futex.c 85.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67
#include <linux/fault-inject.h>
68

69
#include <asm/futex.h>
L
Linus Torvalds 已提交
70

71
#include "locking/rtmutex_common.h"
72

73
/*
74 75 76 77
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
78 79 80 81
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
82 83 84
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
85 86
 *
 * The waker side modifies the user space value of the futex and calls
87 88 89
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
90
 *
91 92 93 94 95
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
117 118 119 120 121
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
122 123 124
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
125
 *
126
 *   waiters++; (a)
127 128 129 130 131 132 133 134 135 136
 *   mb(); (A) <-- paired with -.
 *                              |
 *   lock(hash_bucket(futex));  |
 *                              |
 *   uval = *futex;             |
 *                              |        *futex = newval;
 *                              |        sys_futex(WAKE, futex);
 *                              |          futex_wake(futex);
 *                              |
 *                              `------->  mb(); (B)
137
 *   if (uval == val)
138
 *     queue();
139
 *     unlock(hash_bucket(futex));
140 141
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
142 143
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
144
 *
145 146
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 148
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
149 150 151 152 153 154 155 156 157 158 159 160
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
161 162 163 164 165 166 167 168 169 170 171
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
172 173
 */

174
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175
int __read_mostly futex_cmpxchg_enabled;
176
#endif
177

178 179 180 181 182 183 184 185
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

207 208
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
209
 * @list:		priority-sorted list of tasks waiting on this futex
210 211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
219 220 221
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
222
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223
 * The order of wakeup is always to make the first condition true, then
224 225 226 227
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
228 229
 */
struct futex_q {
P
Pierre Peiffer 已提交
230
	struct plist_node list;
L
Linus Torvalds 已提交
231

232
	struct task_struct *task;
L
Linus Torvalds 已提交
233 234
	spinlock_t *lock_ptr;
	union futex_key key;
235
	struct futex_pi_state *pi_state;
236
	struct rt_mutex_waiter *rt_waiter;
237
	union futex_key *requeue_pi_key;
238
	u32 bitset;
L
Linus Torvalds 已提交
239 240
};

241 242 243 244 245 246
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
247
/*
D
Darren Hart 已提交
248 249 250
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
251 252
 */
struct futex_hash_bucket {
253
	atomic_t waiters;
P
Pierre Peiffer 已提交
254 255
	spinlock_t lock;
	struct plist_head chain;
256
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
257

258 259 260 261 262 263 264 265 266 267 268
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
269

L
Linus Torvalds 已提交
270

271 272 273 274 275 276 277 278
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

279
	bool ignore_private;
280 281
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
282
	.ignore_private = false,
283 284 285 286 287 288 289 290
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

291
static bool should_fail_futex(bool fshared)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

331 332 333 334 335 336 337 338
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
	 * as full barrier (B), see the ordering comment above.
	 */
339
	smp_mb__after_atomic();
340 341
}

342 343 344 345
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 347
{
#ifdef CONFIG_SMP
348
	atomic_inc(&hb->waiters);
349
	/*
350
	 * Full barrier (A), see the ordering comment above.
351
	 */
352
	smp_mb__after_atomic();
353 354 355 356 357 358 359 360 361 362 363 364 365
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
366

367 368 369 370
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
371
#else
372
	return 1;
373 374 375
#endif
}

L
Linus Torvalds 已提交
376 377 378 379 380 381 382 383
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
384
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
385 386 387 388 389 390 391
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
392 393
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
394 395 396 397
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

398 399 400 401 402 403 404 405 406 407 408 409
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
410
		ihold(key->shared.inode); /* implies MB (B) */
411 412
		break;
	case FUT_OFF_MMSHARED:
413
		futex_get_mm(key); /* implies MB (B) */
414
		break;
415
	default:
416 417 418 419 420
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
421
		smp_mb(); /* explicit MB (B) */
422 423 424 425 426
	}
}

/*
 * Drop a reference to the resource addressed by a key.
427 428 429
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
430 431 432
 */
static void drop_futex_key_refs(union futex_key *key)
{
433 434 435
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
436
		return;
437
	}
438 439 440 441 442 443 444 445 446 447 448

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
449
/**
450 451 452 453
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
454 455
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
456
 *
457 458
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
459
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
460
 *
A
Al Viro 已提交
461
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
462 463 464
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
465
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
466
 */
467
static int
468
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
469
{
470
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
471
	struct mm_struct *mm = current->mm;
472 473
	struct page *page;
	struct address_space *mapping;
474
	int err, ro = 0;
L
Linus Torvalds 已提交
475 476 477 478

	/*
	 * The futex address must be "naturally" aligned.
	 */
479
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
480
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
481
		return -EINVAL;
482
	address -= key->both.offset;
L
Linus Torvalds 已提交
483

484 485 486
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

487 488 489
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
490 491 492 493 494 495 496 497 498 499
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
500
		get_futex_key_refs(key);  /* implies MB (B) */
E
Eric Dumazet 已提交
501 502
		return 0;
	}
L
Linus Torvalds 已提交
503

504
again:
505 506 507 508
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

509
	err = get_user_pages_fast(address, 1, 1, &page);
510 511 512 513 514 515 516 517
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
518 519
	if (err < 0)
		return err;
520 521
	else
		err = 0;
522

523
	lock_page(page);
524
	/*
525
	 * If page->mapping is NULL, then it cannot be a PageAnon
526 527 528 529 530 531 532 533 534 535 536
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
537
	 * an unlikely race, but we do need to retry for page->mapping.
538
	 */
539 540 541 542 543
	mapping = compound_head(page)->mapping;
	if (!mapping) {
		int shmem_swizzled = PageSwapCache(page);
		unlock_page(page);
		put_page(page);
544 545 546
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
547
	}
L
Linus Torvalds 已提交
548 549 550 551 552 553

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
554
	 * the object not the particular process.
L
Linus Torvalds 已提交
555
	 */
556
	if (PageAnon(page)) {
557 558 559 560
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
561
		if (unlikely(should_fail_futex(fshared)) || ro) {
562 563 564 565
			err = -EFAULT;
			goto out;
		}

566
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
567
		key->private.mm = mm;
568
		key->private.address = address;
569 570
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
571
		key->shared.inode = mapping->host;
572
		key->shared.pgoff = basepage_index(page);
L
Linus Torvalds 已提交
573 574
	}

575
	get_futex_key_refs(key); /* implies MB (B) */
L
Linus Torvalds 已提交
576

577
out:
578 579
	unlock_page(page);
	put_page(page);
580
	return err;
L
Linus Torvalds 已提交
581 582
}

583
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
584
{
585
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
586 587
}

588 589
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
590 591 592 593 594
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
595
 * We have no generic implementation of a non-destructive write to the
596 597 598 599 600 601
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
602 603 604 605
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
606
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
607
			       FAULT_FLAG_WRITE, NULL);
608 609
	up_read(&mm->mmap_sem);

610 611 612
	return ret < 0 ? ret : 0;
}

613 614
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
615 616
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

632 633
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
634
{
635
	int ret;
T
Thomas Gleixner 已提交
636 637

	pagefault_disable();
638
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
639 640
	pagefault_enable();

641
	return ret;
T
Thomas Gleixner 已提交
642 643 644
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
645 646 647
{
	int ret;

648
	pagefault_disable();
649
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
650
	pagefault_enable();
L
Linus Torvalds 已提交
651 652 653 654

	return ret ? -EFAULT : 0;
}

655 656 657 658 659 660 661 662 663 664 665

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

666
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
667 668 669 670 671 672 673 674

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
675
	pi_state->key = FUTEX_KEY_INIT;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

692
/*
693 694 695
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
 *
696 697
 * Must be called with the hb lock held.
 */
698
static void put_pi_state(struct futex_pi_state *pi_state)
699
{
700 701 702
	if (!pi_state)
		return;

703 704 705 706 707 708 709 710
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
711
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
712
		list_del_init(&pi_state->list);
713
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

740
	rcu_read_lock();
741
	p = find_task_by_vpid(pid);
742 743
	if (p)
		get_task_struct(p);
744

745
	rcu_read_unlock();
746 747 748 749 750 751 752 753 754 755 756 757 758

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
759
	struct futex_hash_bucket *hb;
760
	union futex_key key = FUTEX_KEY_INIT;
761

762 763
	if (!futex_cmpxchg_enabled)
		return;
764 765 766
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
767
	 * versus waiters unqueueing themselves:
768
	 */
769
	raw_spin_lock_irq(&curr->pi_lock);
770 771 772 773 774
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
775
		hb = hash_futex(&key);
776
		raw_spin_unlock_irq(&curr->pi_lock);
777 778 779

		spin_lock(&hb->lock);

780
		raw_spin_lock_irq(&curr->pi_lock);
781 782 783 784
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
785 786 787 788 789 790
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
791 792
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
793
		pi_state->owner = NULL;
794
		raw_spin_unlock_irq(&curr->pi_lock);
795 796 797 798 799

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

800
		raw_spin_lock_irq(&curr->pi_lock);
801
	}
802
	raw_spin_unlock_irq(&curr->pi_lock);
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
 */
854 855 856 857 858 859 860 861

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
			      struct futex_pi_state **ps)
862
{
863
	pid_t pid = uval & FUTEX_TID_MASK;
864

865 866 867 868 869
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
870

871
	WARN_ON(!atomic_read(&pi_state->refcount));
872

873 874 875 876
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
877
		/*
878 879 880
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
881
		 */
882
		if (!pi_state->owner) {
883
			/*
884 885
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
886
			 */
887 888
			if (pid)
				return -EINVAL;
889
			/*
890
			 * Take a ref on the state and return success. [4]
891
			 */
892
			goto out_state;
893
		}
894 895

		/*
896 897 898 899 900 901 902 903 904 905 906 907 908
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
			goto out_state;
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
909
		 */
910
		if (!pi_state->owner)
911
			return -EINVAL;
912 913
	}

914 915 916 917 918 919 920 921 922 923 924 925 926
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
		return -EINVAL;
out_state:
	atomic_inc(&pi_state->refcount);
	*ps = pi_state;
	return 0;
}

927 928 929 930 931 932
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
933 934
{
	pid_t pid = uval & FUTEX_TID_MASK;
935 936
	struct futex_pi_state *pi_state;
	struct task_struct *p;
937

938
	/*
939
	 * We are the first waiter - try to look up the real owner and attach
940
	 * the new pi_state to it, but bail out when TID = 0 [1]
941
	 */
942
	if (!pid)
943
		return -ESRCH;
944
	p = futex_find_get_task(pid);
945 946
	if (!p)
		return -ESRCH;
947

948
	if (unlikely(p->flags & PF_KTHREAD)) {
949 950 951 952
		put_task_struct(p);
		return -EPERM;
	}

953 954 955 956 957 958
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
959
	raw_spin_lock_irq(&p->pi_lock);
960 961 962 963 964 965 966 967
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

968
		raw_spin_unlock_irq(&p->pi_lock);
969 970 971
		put_task_struct(p);
		return ret;
	}
972

973 974 975
	/*
	 * No existing pi state. First waiter. [2]
	 */
976 977 978
	pi_state = alloc_pi_state();

	/*
979
	 * Initialize the pi_mutex in locked state and make @p
980 981 982 983 984
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
985
	pi_state->key = *key;
986

987
	WARN_ON(!list_empty(&pi_state->list));
988 989
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
990
	raw_spin_unlock_irq(&p->pi_lock);
991 992 993

	put_task_struct(p);

P
Pierre Peiffer 已提交
994
	*ps = pi_state;
995 996 997 998

	return 0;
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
			   union futex_key *key, struct futex_pi_state **ps)
{
	struct futex_q *match = futex_top_waiter(hb, key);

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1018 1019 1020 1021
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1022 1023 1024
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1025 1026 1027 1028 1029 1030 1031
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

	/*If user space value changed, let the caller retry */
	return curval != uval ? -EAGAIN : 0;
}

1032
/**
1033
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1034 1035 1036 1037 1038 1039 1040 1041
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1042
 *
1043 1044 1045
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
1046 1047 1048 1049 1050 1051 1052
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1053
				struct task_struct *task, int set_waiters)
1054
{
1055 1056 1057
	u32 uval, newval, vpid = task_pid_vnr(task);
	struct futex_q *match;
	int ret;
1058 1059

	/*
1060 1061
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1062
	 */
1063
	if (get_futex_value_locked(&uval, uaddr))
1064 1065
		return -EFAULT;

1066 1067 1068
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1069 1070 1071
	/*
	 * Detect deadlocks.
	 */
1072
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1073 1074
		return -EDEADLK;

1075 1076 1077
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1078
	/*
1079 1080
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1081
	 */
1082 1083 1084
	match = futex_top_waiter(hb, key);
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);
1085 1086

	/*
1087 1088 1089 1090
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1091
	 */
1092
	if (!(uval & FUTEX_TID_MASK)) {
1093
		/*
1094 1095
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1096
		 */
1097 1098
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1099

1100 1101 1102 1103 1104 1105 1106 1107
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1108 1109

	/*
1110 1111 1112
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1113
	 */
1114 1115 1116 1117
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1118
	/*
1119 1120 1121
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1122
	 */
1123
	return attach_to_pi_owner(uval, key, ps);
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1136 1137
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1138 1139 1140 1141
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1142
	hb_waiters_dec(hb);
1143 1144
}

L
Linus Torvalds 已提交
1145 1146
/*
 * The hash bucket lock must be held when this is called.
1147 1148 1149
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1150
 */
1151
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1152
{
T
Thomas Gleixner 已提交
1153 1154
	struct task_struct *p = q->task;

1155 1156 1157
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1158
	/*
1159 1160
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1161
	 */
1162
	wake_q_add(wake_q, p);
1163
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1164
	/*
T
Thomas Gleixner 已提交
1165 1166 1167 1168
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1169
	 */
1170
	smp_wmb();
L
Linus Torvalds 已提交
1171 1172 1173
	q->lock_ptr = NULL;
}

1174 1175
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
			 struct futex_hash_bucket *hb)
1176 1177 1178
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
1179
	u32 uninitialized_var(curval), newval;
1180 1181
	WAKE_Q(wake_q);
	bool deboost;
1182
	int ret = 0;
1183 1184 1185 1186

	if (!pi_state)
		return -EINVAL;

1187 1188 1189 1190 1191 1192 1193
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1194
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1195 1196 1197
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1198 1199 1200
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1201 1202 1203 1204 1205
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1206 1207 1208
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1209
	 */
1210
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1211

1212 1213 1214
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1215 1216 1217 1218 1219 1220 1221
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
		ret = -EFAULT;
	else if (curval != uval)
		ret = -EINVAL;
	if (ret) {
		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
		return ret;
1222
	}
1223

1224
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1225 1226
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1227
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1228

1229
	raw_spin_lock_irq(&new_owner->pi_lock);
1230
	WARN_ON(!list_empty(&pi_state->list));
1231 1232
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1233
	raw_spin_unlock_irq(&new_owner->pi_lock);
1234

1235
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);

	/*
	 * First unlock HB so the waiter does not spin on it once he got woken
	 * up. Second wake up the waiter before the priority is adjusted. If we
	 * deboost first (and lose our higher priority), then the task might get
	 * scheduled away before the wake up can take place.
	 */
	spin_unlock(&hb->lock);
	wake_up_q(&wake_q);
	if (deboost)
		rt_mutex_adjust_prio(current);
1249 1250 1251 1252

	return 0;
}

I
Ingo Molnar 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1269 1270 1271
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1272
	spin_unlock(&hb1->lock);
1273 1274
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1275 1276
}

L
Linus Torvalds 已提交
1277
/*
D
Darren Hart 已提交
1278
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1279
 */
1280 1281
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1282
{
1283
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1284
	struct futex_q *this, *next;
1285
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1286
	int ret;
1287
	WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1288

1289 1290 1291
	if (!bitset)
		return -EINVAL;

1292
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1293 1294 1295
	if (unlikely(ret != 0))
		goto out;

1296
	hb = hash_futex(&key);
1297 1298 1299 1300 1301

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1302
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1303

J
Jason Low 已提交
1304
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1305
		if (match_futex (&this->key, &key)) {
1306
			if (this->pi_state || this->rt_waiter) {
1307 1308 1309
				ret = -EINVAL;
				break;
			}
1310 1311 1312 1313 1314

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1315
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1316 1317 1318 1319 1320
			if (++ret >= nr_wake)
				break;
		}
	}

1321
	spin_unlock(&hb->lock);
1322
	wake_up_q(&wake_q);
1323
out_put_key:
1324
	put_futex_key(&key);
1325
out:
L
Linus Torvalds 已提交
1326 1327 1328
	return ret;
}

1329 1330 1331 1332
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1333
static int
1334
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1335
	      int nr_wake, int nr_wake2, int op)
1336
{
1337
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1338
	struct futex_hash_bucket *hb1, *hb2;
1339
	struct futex_q *this, *next;
D
Darren Hart 已提交
1340
	int ret, op_ret;
1341
	WAKE_Q(wake_q);
1342

D
Darren Hart 已提交
1343
retry:
1344
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1345 1346
	if (unlikely(ret != 0))
		goto out;
1347
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1348
	if (unlikely(ret != 0))
1349
		goto out_put_key1;
1350

1351 1352
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1353

D
Darren Hart 已提交
1354
retry_private:
T
Thomas Gleixner 已提交
1355
	double_lock_hb(hb1, hb2);
1356
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1357 1358
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1359
		double_unlock_hb(hb1, hb2);
1360

1361
#ifndef CONFIG_MMU
1362 1363 1364 1365
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1366
		ret = op_ret;
1367
		goto out_put_keys;
1368 1369
#endif

1370 1371
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1372
			goto out_put_keys;
1373 1374
		}

1375
		ret = fault_in_user_writeable(uaddr2);
1376
		if (ret)
1377
			goto out_put_keys;
1378

1379
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1380 1381
			goto retry_private;

1382 1383
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1384
		goto retry;
1385 1386
	}

J
Jason Low 已提交
1387
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1388
		if (match_futex (&this->key, &key1)) {
1389 1390 1391 1392
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1393
			mark_wake_futex(&wake_q, this);
1394 1395 1396 1397 1398 1399 1400
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1401
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1402
			if (match_futex (&this->key, &key2)) {
1403 1404 1405 1406
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1407
				mark_wake_futex(&wake_q, this);
1408 1409 1410 1411 1412 1413 1414
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1415
out_unlock:
D
Darren Hart 已提交
1416
	double_unlock_hb(hb1, hb2);
1417
	wake_up_q(&wake_q);
1418
out_put_keys:
1419
	put_futex_key(&key2);
1420
out_put_key1:
1421
	put_futex_key(&key1);
1422
out:
1423 1424 1425
	return ret;
}

D
Darren Hart 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1444
		hb_waiters_dec(hb1);
D
Darren Hart 已提交
1445
		plist_add(&q->list, &hb2->chain);
1446
		hb_waiters_inc(hb2);
D
Darren Hart 已提交
1447 1448 1449 1450 1451 1452
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1453 1454
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1455 1456 1457
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1458 1459 1460 1461 1462
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1463 1464 1465
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1466 1467
 */
static inline
1468 1469
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1470 1471 1472 1473
{
	get_futex_key_refs(key);
	q->key = *key;

1474
	__unqueue_futex(q);
1475 1476 1477 1478

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1479 1480
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1481
	wake_up_state(q->task, TASK_NORMAL);
1482 1483 1484 1485
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1486 1487 1488 1489 1490 1491 1492
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1493 1494
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1495 1496 1497
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1498
 *
1499 1500
 * Return:
 *  0 - failed to acquire the lock atomically;
1501
 * >0 - acquired the lock, return value is vpid of the top_waiter
1502 1503 1504 1505 1506 1507
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1508
				 struct futex_pi_state **ps, int set_waiters)
1509
{
1510
	struct futex_q *top_waiter = NULL;
1511
	u32 curval;
1512
	int ret, vpid;
1513 1514 1515 1516

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1517 1518 1519
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1528 1529 1530 1531 1532 1533
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1534 1535 1536 1537
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1538
	/*
1539 1540 1541
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1542
	 */
1543
	vpid = task_pid_vnr(top_waiter->task);
1544 1545
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1546
	if (ret == 1) {
1547
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1548 1549
		return vpid;
	}
1550 1551 1552 1553 1554
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1555
 * @uaddr1:	source futex user address
1556
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1557 1558 1559 1560 1561
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1562
 *		pi futex (pi to pi requeue is not supported)
1563 1564 1565 1566
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1567 1568
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1569
 *  <0 - on error
L
Linus Torvalds 已提交
1570
 */
1571 1572 1573
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1574
{
1575
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1576 1577
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1578
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1579
	struct futex_q *this, *next;
1580
	WAKE_Q(wake_q);
1581 1582

	if (requeue_pi) {
1583 1584 1585 1586 1587 1588 1589
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1609

1610
retry:
1611
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1612 1613
	if (unlikely(ret != 0))
		goto out;
1614 1615
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1616
	if (unlikely(ret != 0))
1617
		goto out_put_key1;
L
Linus Torvalds 已提交
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1628 1629
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1630

D
Darren Hart 已提交
1631
retry_private:
1632
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1633
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1634

1635 1636
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1637

1638
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1639 1640

		if (unlikely(ret)) {
D
Darren Hart 已提交
1641
			double_unlock_hb(hb1, hb2);
1642
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1643

1644
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1645 1646
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1647

1648
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1649
				goto retry_private;
L
Linus Torvalds 已提交
1650

1651 1652
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1653
			goto retry;
L
Linus Torvalds 已提交
1654
		}
1655
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1661
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1662 1663 1664 1665 1666 1667
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1668
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1669
						 &key2, &pi_state, nr_requeue);
1670 1671 1672 1673 1674

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1675 1676
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1677 1678
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1679
		 */
1680
		if (ret > 0) {
1681
			WARN_ON(pi_state);
1682
			drop_count++;
1683
			task_count++;
1684
			/*
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1695
			 */
1696
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1697 1698 1699 1700
		}

		switch (ret) {
		case 0:
1701
			/* We hold a reference on the pi state. */
1702
			break;
1703 1704

			/* If the above failed, then pi_state is NULL */
1705 1706
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1707
			hb_waiters_dec(hb2);
1708 1709
			put_futex_key(&key2);
			put_futex_key(&key1);
1710
			ret = fault_in_user_writeable(uaddr2);
1711 1712 1713 1714
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1715 1716 1717 1718 1719 1720
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1721
			double_unlock_hb(hb1, hb2);
1722
			hb_waiters_dec(hb2);
1723 1724
			put_futex_key(&key2);
			put_futex_key(&key1);
1725 1726 1727 1728 1729 1730 1731
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1732
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1733 1734 1735 1736
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1737
			continue;
1738

1739 1740 1741
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1742 1743 1744
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1745 1746
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1747 1748
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1749 1750 1751
			ret = -EINVAL;
			break;
		}
1752 1753 1754 1755 1756 1757 1758

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
1759
			mark_wake_futex(&wake_q, this);
1760 1761
			continue;
		}
L
Linus Torvalds 已提交
1762

1763 1764 1765 1766 1767 1768
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1769 1770 1771 1772 1773
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
1774 1775 1776 1777 1778
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
1779 1780 1781 1782
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
1783
							this->task);
1784
			if (ret == 1) {
1785 1786 1787 1788 1789 1790 1791 1792
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
1793
				requeue_pi_wake_futex(this, &key2, hb2);
1794
				drop_count++;
1795 1796
				continue;
			} else if (ret) {
1797 1798 1799 1800 1801 1802 1803 1804
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
1805
				this->pi_state = NULL;
1806
				put_pi_state(pi_state);
1807 1808 1809 1810 1811
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
1812
			}
L
Linus Torvalds 已提交
1813
		}
1814 1815
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1816 1817
	}

1818 1819 1820 1821 1822
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
1823
	put_pi_state(pi_state);
1824 1825

out_unlock:
D
Darren Hart 已提交
1826
	double_unlock_hb(hb1, hb2);
1827
	wake_up_q(&wake_q);
1828
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1829

1830 1831 1832 1833 1834 1835
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1836
	while (--drop_count >= 0)
1837
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1838

1839
out_put_keys:
1840
	put_futex_key(&key2);
1841
out_put_key1:
1842
	put_futex_key(&key1);
1843
out:
1844
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1845 1846 1847
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1848
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1849
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1850
{
1851
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1852

1853
	hb = hash_futex(&q->key);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

1865
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1866

1867
	spin_lock(&hb->lock); /* implies MB (A) */
1868
	return hb;
L
Linus Torvalds 已提交
1869 1870
}

1871
static inline void
J
Jason Low 已提交
1872
queue_unlock(struct futex_hash_bucket *hb)
1873
	__releases(&hb->lock)
1874 1875
{
	spin_unlock(&hb->lock);
1876
	hb_waiters_dec(hb);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1891
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1892
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1893
{
P
Pierre Peiffer 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1908
	q->task = current;
1909
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1910 1911
}

1912 1913 1914 1915 1916 1917 1918
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
1919 1920
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
1921
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1922 1923 1924 1925
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1926
	int ret = 0;
L
Linus Torvalds 已提交
1927 1928

	/* In the common case we don't take the spinlock, which is nice. */
1929
retry:
L
Linus Torvalds 已提交
1930
	lock_ptr = q->lock_ptr;
1931
	barrier();
1932
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1951
		__unqueue_futex(q);
1952 1953 1954

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1955 1956 1957 1958
		spin_unlock(lock_ptr);
		ret = 1;
	}

1959
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1960 1961 1962
	return ret;
}

1963 1964
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1965 1966
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1967
 */
P
Pierre Peiffer 已提交
1968
static void unqueue_me_pi(struct futex_q *q)
1969
	__releases(q->lock_ptr)
1970
{
1971
	__unqueue_futex(q);
1972 1973

	BUG_ON(!q->pi_state);
1974
	put_pi_state(q->pi_state);
1975 1976
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1977
	spin_unlock(q->lock_ptr);
1978 1979
}

P
Pierre Peiffer 已提交
1980
/*
1981
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1982
 *
1983 1984
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1985
 */
1986
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1987
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1988
{
1989
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1990
	struct futex_pi_state *pi_state = q->pi_state;
1991
	struct task_struct *oldowner = pi_state->owner;
1992
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1993
	int ret;
P
Pierre Peiffer 已提交
1994 1995

	/* Owner died? */
1996 1997 1998 1999 2000
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2001 2002 2003 2004
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2005
	 *
D
Darren Hart 已提交
2006 2007 2008
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2023
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2034
	if (pi_state->owner != NULL) {
2035
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2036 2037
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
2038
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2039
	}
P
Pierre Peiffer 已提交
2040

2041
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2042

2043
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2044
	WARN_ON(!list_empty(&pi_state->list));
2045
	list_add(&pi_state->list, &newowner->pi_state_list);
2046
	raw_spin_unlock_irq(&newowner->pi_lock);
2047
	return 0;
P
Pierre Peiffer 已提交
2048 2049

	/*
2050
	 * To handle the page fault we need to drop the hash bucket
2051 2052
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
2053 2054 2055 2056 2057
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
2058
	 */
2059 2060
handle_fault:
	spin_unlock(q->lock_ptr);
2061

2062
	ret = fault_in_user_writeable(uaddr);
2063

2064
	spin_lock(q->lock_ptr);
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
2076 2077
}

N
Nick Piggin 已提交
2078
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2090 2091 2092
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
2093 2094
 * <0 - on error (-EFAULT)
 */
2095
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
2106
			ret = fixup_pi_state_owner(uaddr, q, current);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
2128
		 * rt_mutex. Too late.
2129
		 */
2130
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2131
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2132 2133 2134
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2135
		ret = fixup_pi_state_owner(uaddr, q, owner);
2136 2137 2138 2139 2140
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2141
	 * the owner of the rt_mutex.
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

2153 2154 2155 2156 2157 2158 2159
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2160
				struct hrtimer_sleeper *timeout)
2161
{
2162 2163
	/*
	 * The task state is guaranteed to be set before another task can
2164
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2165 2166 2167
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2168
	set_current_state(TASK_INTERRUPTIBLE);
2169
	queue_me(q, hb);
2170 2171

	/* Arm the timer */
2172
	if (timeout)
2173 2174 2175
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2176 2177
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2178 2179 2180 2181 2182 2183 2184 2185
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2186
			freezable_schedule();
2187 2188 2189 2190
	}
	__set_current_state(TASK_RUNNING);
}

2191 2192 2193 2194
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2195
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2196 2197 2198 2199 2200 2201 2202 2203
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2204 2205
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2206
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2207
 */
2208
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2209
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2210
{
2211 2212
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2213 2214

	/*
D
Darren Hart 已提交
2215
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221 2222
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2223 2224
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2225 2226
	 * cond(var) false, which would violate the guarantee.
	 *
2227 2228 2229 2230
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2231
	 */
2232
retry:
2233
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2234
	if (unlikely(ret != 0))
2235
		return ret;
2236 2237 2238 2239

retry_private:
	*hb = queue_lock(q);

2240
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2241

2242
	if (ret) {
J
Jason Low 已提交
2243
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2244

2245
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2246
		if (ret)
2247
			goto out;
L
Linus Torvalds 已提交
2248

2249
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2250 2251
			goto retry_private;

2252
		put_futex_key(&q->key);
D
Darren Hart 已提交
2253
		goto retry;
L
Linus Torvalds 已提交
2254
	}
2255

2256
	if (uval != val) {
J
Jason Low 已提交
2257
		queue_unlock(*hb);
2258
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2259
	}
L
Linus Torvalds 已提交
2260

2261 2262
out:
	if (ret)
2263
		put_futex_key(&q->key);
2264 2265 2266
	return ret;
}

2267 2268
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2269 2270 2271 2272
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2273
	struct futex_q q = futex_q_init;
2274 2275 2276 2277 2278 2279 2280 2281 2282
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2283 2284 2285
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2286 2287 2288 2289 2290
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2291
retry:
2292 2293 2294 2295
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2296
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2297 2298 2299
	if (ret)
		goto out;

2300
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2301
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2302 2303

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2304
	ret = 0;
2305
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2306
	if (!unqueue_me(&q))
2307
		goto out;
P
Peter Zijlstra 已提交
2308
	ret = -ETIMEDOUT;
2309
	if (to && !to->task)
2310
		goto out;
N
Nick Piggin 已提交
2311

2312
	/*
T
Thomas Gleixner 已提交
2313 2314
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2315
	 */
2316
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2317 2318
		goto retry;

P
Peter Zijlstra 已提交
2319
	ret = -ERESTARTSYS;
2320
	if (!abs_time)
2321
		goto out;
L
Linus Torvalds 已提交
2322

2323
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2324
	restart->fn = futex_wait_restart;
2325
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2326 2327 2328
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2329
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2330

P
Peter Zijlstra 已提交
2331 2332
	ret = -ERESTART_RESTARTBLOCK;

2333
out:
2334 2335 2336 2337
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2338 2339 2340
	return ret;
}

N
Nick Piggin 已提交
2341 2342 2343

static long futex_wait_restart(struct restart_block *restart)
{
2344
	u32 __user *uaddr = restart->futex.uaddr;
2345
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2346

2347 2348 2349 2350
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2351
	restart->fn = do_no_restart_syscall;
2352 2353 2354

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2355 2356 2357
}


2358 2359 2360
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2361 2362 2363 2364 2365
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2366
 */
2367
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2368
			 ktime_t *time, int trylock)
2369
{
2370
	struct hrtimer_sleeper timeout, *to = NULL;
2371
	struct futex_hash_bucket *hb;
2372
	struct futex_q q = futex_q_init;
2373
	int res, ret;
2374 2375 2376 2377

	if (refill_pi_state_cache())
		return -ENOMEM;

2378
	if (time) {
2379
		to = &timeout;
2380 2381
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2382
		hrtimer_init_sleeper(to, current);
2383
		hrtimer_set_expires(&to->timer, *time);
2384 2385
	}

2386
retry:
2387
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2388
	if (unlikely(ret != 0))
2389
		goto out;
2390

D
Darren Hart 已提交
2391
retry_private:
E
Eric Sesterhenn 已提交
2392
	hb = queue_lock(&q);
2393

2394
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2395
	if (unlikely(ret)) {
2396 2397 2398 2399
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2400
		switch (ret) {
2401 2402 2403 2404 2405 2406
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2407 2408
		case -EAGAIN:
			/*
2409 2410 2411 2412
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2413
			 */
J
Jason Low 已提交
2414
			queue_unlock(hb);
2415
			put_futex_key(&q.key);
2416 2417 2418
			cond_resched();
			goto retry;
		default:
2419
			goto out_unlock_put_key;
2420 2421 2422 2423 2424 2425
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2426
	queue_me(&q, hb);
2427 2428 2429 2430 2431

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
2432 2433 2434
	if (!trylock) {
		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
	} else {
2435 2436 2437 2438 2439
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2440
	spin_lock(q.lock_ptr);
2441 2442 2443 2444
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2445
	res = fixup_owner(uaddr, &q, !ret);
2446 2447 2448 2449 2450 2451
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2452

2453
	/*
2454 2455
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2456 2457 2458 2459
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2460 2461
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2462

2463
	goto out_put_key;
2464

2465
out_unlock_put_key:
J
Jason Low 已提交
2466
	queue_unlock(hb);
2467

2468
out_put_key:
2469
	put_futex_key(&q.key);
2470
out:
2471 2472
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2473
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2474

2475
uaddr_faulted:
J
Jason Low 已提交
2476
	queue_unlock(hb);
2477

2478
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2479 2480
	if (ret)
		goto out_put_key;
2481

2482
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2483 2484
		goto retry_private;

2485
	put_futex_key(&q.key);
D
Darren Hart 已提交
2486
	goto retry;
2487 2488 2489 2490 2491 2492 2493
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2494
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2495
{
2496
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2497
	union futex_key key = FUTEX_KEY_INIT;
2498 2499
	struct futex_hash_bucket *hb;
	struct futex_q *match;
D
Darren Hart 已提交
2500
	int ret;
2501 2502 2503 2504 2505 2506 2507

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2508
	if ((uval & FUTEX_TID_MASK) != vpid)
2509 2510
		return -EPERM;

2511
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2512 2513
	if (ret)
		return ret;
2514 2515 2516 2517 2518

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2519 2520 2521
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2522
	 */
2523 2524
	match = futex_top_waiter(hb, &key);
	if (match) {
2525 2526 2527 2528 2529 2530 2531
		ret = wake_futex_pi(uaddr, uval, match, hb);
		/*
		 * In case of success wake_futex_pi dropped the hash
		 * bucket lock.
		 */
		if (!ret)
			goto out_putkey;
2532
		/*
2533 2534
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2535 2536 2537
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2538 2539 2540 2541
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2542 2543
		goto out_unlock;
	}
2544

2545
	/*
2546 2547 2548 2549 2550
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2551
	 */
2552
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2553
		goto pi_faulted;
2554

2555 2556 2557 2558 2559
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2560 2561
out_unlock:
	spin_unlock(&hb->lock);
2562
out_putkey:
2563
	put_futex_key(&key);
2564 2565 2566
	return ret;

pi_faulted:
2567
	spin_unlock(&hb->lock);
2568
	put_futex_key(&key);
2569

2570
	ret = fault_in_user_writeable(uaddr);
2571
	if (!ret)
2572 2573
		goto retry;

L
Linus Torvalds 已提交
2574 2575 2576
	return ret;
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2589 2590 2591
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2613
		plist_del(&q->list, &hb->chain);
2614
		hb_waiters_dec(hb);
2615

T
Thomas Gleixner 已提交
2616
		/* Handle spurious wakeups gracefully */
2617
		ret = -EWOULDBLOCK;
2618 2619
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2620
		else if (signal_pending(current))
2621
			ret = -ERESTARTNOINTR;
2622 2623 2624 2625 2626 2627
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2628
 * @uaddr:	the futex we initially wait on (non-pi)
2629
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2630
 *		the same type, no requeueing from private to shared, etc.
2631 2632
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2633
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2634 2635 2636
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2637 2638 2639 2640 2641
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2642 2643
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2644
 * via the following--
2645
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2646 2647 2648
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2649
 *
2650
 * If 3, cleanup and return -ERESTARTNOINTR.
2651 2652 2653 2654 2655 2656 2657
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2658
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2659 2660 2661
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2662 2663
 * Return:
 *  0 - On success;
2664 2665
 * <0 - On error
 */
2666
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2667
				 u32 val, ktime_t *abs_time, u32 bitset,
2668
				 u32 __user *uaddr2)
2669 2670 2671 2672 2673
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2674 2675
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2676 2677
	int res, ret;

2678 2679 2680
	if (uaddr == uaddr2)
		return -EINVAL;

2681 2682 2683 2684 2685
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2686 2687 2688
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2699 2700
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2701 2702
	rt_waiter.task = NULL;

2703
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2704 2705 2706
	if (unlikely(ret != 0))
		goto out;

2707 2708 2709 2710
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2711 2712 2713 2714
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2715
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2716 2717
	if (ret)
		goto out_key2;
2718

2719 2720 2721 2722 2723
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
2724
		queue_unlock(hb);
2725 2726 2727 2728
		ret = -EINVAL;
		goto out_put_keys;
	}

2729
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2730
	futex_wait_queue_me(hb, &q, to);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2742 2743 2744
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2755
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2756 2757 2758 2759
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
2760
			put_pi_state(q.pi_state);
2761 2762 2763 2764 2765 2766 2767 2768
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2769
		WARN_ON(!q.pi_state);
2770
		pi_mutex = &q.pi_state->pi_mutex;
2771
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2772 2773 2774 2775 2776 2777 2778
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2779
		res = fixup_owner(uaddr2, &q, !ret);
2780 2781
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2782
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2796
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2797 2798 2799
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2800 2801 2802 2803 2804
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2805
		 */
2806
		ret = -EWOULDBLOCK;
2807 2808 2809
	}

out_put_keys:
2810
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2811
out_key2:
2812
	put_futex_key(&key2);
2813 2814 2815 2816 2817 2818 2819 2820 2821

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2822 2823 2824 2825 2826 2827 2828
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2829
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2830 2831 2832 2833 2834 2835 2836 2837
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2838 2839 2840
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2841
 */
2842 2843
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2844
{
2845 2846
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2859 2860 2861 2862
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2863
 */
2864 2865 2866
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2867
{
A
Al Viro 已提交
2868
	struct robust_list_head __user *head;
2869
	unsigned long ret;
2870
	struct task_struct *p;
2871

2872 2873 2874
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2875 2876 2877
	rcu_read_lock();

	ret = -ESRCH;
2878
	if (!pid)
2879
		p = current;
2880
	else {
2881
		p = find_task_by_vpid(pid);
2882 2883 2884 2885
		if (!p)
			goto err_unlock;
	}

2886
	ret = -EPERM;
2887
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2888 2889 2890 2891 2892
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2893 2894 2895 2896 2897
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2898
	rcu_read_unlock();
2899 2900 2901 2902 2903 2904 2905 2906

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2907
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2908
{
2909
	u32 uval, uninitialized_var(nval), mval;
2910

2911 2912
retry:
	if (get_user(uval, uaddr))
2913 2914
		return -1;

2915
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2926
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2941
		if (nval != uval)
2942
			goto retry;
2943

2944 2945 2946 2947
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2948
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2949
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2950 2951 2952 2953
	}
	return 0;
}

2954 2955 2956 2957
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2958
				     struct robust_list __user * __user *head,
2959
				     unsigned int *pi)
2960 2961 2962
{
	unsigned long uentry;

A
Al Viro 已提交
2963
	if (get_user(uentry, (unsigned long __user *)head))
2964 2965
		return -EFAULT;

A
Al Viro 已提交
2966
	*entry = (void __user *)(uentry & ~1UL);
2967 2968 2969 2970 2971
	*pi = uentry & 1;

	return 0;
}

2972 2973 2974 2975 2976 2977 2978 2979 2980
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2981
	struct robust_list __user *entry, *next_entry, *pending;
2982 2983
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2984
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2985
	int rc;
2986

2987 2988 2989
	if (!futex_cmpxchg_enabled)
		return;

2990 2991 2992 2993
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2994
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3005
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3006
		return;
3007

M
Martin Schwidefsky 已提交
3008
	next_entry = NULL;	/* avoid warning with gcc */
3009
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3010 3011 3012 3013 3014
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3015 3016
		/*
		 * A pending lock might already be on the list, so
3017
		 * don't process it twice:
3018 3019
		 */
		if (entry != pending)
A
Al Viro 已提交
3020
			if (handle_futex_death((void __user *)entry + futex_offset,
3021
						curr, pi))
3022
				return;
M
Martin Schwidefsky 已提交
3023
		if (rc)
3024
			return;
M
Martin Schwidefsky 已提交
3025 3026
		entry = next_entry;
		pi = next_pi;
3027 3028 3029 3030 3031 3032 3033 3034
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3035 3036 3037 3038

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3039 3040
}

3041
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3042
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3043
{
T
Thomas Gleixner 已提交
3044
	int cmd = op & FUTEX_CMD_MASK;
3045
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3046 3047

	if (!(op & FUTEX_PRIVATE_FLAG))
3048
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3049

3050 3051
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3052 3053
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3054 3055
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3056

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3067
	switch (cmd) {
L
Linus Torvalds 已提交
3068
	case FUTEX_WAIT:
3069 3070
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3071
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3072
	case FUTEX_WAKE:
3073 3074
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3075
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3076
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3077
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3078
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3079
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3080
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3081
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3082
	case FUTEX_LOCK_PI:
3083
		return futex_lock_pi(uaddr, flags, timeout, 0);
3084
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3085
		return futex_unlock_pi(uaddr, flags);
3086
	case FUTEX_TRYLOCK_PI:
3087
		return futex_lock_pi(uaddr, flags, NULL, 1);
3088 3089
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3090 3091
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3092
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3093
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3094
	}
T
Thomas Gleixner 已提交
3095
	return -ENOSYS;
L
Linus Torvalds 已提交
3096 3097 3098
}


3099 3100 3101
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3102
{
3103 3104
	struct timespec ts;
	ktime_t t, *tp = NULL;
3105
	u32 val2 = 0;
E
Eric Dumazet 已提交
3106
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3107

3108
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3109 3110
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3111 3112
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3113
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3114
			return -EFAULT;
3115
		if (!timespec_valid(&ts))
3116
			return -EINVAL;
3117 3118

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3119
		if (cmd == FUTEX_WAIT)
3120
			t = ktime_add_safe(ktime_get(), t);
3121
		tp = &t;
L
Linus Torvalds 已提交
3122 3123
	}
	/*
3124
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3125
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3126
	 */
3127
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3128
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3129
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3130

3131
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3132 3133
}

3134
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3135
{
3136
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3137
	u32 curval;
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3156
	unsigned int futex_shift;
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3168 3169 3170
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3171 3172

	futex_detect_cmpxchg();
3173

3174
	for (i = 0; i < futex_hashsize; i++) {
3175
		atomic_set(&futex_queues[i].waiters, 0);
3176
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3177 3178 3179
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3180 3181
	return 0;
}
3182
__initcall(futex_init);