futex.c 84.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67
#include <linux/fault-inject.h>
68

69
#include <asm/futex.h>
L
Linus Torvalds 已提交
70

71
#include "locking/rtmutex_common.h"
72

73
/*
74 75 76 77
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
78 79 80 81
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
82 83 84
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
85 86
 *
 * The waker side modifies the user space value of the futex and calls
87 88 89
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
90
 *
91 92 93 94 95
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
117 118 119 120 121
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
122 123 124
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
125
 *
126
 *   waiters++; (a)
127 128 129 130 131 132 133 134 135 136
 *   mb(); (A) <-- paired with -.
 *                              |
 *   lock(hash_bucket(futex));  |
 *                              |
 *   uval = *futex;             |
 *                              |        *futex = newval;
 *                              |        sys_futex(WAKE, futex);
 *                              |          futex_wake(futex);
 *                              |
 *                              `------->  mb(); (B)
137
 *   if (uval == val)
138
 *     queue();
139
 *     unlock(hash_bucket(futex));
140 141
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
142 143
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
144
 *
145 146
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 148
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
149 150 151 152 153 154 155 156 157 158 159 160
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
161 162 163 164 165 166 167 168 169 170 171
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
172 173
 */

174
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175
int __read_mostly futex_cmpxchg_enabled;
176
#endif
177

178 179 180 181 182 183 184 185
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

207 208
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
209
 * @list:		priority-sorted list of tasks waiting on this futex
210 211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
219 220 221
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
222
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223
 * The order of wakeup is always to make the first condition true, then
224 225 226 227
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
228 229
 */
struct futex_q {
P
Pierre Peiffer 已提交
230
	struct plist_node list;
L
Linus Torvalds 已提交
231

232
	struct task_struct *task;
L
Linus Torvalds 已提交
233 234
	spinlock_t *lock_ptr;
	union futex_key key;
235
	struct futex_pi_state *pi_state;
236
	struct rt_mutex_waiter *rt_waiter;
237
	union futex_key *requeue_pi_key;
238
	u32 bitset;
L
Linus Torvalds 已提交
239 240
};

241 242 243 244 245 246
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
247
/*
D
Darren Hart 已提交
248 249 250
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
251 252
 */
struct futex_hash_bucket {
253
	atomic_t waiters;
P
Pierre Peiffer 已提交
254 255
	spinlock_t lock;
	struct plist_head chain;
256
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
257

258 259 260 261 262 263 264 265 266 267 268
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
269

L
Linus Torvalds 已提交
270

271 272 273 274 275 276 277 278
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

279
	bool ignore_private;
280 281
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
282
	.ignore_private = false,
283 284 285 286 287 288 289 290
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

291
static bool should_fail_futex(bool fshared)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

331 332 333 334 335 336 337 338
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
	 * as full barrier (B), see the ordering comment above.
	 */
339
	smp_mb__after_atomic();
340 341
}

342 343 344 345
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 347
{
#ifdef CONFIG_SMP
348
	atomic_inc(&hb->waiters);
349
	/*
350
	 * Full barrier (A), see the ordering comment above.
351
	 */
352
	smp_mb__after_atomic();
353 354 355 356 357 358 359 360 361 362 363 364 365
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
366

367 368 369 370
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
371
#else
372
	return 1;
373 374 375
#endif
}

L
Linus Torvalds 已提交
376 377 378 379 380 381 382 383
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
384
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
385 386 387 388 389 390 391
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
392 393
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
394 395 396 397
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

398 399 400 401 402 403 404 405 406 407 408 409
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
410
		ihold(key->shared.inode); /* implies MB (B) */
411 412
		break;
	case FUT_OFF_MMSHARED:
413
		futex_get_mm(key); /* implies MB (B) */
414
		break;
415
	default:
416 417 418 419 420
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
421
		smp_mb(); /* explicit MB (B) */
422 423 424 425 426
	}
}

/*
 * Drop a reference to the resource addressed by a key.
427 428 429
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
430 431 432
 */
static void drop_futex_key_refs(union futex_key *key)
{
433 434 435
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
436
		return;
437
	}
438 439 440 441 442 443 444 445 446 447 448

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
449
/**
450 451 452 453
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
454 455
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
456
 *
457 458
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
459
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
460
 *
A
Al Viro 已提交
461
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
462 463 464
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
465
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
466
 */
467
static int
468
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
469
{
470
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
471
	struct mm_struct *mm = current->mm;
472
	struct page *page, *page_head;
473
	int err, ro = 0;
L
Linus Torvalds 已提交
474 475 476 477

	/*
	 * The futex address must be "naturally" aligned.
	 */
478
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
479
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
480
		return -EINVAL;
481
	address -= key->both.offset;
L
Linus Torvalds 已提交
482

483 484 485
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

486 487 488
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
489 490 491 492 493 494 495 496 497 498
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
499
		get_futex_key_refs(key);  /* implies MB (B) */
E
Eric Dumazet 已提交
500 501
		return 0;
	}
L
Linus Torvalds 已提交
502

503
again:
504 505 506 507
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

508
	err = get_user_pages_fast(address, 1, 1, &page);
509 510 511 512 513 514 515 516
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
517 518
	if (err < 0)
		return err;
519 520
	else
		err = 0;
521

522 523 524
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
525
		put_page(page);
526 527
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
528
		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
575
	if (!page_head->mapping) {
576
		int shmem_swizzled = PageSwapCache(page_head);
577 578
		unlock_page(page_head);
		put_page(page_head);
579 580 581
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
582
	}
L
Linus Torvalds 已提交
583 584 585 586 587 588

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
589
	 * the object not the particular process.
L
Linus Torvalds 已提交
590
	 */
591
	if (PageAnon(page_head)) {
592 593 594 595
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
596
		if (unlikely(should_fail_futex(fshared)) || ro) {
597 598 599 600
			err = -EFAULT;
			goto out;
		}

601
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
602
		key->private.mm = mm;
603
		key->private.address = address;
604 605
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
606
		key->shared.inode = page_head->mapping->host;
607
		key->shared.pgoff = basepage_index(page);
L
Linus Torvalds 已提交
608 609
	}

610
	get_futex_key_refs(key); /* implies MB (B) */
L
Linus Torvalds 已提交
611

612
out:
613 614
	unlock_page(page_head);
	put_page(page_head);
615
	return err;
L
Linus Torvalds 已提交
616 617
}

618
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
619
{
620
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
621 622
}

623 624
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
625 626 627 628 629
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
630
 * We have no generic implementation of a non-destructive write to the
631 632 633 634 635 636
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
637 638 639 640
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
641 642
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
643 644
	up_read(&mm->mmap_sem);

645 646 647
	return ret < 0 ? ret : 0;
}

648 649
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
650 651
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

667 668
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
669
{
670
	int ret;
T
Thomas Gleixner 已提交
671 672

	pagefault_disable();
673
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
674 675
	pagefault_enable();

676
	return ret;
T
Thomas Gleixner 已提交
677 678 679
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
680 681 682
{
	int ret;

683
	pagefault_disable();
684
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
685
	pagefault_enable();
L
Linus Torvalds 已提交
686 687 688 689

	return ret ? -EFAULT : 0;
}

690 691 692 693 694 695 696 697 698 699 700

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

701
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
702 703 704 705 706 707 708 709

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
710
	pi_state->key = FUTEX_KEY_INIT;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

727 728 729
/*
 * Must be called with the hb lock held.
 */
730 731
static void free_pi_state(struct futex_pi_state *pi_state)
{
732 733 734
	if (!pi_state)
		return;

735 736 737 738 739 740 741 742
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
743
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
744
		list_del_init(&pi_state->list);
745
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

772
	rcu_read_lock();
773
	p = find_task_by_vpid(pid);
774 775
	if (p)
		get_task_struct(p);
776

777
	rcu_read_unlock();
778 779 780 781 782 783 784 785 786 787 788 789 790

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
791
	struct futex_hash_bucket *hb;
792
	union futex_key key = FUTEX_KEY_INIT;
793

794 795
	if (!futex_cmpxchg_enabled)
		return;
796 797 798
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
799
	 * versus waiters unqueueing themselves:
800
	 */
801
	raw_spin_lock_irq(&curr->pi_lock);
802 803 804 805 806
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
807
		hb = hash_futex(&key);
808
		raw_spin_unlock_irq(&curr->pi_lock);
809 810 811

		spin_lock(&hb->lock);

812
		raw_spin_lock_irq(&curr->pi_lock);
813 814 815 816
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
817 818 819 820 821 822
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
823 824
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
825
		pi_state->owner = NULL;
826
		raw_spin_unlock_irq(&curr->pi_lock);
827 828 829 830 831

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

832
		raw_spin_lock_irq(&curr->pi_lock);
833
	}
834
	raw_spin_unlock_irq(&curr->pi_lock);
835 836
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
 */
886 887 888 889 890 891 892 893

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
			      struct futex_pi_state **ps)
894
{
895
	pid_t pid = uval & FUTEX_TID_MASK;
896

897 898 899 900 901
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
902

903
	WARN_ON(!atomic_read(&pi_state->refcount));
904

905 906 907 908
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
909
		/*
910 911 912
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
913
		 */
914
		if (!pi_state->owner) {
915
			/*
916 917
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
918
			 */
919 920
			if (pid)
				return -EINVAL;
921
			/*
922
			 * Take a ref on the state and return success. [4]
923
			 */
924
			goto out_state;
925
		}
926 927

		/*
928 929 930 931 932 933 934 935 936 937 938 939 940
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
			goto out_state;
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
941
		 */
942
		if (!pi_state->owner)
943
			return -EINVAL;
944 945
	}

946 947 948 949 950 951 952 953 954 955 956 957 958
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
		return -EINVAL;
out_state:
	atomic_inc(&pi_state->refcount);
	*ps = pi_state;
	return 0;
}

959 960 961 962 963 964
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
965 966
{
	pid_t pid = uval & FUTEX_TID_MASK;
967 968
	struct futex_pi_state *pi_state;
	struct task_struct *p;
969

970
	/*
971
	 * We are the first waiter - try to look up the real owner and attach
972
	 * the new pi_state to it, but bail out when TID = 0 [1]
973
	 */
974
	if (!pid)
975
		return -ESRCH;
976
	p = futex_find_get_task(pid);
977 978
	if (!p)
		return -ESRCH;
979

980
	if (unlikely(p->flags & PF_KTHREAD)) {
981 982 983 984
		put_task_struct(p);
		return -EPERM;
	}

985 986 987 988 989 990
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
991
	raw_spin_lock_irq(&p->pi_lock);
992 993 994 995 996 997 998 999
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1000
		raw_spin_unlock_irq(&p->pi_lock);
1001 1002 1003
		put_task_struct(p);
		return ret;
	}
1004

1005 1006 1007
	/*
	 * No existing pi state. First waiter. [2]
	 */
1008 1009 1010
	pi_state = alloc_pi_state();

	/*
1011
	 * Initialize the pi_mutex in locked state and make @p
1012 1013 1014 1015 1016
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1017
	pi_state->key = *key;
1018

1019
	WARN_ON(!list_empty(&pi_state->list));
1020 1021
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
1022
	raw_spin_unlock_irq(&p->pi_lock);
1023 1024 1025

	put_task_struct(p);

P
Pierre Peiffer 已提交
1026
	*ps = pi_state;
1027 1028 1029 1030

	return 0;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
			   union futex_key *key, struct futex_pi_state **ps)
{
	struct futex_q *match = futex_top_waiter(hb, key);

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1050 1051 1052 1053
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1054 1055 1056
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1057 1058 1059 1060 1061 1062 1063
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

	/*If user space value changed, let the caller retry */
	return curval != uval ? -EAGAIN : 0;
}

1064
/**
1065
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1066 1067 1068 1069 1070 1071 1072 1073
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1074
 *
1075 1076 1077
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
1078 1079 1080 1081 1082 1083 1084
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1085
				struct task_struct *task, int set_waiters)
1086
{
1087 1088 1089
	u32 uval, newval, vpid = task_pid_vnr(task);
	struct futex_q *match;
	int ret;
1090 1091

	/*
1092 1093
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1094
	 */
1095
	if (get_futex_value_locked(&uval, uaddr))
1096 1097
		return -EFAULT;

1098 1099 1100
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1101 1102 1103
	/*
	 * Detect deadlocks.
	 */
1104
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1105 1106
		return -EDEADLK;

1107 1108 1109
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1110
	/*
1111 1112
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1113
	 */
1114 1115 1116
	match = futex_top_waiter(hb, key);
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);
1117 1118

	/*
1119 1120 1121 1122
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1123
	 */
1124
	if (!(uval & FUTEX_TID_MASK)) {
1125
		/*
1126 1127
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1128
		 */
1129 1130
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1131

1132 1133 1134 1135 1136 1137 1138 1139
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1140 1141

	/*
1142 1143 1144
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1145
	 */
1146 1147 1148 1149
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1150
	/*
1151 1152 1153
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1154
	 */
1155
	return attach_to_pi_owner(uval, key, ps);
1156 1157
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1168 1169
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1170 1171 1172 1173
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1174
	hb_waiters_dec(hb);
1175 1176
}

L
Linus Torvalds 已提交
1177 1178
/*
 * The hash bucket lock must be held when this is called.
1179 1180 1181
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1182
 */
1183
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1184
{
T
Thomas Gleixner 已提交
1185 1186
	struct task_struct *p = q->task;

1187 1188 1189
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1190
	/*
1191 1192
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1193
	 */
1194
	wake_q_add(wake_q, p);
1195
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1196
	/*
T
Thomas Gleixner 已提交
1197 1198 1199 1200
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1201
	 */
1202
	smp_wmb();
L
Linus Torvalds 已提交
1203 1204 1205
	q->lock_ptr = NULL;
}

1206 1207
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
			 struct futex_hash_bucket *hb)
1208 1209 1210
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
1211
	u32 uninitialized_var(curval), newval;
1212 1213
	WAKE_Q(wake_q);
	bool deboost;
1214
	int ret = 0;
1215 1216 1217 1218

	if (!pi_state)
		return -EINVAL;

1219 1220 1221 1222 1223 1224 1225
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1226
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1227 1228 1229
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1230 1231 1232
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1233 1234 1235 1236 1237
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1238 1239 1240
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1241
	 */
1242
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1243

1244 1245 1246
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1247 1248 1249 1250 1251 1252 1253
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
		ret = -EFAULT;
	else if (curval != uval)
		ret = -EINVAL;
	if (ret) {
		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
		return ret;
1254
	}
1255

1256
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1257 1258
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1259
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1260

1261
	raw_spin_lock_irq(&new_owner->pi_lock);
1262
	WARN_ON(!list_empty(&pi_state->list));
1263 1264
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1265
	raw_spin_unlock_irq(&new_owner->pi_lock);
1266

1267
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);

	/*
	 * First unlock HB so the waiter does not spin on it once he got woken
	 * up. Second wake up the waiter before the priority is adjusted. If we
	 * deboost first (and lose our higher priority), then the task might get
	 * scheduled away before the wake up can take place.
	 */
	spin_unlock(&hb->lock);
	wake_up_q(&wake_q);
	if (deboost)
		rt_mutex_adjust_prio(current);
1281 1282 1283 1284

	return 0;
}

I
Ingo Molnar 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1301 1302 1303
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1304
	spin_unlock(&hb1->lock);
1305 1306
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1307 1308
}

L
Linus Torvalds 已提交
1309
/*
D
Darren Hart 已提交
1310
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1311
 */
1312 1313
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1314
{
1315
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1316
	struct futex_q *this, *next;
1317
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1318
	int ret;
1319
	WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1320

1321 1322 1323
	if (!bitset)
		return -EINVAL;

1324
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1325 1326 1327
	if (unlikely(ret != 0))
		goto out;

1328
	hb = hash_futex(&key);
1329 1330 1331 1332 1333

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1334
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1335

J
Jason Low 已提交
1336
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1337
		if (match_futex (&this->key, &key)) {
1338
			if (this->pi_state || this->rt_waiter) {
1339 1340 1341
				ret = -EINVAL;
				break;
			}
1342 1343 1344 1345 1346

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1347
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1348 1349 1350 1351 1352
			if (++ret >= nr_wake)
				break;
		}
	}

1353
	spin_unlock(&hb->lock);
1354
	wake_up_q(&wake_q);
1355
out_put_key:
1356
	put_futex_key(&key);
1357
out:
L
Linus Torvalds 已提交
1358 1359 1360
	return ret;
}

1361 1362 1363 1364
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1365
static int
1366
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1367
	      int nr_wake, int nr_wake2, int op)
1368
{
1369
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1370
	struct futex_hash_bucket *hb1, *hb2;
1371
	struct futex_q *this, *next;
D
Darren Hart 已提交
1372
	int ret, op_ret;
1373
	WAKE_Q(wake_q);
1374

D
Darren Hart 已提交
1375
retry:
1376
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1377 1378
	if (unlikely(ret != 0))
		goto out;
1379
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1380
	if (unlikely(ret != 0))
1381
		goto out_put_key1;
1382

1383 1384
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1385

D
Darren Hart 已提交
1386
retry_private:
T
Thomas Gleixner 已提交
1387
	double_lock_hb(hb1, hb2);
1388
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1389 1390
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1391
		double_unlock_hb(hb1, hb2);
1392

1393
#ifndef CONFIG_MMU
1394 1395 1396 1397
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1398
		ret = op_ret;
1399
		goto out_put_keys;
1400 1401
#endif

1402 1403
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1404
			goto out_put_keys;
1405 1406
		}

1407
		ret = fault_in_user_writeable(uaddr2);
1408
		if (ret)
1409
			goto out_put_keys;
1410

1411
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1412 1413
			goto retry_private;

1414 1415
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1416
		goto retry;
1417 1418
	}

J
Jason Low 已提交
1419
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1420
		if (match_futex (&this->key, &key1)) {
1421 1422 1423 1424
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1425
			mark_wake_futex(&wake_q, this);
1426 1427 1428 1429 1430 1431 1432
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1433
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1434
			if (match_futex (&this->key, &key2)) {
1435 1436 1437 1438
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1439
				mark_wake_futex(&wake_q, this);
1440 1441 1442 1443 1444 1445 1446
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1447
out_unlock:
D
Darren Hart 已提交
1448
	double_unlock_hb(hb1, hb2);
1449
	wake_up_q(&wake_q);
1450
out_put_keys:
1451
	put_futex_key(&key2);
1452
out_put_key1:
1453
	put_futex_key(&key1);
1454
out:
1455 1456 1457
	return ret;
}

D
Darren Hart 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1476
		hb_waiters_dec(hb1);
D
Darren Hart 已提交
1477
		plist_add(&q->list, &hb2->chain);
1478
		hb_waiters_inc(hb2);
D
Darren Hart 已提交
1479 1480 1481 1482 1483 1484
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1485 1486
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1487 1488 1489
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1490 1491 1492 1493 1494
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1495 1496 1497
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1498 1499
 */
static inline
1500 1501
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1502 1503 1504 1505
{
	get_futex_key_refs(key);
	q->key = *key;

1506
	__unqueue_futex(q);
1507 1508 1509 1510

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1511 1512
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1513
	wake_up_state(q->task, TASK_NORMAL);
1514 1515 1516 1517
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1518 1519 1520 1521 1522 1523 1524
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1525 1526
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1527 1528 1529
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1530
 *
1531 1532
 * Return:
 *  0 - failed to acquire the lock atomically;
1533
 * >0 - acquired the lock, return value is vpid of the top_waiter
1534 1535 1536 1537 1538 1539
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1540
				 struct futex_pi_state **ps, int set_waiters)
1541
{
1542
	struct futex_q *top_waiter = NULL;
1543
	u32 curval;
1544
	int ret, vpid;
1545 1546 1547 1548

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1549 1550 1551
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1560 1561 1562 1563 1564 1565
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1566 1567 1568 1569
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1570
	/*
1571 1572 1573
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1574
	 */
1575
	vpid = task_pid_vnr(top_waiter->task);
1576 1577
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1578
	if (ret == 1) {
1579
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1580 1581
		return vpid;
	}
1582 1583 1584 1585 1586
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1587
 * @uaddr1:	source futex user address
1588
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1589 1590 1591 1592 1593
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1594
 *		pi futex (pi to pi requeue is not supported)
1595 1596 1597 1598
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1599 1600
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1601
 *  <0 - on error
L
Linus Torvalds 已提交
1602
 */
1603 1604 1605
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1606
{
1607
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1608 1609
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1610
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1611
	struct futex_q *this, *next;
1612
	WAKE_Q(wake_q);
1613 1614

	if (requeue_pi) {
1615 1616 1617 1618 1619 1620 1621
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1641

1642
retry:
1643
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1644 1645
	if (unlikely(ret != 0))
		goto out;
1646 1647
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1648
	if (unlikely(ret != 0))
1649
		goto out_put_key1;
L
Linus Torvalds 已提交
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1660 1661
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1662

D
Darren Hart 已提交
1663
retry_private:
1664
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1665
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1666

1667 1668
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1669

1670
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1671 1672

		if (unlikely(ret)) {
D
Darren Hart 已提交
1673
			double_unlock_hb(hb1, hb2);
1674
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1675

1676
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1677 1678
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1679

1680
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1681
				goto retry_private;
L
Linus Torvalds 已提交
1682

1683 1684
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1685
			goto retry;
L
Linus Torvalds 已提交
1686
		}
1687
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1688 1689 1690 1691 1692
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1693
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1694 1695 1696 1697 1698 1699
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1700
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1701
						 &key2, &pi_state, nr_requeue);
1702 1703 1704 1705 1706

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1707 1708
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1709
		 */
1710
		if (ret > 0) {
1711
			WARN_ON(pi_state);
1712
			drop_count++;
1713
			task_count++;
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
			/*
			 * If we acquired the lock, then the user
			 * space value of uaddr2 should be vpid. It
			 * cannot be changed by the top waiter as it
			 * is blocked on hb2 lock if it tries to do
			 * so. If something fiddled with it behind our
			 * back the pi state lookup might unearth
			 * it. So we rather use the known value than
			 * rereading and handing potential crap to
			 * lookup_pi_state.
			 */
1725
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1726 1727 1728 1729 1730 1731
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
1732 1733
			free_pi_state(pi_state);
			pi_state = NULL;
1734
			double_unlock_hb(hb1, hb2);
1735
			hb_waiters_dec(hb2);
1736 1737
			put_futex_key(&key2);
			put_futex_key(&key1);
1738
			ret = fault_in_user_writeable(uaddr2);
1739 1740 1741 1742
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1743 1744 1745 1746 1747 1748
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1749 1750
			free_pi_state(pi_state);
			pi_state = NULL;
1751
			double_unlock_hb(hb1, hb2);
1752
			hb_waiters_dec(hb2);
1753 1754
			put_futex_key(&key2);
			put_futex_key(&key1);
1755 1756 1757 1758 1759 1760 1761
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1762
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1763 1764 1765 1766
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1767
			continue;
1768

1769 1770 1771
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1772 1773 1774
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1775 1776
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1777 1778
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1779 1780 1781
			ret = -EINVAL;
			break;
		}
1782 1783 1784 1785 1786 1787 1788

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
1789
			mark_wake_futex(&wake_q, this);
1790 1791
			continue;
		}
L
Linus Torvalds 已提交
1792

1793 1794 1795 1796 1797 1798
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
1809
							this->task);
1810 1811
			if (ret == 1) {
				/* We got the lock. */
1812
				requeue_pi_wake_futex(this, &key2, hb2);
1813
				drop_count++;
1814 1815 1816 1817 1818 1819 1820
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1821
		}
1822 1823
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1824 1825 1826
	}

out_unlock:
1827
	free_pi_state(pi_state);
D
Darren Hart 已提交
1828
	double_unlock_hb(hb1, hb2);
1829
	wake_up_q(&wake_q);
1830
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1831

1832 1833 1834 1835 1836 1837
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1838
	while (--drop_count >= 0)
1839
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1840

1841
out_put_keys:
1842
	put_futex_key(&key2);
1843
out_put_key1:
1844
	put_futex_key(&key1);
1845
out:
1846
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1847 1848 1849
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1850
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1851
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1852
{
1853
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1854

1855
	hb = hash_futex(&q->key);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

1867
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1868

1869
	spin_lock(&hb->lock); /* implies MB (A) */
1870
	return hb;
L
Linus Torvalds 已提交
1871 1872
}

1873
static inline void
J
Jason Low 已提交
1874
queue_unlock(struct futex_hash_bucket *hb)
1875
	__releases(&hb->lock)
1876 1877
{
	spin_unlock(&hb->lock);
1878
	hb_waiters_dec(hb);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1893
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1894
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1895
{
P
Pierre Peiffer 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1910
	q->task = current;
1911
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1912 1913
}

1914 1915 1916 1917 1918 1919 1920
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
1921 1922
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
1923
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1924 1925 1926 1927
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1928
	int ret = 0;
L
Linus Torvalds 已提交
1929 1930

	/* In the common case we don't take the spinlock, which is nice. */
1931
retry:
L
Linus Torvalds 已提交
1932
	lock_ptr = q->lock_ptr;
1933
	barrier();
1934
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1953
		__unqueue_futex(q);
1954 1955 1956

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1957 1958 1959 1960
		spin_unlock(lock_ptr);
		ret = 1;
	}

1961
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1962 1963 1964
	return ret;
}

1965 1966
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1967 1968
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1969
 */
P
Pierre Peiffer 已提交
1970
static void unqueue_me_pi(struct futex_q *q)
1971
	__releases(q->lock_ptr)
1972
{
1973
	__unqueue_futex(q);
1974 1975 1976 1977 1978

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1979
	spin_unlock(q->lock_ptr);
1980 1981
}

P
Pierre Peiffer 已提交
1982
/*
1983
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1984
 *
1985 1986
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1987
 */
1988
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1989
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1990
{
1991
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1992
	struct futex_pi_state *pi_state = q->pi_state;
1993
	struct task_struct *oldowner = pi_state->owner;
1994
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1995
	int ret;
P
Pierre Peiffer 已提交
1996 1997

	/* Owner died? */
1998 1999 2000 2001 2002
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2003 2004 2005 2006
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2007
	 *
D
Darren Hart 已提交
2008 2009 2010
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2025
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2036
	if (pi_state->owner != NULL) {
2037
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2038 2039
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
2040
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2041
	}
P
Pierre Peiffer 已提交
2042

2043
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2044

2045
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2046
	WARN_ON(!list_empty(&pi_state->list));
2047
	list_add(&pi_state->list, &newowner->pi_state_list);
2048
	raw_spin_unlock_irq(&newowner->pi_lock);
2049
	return 0;
P
Pierre Peiffer 已提交
2050 2051

	/*
2052
	 * To handle the page fault we need to drop the hash bucket
2053 2054
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
2055 2056 2057 2058 2059
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
2060
	 */
2061 2062
handle_fault:
	spin_unlock(q->lock_ptr);
2063

2064
	ret = fault_in_user_writeable(uaddr);
2065

2066
	spin_lock(q->lock_ptr);
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
2078 2079
}

N
Nick Piggin 已提交
2080
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2092 2093 2094
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
2095 2096
 * <0 - on error (-EFAULT)
 */
2097
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
2108
			ret = fixup_pi_state_owner(uaddr, q, current);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
2130
		 * rt_mutex. Too late.
2131
		 */
2132
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2133
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2134 2135 2136
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2137
		ret = fixup_pi_state_owner(uaddr, q, owner);
2138 2139 2140 2141 2142
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2143
	 * the owner of the rt_mutex.
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

2155 2156 2157 2158 2159 2160 2161
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2162
				struct hrtimer_sleeper *timeout)
2163
{
2164 2165
	/*
	 * The task state is guaranteed to be set before another task can
2166
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2167 2168 2169
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2170
	set_current_state(TASK_INTERRUPTIBLE);
2171
	queue_me(q, hb);
2172 2173

	/* Arm the timer */
2174
	if (timeout)
2175 2176 2177
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2178 2179
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2180 2181 2182 2183 2184 2185 2186 2187
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2188
			freezable_schedule();
2189 2190 2191 2192
	}
	__set_current_state(TASK_RUNNING);
}

2193 2194 2195 2196
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2197
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2198 2199 2200 2201 2202 2203 2204 2205
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2206 2207
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2208
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2209
 */
2210
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2211
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2212
{
2213 2214
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2215 2216

	/*
D
Darren Hart 已提交
2217
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2225 2226
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2227 2228
	 * cond(var) false, which would violate the guarantee.
	 *
2229 2230 2231 2232
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2233
	 */
2234
retry:
2235
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2236
	if (unlikely(ret != 0))
2237
		return ret;
2238 2239 2240 2241

retry_private:
	*hb = queue_lock(q);

2242
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2243

2244
	if (ret) {
J
Jason Low 已提交
2245
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2246

2247
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2248
		if (ret)
2249
			goto out;
L
Linus Torvalds 已提交
2250

2251
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2252 2253
			goto retry_private;

2254
		put_futex_key(&q->key);
D
Darren Hart 已提交
2255
		goto retry;
L
Linus Torvalds 已提交
2256
	}
2257

2258
	if (uval != val) {
J
Jason Low 已提交
2259
		queue_unlock(*hb);
2260
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2261
	}
L
Linus Torvalds 已提交
2262

2263 2264
out:
	if (ret)
2265
		put_futex_key(&q->key);
2266 2267 2268
	return ret;
}

2269 2270
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2271 2272 2273 2274
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2275
	struct futex_q q = futex_q_init;
2276 2277 2278 2279 2280 2281 2282 2283 2284
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2285 2286 2287
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2288 2289 2290 2291 2292
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2293
retry:
2294 2295 2296 2297
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2298
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2299 2300 2301
	if (ret)
		goto out;

2302
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2303
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2304 2305

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2306
	ret = 0;
2307
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2308
	if (!unqueue_me(&q))
2309
		goto out;
P
Peter Zijlstra 已提交
2310
	ret = -ETIMEDOUT;
2311
	if (to && !to->task)
2312
		goto out;
N
Nick Piggin 已提交
2313

2314
	/*
T
Thomas Gleixner 已提交
2315 2316
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2317
	 */
2318
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2319 2320
		goto retry;

P
Peter Zijlstra 已提交
2321
	ret = -ERESTARTSYS;
2322
	if (!abs_time)
2323
		goto out;
L
Linus Torvalds 已提交
2324

2325
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2326
	restart->fn = futex_wait_restart;
2327
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2328 2329 2330
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2331
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2332

P
Peter Zijlstra 已提交
2333 2334
	ret = -ERESTART_RESTARTBLOCK;

2335
out:
2336 2337 2338 2339
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2340 2341 2342
	return ret;
}

N
Nick Piggin 已提交
2343 2344 2345

static long futex_wait_restart(struct restart_block *restart)
{
2346
	u32 __user *uaddr = restart->futex.uaddr;
2347
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2348

2349 2350 2351 2352
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2353
	restart->fn = do_no_restart_syscall;
2354 2355 2356

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2357 2358 2359
}


2360 2361 2362
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2363 2364 2365 2366 2367
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2368
 */
2369
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2370
			 ktime_t *time, int trylock)
2371
{
2372
	struct hrtimer_sleeper timeout, *to = NULL;
2373
	struct futex_hash_bucket *hb;
2374
	struct futex_q q = futex_q_init;
2375
	int res, ret;
2376 2377 2378 2379

	if (refill_pi_state_cache())
		return -ENOMEM;

2380
	if (time) {
2381
		to = &timeout;
2382 2383
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2384
		hrtimer_init_sleeper(to, current);
2385
		hrtimer_set_expires(&to->timer, *time);
2386 2387
	}

2388
retry:
2389
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2390
	if (unlikely(ret != 0))
2391
		goto out;
2392

D
Darren Hart 已提交
2393
retry_private:
E
Eric Sesterhenn 已提交
2394
	hb = queue_lock(&q);
2395

2396
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2397
	if (unlikely(ret)) {
2398 2399 2400 2401
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2402
		switch (ret) {
2403 2404 2405 2406 2407 2408
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2409 2410
		case -EAGAIN:
			/*
2411 2412 2413 2414
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2415
			 */
J
Jason Low 已提交
2416
			queue_unlock(hb);
2417
			put_futex_key(&q.key);
2418 2419 2420
			cond_resched();
			goto retry;
		default:
2421
			goto out_unlock_put_key;
2422 2423 2424 2425 2426 2427
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2428
	queue_me(&q, hb);
2429 2430 2431 2432 2433

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
2434 2435 2436
	if (!trylock) {
		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
	} else {
2437 2438 2439 2440 2441
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2442
	spin_lock(q.lock_ptr);
2443 2444 2445 2446
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2447
	res = fixup_owner(uaddr, &q, !ret);
2448 2449 2450 2451 2452 2453
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2454

2455
	/*
2456 2457
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2458 2459 2460 2461
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2462 2463
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2464

2465
	goto out_put_key;
2466

2467
out_unlock_put_key:
J
Jason Low 已提交
2468
	queue_unlock(hb);
2469

2470
out_put_key:
2471
	put_futex_key(&q.key);
2472
out:
2473 2474
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2475
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2476

2477
uaddr_faulted:
J
Jason Low 已提交
2478
	queue_unlock(hb);
2479

2480
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2481 2482
	if (ret)
		goto out_put_key;
2483

2484
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2485 2486
		goto retry_private;

2487
	put_futex_key(&q.key);
D
Darren Hart 已提交
2488
	goto retry;
2489 2490 2491 2492 2493 2494 2495
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2496
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2497
{
2498
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2499
	union futex_key key = FUTEX_KEY_INIT;
2500 2501
	struct futex_hash_bucket *hb;
	struct futex_q *match;
D
Darren Hart 已提交
2502
	int ret;
2503 2504 2505 2506 2507 2508 2509

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2510
	if ((uval & FUTEX_TID_MASK) != vpid)
2511 2512
		return -EPERM;

2513
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2514 2515
	if (ret)
		return ret;
2516 2517 2518 2519 2520

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2521 2522 2523
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2524
	 */
2525 2526
	match = futex_top_waiter(hb, &key);
	if (match) {
2527 2528 2529 2530 2531 2532 2533
		ret = wake_futex_pi(uaddr, uval, match, hb);
		/*
		 * In case of success wake_futex_pi dropped the hash
		 * bucket lock.
		 */
		if (!ret)
			goto out_putkey;
2534
		/*
2535 2536
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2537 2538 2539
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2540 2541 2542 2543
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2544 2545
		goto out_unlock;
	}
2546

2547
	/*
2548 2549 2550 2551 2552
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2553
	 */
2554
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2555
		goto pi_faulted;
2556

2557 2558 2559 2560 2561
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2562 2563
out_unlock:
	spin_unlock(&hb->lock);
2564
out_putkey:
2565
	put_futex_key(&key);
2566 2567 2568
	return ret;

pi_faulted:
2569
	spin_unlock(&hb->lock);
2570
	put_futex_key(&key);
2571

2572
	ret = fault_in_user_writeable(uaddr);
2573
	if (!ret)
2574 2575
		goto retry;

L
Linus Torvalds 已提交
2576 2577 2578
	return ret;
}

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2591 2592 2593
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2615
		plist_del(&q->list, &hb->chain);
2616
		hb_waiters_dec(hb);
2617

T
Thomas Gleixner 已提交
2618
		/* Handle spurious wakeups gracefully */
2619
		ret = -EWOULDBLOCK;
2620 2621
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2622
		else if (signal_pending(current))
2623
			ret = -ERESTARTNOINTR;
2624 2625 2626 2627 2628 2629
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2630
 * @uaddr:	the futex we initially wait on (non-pi)
2631
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2632
 *		the same type, no requeueing from private to shared, etc.
2633 2634
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2635
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2636 2637 2638
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2639 2640 2641 2642 2643
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2644 2645
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2646
 * via the following--
2647
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2648 2649 2650
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2651
 *
2652
 * If 3, cleanup and return -ERESTARTNOINTR.
2653 2654 2655 2656 2657 2658 2659
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2660
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2661 2662 2663
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2664 2665
 * Return:
 *  0 - On success;
2666 2667
 * <0 - On error
 */
2668
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2669
				 u32 val, ktime_t *abs_time, u32 bitset,
2670
				 u32 __user *uaddr2)
2671 2672 2673 2674 2675
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2676 2677
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2678 2679
	int res, ret;

2680 2681 2682
	if (uaddr == uaddr2)
		return -EINVAL;

2683 2684 2685 2686 2687
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2688 2689 2690
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2701 2702
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2703 2704
	rt_waiter.task = NULL;

2705
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2706 2707 2708
	if (unlikely(ret != 0))
		goto out;

2709 2710 2711 2712
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2713 2714 2715 2716
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2717
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2718 2719
	if (ret)
		goto out_key2;
2720

2721 2722 2723 2724 2725
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
2726
		queue_unlock(hb);
2727 2728 2729 2730
		ret = -EINVAL;
		goto out_put_keys;
	}

2731
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2732
	futex_wait_queue_me(hb, &q, to);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2744 2745 2746
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2757
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2758 2759 2760 2761 2762 2763 2764 2765
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2766
		WARN_ON(!q.pi_state);
2767
		pi_mutex = &q.pi_state->pi_mutex;
2768
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2769 2770 2771 2772 2773 2774 2775
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2776
		res = fixup_owner(uaddr2, &q, !ret);
2777 2778
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2779
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2793
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2794 2795 2796
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2797 2798 2799 2800 2801
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2802
		 */
2803
		ret = -EWOULDBLOCK;
2804 2805 2806
	}

out_put_keys:
2807
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2808
out_key2:
2809
	put_futex_key(&key2);
2810 2811 2812 2813 2814 2815 2816 2817 2818

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2819 2820 2821 2822 2823 2824 2825
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2826
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2827 2828 2829 2830 2831 2832 2833 2834
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2835 2836 2837
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2838
 */
2839 2840
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2841
{
2842 2843
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2856 2857 2858 2859
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2860
 */
2861 2862 2863
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2864
{
A
Al Viro 已提交
2865
	struct robust_list_head __user *head;
2866
	unsigned long ret;
2867
	struct task_struct *p;
2868

2869 2870 2871
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2872 2873 2874
	rcu_read_lock();

	ret = -ESRCH;
2875
	if (!pid)
2876
		p = current;
2877
	else {
2878
		p = find_task_by_vpid(pid);
2879 2880 2881 2882
		if (!p)
			goto err_unlock;
	}

2883 2884 2885 2886 2887 2888 2889
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2890 2891 2892 2893 2894
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2895
	rcu_read_unlock();
2896 2897 2898 2899 2900 2901 2902 2903

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2904
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2905
{
2906
	u32 uval, uninitialized_var(nval), mval;
2907

2908 2909
retry:
	if (get_user(uval, uaddr))
2910 2911
		return -1;

2912
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2923
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2938
		if (nval != uval)
2939
			goto retry;
2940

2941 2942 2943 2944
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2945
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2946
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2947 2948 2949 2950
	}
	return 0;
}

2951 2952 2953 2954
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2955
				     struct robust_list __user * __user *head,
2956
				     unsigned int *pi)
2957 2958 2959
{
	unsigned long uentry;

A
Al Viro 已提交
2960
	if (get_user(uentry, (unsigned long __user *)head))
2961 2962
		return -EFAULT;

A
Al Viro 已提交
2963
	*entry = (void __user *)(uentry & ~1UL);
2964 2965 2966 2967 2968
	*pi = uentry & 1;

	return 0;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2978
	struct robust_list __user *entry, *next_entry, *pending;
2979 2980
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2981
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2982
	int rc;
2983

2984 2985 2986
	if (!futex_cmpxchg_enabled)
		return;

2987 2988 2989 2990
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2991
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3002
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3003
		return;
3004

M
Martin Schwidefsky 已提交
3005
	next_entry = NULL;	/* avoid warning with gcc */
3006
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3007 3008 3009 3010 3011
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3012 3013
		/*
		 * A pending lock might already be on the list, so
3014
		 * don't process it twice:
3015 3016
		 */
		if (entry != pending)
A
Al Viro 已提交
3017
			if (handle_futex_death((void __user *)entry + futex_offset,
3018
						curr, pi))
3019
				return;
M
Martin Schwidefsky 已提交
3020
		if (rc)
3021
			return;
M
Martin Schwidefsky 已提交
3022 3023
		entry = next_entry;
		pi = next_pi;
3024 3025 3026 3027 3028 3029 3030 3031
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3032 3033 3034 3035

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3036 3037
}

3038
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3039
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3040
{
T
Thomas Gleixner 已提交
3041
	int cmd = op & FUTEX_CMD_MASK;
3042
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3043 3044

	if (!(op & FUTEX_PRIVATE_FLAG))
3045
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3046

3047 3048 3049 3050 3051
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3063
	switch (cmd) {
L
Linus Torvalds 已提交
3064
	case FUTEX_WAIT:
3065 3066
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3067
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3068
	case FUTEX_WAKE:
3069 3070
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3071
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3072
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3073
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3074
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3075
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3076
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3077
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3078
	case FUTEX_LOCK_PI:
3079
		return futex_lock_pi(uaddr, flags, timeout, 0);
3080
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3081
		return futex_unlock_pi(uaddr, flags);
3082
	case FUTEX_TRYLOCK_PI:
3083
		return futex_lock_pi(uaddr, flags, NULL, 1);
3084 3085
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3086 3087
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3088
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3089
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3090
	}
T
Thomas Gleixner 已提交
3091
	return -ENOSYS;
L
Linus Torvalds 已提交
3092 3093 3094
}


3095 3096 3097
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3098
{
3099 3100
	struct timespec ts;
	ktime_t t, *tp = NULL;
3101
	u32 val2 = 0;
E
Eric Dumazet 已提交
3102
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3103

3104
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3105 3106
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3107 3108
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3109
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3110
			return -EFAULT;
3111
		if (!timespec_valid(&ts))
3112
			return -EINVAL;
3113 3114

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3115
		if (cmd == FUTEX_WAIT)
3116
			t = ktime_add_safe(ktime_get(), t);
3117
		tp = &t;
L
Linus Torvalds 已提交
3118 3119
	}
	/*
3120
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3121
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3122
	 */
3123
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3124
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3125
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3126

3127
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3128 3129
}

3130
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3131
{
3132
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3133
	u32 curval;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3152
	unsigned int futex_shift;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3164 3165 3166
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3167 3168

	futex_detect_cmpxchg();
3169

3170
	for (i = 0; i < futex_hashsize; i++) {
3171
		atomic_set(&futex_queues[i].waiters, 0);
3172
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3173 3174 3175
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3176 3177
	return 0;
}
3178
__initcall(futex_init);