futex.c 81.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67

68
#include <asm/futex.h>
L
Linus Torvalds 已提交
69

70
#include "locking/rtmutex_common.h"
71

72
/*
73 74 75 76
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
77 78 79 80
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
81 82 83
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
84 85
 *
 * The waker side modifies the user space value of the futex and calls
86 87 88
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
89
 *
90 91 92 93 94
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
116 117 118 119 120
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
121 122 123
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
124
 *
125
 *   waiters++; (a)
126 127 128 129 130 131 132 133 134 135
 *   mb(); (A) <-- paired with -.
 *                              |
 *   lock(hash_bucket(futex));  |
 *                              |
 *   uval = *futex;             |
 *                              |        *futex = newval;
 *                              |        sys_futex(WAKE, futex);
 *                              |          futex_wake(futex);
 *                              |
 *                              `------->  mb(); (B)
136
 *   if (uval == val)
137
 *     queue();
138
 *     unlock(hash_bucket(futex));
139 140
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
141 142
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
143
 *
144 145
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 147
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
148 149 150 151 152 153 154 155 156 157 158 159
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
160 161 162 163 164 165 166 167 168 169 170
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
171 172
 */

173
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
174
int __read_mostly futex_cmpxchg_enabled;
175
#endif
176

177 178 179 180 181 182 183 184
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

206 207
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
208
 * @list:		priority-sorted list of tasks waiting on this futex
209 210 211 212 213 214 215 216 217
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
218 219 220
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
221
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
222
 * The order of wakeup is always to make the first condition true, then
223 224 225 226
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
227 228
 */
struct futex_q {
P
Pierre Peiffer 已提交
229
	struct plist_node list;
L
Linus Torvalds 已提交
230

231
	struct task_struct *task;
L
Linus Torvalds 已提交
232 233
	spinlock_t *lock_ptr;
	union futex_key key;
234
	struct futex_pi_state *pi_state;
235
	struct rt_mutex_waiter *rt_waiter;
236
	union futex_key *requeue_pi_key;
237
	u32 bitset;
L
Linus Torvalds 已提交
238 239
};

240 241 242 243 244 245
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
246
/*
D
Darren Hart 已提交
247 248 249
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
250 251
 */
struct futex_hash_bucket {
252
	atomic_t waiters;
P
Pierre Peiffer 已提交
253 254
	spinlock_t lock;
	struct plist_head chain;
255
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
256

257 258 259
static unsigned long __read_mostly futex_hashsize;

static struct futex_hash_bucket *futex_queues;
L
Linus Torvalds 已提交
260

261 262 263 264 265 266 267 268
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
	 * as full barrier (B), see the ordering comment above.
	 */
269
	smp_mb__after_atomic();
270 271
}

272 273 274 275
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
276 277
{
#ifdef CONFIG_SMP
278
	atomic_inc(&hb->waiters);
279
	/*
280
	 * Full barrier (A), see the ordering comment above.
281
	 */
282
	smp_mb__after_atomic();
283 284 285 286 287 288 289 290 291 292 293 294 295
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
296

297 298 299 300
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
301
#else
302
	return 1;
303 304 305
#endif
}

L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
314
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
315 316 317 318 319 320 321
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
322 323
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
324 325 326 327
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
340
		ihold(key->shared.inode); /* implies MB (B) */
341 342
		break;
	case FUT_OFF_MMSHARED:
343
		futex_get_mm(key); /* implies MB (B) */
344
		break;
345
	default:
346 347 348 349 350
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
351
		smp_mb(); /* explicit MB (B) */
352 353 354 355 356
	}
}

/*
 * Drop a reference to the resource addressed by a key.
357 358 359
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
360 361 362
 */
static void drop_futex_key_refs(union futex_key *key)
{
363 364 365
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
366
		return;
367
	}
368 369 370 371 372 373 374 375 376 377 378

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
379
/**
380 381 382 383
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
384 385
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
386
 *
387 388
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
389
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
390
 *
A
Al Viro 已提交
391
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
392 393 394
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
395
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
396
 */
397
static int
398
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
399
{
400
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
401
	struct mm_struct *mm = current->mm;
402
	struct page *page, *page_head;
403
	int err, ro = 0;
L
Linus Torvalds 已提交
404 405 406 407

	/*
	 * The futex address must be "naturally" aligned.
	 */
408
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
409
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
410
		return -EINVAL;
411
	address -= key->both.offset;
L
Linus Torvalds 已提交
412

413 414 415
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

E
Eric Dumazet 已提交
416 417 418 419 420 421 422 423 424 425
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
426
		get_futex_key_refs(key);  /* implies MB (B) */
E
Eric Dumazet 已提交
427 428
		return 0;
	}
L
Linus Torvalds 已提交
429

430
again:
431
	err = get_user_pages_fast(address, 1, 1, &page);
432 433 434 435 436 437 438 439
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
440 441
	if (err < 0)
		return err;
442 443
	else
		err = 0;
444

445 446 447
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
448
		put_page(page);
449 450
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
451
		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
498
	if (!page_head->mapping) {
499
		int shmem_swizzled = PageSwapCache(page_head);
500 501
		unlock_page(page_head);
		put_page(page_head);
502 503 504
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
505
	}
L
Linus Torvalds 已提交
506 507 508 509 510 511

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
512
	 * the object not the particular process.
L
Linus Torvalds 已提交
513
	 */
514
	if (PageAnon(page_head)) {
515 516 517 518 519 520 521 522 523
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (ro) {
			err = -EFAULT;
			goto out;
		}

524
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
525
		key->private.mm = mm;
526
		key->private.address = address;
527 528
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
529
		key->shared.inode = page_head->mapping->host;
530
		key->shared.pgoff = basepage_index(page);
L
Linus Torvalds 已提交
531 532
	}

533
	get_futex_key_refs(key); /* implies MB (B) */
L
Linus Torvalds 已提交
534

535
out:
536 537
	unlock_page(page_head);
	put_page(page_head);
538
	return err;
L
Linus Torvalds 已提交
539 540
}

541
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
542
{
543
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
544 545
}

546 547
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
548 549 550 551 552
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
553
 * We have no generic implementation of a non-destructive write to the
554 555 556 557 558 559
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
560 561 562 563
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
564 565
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
566 567
	up_read(&mm->mmap_sem);

568 569 570
	return ret < 0 ? ret : 0;
}

571 572
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
573 574
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

590 591
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
592
{
593
	int ret;
T
Thomas Gleixner 已提交
594 595

	pagefault_disable();
596
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
597 598
	pagefault_enable();

599
	return ret;
T
Thomas Gleixner 已提交
600 601 602
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
603 604 605
{
	int ret;

606
	pagefault_disable();
607
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
608
	pagefault_enable();
L
Linus Torvalds 已提交
609 610 611 612

	return ret ? -EFAULT : 0;
}

613 614 615 616 617 618 619 620 621 622 623

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

624
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
625 626 627 628 629 630 631 632

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
633
	pi_state->key = FUTEX_KEY_INIT;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

650 651 652
/*
 * Must be called with the hb lock held.
 */
653 654
static void free_pi_state(struct futex_pi_state *pi_state)
{
655 656 657
	if (!pi_state)
		return;

658 659 660 661 662 663 664 665
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
666
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
667
		list_del_init(&pi_state->list);
668
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

695
	rcu_read_lock();
696
	p = find_task_by_vpid(pid);
697 698
	if (p)
		get_task_struct(p);
699

700
	rcu_read_unlock();
701 702 703 704 705 706 707 708 709 710 711 712 713

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
714
	struct futex_hash_bucket *hb;
715
	union futex_key key = FUTEX_KEY_INIT;
716

717 718
	if (!futex_cmpxchg_enabled)
		return;
719 720 721
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
722
	 * versus waiters unqueueing themselves:
723
	 */
724
	raw_spin_lock_irq(&curr->pi_lock);
725 726 727 728 729
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
730
		hb = hash_futex(&key);
731
		raw_spin_unlock_irq(&curr->pi_lock);
732 733 734

		spin_lock(&hb->lock);

735
		raw_spin_lock_irq(&curr->pi_lock);
736 737 738 739
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
740 741 742 743 744 745
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
746 747
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
748
		pi_state->owner = NULL;
749
		raw_spin_unlock_irq(&curr->pi_lock);
750 751 752 753 754

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

755
		raw_spin_lock_irq(&curr->pi_lock);
756
	}
757
	raw_spin_unlock_irq(&curr->pi_lock);
758 759
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
 */
809 810 811 812 813 814 815 816

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
			      struct futex_pi_state **ps)
817
{
818
	pid_t pid = uval & FUTEX_TID_MASK;
819

820 821 822 823 824
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
825

826
	WARN_ON(!atomic_read(&pi_state->refcount));
827

828 829 830 831
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
832
		/*
833 834 835
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
836
		 */
837
		if (!pi_state->owner) {
838
			/*
839 840
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
841
			 */
842 843
			if (pid)
				return -EINVAL;
844
			/*
845
			 * Take a ref on the state and return success. [4]
846
			 */
847
			goto out_state;
848
		}
849 850

		/*
851 852 853 854 855 856 857 858 859 860 861 862 863
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
			goto out_state;
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
864
		 */
865
		if (!pi_state->owner)
866
			return -EINVAL;
867 868
	}

869 870 871 872 873 874 875 876 877 878 879 880 881
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
		return -EINVAL;
out_state:
	atomic_inc(&pi_state->refcount);
	*ps = pi_state;
	return 0;
}

882 883 884 885 886 887
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
888 889
{
	pid_t pid = uval & FUTEX_TID_MASK;
890 891
	struct futex_pi_state *pi_state;
	struct task_struct *p;
892

893
	/*
894
	 * We are the first waiter - try to look up the real owner and attach
895
	 * the new pi_state to it, but bail out when TID = 0 [1]
896
	 */
897
	if (!pid)
898
		return -ESRCH;
899
	p = futex_find_get_task(pid);
900 901
	if (!p)
		return -ESRCH;
902

903
	if (unlikely(p->flags & PF_KTHREAD)) {
904 905 906 907
		put_task_struct(p);
		return -EPERM;
	}

908 909 910 911 912 913
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
914
	raw_spin_lock_irq(&p->pi_lock);
915 916 917 918 919 920 921 922
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

923
		raw_spin_unlock_irq(&p->pi_lock);
924 925 926
		put_task_struct(p);
		return ret;
	}
927

928 929 930
	/*
	 * No existing pi state. First waiter. [2]
	 */
931 932 933
	pi_state = alloc_pi_state();

	/*
934
	 * Initialize the pi_mutex in locked state and make @p
935 936 937 938 939
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
940
	pi_state->key = *key;
941

942
	WARN_ON(!list_empty(&pi_state->list));
943 944
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
945
	raw_spin_unlock_irq(&p->pi_lock);
946 947 948

	put_task_struct(p);

P
Pierre Peiffer 已提交
949
	*ps = pi_state;
950 951 952 953

	return 0;
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
			   union futex_key *key, struct futex_pi_state **ps)
{
	struct futex_q *match = futex_top_waiter(hb, key);

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

973 974 975 976 977 978 979 980 981 982 983
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

	/*If user space value changed, let the caller retry */
	return curval != uval ? -EAGAIN : 0;
}

984
/**
985
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
986 987 988 989 990 991 992 993
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
994
 *
995 996 997
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
998 999 1000 1001 1002 1003 1004
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1005
				struct task_struct *task, int set_waiters)
1006
{
1007 1008 1009
	u32 uval, newval, vpid = task_pid_vnr(task);
	struct futex_q *match;
	int ret;
1010 1011

	/*
1012 1013
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1014
	 */
1015
	if (get_futex_value_locked(&uval, uaddr))
1016 1017 1018 1019 1020
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
1021
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1022 1023 1024
		return -EDEADLK;

	/*
1025 1026
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1027
	 */
1028 1029 1030
	match = futex_top_waiter(hb, key);
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);
1031 1032

	/*
1033 1034 1035 1036
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1037
	 */
1038
	if (!(uval & FUTEX_TID_MASK)) {
1039
		/*
1040 1041
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1042
		 */
1043 1044
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1045

1046 1047 1048 1049 1050 1051 1052 1053
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1054 1055

	/*
1056 1057 1058
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1059
	 */
1060 1061 1062 1063
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1064
	/*
1065 1066 1067
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1068
	 */
1069
	return attach_to_pi_owner(uval, key, ps);
1070 1071
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1082 1083
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1084 1085 1086 1087
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1088
	hb_waiters_dec(hb);
1089 1090
}

L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
1097 1098
	struct task_struct *p = q->task;

1099 1100 1101
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1102
	/*
T
Thomas Gleixner 已提交
1103
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1104 1105
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
1106 1107
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
1108
	 */
T
Thomas Gleixner 已提交
1109 1110
	get_task_struct(p);

1111
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1112
	/*
T
Thomas Gleixner 已提交
1113 1114 1115 1116
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1117
	 */
1118
	smp_wmb();
L
Linus Torvalds 已提交
1119
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
1120 1121 1122

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
1123 1124
}

1125 1126 1127 1128
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
1129
	u32 uninitialized_var(curval), newval;
1130
	int ret = 0;
1131 1132 1133 1134

	if (!pi_state)
		return -EINVAL;

1135 1136 1137 1138 1139 1140 1141
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1142
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1143 1144 1145
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1146 1147 1148
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1149 1150 1151 1152 1153
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1154 1155 1156
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1157
	 */
1158
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1159

1160 1161 1162 1163 1164 1165 1166
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
		ret = -EFAULT;
	else if (curval != uval)
		ret = -EINVAL;
	if (ret) {
		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
		return ret;
1167
	}
1168

1169
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1170 1171
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1172
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1173

1174
	raw_spin_lock_irq(&new_owner->pi_lock);
1175
	WARN_ON(!list_empty(&pi_state->list));
1176 1177
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1178
	raw_spin_unlock_irq(&new_owner->pi_lock);
1179

1180
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1181 1182 1183 1184 1185
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

I
Ingo Molnar 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1202 1203 1204
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1205
	spin_unlock(&hb1->lock);
1206 1207
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1208 1209
}

L
Linus Torvalds 已提交
1210
/*
D
Darren Hart 已提交
1211
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1212
 */
1213 1214
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1215
{
1216
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1217
	struct futex_q *this, *next;
1218
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1219 1220
	int ret;

1221 1222 1223
	if (!bitset)
		return -EINVAL;

1224
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1225 1226 1227
	if (unlikely(ret != 0))
		goto out;

1228
	hb = hash_futex(&key);
1229 1230 1231 1232 1233

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1234
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1235

J
Jason Low 已提交
1236
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1237
		if (match_futex (&this->key, &key)) {
1238
			if (this->pi_state || this->rt_waiter) {
1239 1240 1241
				ret = -EINVAL;
				break;
			}
1242 1243 1244 1245 1246

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
1247 1248 1249 1250 1251 1252
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

1253
	spin_unlock(&hb->lock);
1254
out_put_key:
1255
	put_futex_key(&key);
1256
out:
L
Linus Torvalds 已提交
1257 1258 1259
	return ret;
}

1260 1261 1262 1263
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1264
static int
1265
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1266
	      int nr_wake, int nr_wake2, int op)
1267
{
1268
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1269
	struct futex_hash_bucket *hb1, *hb2;
1270
	struct futex_q *this, *next;
D
Darren Hart 已提交
1271
	int ret, op_ret;
1272

D
Darren Hart 已提交
1273
retry:
1274
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1275 1276
	if (unlikely(ret != 0))
		goto out;
1277
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1278
	if (unlikely(ret != 0))
1279
		goto out_put_key1;
1280

1281 1282
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1283

D
Darren Hart 已提交
1284
retry_private:
T
Thomas Gleixner 已提交
1285
	double_lock_hb(hb1, hb2);
1286
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1287 1288
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1289
		double_unlock_hb(hb1, hb2);
1290

1291
#ifndef CONFIG_MMU
1292 1293 1294 1295
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1296
		ret = op_ret;
1297
		goto out_put_keys;
1298 1299
#endif

1300 1301
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1302
			goto out_put_keys;
1303 1304
		}

1305
		ret = fault_in_user_writeable(uaddr2);
1306
		if (ret)
1307
			goto out_put_keys;
1308

1309
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1310 1311
			goto retry_private;

1312 1313
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1314
		goto retry;
1315 1316
	}

J
Jason Low 已提交
1317
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1318
		if (match_futex (&this->key, &key1)) {
1319 1320 1321 1322
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1323 1324 1325 1326 1327 1328 1329 1330
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1331
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1332
			if (match_futex (&this->key, &key2)) {
1333 1334 1335 1336
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1337 1338 1339 1340 1341 1342 1343 1344
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1345
out_unlock:
D
Darren Hart 已提交
1346
	double_unlock_hb(hb1, hb2);
1347
out_put_keys:
1348
	put_futex_key(&key2);
1349
out_put_key1:
1350
	put_futex_key(&key1);
1351
out:
1352 1353 1354
	return ret;
}

D
Darren Hart 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1373
		hb_waiters_dec(hb1);
D
Darren Hart 已提交
1374
		plist_add(&q->list, &hb2->chain);
1375
		hb_waiters_inc(hb2);
D
Darren Hart 已提交
1376 1377 1378 1379 1380 1381
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1382 1383
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1384 1385 1386
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1387 1388 1389 1390 1391
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1392 1393 1394
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1395 1396
 */
static inline
1397 1398
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1399 1400 1401 1402
{
	get_futex_key_refs(key);
	q->key = *key;

1403
	__unqueue_futex(q);
1404 1405 1406 1407

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1408 1409
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1410
	wake_up_state(q->task, TASK_NORMAL);
1411 1412 1413 1414
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1415 1416 1417 1418 1419 1420 1421
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1422 1423
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1424 1425 1426
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1427
 *
1428 1429
 * Return:
 *  0 - failed to acquire the lock atomically;
1430
 * >0 - acquired the lock, return value is vpid of the top_waiter
1431 1432 1433 1434 1435 1436
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1437
				 struct futex_pi_state **ps, int set_waiters)
1438
{
1439
	struct futex_q *top_waiter = NULL;
1440
	u32 curval;
1441
	int ret, vpid;
1442 1443 1444 1445

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1446 1447 1448 1449 1450 1451 1452 1453
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1454 1455 1456 1457 1458 1459
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1460 1461 1462 1463
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1464
	/*
1465 1466 1467
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1468
	 */
1469
	vpid = task_pid_vnr(top_waiter->task);
1470 1471
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1472
	if (ret == 1) {
1473
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1474 1475
		return vpid;
	}
1476 1477 1478 1479 1480
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1481
 * @uaddr1:	source futex user address
1482
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1483 1484 1485 1486 1487
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1488
 *		pi futex (pi to pi requeue is not supported)
1489 1490 1491 1492
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1493 1494
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1495
 *  <0 - on error
L
Linus Torvalds 已提交
1496
 */
1497 1498 1499
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1500
{
1501
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1502 1503
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1504
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1505
	struct futex_q *this, *next;
1506 1507

	if (requeue_pi) {
1508 1509 1510 1511 1512 1513 1514
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1534

1535
retry:
1536
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1537 1538
	if (unlikely(ret != 0))
		goto out;
1539 1540
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1541
	if (unlikely(ret != 0))
1542
		goto out_put_key1;
L
Linus Torvalds 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1553 1554
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1555

D
Darren Hart 已提交
1556
retry_private:
1557
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1558
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1559

1560 1561
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1562

1563
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1564 1565

		if (unlikely(ret)) {
D
Darren Hart 已提交
1566
			double_unlock_hb(hb1, hb2);
1567
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1568

1569
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1570 1571
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1572

1573
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1574
				goto retry_private;
L
Linus Torvalds 已提交
1575

1576 1577
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1578
			goto retry;
L
Linus Torvalds 已提交
1579
		}
1580
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1586
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1587 1588 1589 1590 1591 1592
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1593
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1594
						 &key2, &pi_state, nr_requeue);
1595 1596 1597 1598 1599

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1600 1601
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1602
		 */
1603
		if (ret > 0) {
1604
			WARN_ON(pi_state);
1605
			drop_count++;
1606
			task_count++;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
			/*
			 * If we acquired the lock, then the user
			 * space value of uaddr2 should be vpid. It
			 * cannot be changed by the top waiter as it
			 * is blocked on hb2 lock if it tries to do
			 * so. If something fiddled with it behind our
			 * back the pi state lookup might unearth
			 * it. So we rather use the known value than
			 * rereading and handing potential crap to
			 * lookup_pi_state.
			 */
1618
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1619 1620 1621 1622 1623 1624
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
1625 1626
			free_pi_state(pi_state);
			pi_state = NULL;
1627
			double_unlock_hb(hb1, hb2);
1628
			hb_waiters_dec(hb2);
1629 1630
			put_futex_key(&key2);
			put_futex_key(&key1);
1631
			ret = fault_in_user_writeable(uaddr2);
1632 1633 1634 1635
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1636 1637 1638 1639 1640 1641
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1642 1643
			free_pi_state(pi_state);
			pi_state = NULL;
1644
			double_unlock_hb(hb1, hb2);
1645
			hb_waiters_dec(hb2);
1646 1647
			put_futex_key(&key2);
			put_futex_key(&key1);
1648 1649 1650 1651 1652 1653 1654
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1655
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1656 1657 1658 1659
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1660
			continue;
1661

1662 1663 1664
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1665 1666 1667
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1668 1669
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1670 1671
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1672 1673 1674
			ret = -EINVAL;
			break;
		}
1675 1676 1677 1678 1679 1680 1681

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1682
			wake_futex(this);
1683 1684
			continue;
		}
L
Linus Torvalds 已提交
1685

1686 1687 1688 1689 1690 1691
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
1702
							this->task);
1703 1704
			if (ret == 1) {
				/* We got the lock. */
1705
				requeue_pi_wake_futex(this, &key2, hb2);
1706
				drop_count++;
1707 1708 1709 1710 1711 1712 1713
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1714
		}
1715 1716
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1717 1718 1719
	}

out_unlock:
1720
	free_pi_state(pi_state);
D
Darren Hart 已提交
1721
	double_unlock_hb(hb1, hb2);
1722
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1723

1724 1725 1726 1727 1728 1729
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1730
	while (--drop_count >= 0)
1731
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1732

1733
out_put_keys:
1734
	put_futex_key(&key2);
1735
out_put_key1:
1736
	put_futex_key(&key1);
1737
out:
1738
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1739 1740 1741
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1742
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1743
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1744
{
1745
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1746

1747
	hb = hash_futex(&q->key);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

1759
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1760

1761
	spin_lock(&hb->lock); /* implies MB (A) */
1762
	return hb;
L
Linus Torvalds 已提交
1763 1764
}

1765
static inline void
J
Jason Low 已提交
1766
queue_unlock(struct futex_hash_bucket *hb)
1767
	__releases(&hb->lock)
1768 1769
{
	spin_unlock(&hb->lock);
1770
	hb_waiters_dec(hb);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1785
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1786
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1787
{
P
Pierre Peiffer 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1802
	q->task = current;
1803
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1804 1805
}

1806 1807 1808 1809 1810 1811 1812
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
1813 1814
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
1815
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1816 1817 1818 1819
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1820
	int ret = 0;
L
Linus Torvalds 已提交
1821 1822

	/* In the common case we don't take the spinlock, which is nice. */
1823
retry:
L
Linus Torvalds 已提交
1824
	lock_ptr = q->lock_ptr;
1825
	barrier();
1826
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1845
		__unqueue_futex(q);
1846 1847 1848

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1849 1850 1851 1852
		spin_unlock(lock_ptr);
		ret = 1;
	}

1853
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1854 1855 1856
	return ret;
}

1857 1858
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1859 1860
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1861
 */
P
Pierre Peiffer 已提交
1862
static void unqueue_me_pi(struct futex_q *q)
1863
	__releases(q->lock_ptr)
1864
{
1865
	__unqueue_futex(q);
1866 1867 1868 1869 1870

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1871
	spin_unlock(q->lock_ptr);
1872 1873
}

P
Pierre Peiffer 已提交
1874
/*
1875
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1876
 *
1877 1878
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1879
 */
1880
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1881
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1882
{
1883
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1884
	struct futex_pi_state *pi_state = q->pi_state;
1885
	struct task_struct *oldowner = pi_state->owner;
1886
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1887
	int ret;
P
Pierre Peiffer 已提交
1888 1889

	/* Owner died? */
1890 1891 1892 1893 1894
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
1895 1896 1897 1898
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
1899
	 *
D
Darren Hart 已提交
1900 1901 1902
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1917
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1928
	if (pi_state->owner != NULL) {
1929
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1930 1931
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1932
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1933
	}
P
Pierre Peiffer 已提交
1934

1935
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1936

1937
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1938
	WARN_ON(!list_empty(&pi_state->list));
1939
	list_add(&pi_state->list, &newowner->pi_state_list);
1940
	raw_spin_unlock_irq(&newowner->pi_lock);
1941
	return 0;
P
Pierre Peiffer 已提交
1942 1943

	/*
1944
	 * To handle the page fault we need to drop the hash bucket
1945 1946
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
1947 1948 1949 1950 1951
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1952
	 */
1953 1954
handle_fault:
	spin_unlock(q->lock_ptr);
1955

1956
	ret = fault_in_user_writeable(uaddr);
1957

1958
	spin_lock(q->lock_ptr);
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1970 1971
}

N
Nick Piggin 已提交
1972
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
1984 1985 1986
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
1987 1988
 * <0 - on error (-EFAULT)
 */
1989
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
2000
			ret = fixup_pi_state_owner(uaddr, q, current);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
2022
		 * rt_mutex. Too late.
2023
		 */
2024
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2025
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2026 2027 2028
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2029
		ret = fixup_pi_state_owner(uaddr, q, owner);
2030 2031 2032 2033 2034
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2035
	 * the owner of the rt_mutex.
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

2047 2048 2049 2050 2051 2052 2053
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2054
				struct hrtimer_sleeper *timeout)
2055
{
2056 2057 2058 2059 2060 2061
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2062
	set_current_state(TASK_INTERRUPTIBLE);
2063
	queue_me(q, hb);
2064 2065 2066 2067 2068 2069 2070 2071 2072

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
2073 2074
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2075 2076 2077 2078 2079 2080 2081 2082
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2083
			freezable_schedule();
2084 2085 2086 2087
	}
	__set_current_state(TASK_RUNNING);
}

2088 2089 2090 2091
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2092
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2093 2094 2095 2096 2097 2098 2099 2100
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2101 2102
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2103
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2104
 */
2105
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2106
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2107
{
2108 2109
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2110 2111

	/*
D
Darren Hart 已提交
2112
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2120 2121
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2122 2123
	 * cond(var) false, which would violate the guarantee.
	 *
2124 2125 2126 2127
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2128
	 */
2129
retry:
2130
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2131
	if (unlikely(ret != 0))
2132
		return ret;
2133 2134 2135 2136

retry_private:
	*hb = queue_lock(q);

2137
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2138

2139
	if (ret) {
J
Jason Low 已提交
2140
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2141

2142
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2143
		if (ret)
2144
			goto out;
L
Linus Torvalds 已提交
2145

2146
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2147 2148
			goto retry_private;

2149
		put_futex_key(&q->key);
D
Darren Hart 已提交
2150
		goto retry;
L
Linus Torvalds 已提交
2151
	}
2152

2153
	if (uval != val) {
J
Jason Low 已提交
2154
		queue_unlock(*hb);
2155
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2156
	}
L
Linus Torvalds 已提交
2157

2158 2159
out:
	if (ret)
2160
		put_futex_key(&q->key);
2161 2162 2163
	return ret;
}

2164 2165
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2166 2167 2168 2169
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2170
	struct futex_q q = futex_q_init;
2171 2172 2173 2174 2175 2176 2177 2178 2179
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2180 2181 2182
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2183 2184 2185 2186 2187
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2188
retry:
2189 2190 2191 2192
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2193
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2194 2195 2196
	if (ret)
		goto out;

2197
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2198
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2199 2200

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2201
	ret = 0;
2202
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2203
	if (!unqueue_me(&q))
2204
		goto out;
P
Peter Zijlstra 已提交
2205
	ret = -ETIMEDOUT;
2206
	if (to && !to->task)
2207
		goto out;
N
Nick Piggin 已提交
2208

2209
	/*
T
Thomas Gleixner 已提交
2210 2211
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2212
	 */
2213
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2214 2215
		goto retry;

P
Peter Zijlstra 已提交
2216
	ret = -ERESTARTSYS;
2217
	if (!abs_time)
2218
		goto out;
L
Linus Torvalds 已提交
2219

2220
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2221
	restart->fn = futex_wait_restart;
2222
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2223 2224 2225
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2226
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2227

P
Peter Zijlstra 已提交
2228 2229
	ret = -ERESTART_RESTARTBLOCK;

2230
out:
2231 2232 2233 2234
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2235 2236 2237
	return ret;
}

N
Nick Piggin 已提交
2238 2239 2240

static long futex_wait_restart(struct restart_block *restart)
{
2241
	u32 __user *uaddr = restart->futex.uaddr;
2242
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2243

2244 2245 2246 2247
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2248
	restart->fn = do_no_restart_syscall;
2249 2250 2251

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2252 2253 2254
}


2255 2256 2257 2258 2259 2260
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
2261
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2262
			 ktime_t *time, int trylock)
2263
{
2264
	struct hrtimer_sleeper timeout, *to = NULL;
2265
	struct futex_hash_bucket *hb;
2266
	struct futex_q q = futex_q_init;
2267
	int res, ret;
2268 2269 2270 2271

	if (refill_pi_state_cache())
		return -ENOMEM;

2272
	if (time) {
2273
		to = &timeout;
2274 2275
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2276
		hrtimer_init_sleeper(to, current);
2277
		hrtimer_set_expires(&to->timer, *time);
2278 2279
	}

2280
retry:
2281
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2282
	if (unlikely(ret != 0))
2283
		goto out;
2284

D
Darren Hart 已提交
2285
retry_private:
E
Eric Sesterhenn 已提交
2286
	hb = queue_lock(&q);
2287

2288
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2289
	if (unlikely(ret)) {
2290
		switch (ret) {
2291 2292 2293 2294 2295 2296
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2297 2298
		case -EAGAIN:
			/*
2299 2300 2301 2302
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2303
			 */
J
Jason Low 已提交
2304
			queue_unlock(hb);
2305
			put_futex_key(&q.key);
2306 2307 2308
			cond_resched();
			goto retry;
		default:
2309
			goto out_unlock_put_key;
2310 2311 2312 2313 2314 2315
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2316
	queue_me(&q, hb);
2317 2318 2319 2320 2321

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
2322 2323 2324
	if (!trylock) {
		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
	} else {
2325 2326 2327 2328 2329
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2330
	spin_lock(q.lock_ptr);
2331 2332 2333 2334
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2335
	res = fixup_owner(uaddr, &q, !ret);
2336 2337 2338 2339 2340 2341
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2342

2343
	/*
2344 2345
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2346 2347 2348 2349
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2350 2351
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2352

2353
	goto out_put_key;
2354

2355
out_unlock_put_key:
J
Jason Low 已提交
2356
	queue_unlock(hb);
2357

2358
out_put_key:
2359
	put_futex_key(&q.key);
2360
out:
2361 2362
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2363
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2364

2365
uaddr_faulted:
J
Jason Low 已提交
2366
	queue_unlock(hb);
2367

2368
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2369 2370
	if (ret)
		goto out_put_key;
2371

2372
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2373 2374
		goto retry_private;

2375
	put_futex_key(&q.key);
D
Darren Hart 已提交
2376
	goto retry;
2377 2378 2379 2380 2381 2382 2383
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2384
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2385
{
2386
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2387
	union futex_key key = FUTEX_KEY_INIT;
2388 2389
	struct futex_hash_bucket *hb;
	struct futex_q *match;
D
Darren Hart 已提交
2390
	int ret;
2391 2392 2393 2394 2395 2396 2397

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2398
	if ((uval & FUTEX_TID_MASK) != vpid)
2399 2400
		return -EPERM;

2401
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2402 2403
	if (ret)
		return ret;
2404 2405 2406 2407 2408

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2409 2410 2411
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2412
	 */
2413 2414 2415
	match = futex_top_waiter(hb, &key);
	if (match) {
		ret = wake_futex_pi(uaddr, uval, match);
2416
		/*
2417 2418
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2419 2420 2421 2422 2423
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
2424

2425
	/*
2426 2427 2428 2429 2430
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2431
	 */
2432
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2433
		goto pi_faulted;
2434

2435 2436 2437 2438 2439
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2440 2441
out_unlock:
	spin_unlock(&hb->lock);
2442
	put_futex_key(&key);
2443 2444 2445
	return ret;

pi_faulted:
2446
	spin_unlock(&hb->lock);
2447
	put_futex_key(&key);
2448

2449
	ret = fault_in_user_writeable(uaddr);
2450
	if (!ret)
2451 2452
		goto retry;

L
Linus Torvalds 已提交
2453 2454 2455
	return ret;
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2468 2469 2470
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2492
		plist_del(&q->list, &hb->chain);
2493
		hb_waiters_dec(hb);
2494

T
Thomas Gleixner 已提交
2495
		/* Handle spurious wakeups gracefully */
2496
		ret = -EWOULDBLOCK;
2497 2498
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2499
		else if (signal_pending(current))
2500
			ret = -ERESTARTNOINTR;
2501 2502 2503 2504 2505 2506
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2507
 * @uaddr:	the futex we initially wait on (non-pi)
2508
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2509 2510 2511
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2512
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2513 2514 2515
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2516 2517 2518 2519 2520
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2521 2522
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2523
 * via the following--
2524
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2525 2526 2527
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2528
 *
2529
 * If 3, cleanup and return -ERESTARTNOINTR.
2530 2531 2532 2533 2534 2535 2536
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2537
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2538 2539 2540
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2541 2542
 * Return:
 *  0 - On success;
2543 2544
 * <0 - On error
 */
2545
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2546
				 u32 val, ktime_t *abs_time, u32 bitset,
2547
				 u32 __user *uaddr2)
2548 2549 2550 2551 2552
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2553 2554
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2555 2556
	int res, ret;

2557 2558 2559
	if (uaddr == uaddr2)
		return -EINVAL;

2560 2561 2562 2563 2564
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2565 2566 2567
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2578 2579
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2580 2581
	rt_waiter.task = NULL;

2582
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2583 2584 2585
	if (unlikely(ret != 0))
		goto out;

2586 2587 2588 2589
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2590 2591 2592 2593
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2594
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2595 2596
	if (ret)
		goto out_key2;
2597

2598 2599 2600 2601 2602
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
2603
		queue_unlock(hb);
2604 2605 2606 2607
		ret = -EINVAL;
		goto out_put_keys;
	}

2608
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2609
	futex_wait_queue_me(hb, &q, to);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2621 2622 2623
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2634
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2635 2636 2637 2638 2639 2640 2641 2642
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2643
		WARN_ON(!q.pi_state);
2644
		pi_mutex = &q.pi_state->pi_mutex;
2645
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2646 2647 2648 2649 2650 2651 2652
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2653
		res = fixup_owner(uaddr2, &q, !ret);
2654 2655
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2656
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2670
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2671 2672 2673
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2674 2675 2676 2677 2678
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2679
		 */
2680
		ret = -EWOULDBLOCK;
2681 2682 2683
	}

out_put_keys:
2684
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2685
out_key2:
2686
	put_futex_key(&key2);
2687 2688 2689 2690 2691 2692 2693 2694 2695

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2696 2697 2698 2699 2700 2701 2702
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2703
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2704 2705 2706 2707 2708 2709 2710 2711
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2712 2713 2714
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2715
 */
2716 2717
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2718
{
2719 2720
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2733 2734 2735 2736
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2737
 */
2738 2739 2740
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2741
{
A
Al Viro 已提交
2742
	struct robust_list_head __user *head;
2743
	unsigned long ret;
2744
	struct task_struct *p;
2745

2746 2747 2748
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2749 2750 2751
	rcu_read_lock();

	ret = -ESRCH;
2752
	if (!pid)
2753
		p = current;
2754
	else {
2755
		p = find_task_by_vpid(pid);
2756 2757 2758 2759
		if (!p)
			goto err_unlock;
	}

2760 2761 2762 2763 2764 2765 2766
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2767 2768 2769 2770 2771
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2772
	rcu_read_unlock();
2773 2774 2775 2776 2777 2778 2779 2780

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2781
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2782
{
2783
	u32 uval, uninitialized_var(nval), mval;
2784

2785 2786
retry:
	if (get_user(uval, uaddr))
2787 2788
		return -1;

2789
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2800
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2815
		if (nval != uval)
2816
			goto retry;
2817

2818 2819 2820 2821
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2822
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2823
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2824 2825 2826 2827
	}
	return 0;
}

2828 2829 2830 2831
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2832
				     struct robust_list __user * __user *head,
2833
				     unsigned int *pi)
2834 2835 2836
{
	unsigned long uentry;

A
Al Viro 已提交
2837
	if (get_user(uentry, (unsigned long __user *)head))
2838 2839
		return -EFAULT;

A
Al Viro 已提交
2840
	*entry = (void __user *)(uentry & ~1UL);
2841 2842 2843 2844 2845
	*pi = uentry & 1;

	return 0;
}

2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2855
	struct robust_list __user *entry, *next_entry, *pending;
2856 2857
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2858
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2859
	int rc;
2860

2861 2862 2863
	if (!futex_cmpxchg_enabled)
		return;

2864 2865 2866 2867
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2868
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2879
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2880
		return;
2881

M
Martin Schwidefsky 已提交
2882
	next_entry = NULL;	/* avoid warning with gcc */
2883
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2884 2885 2886 2887 2888
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2889 2890
		/*
		 * A pending lock might already be on the list, so
2891
		 * don't process it twice:
2892 2893
		 */
		if (entry != pending)
A
Al Viro 已提交
2894
			if (handle_futex_death((void __user *)entry + futex_offset,
2895
						curr, pi))
2896
				return;
M
Martin Schwidefsky 已提交
2897
		if (rc)
2898
			return;
M
Martin Schwidefsky 已提交
2899 2900
		entry = next_entry;
		pi = next_pi;
2901 2902 2903 2904 2905 2906 2907 2908
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2909 2910 2911 2912

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2913 2914
}

2915
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2916
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2917
{
T
Thomas Gleixner 已提交
2918
	int cmd = op & FUTEX_CMD_MASK;
2919
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2920 2921

	if (!(op & FUTEX_PRIVATE_FLAG))
2922
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2923

2924 2925 2926 2927 2928
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
2940
	switch (cmd) {
L
Linus Torvalds 已提交
2941
	case FUTEX_WAIT:
2942 2943
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
2944
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2945
	case FUTEX_WAKE:
2946 2947
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
2948
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2949
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
2950
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2951
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
2952
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2953
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
2954
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2955
	case FUTEX_LOCK_PI:
2956
		return futex_lock_pi(uaddr, flags, timeout, 0);
2957
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
2958
		return futex_unlock_pi(uaddr, flags);
2959
	case FUTEX_TRYLOCK_PI:
2960
		return futex_lock_pi(uaddr, flags, NULL, 1);
2961 2962
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
2963 2964
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
2965
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
2966
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
2967
	}
T
Thomas Gleixner 已提交
2968
	return -ENOSYS;
L
Linus Torvalds 已提交
2969 2970 2971
}


2972 2973 2974
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2975
{
2976 2977
	struct timespec ts;
	ktime_t t, *tp = NULL;
2978
	u32 val2 = 0;
E
Eric Dumazet 已提交
2979
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2980

2981
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2982 2983
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2984
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2985
			return -EFAULT;
2986
		if (!timespec_valid(&ts))
2987
			return -EINVAL;
2988 2989

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2990
		if (cmd == FUTEX_WAIT)
2991
			t = ktime_add_safe(ktime_get(), t);
2992
		tp = &t;
L
Linus Torvalds 已提交
2993 2994
	}
	/*
2995
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2996
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2997
	 */
2998
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2999
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3000
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3001

3002
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3003 3004
}

3005
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3006
{
3007
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3008
	u32 curval;
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3027
	unsigned int futex_shift;
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3039 3040 3041
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3042 3043

	futex_detect_cmpxchg();
3044

3045
	for (i = 0; i < futex_hashsize; i++) {
3046
		atomic_set(&futex_queues[i].waiters, 0);
3047
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3048 3049 3050
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3051 3052
	return 0;
}
3053
__initcall(futex_init);