890 891 892
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
893 894 895
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
896 897 898 899 900 901 902 903 904
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
905
	if (!(uval & FUTEX_OWNER_DIED)) {
906 907
		int ret = 0;

908
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
909

910
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
911
			ret = -EFAULT;
912
		else if (curval != uval)
913 914
			ret = -EINVAL;
		if (ret) {
915
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
916 917
			return ret;
		}
918
	}
919

920
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
921 922
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
923
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
924

925
	raw_spin_lock_irq(&new_owner->pi_lock);
926
	WARN_ON(!list_empty(&pi_state->list));
927 928
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
929
	raw_spin_unlock_irq(&new_owner->pi_lock);
930

931
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
932 933 934 935 936 937 938
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
939
	u32 uninitialized_var(oldval);
940 941 942 943 944

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
945 946
	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
		return -EFAULT;
947 948 949 950 951 952
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
969 970 971
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
972
	spin_unlock(&hb1->lock);
973 974
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
975 976
}

L
Linus Torvalds 已提交
977
/*
D
Darren Hart 已提交
978
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
979
 */
980 981
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
982
{
983
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
984
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
985
	struct plist_head *head;
986
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
987 988
	int ret;

989 990 991
	if (!bitset)
		return -EINVAL;

992
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
993 994 995
	if (unlikely(ret != 0))
		goto out;

996 997 998
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
999

P
Pierre Peiffer 已提交
1000
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
1001
		if (match_futex (&this->key, &key)) {
1002
			if (this->pi_state || this->rt_waiter) {
1003 1004 1005
				ret = -EINVAL;
				break;
			}
1006 1007 1008 1009 1010

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
1011 1012 1013 1014 1015 1016
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

1017
	spin_unlock(&hb->lock);
1018
	put_futex_key(&key);
1019
out:
L
Linus Torvalds 已提交
1020 1021 1022
	return ret;
}

1023 1024 1025 1026
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1027
static int
1028
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1029
	      int nr_wake, int nr_wake2, int op)
1030
{
1031
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1032
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1033
	struct plist_head *head;
1034
	struct futex_q *this, *next;
D
Darren Hart 已提交
1035
	int ret, op_ret;
1036

D
Darren Hart 已提交
1037
retry:
1038
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1039 1040
	if (unlikely(ret != 0))
		goto out;
1041
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1042
	if (unlikely(ret != 0))
1043
		goto out_put_key1;
1044

1045 1046
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1047

D
Darren Hart 已提交
1048
retry_private:
T
Thomas Gleixner 已提交
1049
	double_lock_hb(hb1, hb2);
1050
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1051 1052
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1053
		double_unlock_hb(hb1, hb2);
1054

1055
#ifndef CONFIG_MMU
1056 1057 1058 1059
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1060
		ret = op_ret;
1061
		goto out_put_keys;
1062 1063
#endif

1064 1065
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1066
			goto out_put_keys;
1067 1068
		}

1069
		ret = fault_in_user_writeable(uaddr2);
1070
		if (ret)
1071
			goto out_put_keys;
1072

1073
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1074 1075
			goto retry_private;

1076 1077
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1078
		goto retry;
1079 1080
	}

1081
	head = &hb1->chain;
1082

P
Pierre Peiffer 已提交
1083
	plist_for_each_entry_safe(this, next, head, list) {
1084
		if (match_futex (&this->key, &key1)) {
1085 1086 1087 1088
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1089 1090 1091 1092 1093 1094 1095
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
1096
		head = &hb2->chain;
1097 1098

		op_ret = 0;
P
Pierre Peiffer 已提交
1099
		plist_for_each_entry_safe(this, next, head, list) {
1100
			if (match_futex (&this->key, &key2)) {
1101 1102 1103 1104
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1105 1106 1107 1108 1109 1110 1111 1112
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1113
out_unlock:
D
Darren Hart 已提交
1114
	double_unlock_hb(hb1, hb2);
1115
out_put_keys:
1116
	put_futex_key(&key2);
1117
out_put_key1:
1118
	put_futex_key(&key1);
1119
out:
1120 1121 1122
	return ret;
}

D
Darren Hart 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1148 1149
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1150 1151 1152
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1153 1154 1155 1156 1157
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1158 1159 1160
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1161 1162
 */
static inline
1163 1164
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1165 1166 1167 1168
{
	get_futex_key_refs(key);
	q->key = *key;

1169
	__unqueue_futex(q);
1170 1171 1172 1173

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1174 1175
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1176
	wake_up_state(q->task, TASK_NORMAL);
1177 1178 1179 1180
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1181 1182 1183 1184 1185 1186 1187
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1188 1189
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1190 1191 1192
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1203
				 struct futex_pi_state **ps, int set_waiters)
1204
{
1205
	struct futex_q *top_waiter = NULL;
1206 1207 1208 1209 1210 1211
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1212 1213 1214 1215 1216 1217 1218 1219
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1220 1221 1222 1223 1224 1225
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1226 1227 1228 1229
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1230
	/*
1231 1232 1233
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1234
	 */
1235 1236
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1237
	if (ret == 1)
1238
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1239 1240 1241 1242 1243 1244

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1245
 * @uaddr1:	source futex user address
1246
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1247 1248 1249 1250 1251
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1252
 *		pi futex (pi to pi requeue is not supported)
1253 1254 1255 1256 1257 1258 1259
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1260
 */
1261 1262 1263
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1264
{
1265
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1266 1267
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1268
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1269
	struct plist_head *head1;
L
Linus Torvalds 已提交
1270
	struct futex_q *this, *next;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1293

1294
retry:
1295 1296 1297 1298 1299 1300 1301 1302 1303
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1304
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1305 1306
	if (unlikely(ret != 0))
		goto out;
1307 1308
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1309
	if (unlikely(ret != 0))
1310
		goto out_put_key1;
L
Linus Torvalds 已提交
1311

1312 1313
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1314

D
Darren Hart 已提交
1315
retry_private:
I
Ingo Molnar 已提交
1316
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1317

1318 1319
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1320

1321
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1322 1323

		if (unlikely(ret)) {
D
Darren Hart 已提交
1324
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1325

1326
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1327 1328
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1329

1330
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1331
				goto retry_private;
L
Linus Torvalds 已提交
1332

1333 1334
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1335
			goto retry;
L
Linus Torvalds 已提交
1336
		}
1337
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1338 1339 1340 1341 1342
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1343
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1344 1345 1346 1347 1348 1349
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1350
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1351
						 &key2, &pi_state, nr_requeue);
1352 1353 1354 1355 1356 1357 1358 1359 1360

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1361
			drop_count++;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1374 1375
			put_futex_key(&key2);
			put_futex_key(&key1);
1376
			ret = fault_in_user_writeable(uaddr2);
1377 1378 1379 1380 1381 1382
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
1383 1384
			put_futex_key(&key2);
			put_futex_key(&key1);
1385 1386 1387 1388 1389 1390 1391
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1392
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1393
	plist_for_each_entry_safe(this, next, head1, list) {
1394 1395 1396 1397
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1398
			continue;
1399

1400 1401 1402
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1403 1404 1405
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1406 1407
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1408 1409
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1410 1411 1412
			ret = -EINVAL;
			break;
		}
1413 1414 1415 1416 1417 1418 1419

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1420
			wake_futex(this);
1421 1422
			continue;
		}
L
Linus Torvalds 已提交
1423

1424 1425 1426 1427 1428 1429
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1443
				requeue_pi_wake_futex(this, &key2, hb2);
1444
				drop_count++;
1445 1446 1447 1448 1449 1450 1451
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1452
		}
1453 1454
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1455 1456 1457
	}

out_unlock:
D
Darren Hart 已提交
1458
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1459

1460 1461 1462 1463 1464 1465
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1466
	while (--drop_count >= 0)
1467
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1468

1469
out_put_keys:
1470
	put_futex_key(&key2);
1471
out_put_key1:
1472
	put_futex_key(&key1);
1473
out:
1474 1475 1476
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1477 1478 1479
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1480
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1481
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1482
{
1483
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1484

1485 1486
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1487

1488 1489
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1490 1491
}

1492 1493
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1494
	__releases(&hb->lock)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
{
	spin_unlock(&hb->lock);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1511
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1512
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1513
{
P
Pierre Peiffer 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1528
	q->task = current;
1529
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1530 1531
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1542 1543 1544 1545
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1546
	int ret = 0;
L
Linus Torvalds 已提交
1547 1548

	/* In the common case we don't take the spinlock, which is nice. */
1549
retry:
L
Linus Torvalds 已提交
1550
	lock_ptr = q->lock_ptr;
1551
	barrier();
1552
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1571
		__unqueue_futex(q);
1572 1573 1574

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1575 1576 1577 1578
		spin_unlock(lock_ptr);
		ret = 1;
	}

1579
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1580 1581 1582
	return ret;
}

1583 1584
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1585 1586
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1587
 */
P
Pierre Peiffer 已提交
1588
static void unqueue_me_pi(struct futex_q *q)
1589
	__releases(q->lock_ptr)
1590
{
1591
	__unqueue_futex(q);
1592 1593 1594 1595 1596

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1597
	spin_unlock(q->lock_ptr);
1598 1599
}

P
Pierre Peiffer 已提交
1600
/*
1601
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1602
 *
1603 1604
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1605
 */
1606
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1607
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1608
{
1609
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1610
	struct futex_pi_state *pi_state = q->pi_state;
1611
	struct task_struct *oldowner = pi_state->owner;
1612
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1613
	int ret;
P
Pierre Peiffer 已提交
1614 1615

	/* Owner died? */
1616 1617 1618 1619 1620
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
1621 1622 1623 1624
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
1625
	 *
D
Darren Hart 已提交
1626 1627 1628
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1643
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1654
	if (pi_state->owner != NULL) {
1655
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1656 1657
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1658
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1659
	}
P
Pierre Peiffer 已提交
1660

1661
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1662

1663
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1664
	WARN_ON(!list_empty(&pi_state->list));
1665
	list_add(&pi_state->list, &newowner->pi_state_list);
1666
	raw_spin_unlock_irq(&newowner->pi_lock);
1667
	return 0;
P
Pierre Peiffer 已提交
1668 1669

	/*
1670
	 * To handle the page fault we need to drop the hash bucket
1671 1672
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
1673 1674 1675 1676 1677
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1678
	 */
1679 1680
handle_fault:
	spin_unlock(q->lock_ptr);
1681

1682
	ret = fault_in_user_writeable(uaddr);
1683

1684
	spin_lock(q->lock_ptr);
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1696 1697
}

N
Nick Piggin 已提交
1698
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
1715
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1726
			ret = fixup_pi_state_owner(uaddr, q, current);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
1748
		 * rt_mutex. Too late.
1749
		 */
1750
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1751
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1752 1753 1754
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1755
		ret = fixup_pi_state_owner(uaddr, q, owner);
1756 1757 1758 1759 1760
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
1761
	 * the owner of the rt_mutex.
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1773 1774 1775 1776 1777 1778 1779
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1780
				struct hrtimer_sleeper *timeout)
1781
{
1782 1783 1784 1785 1786 1787
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1788
	set_current_state(TASK_INTERRUPTIBLE);
1789
	queue_me(q, hb);
1790 1791 1792 1793 1794 1795 1796 1797 1798

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1799 1800
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1814 1815 1816 1817
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
1818
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
1829
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1830
 */
1831
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1832
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1833
{
1834 1835
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1836 1837

	/*
D
Darren Hart 已提交
1838
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843 1844 1845
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
1846 1847
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
1848 1849
	 * cond(var) false, which would violate the guarantee.
	 *
1850 1851 1852 1853
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
1854
	 */
1855
retry:
1856
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1857
	if (unlikely(ret != 0))
1858
		return ret;
1859 1860 1861 1862

retry_private:
	*hb = queue_lock(q);

1863
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1864

1865 1866
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1867

1868
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1869
		if (ret)
1870
			goto out;
L
Linus Torvalds 已提交
1871

1872
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1873 1874
			goto retry_private;

1875
		put_futex_key(&q->key);
D
Darren Hart 已提交
1876
		goto retry;
L
Linus Torvalds 已提交
1877
	}
1878

1879 1880 1881
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1882
	}
L
Linus Torvalds 已提交
1883

1884 1885
out:
	if (ret)
1886
		put_futex_key(&q->key);
1887 1888 1889
	return ret;
}

1890 1891
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
1892 1893 1894 1895
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
1896
	struct futex_q q = futex_q_init;
1897 1898 1899 1900 1901 1902 1903 1904 1905
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

1906 1907 1908
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
1909 1910 1911 1912 1913
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
1914
retry:
1915 1916 1917 1918
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
1919
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1920 1921 1922
	if (ret)
		goto out;

1923
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1924
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1925 1926

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1927
	ret = 0;
1928
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
1929
	if (!unqueue_me(&q))
1930
		goto out;
P
Peter Zijlstra 已提交
1931
	ret = -ETIMEDOUT;
1932
	if (to && !to->task)
1933
		goto out;
N
Nick Piggin 已提交
1934

1935
	/*
T
Thomas Gleixner 已提交
1936 1937
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
1938
	 */
1939
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
1940 1941
		goto retry;

P
Peter Zijlstra 已提交
1942
	ret = -ERESTARTSYS;
1943
	if (!abs_time)
1944
		goto out;
L
Linus Torvalds 已提交
1945

P
Peter Zijlstra 已提交
1946 1947
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
1948
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
1949 1950 1951
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1952
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1953

P
Peter Zijlstra 已提交
1954 1955
	ret = -ERESTART_RESTARTBLOCK;

1956
out:
1957 1958 1959 1960
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1961 1962 1963
	return ret;
}

N
Nick Piggin 已提交
1964 1965 1966

static long futex_wait_restart(struct restart_block *restart)
{
1967
	u32 __user *uaddr = restart->futex.uaddr;
1968
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1969

1970 1971 1972 1973
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1974
	restart->fn = do_no_restart_syscall;
1975 1976 1977

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
1978 1979 1980
}


1981 1982 1983 1984 1985 1986
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
1987 1988
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
1989
{
1990
	struct hrtimer_sleeper timeout, *to = NULL;
1991
	struct futex_hash_bucket *hb;
1992
	struct futex_q q = futex_q_init;
1993
	int res, ret;
1994 1995 1996 1997

	if (refill_pi_state_cache())
		return -ENOMEM;

1998
	if (time) {
1999
		to = &timeout;
2000 2001
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2002
		hrtimer_init_sleeper(to, current);
2003
		hrtimer_set_expires(&to->timer, *time);
2004 2005
	}

2006
retry:
2007
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2008
	if (unlikely(ret != 0))
2009
		goto out;
2010

D
Darren Hart 已提交
2011
retry_private:
E
Eric Sesterhenn 已提交
2012
	hb = queue_lock(&q);
2013

2014
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2015
	if (unlikely(ret)) {
2016
		switch (ret) {
2017 2018 2019 2020 2021 2022
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2023 2024 2025 2026 2027 2028
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
2029
			put_futex_key(&q.key);
2030 2031 2032
			cond_resched();
			goto retry;
		default:
2033
			goto out_unlock_put_key;
2034 2035 2036 2037 2038 2039
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2040
	queue_me(&q, hb);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2054
	spin_lock(q.lock_ptr);
2055 2056 2057 2058
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2059
	res = fixup_owner(uaddr, &q, !ret);
2060 2061 2062 2063 2064 2065
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2066

2067
	/*
2068 2069
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2070 2071 2072 2073
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2074 2075
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2076

2077
	goto out_put_key;
2078

2079
out_unlock_put_key:
2080 2081
	queue_unlock(&q, hb);

2082
out_put_key:
2083
	put_futex_key(&q.key);
2084
out:
2085 2086
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2087
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2088

2089
uaddr_faulted:
2090 2091
	queue_unlock(&q, hb);

2092
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2093 2094
	if (ret)
		goto out_put_key;
2095

2096
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2097 2098
		goto retry_private;

2099
	put_futex_key(&q.key);
D
Darren Hart 已提交
2100
	goto retry;
2101 2102 2103 2104 2105 2106 2107
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2108
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2109 2110 2111
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
2112
	struct plist_head *head;
2113
	union futex_key key = FUTEX_KEY_INIT;
2114
	u32 uval, vpid = task_pid_vnr(current);
D
Darren Hart 已提交
2115
	int ret;
2116 2117 2118 2119 2120 2121 2122

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2123
	if ((uval & FUTEX_TID_MASK) != vpid)
2124 2125
		return -EPERM;

2126
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
2138 2139
	if (!(uval & FUTEX_OWNER_DIED) &&
	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2140 2141 2142 2143 2144
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2145
	if (unlikely(uval == vpid))
2146 2147 2148 2149 2150 2151 2152 2153
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2154
	plist_for_each_entry_safe(this, next, head, list) {
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2170 2171 2172 2173 2174
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2175 2176 2177

out_unlock:
	spin_unlock(&hb->lock);
2178
	put_futex_key(&key);
2179

2180
out:
2181 2182 2183
	return ret;

pi_faulted:
2184
	spin_unlock(&hb->lock);
2185
	put_futex_key(&key);
2186

2187
	ret = fault_in_user_writeable(uaddr);
2188
	if (!ret)
2189 2190
		goto retry;

L
Linus Torvalds 已提交
2191 2192 2193
	return ret;
}

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2208
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2230
		plist_del(&q->list, &hb->chain);
2231

T
Thomas Gleixner 已提交
2232
		/* Handle spurious wakeups gracefully */
2233
		ret = -EWOULDBLOCK;
2234 2235
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2236
		else if (signal_pending(current))
2237
			ret = -ERESTARTNOINTR;
2238 2239 2240 2241 2242 2243
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2244
 * @uaddr:	the futex we initially wait on (non-pi)
2245
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2246 2247 2248
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2249
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2250 2251 2252 2253
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2254 2255 2256 2257 2258
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2259 2260 2261 2262
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2263 2264 2265
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2266
 *
2267
 * If 3, cleanup and return -ERESTARTNOINTR.
2268 2269 2270 2271 2272 2273 2274
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2275
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2276 2277 2278 2279 2280 2281 2282
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
2283
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2284
				 u32 val, ktime_t *abs_time, u32 bitset,
2285
				 u32 __user *uaddr2)
2286 2287 2288 2289 2290
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2291 2292
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2293 2294
	int res, ret;

2295 2296 2297
	if (uaddr == uaddr2)
		return -EINVAL;

2298 2299 2300 2301 2302
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2303 2304 2305
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

2318
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2319 2320 2321
	if (unlikely(ret != 0))
		goto out;

2322 2323 2324 2325
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2326 2327 2328 2329
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2330
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2331 2332
	if (ret)
		goto out_key2;
2333 2334

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2335
	futex_wait_queue_me(hb, &q, to);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2347 2348 2349
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2360
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2361 2362 2363 2364 2365 2366 2367 2368
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2369
		WARN_ON(!q.pi_state);
2370 2371 2372 2373 2374 2375 2376 2377 2378
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2379
		res = fixup_owner(uaddr2, &q, !ret);
2380 2381
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2382
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2396
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2397 2398 2399
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2400 2401 2402 2403 2404
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2405
		 */
2406
		ret = -EWOULDBLOCK;
2407 2408 2409
	}

out_put_keys:
2410
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2411
out_key2:
2412
	put_futex_key(&key2);
2413 2414 2415 2416 2417 2418 2419 2420 2421

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2422 2423 2424 2425 2426 2427 2428
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2429
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2430 2431 2432 2433 2434 2435 2436 2437
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2438 2439 2440
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2441
 */
2442 2443
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2444
{
2445 2446
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2459 2460 2461 2462
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2463
 */
2464 2465 2466
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2467
{
A
Al Viro 已提交
2468
	struct robust_list_head __user *head;
2469
	unsigned long ret;
2470
	struct task_struct *p;
2471

2472 2473 2474
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2475 2476 2477
	rcu_read_lock();

	ret = -ESRCH;
2478
	if (!pid)
2479
		p = current;
2480
	else {
2481
		p = find_task_by_vpid(pid);
2482 2483 2484 2485
		if (!p)
			goto err_unlock;
	}

2486 2487 2488 2489 2490 2491 2492
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2493 2494 2495 2496 2497
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2498
	rcu_read_unlock();
2499 2500 2501 2502 2503 2504 2505 2506

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2507
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2508
{
2509
	u32 uval, uninitialized_var(nval), mval;
2510

2511 2512
retry:
	if (get_user(uval, uaddr))
2513 2514
		return -1;

2515
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2526
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2541
		if (nval != uval)
2542
			goto retry;
2543

2544 2545 2546 2547
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2548
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2549
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2550 2551 2552 2553
	}
	return 0;
}

2554 2555 2556 2557
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2558
				     struct robust_list __user * __user *head,
2559
				     unsigned int *pi)
2560 2561 2562
{
	unsigned long uentry;

A
Al Viro 已提交
2563
	if (get_user(uentry, (unsigned long __user *)head))
2564 2565
		return -EFAULT;

A
Al Viro 已提交
2566
	*entry = (void __user *)(uentry & ~1UL);
2567 2568 2569 2570 2571
	*pi = uentry & 1;

	return 0;
}

2572 2573 2574 2575 2576 2577 2578 2579 2580
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2581
	struct robust_list __user *entry, *next_entry, *pending;
2582 2583
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2584
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2585
	int rc;
2586

2587 2588 2589
	if (!futex_cmpxchg_enabled)
		return;

2590 2591 2592 2593
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2594
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2605
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2606
		return;
2607

M
Martin Schwidefsky 已提交
2608
	next_entry = NULL;	/* avoid warning with gcc */
2609
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2610 2611 2612 2613 2614
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2615 2616
		/*
		 * A pending lock might already be on the list, so
2617
		 * don't process it twice:
2618 2619
		 */
		if (entry != pending)
A
Al Viro 已提交
2620
			if (handle_futex_death((void __user *)entry + futex_offset,
2621
						curr, pi))
2622
				return;
M
Martin Schwidefsky 已提交
2623
		if (rc)
2624
			return;
M
Martin Schwidefsky 已提交
2625 2626
		entry = next_entry;
		pi = next_pi;
2627 2628 2629 2630 2631 2632 2633 2634
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2635 2636 2637 2638

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2639 2640
}

2641
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2642
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2643
{
T
Thomas Gleixner 已提交
2644
	int cmd = op & FUTEX_CMD_MASK;
2645
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2646 2647

	if (!(op & FUTEX_PRIVATE_FLAG))
2648
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2649

2650 2651 2652 2653 2654
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2655

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
2666
	switch (cmd) {
L
Linus Torvalds 已提交
2667
	case FUTEX_WAIT:
2668 2669
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
2670
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2671
	case FUTEX_WAKE:
2672 2673
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
2674
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2675
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
2676
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2677
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
2678
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2679
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
2680
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2681
	case FUTEX_LOCK_PI:
T
Thomas Gleixner 已提交
2682
		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2683
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
2684
		return futex_unlock_pi(uaddr, flags);
2685
	case FUTEX_TRYLOCK_PI:
T
Thomas Gleixner 已提交
2686
		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2687 2688
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
2689 2690
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
2691
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
2692
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
2693
	}
T
Thomas Gleixner 已提交
2694
	return -ENOSYS;
L
Linus Torvalds 已提交
2695 2696 2697
}


2698 2699 2700
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2701
{
2702 2703
	struct timespec ts;
	ktime_t t, *tp = NULL;
2704
	u32 val2 = 0;
E
Eric Dumazet 已提交
2705
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2706

2707
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2708 2709
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2710
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2711
			return -EFAULT;
2712
		if (!timespec_valid(&ts))
2713
			return -EINVAL;
2714 2715

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2716
		if (cmd == FUTEX_WAIT)
2717
			t = ktime_add_safe(ktime_get(), t);
2718
		tp = &t;
L
Linus Torvalds 已提交
2719 2720
	}
	/*
2721
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2722
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2723
	 */
2724
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2725
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2726
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2727

2728
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2729 2730
}

2731
static int __init futex_init(void)
L
Linus Torvalds 已提交
2732
{
2733
	u32 curval;
T
Thomas Gleixner 已提交
2734
	int i;
A
Akinobu Mita 已提交
2735

2736 2737 2738 2739 2740 2741 2742
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
2743
	 * implementation, the non-functional ones will return
2744 2745
	 * -ENOSYS.
	 */
2746
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2747 2748
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2749
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2750
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
2751 2752 2753
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2754 2755
	return 0;
}
2756
__initcall(futex_init);