futex.c 66.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

L
Linus Torvalds 已提交
92 93 94 95 96
/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
97
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
L
Linus Torvalds 已提交
98
 * The order of wakup is always to make the first condition true, then
99
 * wake up q->waiter, then make the second condition true.
L
Linus Torvalds 已提交
100 101
 */
struct futex_q {
P
Pierre Peiffer 已提交
102
	struct plist_node list;
T
Thomas Gleixner 已提交
103 104
	/* Waiter reference */
	struct task_struct *task;
L
Linus Torvalds 已提交
105

106
	/* Which hash list lock to use: */
L
Linus Torvalds 已提交
107 108
	spinlock_t *lock_ptr;

109
	/* Key which the futex is hashed on: */
L
Linus Torvalds 已提交
110 111
	union futex_key key;

112 113
	/* Optional priority inheritance state: */
	struct futex_pi_state *pi_state;
114

115 116 117
	/* rt_waiter storage for requeue_pi: */
	struct rt_mutex_waiter *rt_waiter;

118 119
	/* Bitset for the optional bitmasked wakeup */
	u32 bitset;
L
Linus Torvalds 已提交
120 121 122
};

/*
D
Darren Hart 已提交
123 124 125
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
126 127
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
128 129
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		atomic_inc(&key->shared.inode->i_count);
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
181 182 183
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
184
		return;
185
	}
186 187 188 189 190 191 192 193 194 195 196

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
197 198 199
/**
 * get_futex_key - Get parameters which are the keys for a futex.
 * @uaddr: virtual address of the futex
D
Darren Hart 已提交
200
 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
E
Eric Dumazet 已提交
201
 * @key: address where result is stored.
202
 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
E
Eric Dumazet 已提交
203 204 205
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
206
 *
207
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
208 209 210
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
211
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
212
 */
213 214
static int
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
215
{
216
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
217 218 219 220 221 222 223
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
224
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
225
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
226
		return -EINVAL;
227
	address -= key->both.offset;
L
Linus Torvalds 已提交
228

E
Eric Dumazet 已提交
229 230 231 232 233 234 235 236
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
237
		if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
238 239 240
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
241
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
242 243
		return 0;
	}
L
Linus Torvalds 已提交
244

245
again:
246
	err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
247 248 249
	if (err < 0)
		return err;

250
	page = compound_head(page);
251 252 253 254 255 256
	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
L
Linus Torvalds 已提交
257 258 259 260 261 262

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
263
	 * the object not the particular process.
L
Linus Torvalds 已提交
264
	 */
265 266
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
267
		key->private.mm = mm;
268
		key->private.address = address;
269 270 271 272
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
L
Linus Torvalds 已提交
273 274
	}

275
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
276

277 278 279
	unlock_page(page);
	put_page(page);
	return 0;
L
Linus Torvalds 已提交
280 281
}

282
static inline
P
Peter Zijlstra 已提交
283
void put_futex_key(int fshared, union futex_key *key)
L
Linus Torvalds 已提交
284
{
285
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/*
 * fault_in_user_writeable - fault in user address and verify RW access
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
	int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
303
				 1, 1, 0, NULL, NULL);
304 305 306
	return ret < 0 ? ret : 0;
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
 * @hb:     the hash bucket the futex_q's reside in
 * @key:    the futex key (to distinguish it from other futex futex_q's)
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

T
Thomas Gleixner 已提交
326 327 328 329 330 331 332 333 334 335 336 337
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
338 339 340
{
	int ret;

341
	pagefault_disable();
342
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
343
	pagefault_enable();
L
Linus Torvalds 已提交
344 345 346 347

	return ret ? -EFAULT : 0;
}

348 349 350 351 352 353 354 355 356 357 358

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

359
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
360 361 362 363 364 365 366 367

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
368
	pi_state->key = FUTEX_KEY_INIT;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;
423
	const struct cred *cred = current_cred(), *pcred;
424

425
	rcu_read_lock();
426
	p = find_task_by_vpid(pid);
427
	if (!p) {
428
		p = ERR_PTR(-ESRCH);
429 430 431 432 433 434 435 436
	} else {
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid)
			p = ERR_PTR(-ESRCH);
		else
			get_task_struct(p);
	}
437

438
	rcu_read_unlock();
439 440 441 442 443 444 445 446 447 448 449 450 451

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
452
	struct futex_hash_bucket *hb;
453
	union futex_key key = FUTEX_KEY_INIT;
454

455 456
	if (!futex_cmpxchg_enabled)
		return;
457 458 459
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
460
	 * versus waiters unqueueing themselves:
461 462 463 464 465 466 467
	 */
	spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
468
		hb = hash_futex(&key);
469 470 471 472 473
		spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
474 475 476 477
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
478 479 480 481 482 483
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
484 485
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
486 487 488 489 490 491 492 493 494 495 496 497 498
		pi_state->owner = NULL;
		spin_unlock_irq(&curr->pi_lock);

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
	}
	spin_unlock_irq(&curr->pi_lock);
}

static int
P
Pierre Peiffer 已提交
499 500
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
501 502 503
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
504
	struct plist_head *head;
505
	struct task_struct *p;
506
	pid_t pid = uval & FUTEX_TID_MASK;
507 508 509

	head = &hb->chain;

P
Pierre Peiffer 已提交
510
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
511
		if (match_futex(&this->key, key)) {
512 513 514 515 516
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
517 518 519 520 521 522
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

523
			WARN_ON(!atomic_read(&pi_state->refcount));
524 525
			WARN_ON(pid && pi_state->owner &&
				pi_state->owner->pid != pid);
526

527
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
528
			*ps = pi_state;
529 530 531 532 533 534

			return 0;
		}
	}

	/*
535
	 * We are the first waiter - try to look up the real owner and attach
536
	 * the new pi_state to it, but bail out when TID = 0
537
	 */
538
	if (!pid)
539
		return -ESRCH;
540
	p = futex_find_get_task(pid);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	if (IS_ERR(p))
		return PTR_ERR(p);

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
	spin_lock_irq(&p->pi_lock);
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

		spin_unlock_irq(&p->pi_lock);
		put_task_struct(p);
		return ret;
	}
563 564 565 566 567 568 569 570 571 572

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
573
	pi_state->key = *key;
574

575
	WARN_ON(!list_empty(&pi_state->list));
576 577 578 579 580 581
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
	spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

P
Pierre Peiffer 已提交
582
	*ps = pi_state;
583 584 585 586

	return 0;
}

587 588
/**
 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
589 590 591 592 593 594 595 596
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
597 598 599 600 601 602 603 604 605 606 607
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
608
				struct task_struct *task, int set_waiters)
609 610 611 612 613 614 615 616 617 618 619 620 621
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
622 623
	if (set_waiters)
		newval |= FUTEX_WAITERS;
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
712 713 714 715 716 717
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
718 719
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
720
	/*
T
Thomas Gleixner 已提交
721 722 723 724 725
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
	 * a non futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non existing task
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
726
	 */
T
Thomas Gleixner 已提交
727 728 729
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
730
	/*
T
Thomas Gleixner 已提交
731 732 733 734
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
735
	 */
736
	smp_wmb();
L
Linus Torvalds 已提交
737
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
738 739 740

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
741 742
}

743 744 745 746 747 748 749 750 751
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

752
	spin_lock(&pi_state->pi_mutex.wait_lock);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
769
	if (!(uval & FUTEX_OWNER_DIED)) {
770 771
		int ret = 0;

772
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
773

T
Thomas Gleixner 已提交
774
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
775

776
		if (curval == -EFAULT)
777
			ret = -EFAULT;
778
		else if (curval != uval)
779 780 781 782 783
			ret = -EINVAL;
		if (ret) {
			spin_unlock(&pi_state->pi_mutex.wait_lock);
			return ret;
		}
784
	}
785

786 787 788 789 790 791 792
	spin_lock_irq(&pi_state->owner->pi_lock);
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
	spin_unlock_irq(&pi_state->owner->pi_lock);

	spin_lock_irq(&new_owner->pi_lock);
	WARN_ON(!list_empty(&pi_state->list));
793 794
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
795 796
	spin_unlock_irq(&new_owner->pi_lock);

797
	spin_unlock(&pi_state->pi_mutex.wait_lock);
798 799 800 801 802 803 804 805 806 807 808 809 810
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
T
Thomas Gleixner 已提交
811
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
812 813 814 815 816 817 818 819 820

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
837 838 839
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
840
	spin_unlock(&hb1->lock);
841 842
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
843 844
}

L
Linus Torvalds 已提交
845
/*
D
Darren Hart 已提交
846
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
847
 */
P
Peter Zijlstra 已提交
848
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
849
{
850
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
851
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
852
	struct plist_head *head;
853
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
854 855
	int ret;

856 857 858
	if (!bitset)
		return -EINVAL;

859
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
L
Linus Torvalds 已提交
860 861 862
	if (unlikely(ret != 0))
		goto out;

863 864 865
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
866

P
Pierre Peiffer 已提交
867
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
868
		if (match_futex (&this->key, &key)) {
869
			if (this->pi_state || this->rt_waiter) {
870 871 872
				ret = -EINVAL;
				break;
			}
873 874 875 876 877

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
878 879 880 881 882 883
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

884
	spin_unlock(&hb->lock);
885
	put_futex_key(fshared, &key);
886
out:
L
Linus Torvalds 已提交
887 888 889
	return ret;
}

890 891 892 893
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
894
static int
P
Peter Zijlstra 已提交
895
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
896
	      int nr_wake, int nr_wake2, int op)
897
{
898
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
899
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
900
	struct plist_head *head;
901
	struct futex_q *this, *next;
D
Darren Hart 已提交
902
	int ret, op_ret;
903

D
Darren Hart 已提交
904
retry:
905
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
906 907
	if (unlikely(ret != 0))
		goto out;
908
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
909
	if (unlikely(ret != 0))
910
		goto out_put_key1;
911

912 913
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
914

I
Ingo Molnar 已提交
915
	double_lock_hb(hb1, hb2);
D
Darren Hart 已提交
916
retry_private:
917
	op_ret = futex_atomic_op_inuser(op, uaddr2);
918 919
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
920
		double_unlock_hb(hb1, hb2);
921

922
#ifndef CONFIG_MMU
923 924 925 926
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
927
		ret = op_ret;
928
		goto out_put_keys;
929 930
#endif

931 932
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
933
			goto out_put_keys;
934 935
		}

936
		ret = fault_in_user_writeable(uaddr2);
937
		if (ret)
938
			goto out_put_keys;
939

D
Darren Hart 已提交
940 941 942
		if (!fshared)
			goto retry_private;

943 944
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
D
Darren Hart 已提交
945
		goto retry;
946 947
	}

948
	head = &hb1->chain;
949

P
Pierre Peiffer 已提交
950
	plist_for_each_entry_safe(this, next, head, list) {
951 952 953 954 955 956 957 958
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
959
		head = &hb2->chain;
960 961

		op_ret = 0;
P
Pierre Peiffer 已提交
962
		plist_for_each_entry_safe(this, next, head, list) {
963 964 965 966 967 968 969 970 971
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
972
	double_unlock_hb(hb1, hb2);
973
out_put_keys:
974
	put_futex_key(fshared, &key2);
975
out_put_key1:
976
	put_futex_key(fshared, &key1);
977
out:
978 979 980
	return ret;
}

D
Darren Hart 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
		q->list.plist.lock = &hb2->lock;
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
 * q:	the futex_q
 * key:	the key of the requeue target futex
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
 * atomic lock acquisition.  Must be called with the q->lock_ptr held.
 */
static inline
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
{
	drop_futex_key_refs(&q->key);
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

T
Thomas Gleixner 已提交
1033
	wake_up_state(q->task, TASK_NORMAL);
1034 1035 1036 1037
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1038 1039 1040 1041 1042 1043 1044
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1045 1046
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1047 1048 1049
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1060
				 struct futex_pi_state **ps, int set_waiters)
1061
{
1062
	struct futex_q *top_waiter = NULL;
1063 1064 1065 1066 1067 1068
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1069 1070 1071 1072 1073 1074 1075 1076
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1077 1078 1079 1080 1081 1082 1083
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

	/*
1084 1085 1086
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1087
	 */
1088 1089
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	if (ret == 1)
		requeue_pi_wake_futex(top_waiter, key2);

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * uaddr1:	source futex user address
 * uaddr2:	target futex user address
 * nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1111
 */
P
Peter Zijlstra 已提交
1112
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1113 1114
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
L
Linus Torvalds 已提交
1115
{
1116
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1117 1118
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1119
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1120
	struct plist_head *head1;
L
Linus Torvalds 已提交
1121
	struct futex_q *this, *next;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1144

1145
retry:
1146 1147 1148 1149 1150 1151 1152 1153 1154
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1155
	ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1156 1157
	if (unlikely(ret != 0))
		goto out;
1158 1159
	ret = get_futex_key(uaddr2, fshared, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1160
	if (unlikely(ret != 0))
1161
		goto out_put_key1;
L
Linus Torvalds 已提交
1162

1163 1164
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1165

D
Darren Hart 已提交
1166
retry_private:
I
Ingo Molnar 已提交
1167
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1168

1169 1170
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1171

1172
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1173 1174

		if (unlikely(ret)) {
D
Darren Hart 已提交
1175
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1176

1177
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1178 1179
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1180

D
Darren Hart 已提交
1181 1182
			if (!fshared)
				goto retry_private;
L
Linus Torvalds 已提交
1183

D
Darren Hart 已提交
1184 1185 1186
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
L
Linus Torvalds 已提交
1187
		}
1188
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1189 1190 1191 1192 1193
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1194
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1195 1196 1197 1198 1199 1200
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1201
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1202
						 &key2, &pi_state, nr_requeue);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
1226
			ret = fault_in_user_writeable(uaddr2);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1242
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1243
	plist_for_each_entry_safe(this, next, head1, list) {
1244 1245 1246 1247
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1248
			continue;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

		WARN_ON(!requeue_pi && this->rt_waiter);
		WARN_ON(requeue_pi && !this->rt_waiter);

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1259
			wake_futex(this);
1260 1261
			continue;
		}
L
Linus Torvalds 已提交
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
				requeue_pi_wake_futex(this, &key2);
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1284
		}
1285 1286
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1287 1288 1289
	}

out_unlock:
D
Darren Hart 已提交
1290
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1291

1292 1293 1294 1295 1296 1297
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1298
	while (--drop_count >= 0)
1299
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1300

1301
out_put_keys:
1302
	put_futex_key(fshared, &key2);
1303
out_put_key1:
1304
	put_futex_key(fshared, &key1);
1305
out:
1306 1307 1308
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1309 1310 1311
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1312
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
L
Linus Torvalds 已提交
1313
{
1314
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1315

1316
	get_futex_key_refs(&q->key);
1317 1318
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1319

1320 1321
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1322 1323
}

E
Eric Sesterhenn 已提交
1324
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1325
{
P
Pierre Peiffer 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
	q->list.plist.lock = &hb->lock;
#endif
	plist_add(&q->list, &hb->chain);
1343
	q->task = current;
1344
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1345 1346 1347
}

static inline void
1348
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
1349
{
1350
	spin_unlock(&hb->lock);
1351
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1363
	int ret = 0;
L
Linus Torvalds 已提交
1364 1365

	/* In the common case we don't take the spinlock, which is nice. */
1366
retry:
L
Linus Torvalds 已提交
1367
	lock_ptr = q->lock_ptr;
1368
	barrier();
1369
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1388 1389
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1390 1391 1392

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1393 1394 1395 1396
		spin_unlock(lock_ptr);
		ret = 1;
	}

1397
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1398 1399 1400
	return ret;
}

1401 1402
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1403 1404
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1405
 */
P
Pierre Peiffer 已提交
1406
static void unqueue_me_pi(struct futex_q *q)
1407
{
P
Pierre Peiffer 已提交
1408 1409
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1410 1411 1412 1413 1414

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1415
	spin_unlock(q->lock_ptr);
1416

1417
	drop_futex_key_refs(&q->key);
1418 1419
}

P
Pierre Peiffer 已提交
1420
/*
1421
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1422
 *
1423 1424
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1425
 */
1426
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
P
Peter Zijlstra 已提交
1427
				struct task_struct *newowner, int fshared)
P
Pierre Peiffer 已提交
1428
{
1429
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1430
	struct futex_pi_state *pi_state = q->pi_state;
1431
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1432
	u32 uval, curval, newval;
D
Darren Hart 已提交
1433
	int ret;
P
Pierre Peiffer 已提交
1434 1435

	/* Owner died? */
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1446 1447 1448
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1476 1477 1478 1479 1480
	if (pi_state->owner != NULL) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);
1481
	}
P
Pierre Peiffer 已提交
1482

1483
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1484

1485
	spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1486
	WARN_ON(!list_empty(&pi_state->list));
1487 1488
	list_add(&pi_state->list, &newowner->pi_state_list);
	spin_unlock_irq(&newowner->pi_lock);
1489
	return 0;
P
Pierre Peiffer 已提交
1490 1491

	/*
1492 1493 1494 1495 1496 1497 1498 1499
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1500
	 */
1501 1502
handle_fault:
	spin_unlock(q->lock_ptr);
1503

1504
	ret = fault_in_user_writeable(uaddr);
1505

1506
	spin_lock(q->lock_ptr);
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1518 1519
}

E
Eric Dumazet 已提交
1520 1521
/*
 * In case we must use restart_block to restart a futex_wait,
1522
 * we encode in the 'flags' shared capability
E
Eric Dumazet 已提交
1523
 */
1524 1525
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1526
#define FLAGS_HAS_TIMEOUT	0x04
E
Eric Dumazet 已提交
1527

N
Nick Piggin 已提交
1528
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1603 1604 1605 1606 1607 1608 1609
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1610
				struct hrtimer_sleeper *timeout)
1611 1612 1613 1614 1615 1616 1617
{
	queue_me(q, hb);

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
T
Thomas Gleixner 已提交
1618
	 * queueing ourselves into the futex hash. This code thus has to
1619 1620 1621
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */
T
Thomas Gleixner 已提交
1622
	set_current_state(TASK_INTERRUPTIBLE);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
	 * !plist_node_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1666
{
1667 1668
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1669 1670

	/*
D
Darren Hart 已提交
1671
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1687 1688
retry:
	q->key = FUTEX_KEY_INIT;
1689
	ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1690
	if (unlikely(ret != 0))
1691
		return ret;
1692 1693 1694 1695

retry_private:
	*hb = queue_lock(q);

1696
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1697

1698 1699
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1700

1701
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1702
		if (ret)
1703
			goto out;
L
Linus Torvalds 已提交
1704

D
Darren Hart 已提交
1705 1706 1707
		if (!fshared)
			goto retry_private;

1708
		put_futex_key(fshared, &q->key);
D
Darren Hart 已提交
1709
		goto retry;
L
Linus Torvalds 已提交
1710
	}
1711

1712 1713 1714
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1715
	}
L
Linus Torvalds 已提交
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1737
	q.rt_waiter = NULL;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1754
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1755
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1756 1757

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1758
	ret = 0;
L
Linus Torvalds 已提交
1759
	if (!unqueue_me(&q))
P
Peter Zijlstra 已提交
1760 1761
		goto out_put_key;
	ret = -ETIMEDOUT;
1762
	if (to && !to->task)
P
Peter Zijlstra 已提交
1763
		goto out_put_key;
N
Nick Piggin 已提交
1764

1765 1766 1767 1768
	/*
	 * We expect signal_pending(current), but another thread may
	 * have handled it for us already.
	 */
P
Peter Zijlstra 已提交
1769
	ret = -ERESTARTSYS;
1770
	if (!abs_time)
P
Peter Zijlstra 已提交
1771
		goto out_put_key;
L
Linus Torvalds 已提交
1772

P
Peter Zijlstra 已提交
1773 1774 1775 1776 1777 1778
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
	restart->futex.uaddr = (u32 *)uaddr;
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1779
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
P
Peter Zijlstra 已提交
1780 1781 1782 1783 1784

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1785

P
Peter Zijlstra 已提交
1786 1787 1788 1789
	ret = -ERESTART_RESTARTBLOCK;

out_put_key:
	put_futex_key(fshared, &q.key);
1790
out:
1791 1792 1793 1794
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1795 1796 1797
	return ret;
}

N
Nick Piggin 已提交
1798 1799 1800

static long futex_wait_restart(struct restart_block *restart)
{
1801
	u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
P
Peter Zijlstra 已提交
1802
	int fshared = 0;
1803
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1804

1805 1806 1807 1808
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1809
	restart->fn = do_no_restart_syscall;
1810
	if (restart->futex.flags & FLAGS_SHARED)
P
Peter Zijlstra 已提交
1811
		fshared = 1;
1812
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1813 1814
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
N
Nick Piggin 已提交
1815 1816 1817
}


1818 1819 1820 1821 1822 1823
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
P
Peter Zijlstra 已提交
1824
static int futex_lock_pi(u32 __user *uaddr, int fshared,
E
Eric Dumazet 已提交
1825
			 int detect, ktime_t *time, int trylock)
1826
{
1827
	struct hrtimer_sleeper timeout, *to = NULL;
1828 1829
	struct futex_hash_bucket *hb;
	struct futex_q q;
1830
	int res, ret;
1831 1832 1833 1834

	if (refill_pi_state_cache())
		return -ENOMEM;

1835
	if (time) {
1836
		to = &timeout;
1837 1838
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1839
		hrtimer_init_sleeper(to, current);
1840
		hrtimer_set_expires(&to->timer, *time);
1841 1842
	}

1843
	q.pi_state = NULL;
1844
	q.rt_waiter = NULL;
1845
retry:
1846
	q.key = FUTEX_KEY_INIT;
1847
	ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1848
	if (unlikely(ret != 0))
1849
		goto out;
1850

D
Darren Hart 已提交
1851
retry_private:
E
Eric Sesterhenn 已提交
1852
	hb = queue_lock(&q);
1853

1854
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1855
	if (unlikely(ret)) {
1856
		switch (ret) {
1857 1858 1859 1860 1861 1862
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1863 1864 1865 1866 1867 1868
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1869
			put_futex_key(fshared, &q.key);
1870 1871 1872
			cond_resched();
			goto retry;
		default:
1873
			goto out_unlock_put_key;
1874 1875 1876 1877 1878 1879
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1880
	queue_me(&q, hb);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1894
	spin_lock(q.lock_ptr);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1906

1907
	/*
1908 1909
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1910 1911 1912 1913
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1914 1915
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1916

1917
	goto out;
1918

1919
out_unlock_put_key:
1920 1921
	queue_unlock(&q, hb);

1922
out_put_key:
1923
	put_futex_key(fshared, &q.key);
1924
out:
1925 1926
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
1927
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1928

1929
uaddr_faulted:
1930 1931
	queue_unlock(&q, hb);

1932
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
1933 1934
	if (ret)
		goto out_put_key;
1935

D
Darren Hart 已提交
1936 1937 1938 1939 1940
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
1941 1942 1943 1944 1945 1946 1947
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
P
Peter Zijlstra 已提交
1948
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1949 1950 1951 1952
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
P
Pierre Peiffer 已提交
1953
	struct plist_head *head;
1954
	union futex_key key = FUTEX_KEY_INIT;
D
Darren Hart 已提交
1955
	int ret;
1956 1957 1958 1959 1960 1961 1962

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
1963
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1964 1965
		return -EPERM;

1966
	ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
T
Thomas Gleixner 已提交
1978
	if (!(uval & FUTEX_OWNER_DIED))
1979
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
T
Thomas Gleixner 已提交
1980

1981 1982 1983 1984 1985 1986 1987

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
1988
	if (unlikely(uval == task_pid_vnr(current)))
1989 1990 1991 1992 1993 1994 1995 1996
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
1997
	plist_for_each_entry_safe(this, next, head, list) {
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2013 2014 2015 2016 2017
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2018 2019 2020

out_unlock:
	spin_unlock(&hb->lock);
2021
	put_futex_key(fshared, &key);
2022

2023
out:
2024 2025 2026
	return ret;

pi_faulted:
2027
	spin_unlock(&hb->lock);
D
Darren Hart 已提交
2028
	put_futex_key(fshared, &key);
2029

2030
	ret = fault_in_user_writeable(uaddr);
2031
	if (!ret)
2032 2033
		goto retry;

L
Linus Torvalds 已提交
2034 2035 2036
	return ret;
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2051
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);
		drop_futex_key_refs(&q->key);

		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
2078 2079
		else
			ret = -ERESTARTNOINTR;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
 * @uaddr:	the futex we initialyl wait on (non-pi)
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all.
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
 * 3) signal (before or after requeue)
 * 4) timeout (before or after requeue)
 *
 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
 * If 6, we setup a restart_block with futex_lock_pi() as the function.
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;

	key2 = FUTEX_KEY_INIT;
2161
	ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2162 2163 2164 2165 2166
	if (unlikely(ret != 0))
		goto out;

	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
T
Thomas Gleixner 已提交
2167 2168
	if (ret)
		goto out_key2;
2169 2170

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2171
	futex_wait_queue_me(hb, &q, to);
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquition by the requeue code.
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
		 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2235 2236 2237 2238 2239 2240 2241 2242
		 * We've already been requeued, but we have no way to
		 * restart by calling futex_lock_pi() directly. We
		 * could restart the syscall, but that will look at
		 * the user space value and return right away. So we
		 * drop back with EWOULDBLOCK to tell user space that
		 * "val" has been changed. That's the same what the
		 * restart of the syscall would do in
		 * futex_wait_setup().
2243
		 */
2244
		ret = -EWOULDBLOCK;
2245 2246 2247 2248
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
T
Thomas Gleixner 已提交
2249
out_key2:
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	put_futex_key(fshared, &key2);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2260 2261 2262 2263 2264 2265 2266
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2267
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
 * sys_set_robust_list - set the robust-futex list head of a task
 * @head: pointer to the list-head
 * @len: length of the list-head, as userspace expects
 */
2280 2281
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2282
{
2283 2284
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
 * sys_get_robust_list - get the robust-futex list head of a task
 * @pid: pid of the process [zero for current task]
 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
 * @len_ptr: pointer to a length field, the kernel fills in the header size
 */
2302 2303 2304
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2305
{
A
Al Viro 已提交
2306
	struct robust_list_head __user *head;
2307
	unsigned long ret;
2308
	const struct cred *cred = current_cred(), *pcred;
2309

2310 2311 2312
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2313 2314 2315 2316 2317 2318
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2319
		rcu_read_lock();
2320
		p = find_task_by_vpid(pid);
2321 2322 2323
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2324 2325 2326
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2327
		    !capable(CAP_SYS_PTRACE))
2328 2329
			goto err_unlock;
		head = p->robust_list;
2330
		rcu_read_unlock();
2331 2332 2333 2334 2335 2336 2337
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2338
	rcu_read_unlock();
2339 2340 2341 2342 2343 2344 2345 2346

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2347
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2348
{
2349
	u32 uval, nval, mval;
2350

2351 2352
retry:
	if (get_user(uval, uaddr))
2353 2354
		return -1;

2355
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2366 2367 2368
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2369 2370 2371 2372
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2373
			goto retry;
2374

2375 2376 2377 2378
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2379
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2380
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2381 2382 2383 2384
	}
	return 0;
}

2385 2386 2387 2388
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2389 2390
				     struct robust_list __user * __user *head,
				     int *pi)
2391 2392 2393
{
	unsigned long uentry;

A
Al Viro 已提交
2394
	if (get_user(uentry, (unsigned long __user *)head))
2395 2396
		return -EFAULT;

A
Al Viro 已提交
2397
	*entry = (void __user *)(uentry & ~1UL);
2398 2399 2400 2401 2402
	*pi = uentry & 1;

	return 0;
}

2403 2404 2405 2406 2407 2408 2409 2410 2411
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2412 2413
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2414
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2415
	int rc;
2416

2417 2418 2419
	if (!futex_cmpxchg_enabled)
		return;

2420 2421 2422 2423
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2424
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2435
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2436
		return;
2437

M
Martin Schwidefsky 已提交
2438
	next_entry = NULL;	/* avoid warning with gcc */
2439
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2440 2441 2442 2443 2444
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2445 2446
		/*
		 * A pending lock might already be on the list, so
2447
		 * don't process it twice:
2448 2449
		 */
		if (entry != pending)
A
Al Viro 已提交
2450
			if (handle_futex_death((void __user *)entry + futex_offset,
2451
						curr, pi))
2452
				return;
M
Martin Schwidefsky 已提交
2453
		if (rc)
2454
			return;
M
Martin Schwidefsky 已提交
2455 2456
		entry = next_entry;
		pi = next_pi;
2457 2458 2459 2460 2461 2462 2463 2464
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2465 2466 2467 2468

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2469 2470
}

2471
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2472
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2473
{
2474
	int clockrt, ret = -ENOSYS;
E
Eric Dumazet 已提交
2475
	int cmd = op & FUTEX_CMD_MASK;
P
Peter Zijlstra 已提交
2476
	int fshared = 0;
E
Eric Dumazet 已提交
2477 2478

	if (!(op & FUTEX_PRIVATE_FLAG))
P
Peter Zijlstra 已提交
2479
		fshared = 1;
L
Linus Torvalds 已提交
2480

2481
	clockrt = op & FUTEX_CLOCK_REALTIME;
2482
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2483
		return -ENOSYS;
L
Linus Torvalds 已提交
2484

E
Eric Dumazet 已提交
2485
	switch (cmd) {
L
Linus Torvalds 已提交
2486
	case FUTEX_WAIT:
2487 2488
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2489
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
L
Linus Torvalds 已提交
2490 2491
		break;
	case FUTEX_WAKE:
2492 2493 2494
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
L
Linus Torvalds 已提交
2495 2496
		break;
	case FUTEX_REQUEUE:
2497
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2498 2499
		break;
	case FUTEX_CMP_REQUEUE:
2500 2501
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
L
Linus Torvalds 已提交
2502
		break;
2503
	case FUTEX_WAKE_OP:
E
Eric Dumazet 已提交
2504
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2505
		break;
2506
	case FUTEX_LOCK_PI:
2507 2508
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2509 2510
		break;
	case FUTEX_UNLOCK_PI:
2511 2512
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2513 2514
		break;
	case FUTEX_TRYLOCK_PI:
2515 2516
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2517
		break;
2518 2519 2520 2521 2522 2523 2524 2525 2526
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532 2533
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2534 2535 2536
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2537
{
2538 2539
	struct timespec ts;
	ktime_t t, *tp = NULL;
2540
	u32 val2 = 0;
E
Eric Dumazet 已提交
2541
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2542

2543
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2544 2545
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2546
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2547
			return -EFAULT;
2548
		if (!timespec_valid(&ts))
2549
			return -EINVAL;
2550 2551

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2552
		if (cmd == FUTEX_WAIT)
2553
			t = ktime_add_safe(ktime_get(), t);
2554
		tp = &t;
L
Linus Torvalds 已提交
2555 2556
	}
	/*
2557
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2558
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2559
	 */
2560
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2561
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2562
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2563

2564
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2565 2566
}

2567
static int __init futex_init(void)
L
Linus Torvalds 已提交
2568
{
2569
	u32 curval;
T
Thomas Gleixner 已提交
2570
	int i;
A
Akinobu Mita 已提交
2571

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non functional ones will return
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2586 2587 2588 2589 2590
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2591 2592
	return 0;
}
2593
__initcall(futex_init);